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Abstract

One of Kudla’s conjectures about deep relations between arithmetic intersection
theory, Eisenstein series and their derivatives comes down to a relation between cer-
tain Green function integrals and the special value of the derivative of a corresponding
Eisenstein series. Though this is in the mean time a well treated field, this shall be
discussed in a pedestrian way for the homogenous space belonging to the orthogonal
group of signature (3,2). On the way, some (2,2)- and (1,2)-material is also collected.
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Preface

In 1997, Kudla presented in [Ku0] and [Ku2] conjectures about deep relations between
arithmetic intersection theory, Eisenstein series and their derivatives, and special values
of Rankin L-series. Almost 20 years ago, Ulf Kühn made me acquainted with some of his
former work concerning the Arakelov theory and the arithmetic of the world round about
the orthogonal and unitary groups in special cases. Based on Kühn’s old unpublished
draft on his attempt to prove Kudla’s conjectures for the case of the product of two mod-
ular curves two joint articles discussing Kudla’s Green function concerning the orthogonal
group SO(2, 2) appeared in the arxiv in 2012 [BeKI] and [BeKII].1 There, in part one
it is proved that the generating series of certain modified arithmetic special cycles is as
predicted by Kudlas conjectures a modular form with values in the first arithmetic Chow
group. In part two this generating series is paired with the square of the first arithmetic
Chern class of the line bundle of modular forms. Using part one and previously known
results like the Faltings heights of Hecke correspondences this calculation boils down to
determine the integrals of the Green functions Ξ(m) over the associated homogenous space
X. The resulting arithmetic intersection numbers turn out to be as predicted by Kudla to
be strongly related to the Fourier coefficients of the derivative of the classical real analytic
Eisenstein series E2(τ, s).
In the following years, an attempt to do all this for the group SO(3, 2) using the in [2003]
written articles [BK] by Bruinier and Kühn and [Ku1] by Kudla and though helped by
remarks and hints by Jan Bruinier and Jens Funke got lost in time and details as Kühn
mainly was taken over by other tasks. And there was much more different and more general
work in several directions on orthogonal and unitary groups by a lot of authors (Kudla,
Rapoport, Bruinier, Funke, Yang, ...). Recently, encouraged by Kühn and with his help,
I revised the material we had covered and assembled it. Though there is in principle no
result not known in the meantime, one may hope that our pedestrian way to complete our
approach to calculate Kudla’s Green function integral is still interesting to some readers.

1In the meantime both articles are joined in the paper ’Kudla’s conjecture for X(1)×X(1)’ which will
appear in the volume dedicated to Kudla’s 70-th birthday
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Introduction

Kudla’s program, presented e.g. in his 2002-ICM-talk ’Derivatives of Eisenstein series and
arithmetic geometry’ [Ku], with sources in [Ku0] and [Ku2], proposes two ways to relate
the generating series for subspaces of the arithmetic spaceM belonging to the homogenous
space X = Γ\D of the orthogonal group G = SO(p, 2) to the appropriate Eisenstein series
E(τ, s) of weight p/2 + 1 (e.g. the introduction of Kudla, Rapoport, and Yang [KRY])
where τ = u+ iv ∈ H. The first one is via the degree series φdeg(τ) and the second one via

the height series φ̂height(τ) : For m ∈ Z, let be Ẑ(m) = (Z(m), Ξ̃(m, v)) ∈ ĈH
1
(M) where

Z(m) is a special cycle and Ξ̃ is a possibly modified version (caused by the influence of the
compactification) of Kudla’s Green function Ξ. Then one has

φdeg(τ) =
∑
m

deg(Ẑ(m, v))qm = E(τ, 0),

where deg(Ẑ(m, v)) is given by∫
X

ddcΞ̃(m, v) ∧ c1(L)p−1 = vol(Z(m)).

On the way in the following, this relation is proven again for p = 1, 2 and 3. For the height
series Kudla conjectures

φ̂height(τ) :=
∑

Ẑ(m)qm · ĉ1(L)p =
d

ds
E(τ, s)|s=0

where E is a certain normalized Eisenstein series and the coefficients of the height series
are essentially given by

Ẑ(m, v) · c1(L)p = htM(Z(m)) +

∫
X

Ξ̃(m, v)c1(L)p.

This is already established for p = 1 (see Yang [Ya] and Kudla-Rapoport-Yang [KRY]) and
p = 2 in a particular cases (as mentioned in the Preface in [BeKI] and [BeKII] and the
thesis of Buck [Bu]) and will be briefly recorded below.

For p = 3, as in (2.1.1), we take the vector valued Eisenstein series from [BK] (3.1) with
the two components for β ≡ 0 or 1 from [BK] (3.4)

Eβ(τ, s) := (1/2)
∑

(M,φ)∈Γ∞\Mp2(Z)

(eβv
s)|∗`(M,φ). =

∑
γ∈L′/L

∑
m∈Z−q(γ)

cβ(γ,m, s′, v)eγ(mu).

As in [BK], we specialize to β = 0 and compare these coefficients c0(γ,m, s′, v) and their
derivatives c′0(γ,m, s′, v) := d

ds′
c0(γ,m, s′, v) for s′ = 0 to the integrals

I(γ,m, v) =

∫
X

Ξ(γ,m, v)dµ
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of Kudla’s Green function Ξ(γ,m, v) displayed in section 4 of this text and IBK(γ,m, v) =∫
X
Gγ,mdµ of the Green function Gγ,m,m < 0 from Bruinier-Kühn [BK] Definition 4.5 and

Theorem 4.10. We see that for general m we get into some elementary algebraic number
theory, As in [BK] (3.23), for m ∈ Z we put 4m = D0f

2 and for m− 1/4 ∈ Z 16m = D0f
2

where D0 is a fundamental discriminant and f ∈ N, and χD0 the associated Dirichlet char-
acter (e.g.,[Za] p.38). With a = 4πmv, and σγ,m generalized divisor sums from [BK] (3.23)
(here see (12.22)) and integrals J± (12.14.2), we end up with the following.

0.1. Proposition. For the (3,2) case, one has

c0(γ,m, 0, v) =

{
C(γ,m, 0)e−a/2 form > 0,

0, form < 0,

c′0(γ,m, 0, v) =

{
C(γ,m, 0)e−a/2(J+(3/2, a) + C′(γ,m,0)

C(γ,m,0)
), form > 0,

C(γ,m, 0)e−|a|/2 · J−(3/2, a), form < 0,

where C(γ,m, 0) := −26 · 3 · 5 · π−2|m|3/2L(χD0 , 2)σγ,m(5/2) form 6= 0,(0.1.1)

and the

0.2. Theorem. For the (3,2) case, one has

(4/B) · I(γ,m, v) =

{
C(γ,m, 0)J+(3/2, a), form > 0,

C(γ,m, 0)J−(3/2, a)e−|a|, form < 0.

(4/B) · IBK(γ,−m, v) =

{
−C(γ,−m, 0)

(C′(γ,−m,0)
C(γ,−m,0)

+ log(4π)− Γ′(1)
)
, form > 0,

0, form < 0.

(0.2.1)

The second equation is simply [BK] Theorem 4.10 and the first one is an immediate con-
sequence of our main result:

0.3. Proposition (Green Integral). We have the integrals of Kudla’s Green function
for the case of the SO(2, 3)

I(γ, v,m) =

∫
X

Ξ(γ,m, v)dµ

= −26 · 3 · 5 · π−2|m|3/2L(χD0 , 2)σγ,m(5/2)J+(v,m), for m > 0,

= −26 · 3 · 5 · π−2|m|3/2L(χD0 , 2)σγ,m(5/2)J−(v,m)e−|a|, for m < 0.(0.3.1)

0.4. Corollary. We have

c′0(γ,m, 0, v) = e−a/2((4/B) · (I(γ,m, v)− IBK(γ,−m, v)) + ∗ c0(γ,m, 0, v))(0.4.1)

Hence, Kudla’s Green function and the Green function from Bruinier-Kühn sum up to
create a modular form.

4



While the work at the elementary details of the paper was interrupted, a lot of other work
on this and similar topics was done. As example, we only mention two items:

0.5. In 2018, an article by Ehlen and Sankaran [ES] appeared which also treated the
two ways to define Green functions, there with the notation GrK0 (m, v) and GrB0 (m). In
[ES] Theorem 3.3 they recognize GrK0 (m, v) as a regularized theta lift and, among others,
they prove the Theorem 3.6 identifying the differences of these Green functions as Fourier
coefficients of a modular form.

0.6. In the paper [GS], Garcia and Sankaran treat a very general situation which does not
include our special example. There they get as their result a very similar looking relation.
Theorem 1.2. Suppose that V is anisotropic and, in the unitary case, that q = 1. Then
for any T , there is an explicit constant κ(T,Φf ), given by Definition 5.7, such that

(−1rκ0

2Vol(XV,K ,ΩE)

∫
[XK(C)]

g(T,y, ϕf ) ∧ Ωp+1−r
E qT = E ′T (τ ,Φf , s0)− κ(T,Φf )q

T .

Here qT = e2πitr(Tτ), and κ0 = 1 if s0 > 0 and κ0 = 2 if s0 = 0.

In the special case that T is non-degenerate, one has a factorization

ET (τ ,Φf , s) = WT,∞(τ ,Φl
∞, s) ·WT,f (e,Φf , s)

where the factors on the right are the products of the archimedean and nonarchimedean
local Whittaker functionals, respectively. Let

E ′T (τ ,Φf , s0)∞ = W ′
T,∞(τ ,Φl

∞, s0) ·WT,f (e,Φf , s0)

denote the archimedean contribution to the special derivative. Then, if T is totally positive
definite, Theorem 1.2 specializes to the identity

(−1)rκ0

2Vol(XV,K ,ΩE)

∫
[XK(C)]

g(T,y, ϕf ) ∧ Ωp+1−r
E qT = E ′T (τ ,Φf , s0)∞

− ET (τ ,Φf , s0)((ιd)/2(rlog π − Γ′(ιm/2)

Γ(ιm/2)
+
ι

2
logNF/Q detT ),

here ι = 1(resp. ι = 2) in the orthogonal (resp. unitary) case. If T is not totally positive
definite, the last summand is zero.

Organization of the text

The whole time, we follow the principle to give a lot of details which a reader familiar with
the subject easily can and will skip. Besides the main topic of the signature (3,2), often
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we also look into (2,2) and (1,2) cases.

The main tool in our proofs comes from the special exceptional homomorphisms between
the groups

SL(2,R)→ SO(2, 1)(0.6.1)

SL(2,R)× SL(2,R)→ SO(2, 2)

Sp(2,R)→ SO(3, 2)

As the symmetric space associated with our orthogonal group G = SO(p, 2) may be iden-
tified with the set

D = { oriented negative 2-planes X ⊂ V = Rn },(0.6.2)

i.e. X =< v1, v2 >, vj ∈ V, q(vj) < 0, (v1, v2) = 0. It is well-known that, for p = 3, D
has two connected components D+ and D−, and D+ is isomorphic to the Siegel half plane
H2 of genus 2, for p = 2 one has D+ ' H × H, and D+ ' H for p = 1. Hence, in the
first section, we display this, in the second, we gather from [BK], what we need for the
coefficients of the Eisenstein series for the case p = 3. In sections 3 and 4, we introduce
Kudla’s Green function Ξ(β,m, v) belonging to a divisor, rep., to a lattice Lm ⊂ V, resp.
an unit group Γ = Γ(L) = SO(L) which is a discrete subgroup preserving the lattice L.
Section 5 contains notions from elementary number theory needed for the description of
the unit groups and the volumes of their fundamental domains in the sections 6 to 11.
Helped by material from Siegel, we use the exceptional homomorphisms to translate the
well known SL2− and Sp2−results for the cases later needed in the sections 12, 13, and 14
to determine the integrals of Kudla’s Green function over X = Γ\D for the cases p = 3, 2, 1.
In these sections, we follow Kudla’s approaches and, concerning the treatment of certain
measures, plunge into papers by Flensted-Jensen, Bruinier and Yang and others which at
the end are further spread in the appendix-section 16. In epilogue-section 15, we give an
overview and comparison of the obtained results.

1 Notation and Coordinates

1.1. We take a real quadratic space (V, (., .)) with signature (p, q), p + q = n and, for
x, y ∈ V, write

q(x) = (1/2)(x, x), (x, y) = txQy (x, y) := q(x+ y)− q(x)− q(y), Q ∈ Symn(R).

Following Siegel (e.g.[S3]), sometime, we also write Q[x] = txQx. In particular, for

Epq :=

(
Ep
−Eq

)
(1.1.1)
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and for x, y ∈ Rn, we have

2q0(x) :=

p∑
α=1

x2
α −

n∑
µ=p+1

x2
µ.(1.1.2)

For the identity component of the corresponding special orthogonal group, we write

G := SO0(p, q).(1.1.3)

Here we are mainly interested in the case p = 3, q = 2 but we also look at some other low
dimensional cases and start by some generalities for the cases with arbitrary (small) p and
q = 2.
For a real symmetric n× n−matrix Q, we write SO(Q) = {A ∈ SLn(R); tAQA = Q}

Our Symmetric Space

1.2. Realization 1. As usual (e.g. [BF], [Ku1]), for q = 2, the symmetric space

D = SO(p, q)/(SO(p)× SO(2))(1.2.1)

may be identified with the set of oriented negative 2-planes in V, i.e.,

D ' { oriented negative 2-planes X ⊂ V = Rn },(1.2.2)

with X = 〈v1, v2〉, vj ∈ V, q(vj) < 0, (v1, v2) = 0. It is well-known that D has two
connected components D+ and D−. For p = 3, D+ is isomorphic to the Siegel half plane H2

of genus 2, for p = 2 one has D+ ' H×H, and for p = 1 D+ ' H. There are several ways to
realize these isomorphisms and to fix coordinates. These depend on the special situation
where certain notation has become customary but unfortunatily with slight deviations in
different papers.

1.3. Realization 2. D is isomorphic to the subset

DQ = {w ∈ V (C); (w,w) = 0, (w, w̄) < 0}/C× ⊂ P(V (C)).(1.3.1)

The isomorphism is given by

X = 〈v1, v2〉 7→ w = v1 + iv2.(1.3.2)

1.4. Realization 3. Moreover, there is the realization of D as a tube domain: Take a
Witt decomposition

V (R) = aR + V0 + cR,(1.4.1)

where a, c ∈ V with (a, a) = (c, c) = 0, (a, c) = 1 span a hyperbolic plane with orthogonal
complement V0, and let

C = {v ∈ V0; (v, v) < 0}
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be the negative cone in V0. Then D ' DQ is isomorphic to

DT = {z ∈ V0(C); y = Im z ∈ C}(1.4.2)

via the map

DT → V (C), z 7→ w(z) := v = z + a− q(z)c(1.4.3)

composed with the projection to DQ.

1.5. Example (1,2). We take

Q =

1
−1

−1

 , Q̃ = −

2
1

1

 .(1.5.1)

and

Ṽ = {M =

(
a b
c −a

)
, a, b, c ∈ R} ' R3(1.5.2)

with a = (1/
√

2)x3, b = (1/
√

2)(x2 − x1), c = (1/
√

2)(x2 + x1), a := t(a, b, c) and, hence,

detM = −a2 − bc = (1/2)ta Q̃ a = (1/2)txQx = (1/2)(x2
1 − x2

2 − x2
3)(1.5.3)

SL(2,R) acts on Ṽ via M 7→ g ·M = gMg−1 =: M ′ and one has a map

ρ : SL(2,R)→ G̃ := SO(Q̃), g =

(
α β
γ δ

)
7→ ρ(g) =

αδ + βγ −αγ βδ
−2αβ α2 −β2
2γδ −γ2 δ2

(1.5.4)

where ρ(g) is defined by: a′ belonging to M ′ is given by a′ = ρ(g)a. For

gz :=

(
y1/2 xy−1/2

y−1/2

)
(1.5.5)

we get

ρ(gz) :=

 1 0 x/y
−2x y −x2/y

0 0 1/y

 , (ρ(gz))
−1 :=

 1 0 −x
2x/y 1/y −x2/y

0 0 y

 .(1.5.6)

From (1.5.3) we take

a = Cx, C := (1/
√

2)

1
1 1
1 −1

 , C−1 := (1/
√

2)

2
1 1
1 −1

 ,(1.5.7)
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and get

ν : SO(Q̃)→ SO(Q), A 7→ C−1AC,(1.5.8)

i.e.,

ν · ρ :SL2(R)→ SO(Q),

(1.5.9)

g 7→ ν(ρ(g)) = (1/2)

 2(αδ + βγ) 2(−αγ + βδ) 2(−αγ − βδ)
2(−αβ + γδ) α2 − β2 − γ2 + δ2 α2 + β2 − γ2 − δ2

2(−αβ − γδ) α2 − β2 + γ2 − δ2 α2 + β2 + γ2 + δ2


and

ν(ρ(gz)) = (1/(2y))

 2y 2x −2x
−2x2 1− x2 + y2 −1 + x2 + y2

−2x2 −1− x2 + y2 1 + x2 + y2

 .(1.5.10)

For the Realization 1, as a base point for D+, we take the plane

Xi := 〈M1,M2〉, M1 =

(
−1

1

)
,M2 =

(
−1

−1

)
.(1.5.11)

Application of A(gz) transforms to

M ′
1 = (1/y)

(
−y 2xy

y

)
,M ′

2 = (1/y)

(
−x x2 − y2

−1 x

)
,(1.5.12)

hence, gz transforms Xi to

Xz = 〈 Im Z, Re Z〉, Z̄ =

(
−z z2

−1 z

)
,(1.5.13)

and we have a (bijective) map

ι : H→ D+, z = x+ iy 7→ Xz.(1.5.14)

The Realization 3 comes out as follows. We have

V (R) =
3∑
j=1

ejR =
3∑
j=1

e′jR, e′1 = (e1 + e3)/
√

2, e′3 = (e1 − e3)/
√

2, e′2 = e2(1.5.15)

with

(e′1)2 = 0, (e′3)2 = 0, (e′1, e
′
3) = 1
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and

C = {v ∈ V0 = e′2R; (v, v) < 0}, i.e., v = ae′2, a > 0.

Hence

D+
T = {z ∈ V0(C), y = Im z ∈ C} ' {z ∈ C; Im z > 0} = H.(1.5.16)

1.6. Example (1,2)bis. Though the action treated above seems to be customary, as well
we can take

Q̃ =

 1/2
−1

1/2

 ,(1.6.1)

and

Ṽ = {M =

(
a b
b c

)
, a, b, c ∈ R} ' R3(1.6.2)

with a := t(a, b, c) and, hence,

(a, a) = detM = ac− b2 = ta Q̃ a(1.6.3)

SL(2,R) acts on Ṽ via M 7→ g ·M = gM tg =: M ′ and one has a map

ρ : SL(2,R)→ G̃ := SO(Q̃), g =

(
α β
γ δ

)
7→ ρ(g) =

α2 2αβ β2

αγ αδ + βγ βδ
γ2 2γδ δ2

(1.6.4)

where ρ(g) is defined by: a′ belonging to M ′ is given by a′ = ρ(g)a. For

gz :=

(
y1/2 xy−1/2

y−1/2

)
(1.6.5)

we get

ρ(gz) :=

v 2x x2/y
1 x/y

0 0 1/y

 , (ρ(gz))
−1 :=

1/y −2x/y x2/y
1 −x

0 0 y

 .(1.6.6)

1.7. Example (2,2). We take

Q =


1

1
−1

−1

 , Q̃ =


1

−1
−1

1

 .(1.7.1)
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and

Ṽ = {M =

(
a b
c d

)
, a, b, c, d ∈ R} ' R4(1.7.2)

with

M ≡ a := t(a, b, c, d) = (1/
√

2)t(x1 + x4,−x2 − x3, x2 − x3, x1 − x4)(1.7.3)

and hence

q̃(a) = detM = ad− bc = (1/2)ta Q̃ a = (1/2)txQx = (1/2)(x2
1 + x2

2 − x2
3 − x2

4) = q(x)

(1.7.4)

Action 1. Ḡ := SL(2,R)2 acts on Ṽ via M 7→ g ·M = M g := g1Mg−1
2 =: M ′ and one has

a homomorphism of Ḡ to O0(Q̃) given by g = (g1, g2) 7→ A′(g) with

g1 =

(
α1 β1

γ1 δ1

)
, g2 =

(
α2 β2

γ2 δ2

)
and

g := (g1, g2) 7−→ A′(g) =


α1δ2 −α1γ2 β1δ2 −β1γ2

−α1β2 α1α2 −β1β2 β1α2

γ1δ2 −γ1γ2 δ1δ2 −δ1γ2

−γ1β2 γ1α2 −δ1β2 δ1α2

 .(1.7.5)

Now, as above, fixing as base point of D the negative 2-plane spanned by M1 := ( 1
−1 )

and M2 :=
( −1
−1

)
we get

gz1M1g
−1
z1

= (y1y2)−1/2

(
y1 −x1y2 − x2y1

0 −y2

)
= −(y1y2)−1/2 Re Z̃

gz1M2g
−1
z2

= (y1y2)−1/2

(
−x1 x1x2 − y1y2 − x2

−1 x2

)
= −(y1y2)−1/2 Im Z̃

with

Z̃ =

(
−z̄1 z̄1z̄2

−1 z̄2

)
.

This explains a Realization 1 isomorphism

H2 → D+

z = (z1, z2) 7→ Xz :=
〈
gz1 ( 1

−1 ) g−1
z2
, gz1

( −1
−1

)
g−1
z2

〉
=< Re Z̃, Im Z̃ > .(1.7.6)

We observe the relations

−y1y2 = ( Re Z̃, Re Z̃) = ( Im Z̃, Im Z̃)

0 = ( Re Z̃, Im Z̃)
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Action 2. There is also an alternative action of Ḡ on Ṽ which is pursued in [BeKI].
Ḡ = SL(2,R)2 acts on Ṽ via M 7→ g ·M = M g := g1M

tg2 =: M ′, resp. a 7→ a′ = A(g)a,
and one has a map

SL(2,R)2 → G̃ := SO0(Q̃), g 7→ A′(g) =


α1α2 α1β2 β1α2 β1β2

α1γ2 α1δ2 β1γ2 β1δ2

γ1α2 γ1β2 δ1α2 δ1β2

γ1γ2 β1δ2 δ1γ2 δ1δ2

 .(1.7.7)

In particular we get

A(z) := A(gz1 , gz2) =


√
y1y2
√
y1/y2x2

√
y2/y1x1

√
y1y2

−1x1x2

0
√
y1/y2 0

√
y1y2

−1x1

0 0
√
y2/y1

√
y1y2

−1x2

0 0 0
√
y1y2

−1

 .(1.7.8)

And, fixing again as base point of D the negative 2-plane spanned by M1 := ( 1
−1 ) and

M2 =
( −1
−1

)
we get

gz1M1
tgz2 = (y1y2)−1/2

(
y1y2 − x1x2 −x1

−x2 −1

)
= −(y1y2)−1/2 Re Z

gz1M2
tgz2 = (y1y2)−1/2

(
−x1y2 − x2y1 −y1

−y2 0

)
= −(y1y2)−1/2 Im Z

where Z is given by Z = ( z1z2 z1z2 1 ). This explains the formula for the isomorphism

H2 −→ D+(1.7.9)

z = (z1, z2) 7→ Xz :=
〈
gz1 ( 1

−1 ) tgz2 , gz1
( −1
−1

)
tgz2
〉

= 〈Re Z, Im Z〉.

The coordinates in this description are related to those in the first one by

z1 7→ z̄1, z̄2 7→ −1/z̄2.(1.7.10)

The Realization 3 comes out as follows. We have

V (R) =
4∑
j=1

ejR =
4∑
j=1

e′jR,(1.7.11)

e′1 = (e1 + e4)/
√

2, e′2 = (e2 + e3)/
√

2, e′3 = (e2 − e3)/
√

2, e′4 = (e1 − e4)/
√

2,

with

(e′1)2 = (e′4)2 = 0, (e′1, e
′
4) = 1

and

C = {v ∈ V0 = e′2R + e′3R; (v, v) < 0}, i.e., v = ae′2 + be′3, (v, v) = ab < 0.
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Hence

DT = {z ∈ V0(C), y ∈ Im z ∈ C} ' {z = (z1, z2) ∈ C2; y1y2 > 0} = H2 ∪H2
.(1.7.12)

1.8. Example (3,2). We put

Q0 =


1

1
1
−1

−1

 , Q̃ =


−1

−1
2

−1
−1

 .(1.8.1)

and with

u = t(u1, u2, u3, u4, u5) = (1/
√

2)t(x1 + x5, x2 + x4, x3, x4 − x1, x5 − x1)(1.8.2)

we have

2q̃(u) = 2(u2
3 − u2u4 − u1u5) = tuQ̃u = txQx = (x2

1 + x2
2 + x2

3 − x2
4 − x2

5) = 2q0(x).

(1.8.3)

Hence, we have u = Cx and x = C−1u with

C = (1/
√

2)


1 1

1 1
1

−1 1
−1 1

 , C−1 = (1/
√

2)


1 −1

1 −1
2

1 1
1 1

 ,(1.8.4)

and Q0 = tCQ̃C, such that

G̃ = SO(Q̃) = {Ã; tÃQ̃Ã = Q̃} = CG0C
−1, G0 = SO(Q0).(1.8.5)

Here (clearly going back to Siegel and as in [GN]), we realize V = R5 as the space V of
skew-symmetric matrices

M = M(u) =

(
u1J XJ
JX −u5J

)
∈ M4(R)(1.8.6)

with

X =

(
u2 u3

u3 u4

)
, J =

(
0 1
−1 0

)
∈ M2(R)(1.8.7)

The quadratic form q̃(u) = (1/2)tuQ̃u = u2
3 − u2u4 − u1u5 comes in as one has

tM(u)

(
E

−E

)
M(u) = q̃(u)

(
E

−E

)
, E =

(
1

1

)
,(1.8.8)
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and

detM(u) = (u2
3 − u2u4 − u1u5)2.(1.8.9)

The symplectic group Ǧ = Sp(2,R) acts (transitively) on V via

(g,M(u)) 7−→ gM(u)tg =: M(A(g)u) =: M(u′)(1.8.10)

preserving the quadratic form q̃. As usual, this leads to a homomorphism Ǧ −→ G̃ where
g ∈ Ǧ is mapped to the matrix A(g) with u′ = A(g)u. Some calculation shows that one
has

(
0 E
−E 0

)
7−→


0 0 0 0 −1
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
−1 0 0 0 0

 ,(1.8.11)

for B =

(
b1 b2

b2 b3

)

(
E B
0 E

)
7−→


1 b3 −2b2 b1 b2

2 − b1b3

0 1 0 0 −b1

0 0 1 0 −b2

0 0 0 1 −b3

0 0 0 0 1

 ,

(
E
B E

)
7−→


1 0 0 0 0
b3 1 0 0 0
−b2 0 1 0 0
b1 0 0 1 0

−(b1b3 − b2
2) −b1 −2b2 −b4 1

 ,(1.8.12)

and for U =

(
a b
c d

)
with η = detU

(
U 0
0 tU−1

)
7−→ (1/η)


η2

a2 2ab b2

ac ad+ bc bd
c2 2cd d2

1

 .(1.8.13)

We choose

gz =

(
E B

E

)(
U

tU−1

)
,(1.8.14)
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such that gz < iE >= z =

(
z1 z2

z2 z3

)
∈ H2, i.e.,

B =

(
x1 x2

x2 x3

)
, U =

(
a b

d

)
,

d =
√
y3, b = y2/

√
y3, a = η/

√
y3, η = ad =

√
y1y3 − y2

2, ζ
2 = x1x3 − x2

2.(1.8.15)

Hence, one has

A(gz) =


η ηx3/y3 2(x3y2 − x2y3)/y3 (x3y

2
2 − 2x2y2y3 + x1y

2
3)/(ηy3) −ζ2/η

η/y3 2y2/y3 y2
2/(ηy3) −x1/η

1 y2/η −x2/η
y3/η −x3/η

1/η



(1.8.16)

and

A(gz)
−1 =


1/η −x3/η 2x2/η −x1/η −ζ2/η

y3/η −2y2/η y2
2/(y3η) (x3y

2
2 − 2x2y2y3 + x1y

2
3)/(ηy3)

1 −y2/y3 (x2y3 − y2x3)/y3

η/y3 ηx3/y3

η

 .(1.8.17)

1.9. Remark: We take as a base point of D the plane

XiE2 =< u(1), u(2) >, u(1) = t(1, 0, 0, 0, 1), u(2) = t(0,−1, 0,−1, 0)(1.9.1)

and then we get

A(gz)u
(1) = (1/η)t(η2 − ζ2,−x1,−x2,−x3, 1),(1.9.2)

A(gz)u
(2) = (1/η)t(2x2yy − x1y3 − y1x3,−y1,−y2,−y3, 0),

and with

u1(z) = z2
2 − z1z3, u2(z) = −z1, u3(z) = −z2, u4(z) = −z3, u5(z) = 1(1.9.3)

Xz = 〈Re u(z), Im u(z)〉 = A(gz)XiE2 .(1.9.4)

We observe that one has

( Re u(z), Re u(z)) = ( Im u(z), Im u(z)) = −η2 < 0.(1.9.5)
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In this case, the Realization 3 comes out as follows. We have

V (R) =
5∑
j=1

ejR =
5∑
j=1

e′jR,

(1.9.6)

e′1 = (e1 + e5)/
√

2, e′2 = −(e2 + e4)/
√

2, e′3 = e3

√
2, e′4 = (e2 − e4)/

√
2, e′5 = (e1 − e5)/

√
2,

with

(e′1)2 = (e′5)2 = 0, (e′1, e
′
5) = 1

and

C = {v ∈ V0 = e′2R + e′3R + e′4R; (v, v) < 0}

i.e.,

v = ae′2 + be′3 + ce′4, (v, v) = −2ac+ 2b2 < 0.

Hence, a connected component of DT = {z ∈ V0(C), y ∈ Im z ∈ C} can be identified with
the Siegel upper half plane {z = (z1, z2, z3) ∈ C3; y1y3 − y2

2 > 0} = H2.

1.10. For the special cases with p or q = 1, one can take the Grassmanian of the positive
lines, i.e., we have as Realization 4.

D1 = {〈v〉; v ∈ V, q(v) > 0}.(1.10.1)

1.11. Example (1,1). We take

Q =

(
1
−1

)
, Q̃ =

(
1

1

)
.(1.11.1)

and

V = {x =

(
x1

x2

)
, x1, x2 ∈ R} ' R2(1.11.2)

Here we have

G = SO(1, 1) 3 g(t) =

(
cosh t sinh t
sinh t cosh t

)
,(1.11.3)

acting on V = {x = t(x1, x2)} with q(x) = x2
1 − x2

2 and a map

A : G̃ = R→ G = SO(1, 1), t 7→ g(t).(1.11.4)
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If we take x0 =

(
1
0

)
as base point and put x(t) := g(t)x0, we get the coordinization of D1

R 3 t 7→ 〈x(t)〉 ∈ D1.(1.11.5)

There is a slightly different approach: For Q̃ =

(
1

1

)
one has

G = SO(1, 1) ' G̃ = SO(Q̃) = {g(α) =

(
α

(1/α)

)
, α 6= 0}

and

q(x) = x2
1 − x2

2 = 2y1y2 = tyQ̃y = q̃(y)(1.11.6)

i.e., y1 = (1/
√

2)(x1 + x2), y2 = (1/
√

2)(x1 − x2). As ty′ := t(g(α)−1y) = t((1/α)y1, αy2),
we have another coordinization

R∗ 3 α 7→ 〈g(α)−1

(
1
1

)
〉 = 〈

(
α−1

α

)
〉 ∈ D1.(1.11.7)

1.12. Example (1,2). The (1,2)-case discussed above using 2-planes in V as well can be
treated using positive lines. Already above in (1.5.1) we fixed

Q =

1
−1

−1

 , Q̃ = −

2
1

1

 .

and

Ṽ = {M =

(
a b
c −a

)
, a, b, c ∈ R} ' R3

with a = (1/
√

2)x3, b = (1/
√

2)(x2 − x1), c = (1/
√

2)(x2 + x1), a := t(a, b, c) and, hence,

detM = −a2 − bc = (1/2)ta Q̃ a = q(x) = (1/2)(x2
1 − x2

2 − x2
3)

SL(2,R) acts on Ṽ via M 7→ g ·M = gMg−1 =: M ′ and one has a map

SL(2,R)→ G̃ := O0(Q̃), g =

(
α β
γ δ

)
7→ A(g) =

αδ + βγ −αγ βδ
−2αβ α2 −β2

2γδ −γ2 δ2


where A(g) is defined by: a′ belonging to M ′ is given by a′ = A(g)a. For

gz :=

(
y1/2 xy−1/2

y−1/2

)
(1.12.1)
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we get

A(gz) :=

 1 0 x/y
−2x y −x2/y

0 0 1/y

 , (A(gz))
−1 :=

 1 0 −x
2x/y 1/y −x2/y

0 0 y

 .(1.12.2)

Again, one has

D1 = {〈v〉; v ∈ Ṽ , q(v) > 0}.

If we take M0 =

(
1

−1

)
, resp. a0 := t(0, 1,−1) as base point, we get the coordinization

H→ D1, z 7→ 〈(1/y)

 −x
x2 + y2

−1

〉,(1.12.3)

resp. the line fixed by the matrix X(z) := (1/y)

(
−x |z|2
−1 x

)
.

1.13. Example (1,2). Sometimes, it is useful to have hyperbolic coordinates: We
take Ṽ as above with q̃(M) = −a2 − bc and D1 = {〈v〉; v ∈ Ṽ , q(v) > 0} with

H→ D1, z = x+ yi 7→ 〈(1/y)

 x
x2 + y2

−1

〉.
Now, we introduce

D2 = {z = (z1, z2, z3) ∈ R3, q(z) = z2
1 − z2

2 − z2
3 = 1, z1 > 0}.(1.13.1)

and via
x/y = z2, (x

2 + y2)/y = z1 + z3,−1/y = z3 − z1

have H ' D2. Let S1 = {(α, β);α2 + β2 = 1} and

(0,∞)× S1 → D2, (r, w = (α, β)) 7→ (ch r, sh r · w), α = cosϑ, β = sinϑ.(1.13.2)

Hence, one has

x = sh r · α/N =: sα/N, y = 1/N, N = ch r − sh r · β =: c− sβ.(1.13.3)

And, using c2 − s2 = 1,

dx =
cαdr − sβdϑ

N
− sαdN

N2
, dy = −dN

N2
, dN = (s− cβ)dr − sαdϑ,(1.13.4)

dx ∧ dy
y2

= shϑ dr ∧ dϑ.

z = x+ yi = (sα + i)/N

1 + z2 = 2(s2 − csβ + sαi)/N2

|1 + z2|2

y2
= 4s2 = 4(shϑ)2.
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1.14. Example (1,3). In this case, we have

Q =


1
−1

−1
−1

(1.14.1)

and

Q̃ =


1/2

−1
−1

1/2

 .(1.14.2)

with the forms

txQx = x2
1 − x2

2 − x2
3 − x2

4 = y1y4 − y2
2 − y2

3 = tyQ̃y.(1.14.3)

The associated homogeneous space is the hyperbolic three-space. We report on some
material from the first section of the book by Elstrodt, Grunewald and Mennicke [EGM].

1.15. There are several models for the 3-dimensional hyperbolic space:
1. The upper half space model H+ = C× R>0. Points are written as

P = (z, r) = (x, y, r) = z + rj(1.15.1)

where H+ may be treated as subset of the Hamilton quaternions H = R + iR + jR + kR
and has as it boundary P1(C) = C ∪ {∞}. The group SL(2,C) acts transitively on H+

P = (z, r) 7→M(P ) = (z′, r′), z′ =
(az + b)(c̄z̄ + d̄) + ac̄r2

|cz + d|2 + |c|2r2
, r′ =

r

|cz + d|2 + |c|2r2

(1.15.2)

and the stabilizer of j is SU(2). The element

gP =

(
1/
√
r −z/

√
r

0
√
r

)
(1.15.3)

maps P unto j. One has invariant line and volume elements

ds2 =
dx2 + dy2 + dr2

r2
, dv =

dx ∧ dy ∧ dr
r3

.(1.15.4)

2. The unit ball model B = {u = u0 + u1i + u2j ∈ H; ‖u‖2 < 1}. One has an isometry
η0 : H+ → B given by

u0 =
2x

x2 + x2 + (r + 1)2
, u1 =

2y

x2 + x2 + (r + 1)2
, u2 =

x2 + y2 + r2 − 1

x2 + x2 + (r + 1)2
.(1.15.5)
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3. The hyperboloid model S = {y = y0f0 + y1f1 + y2f2 + y3f3 ∈ E1; y0 > 0, q1(y) = 1}.
Here E1 is a 4-dimensional R−vector space with basis f0, . . . , f3 and quadratic form

q1(y) = y2
0 − y2

1 − y2
2 − y2

3.(1.15.6)

One has an isometry π0 : H+ → S given by

π0(P ) =
1

2r
((1 + PP̄ )f0 + (1− PP̄ )f1 − 2xf2 − 2yf3).(1.15.7)

4. The Kleinian model K = {[y] ∈ P(E1); q1(y) > 0}. One has an isometry ψ0 : H+ → K
given by

ψ0(P ) = [(1 + PP̄ )f0 + (1− PP̄ )f1 − 2xf2 − 2yf3].(1.15.8)

For later use, we here change the basis f0 =: e1 + e4, f1 =: e1 − e4, f2 =: e2, f3 =: e3 and
get the coordinization of the space of positive lines given by

ψ1(P ) = [e1 − xe2 − ye3 + PP̄e4].(1.15.9)

where, now, the form is q(y) = y1y4 − y2
2 − y2

3.

1.16. Remark. Proposition 1.4.2 in [EGM] states that π0 is equivariant with respect to
the homomorphism Ψ : SL(2,C) → SO+

4 (R, q1) which is described in [EGM] Section 1.3.
We try a slightly different approach and take

V = {X = X(y) =

(
y1 w
w̄ y4

)
; y1, y4 ∈ R;w = y2 + iy3 ∈ C)}.(1.16.1)

SL(2,C) acts on V and for A =

(
a b
c d

)
∈ SL(2,C) we have

X(y) 7→ AX(y)tĀ = X(y′), i.e., y′ = ρ(A)y(1.16.2)

with ρ(A) ∈ SO(Q̃) for tyQ̄y = y1y4 − y2
2 − y2

3 and

ρ(A) =


|a|2 ab̄+ āb (ab̄− āb)i |b|2

(ac̄+ āc)/2 (ad̄+ ād+ bc̄+ c̄b)/2 (ad̄− ād+ cb̄− c̄b)i/2 (bd̄+ b̄d)/2
(ac̄− āc)/(2i) (ad̄− ād+ bc̄− c̄b)/(2i) (ad̄+ ād− cb̄− c̄b)/2 (bd̄− b̄d)/(2i)

|c|2 cd̄+ d̄c (cd̄− c̄d)i |d|2

 .

(1.16.3)

1.17. Remark. For square free m < 0, this map ρ induces a homomorphism

ρm : SL(2,Z[
√
m])→ SO(Z, qm), qm(u) = u1u4 − u2

2 +mu2
3(1.17.1)
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(in ρ(A) replace i by j :=
√
m).

From (1.15.3) we have gP =

(
1/
√
r −z/

√
r

0
√
r

)
, and hence

ρ(A−1
P ) = ρ(g−1

P ) =


1/r −2x/r −2y/r |z|2/r

1 0 −x
1 −y

r

 .(1.17.2)

and

ρ(A−1
P )y =


y1/r − 2xy2/r − 2yy3/r + |z|2y4/r

y2 − xy4

y3 − yy4

ry4

 .(1.17.3)

In particular, for g = gP , we have

ρ(gP ) =


r 2x 2y |z|2/r

1 x/r
1 y/r

1/r

 =: ĀP .(1.17.4)

1.18. The Cayley-Klein and the Poincaré slice model. There is another way to
treat the Minkowski-case, i.e., signature with only one negative term. As example, we treat
the case (1,2), that is q(x) = x2

1 − x2
2 − x2

3 = txE1,2x. We can take as homogeneous space
D the space of positive lines in V (R) =

∑3
i=1 xiR given by

D = {t(x1, x2, x3) ∈ R3;x2
1 − x2

2 − x2
3 = 1}.(1.18.1)

i) We take the parametrization

γ : U = {(u, v) ∈ R;u2 + v2 < 1} → D, (u, v) 7→ 1√
1− u2 − v2

1
u
v

 ,(1.18.2)

with (x, y) = txE1,2y, have the metric tensor

(gi,j(u, v)) =

(
((tγu, γu) (tγu, γv)
(tγv, γu) (tγv, γv)

)
= −(1− u2 − v2)−2

(
1− v2 uv
uv 1− u2

)
(1.18.3)

and the volume form

dvCK =
√

det(gi,j)dudv = (1− u2 − v2)−3/2dudv.(1.18.4)
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ii) We take the parametrization

γ : U = {(u, v) ∈ R;u2 + v2 < 1} → D, (u, v) 7→ 1

1− u2 − v2

1 + u2 + v2

2u
2v

 ,(1.18.5)

with (x, y) = txE1,2y, have the metric tensor

(gi,j(u, v)) =

(
((tγu, γu) (tγu, γv)
(tγv, γu) (tγv, γv)

)
= −(1− u2 − v2)−24

(
1

1

)
(1.18.6)

and the volume form

dvP =
√

det(gi,j)dudv = 4(1− u2 − v2)−2dudv.(1.18.7)

iii) For m ∈ N, another example is given by qm(x) = 4mx1x2− x2
3 resp. qm(u) = u2

1− u2
2−

(1/4m)u3
3. We take the parametrization

γ : U = {(u, v) ∈ R;u2 + v2 < 1} → D, (u, v) 7→ 1

1− u2 − (1/4m)v2

1 + u2 + (1/4m)v2

2u
2v

 ,

(1.18.8)

with (x, y) = x1y1 − x2y2 − (1/4m)x3y3, have the metric tensor

(gi,j(u, v)) =

(
((tγu, γu) (tγu, γv)
(tγv, γu) (tγv, γv)

)
= (1− u2 − (1/4m)v2)−24

(
−4

−1/m

)
(1.18.9)

and the volume form

dvP =
√

det(gi,j)dudv = (2/µ)(1− u2 − (1/4m)v2)−2dudv, µ2 = m.(1.18.10)

1.19. An overview over part of all this and objects appearing and to be explained later is
given as follows.

Our orthogonal world.

SL2(OF+)

��

&&

Sp2(Z)

��

%%

SL2(OF−)

��

&&
SL2(R)2 //

��

Sp2(R)

��

SL2(C)

��

Γ(Q̃+)

&&

Γ(Q̃)

%%

Γ(Q̃−)

&&
SO(2, 2) //

��

SO(3, 2)

��

SO(3, 1)oo

��
H2 // H2 H+oo
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Our Lattice
In the following, primarily, we look at V = R5 and the lattice L = Ze1 + · · · + Ze5 ' Z5

with quadratic form

q̃(u) = u2
3 − u2u4 − u1u5 = (1/2)tuQ̃u,(1.19.1)

Q̃ =


−1

−1
2

−1
−1

 ,

with orthogonal group and its unit group

G̃ = SO(Q̃) = {g ∈ SL(5,R); tgQ̃g = Q̃} ' SO(3, 2),(1.19.2)

Γ(Q̃) = {W ∈ SL(5,Z); tWQ̃W = Q̃}.

We have the dual lattice L′ = L ∪ ((1/2)e3 + L) with L′/L ' Z/2Z and quadratic form

q′(v) = v2
3/4− v2v4 − v1v5 = (1/2)tvQ′v,(1.19.3)

Q′ =


−1

−1
1/2

−1
−1

 = Q̃−1.

with groups

G′ = SO(Q′) = {g ∈ SL(5,R); tgQ′g = Q′} ' SO(3, 2),(1.19.4)

Γ(Q′) = {W ∈ SL(5,Z); tWQ′W = Q′}.

1.20. Remark. As Q′ = Q̃−1, for g ∈ G̃, one has (tgQ̃g)−1 = g−1Q′tg−1 = Q̃−1 = Q′,
hence

G̃ ' G′, g 7→ g′ = tg−1.(1.20.1)

2 Eisenstein series of weight 5/2

2.1. In [BK], Bruinier and Kühn study classical real analytic vector valued Eisenstein
series for Mp2 transforming with the Weil representation ρL. We want to take over their
results. Hence, we have to look at the following specialization of their situation
- a real quadratic space (V, q) of signature (2,3) and rank r = 5,
- (·, ·) the bilinear form corresponding to q with q(x) = (1/2)(x, x) = x1x2 +x3x4−x2

5 (i.e.,
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the negative of our form q̃ above),
- the lattice L = Z5 in V with form q and dual L′,
- (eγ)γ∈L′/L the standard basis of the group ring C[L′/L],
- ρL the representation of Mp2(Z) in C[L′/L] as in [BK] (2.3), and
- Γ(L) the kernel of the natural homomorphism from O(L) to O(L′/L).
For κ ∈ (1/2)Z, here κ = 5/2, the Eisenstein series of weight κ is defined by

Eβ(τ, s) := (1/2)
∑

(M,φ)∈Γ∞\Mp2(Z)

(eβv
s)|∗κ(M,φ).(2.1.1)

Eβ has the Fourier expansion

Eβ(τ, s′) =
∑

γ∈L′/L

∑
m∈Z−q(γ)

cβ(γ,m, s′, v)eγ(mu).(2.1.2)

Kudla’s conjecture relates

E ′β(τ, 0) =
∂

∂s
Eβ(τ, s)|s=0, i.e., c′β(γ,m, 0, v) =

∂

∂s
cβ(γ,m, s, v)|s=0(2.1.3)

to appropriate Green function integrals to be defined later. Here, we follow [BK] in their
determination of cβ(γ,m, s, v).

2.2. Proposition 3.1 in [BK] says that Eβ has the Fourier expansion (here we change
κ =: `)

Eβ(τ, s′) =
∑

γ∈L′/L

∑
m∈Z−q(γ)

cβ(γ,m, s′, v)eγ(mu),

cβ(γ,m, s′, v) = (δβ,γ + δ−β,γ)v
s′ + 2πv1−`−s′Γ(`+ 2s′ − 1)

Γ(`+ s′)Γ(s′)
H(β, γ, 0, s′) form = 0,

=
2`πs

′+`|m|s′+`−1

Γ(`+ s′)
Ws′(4πmv)H(β, γ,m, s′) form > 0,

=
2`πs

′+`|m|s′+`−1

Γ(s′)
Ws′(4π|m|v)H(β, γ,m, s′) form < 0.(2.2.1)

I.e., in our case, we have a two component series where each component has coefficients
c(0̄,m, s′, v) indexed by integers m ∈ Z and the other coefficients c(1̄,m, s′, v) indexed by
m− 1/4,m ∈ Z. Here, using a generalized Kloosterman sum H∗c as in [BK] (3.6),

H(β, γ,m, s) =
∑

c∈Z−{0}

|2c|1−`−2sH∗c (β, 0, γ,m) form = 0,

=
∑

c∈Z−{0}

|c|1−`−2sH∗c (β, 0, γ,m) form 6= 0,(2.2.2)
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and the Whittaker term

Ws′(a) = |a|−`/2Wsgn (a)`/2,(1−`)/2−s′(|a|)

=
e−|a/2||a|1−`−s′

Γ(1− s′ − `)

∫ ∞
0

e−|a|tt−s
′−`(1 + t)−s

′
dt for a = 4πmv > 0,

=
e−|a/2||a|1−`−s′

Γ(1− s′)

∫ ∞
0

e−|a|tt−s
′
(1 + t)−s

′−`dt for a = 4πmv < 0,(2.2.3)

where (as in [AS] p.190)

Wν,µ(z) :=
e−z/2zµ+1/2

Γ(µ− ν + 1/2)

∫ ∞
0

e−tztµ−ν−1/2(1 + t)µ+ν−1/2dt.(2.2.4)

One has the special cases

W0(a) = e−a/2 for a = 4πmv > 0,

= e−a/2Γ(1− `, |a|) for a = 4πmv < 0,(2.2.5)

where Γ(s, x) =
∫∞
x
e−tts−1dt.

2.3. For later use, we want to put the Whittaker term into another form and take over
expressions and relations from an adelic treatment in [KRY] (15.2-6) and material on
the confluent hypergeometric function of the second kind as in e.g.[Le] p.324-326. For a
short time, we change to some new notation. We write s′ for the variable s from [BK] to
distinguish from the variable s in the usual adelic version and have

s′ = (1/2)(s+ 1− `)(2.3.1)

and the special value s = ` − 1 there corresponds to s′ = s = 0 in [BK]. We have ` := κ
and

α := (1/2)(s+ 1 + `), β := (1/2)(s+ 1− `) = s′

and the confluent hypergeometric function of the second kind

Ψ(a, b; z) :=
1

Γ(a)

∫ ∞
0

e−zr(r + 1)b−a−1ra−1dr,(2.3.2)

where a > 0, z > 0, b ∈ R with the functional equation

Ψ(a, b; z) = z1−bΨ(1 + a− b, 2− b; z).(2.3.3)

As in [KRY] (15.4), we define

Ψ(0, b; z) := lima→0+Ψ(a, b; z) = 1(2.3.4)
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and as in [KRY] (15.5), for any number n the function

Ψn(s, a) := Ψ((1/2)(1 + n+ s), s+ 1; a)(2.3.5)

which has the functional equation

Ψn(s, a) = a−sΨn(−s, a).(2.3.6)

Now, we take

Ψ`(s, a) := Ψ((1/2)(1 + `+ s), s+ 1; a)(2.3.7)

=
1

Γ((1/2)(1 + `+ s))

∫ ∞
0

e−ar(r + 1)(1/2)(s−1−`)r(1/2)(s+`−1)dr

=
1

Γ(α)

∫ ∞
0

e−ar(r + 1)β−1rα−1dr

= a−sΨ`(−s, a)

=
a−s

Γ((1/2)(1 + `− s))

∫ ∞
0

e−ar(r + 1)−(1/2)(s+1+`)r(1/2)(`−s−1)dr

=
a−s

Γ(1− β)

∫ ∞
0

e−ar(r + 1)−αr−βdr,

resp.

Ψ−`(s, a) =
1

Γ(β)

∫ ∞
0

e−ar(r + 1)α−1rβ−1dr(2.3.8)

= a−β +
1

Γ(β)

∫ ∞
0

e−ar((r + 1)s−β − 1)rβ−1dr

= a−sΨ`(−s, a)

=
a−s

Γ(1− α)

∫ ∞
0

e−ar(r + 1)−βr−αdr.

As they will become very important later, we introduce the abbreviation of the integrals

J+(s, a) :=

∫ ∞
0

e−aw((w + 1)s − 1)dw/w,

J−(s, a) :=

∫ ∞
0

e−awwsdw/(w + 1).(2.3.9)

Using these, we also have

Ψ−`(s, a) = a−β +
1

Γ(β)
J+(s− β, a),(2.3.10)

Ψ+`(`− 1, a) =
1

Γ(`)
J−(`− 1, a).
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Hence, remembering s = 2s′ + `− 1, from (2.2.3) we get

Ws′(a) = |a|βe−|a|/2Ψ∓`(s, |a|) for a = 4πmv > 0, resp. < 0.(2.3.11)

2.4. Remark. With Γ(s, x) =
∫∞
x
e−tts−1dt and (2.2.5), finally, we have

W0(a) = e−a/2 for a = 4πmv > 0,

= e−a/2Γ(1− `, |a|) for a = 4πmv < 0

= e−|a|/2
1

Γ(`)
J−(`− 1, |a|),

= |a|1−`e|a|/2
∫ ∞

1

e−|a|tdt/t`.(2.4.1)

2.5. Restricting to E0, for m 6= 0, in [BK] (3.22), one defines coefficients C(γ,m, s) by

c0(γ,m, s′, v) = C(γ,m, s′)Ws′(4πmv)

and in Theorem 3.3, analyzing the Kloosterman sums, for positive m these coefficients in
our case come out as

C(γ,m, s′) = 22s′+2`−1/2π−s
′|m|`+s′−1

× sin(π(2s′ + `))|D0|1−2s′−`Γ(2s′ + `)

cos(π(s′ − (δ/2))
√
|L′/L|Γ(s′ + `)

× L(χD0 , (3/2)− 2s′ − `)
ζ(2− 4s′ − 2`)

σγ,m(2s′ + `).(2.5.1)

In this formula, the index m of the coefficient and the fundamental discriminant D0 are
linked by the essential relation from [BK] (3.24)

D := D0f
2 := −2d2

γm det(L), dγ = min {b ∈ Z>0; bγ ∈ L}(2.5.2)

and δ = 0 if D0 > 0, δ = 1 if D0 < 0, and σγ,m(s) from [BK] (3.28) is the generalized divisor
sum which will later reappear in (12.23.1) and then will be discussed a more intensely

σγ,m(s) :=
∏
p|D

1− χD0(p)p
(1/2)−s

1− p1−2s
L(p)
γ,m(p−(3/2)−s).(2.5.3)

For m < 0 analogous formulae hold but with Γ(s′ + `) replaced by Γ(s′).

2.6. Remark. It will be helpful to note a formula from the proof of [BK] Theorem 3.3,
namely, for m > 0, one also has

C(γ,m, s′) =
(−1)(2`−b−+b+)/42`+1π`+s

′ |m|`+s′−1√
|L′/L|Γ(s′ + `)

× L(χD0 , 2s
′ + `− 1/2)

ζ(4s′ + 2`− 1)
σγ,m(2s′ + `).

(2.6.1)
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Again, for m < 0, one has an analogous formula but with Γ(s′ + `) replaced by Γ(s′).

2.7. The formulae (2.5.1) and (2.6.1) are related by the functional equations of the zeta and
L− functions: In [BK] p.1701, for a primitive character χD0 , the Dirichlet series L(χD0 , s)
satisfies the functional equation

L(χD0 , s) = L(χD0 , 1− s)
2s−1πs|D0|1/2−s

cos(π(s− δ)/2)Γ(s)
(2.7.1)

where δ = 0 if D0 > 0 and δ = 1 if D0 < 0. For s = 2 and δ = 1, a quotient of singular
values shows up on the right hand side.
In particular, the Riemann zeta function has the functional equation

ζ(s) = ζ(1− s) 2s−1πs

cos(πs/2)Γ(s)
.(2.7.2)

And one also needs the duplication formula

Γ(z)Γ(z + 1/2) = 21−2z
√
πΓ(2z).(2.7.3)

2.8. For later use, we assemble several standard formulae:

ζ(2) = π2/6, ζ(4) = π4/90, ζ(−1) = −1/12, ζ(−3) = 1/120,(2.8.1)

Γ(1/2) =
√
π, Γ(−1/2) = 2

√
π, Γ(3/2) = (1/2)

√
π, Γ(5/2) = (3/4)

√
π.

1/Γ(s) = 0, (1/Γ(s))′ = 1 for s = 0.

From [BK] (4.77) we have for our odd case

Γ′(κ)

Γ(κ)
= Γ′(1)− 2 log(2) +

κ−1/2∑
j=1

(j − (1/2))−1

Γ′(5/2)

Γ(5/2)
= Γ′(1)− 2 log(2) + 8/3.(2.8.2)

2.9. Summary 1. Specialized to our case, up to now, we have

c0(γ,m, s′, v) = C(γ,m, s′)Ws′(a)

= −23πs
′+5/2|m|s′+3/2L(χD0 , 2s

′ + 2)

Γ(s′ + 5/2)ζ(4s′ + 4)
σγ,m(2s′ + 5/2) · Ws′(a) for m > 0

= −23πs
′+5/2|m|s′+3/2L(χD0 , 2s

′ + 2)

Γ(s′)ζ(4s′ + 4)
σγ,m(2s′ + 5/2) · Ws′(a) for m < 0

c0(γ,m, 0, v) = −26 · 3 · 5 · π−2|m|3/2L(χD0 , 2)σγ,m(5/2) · e−a/2 for m > 0

= 0 for m < 0.(2.9.1)
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For m > 0, by (2.5.1), we have as an alternative

C(γ,m, s′) = 22s′+2`−1/2π−s|m|`+s′−1 × sin(π(2s′ + `))|D0|1−2s′−`Γ(2s′ + `)

cos(πs′)
√
|L′/L|Γ(s′ + `)

(2.9.2)

× L(χD0 , (3/2)− 2s′ − `)
ζ(2− 4s′ − 2`)

σγ,m(2s′ + `),

i.e.,

c0(γ,m, 0, v) = −27 · 3 · 5 · π−2|m/D0|3/2L(χD0 ,−1)σγ,m(3/2) · e−a/2.(2.9.3)

Derivatives

2.10. We hope not to produce too much confusion as we still have the variable s′ and use
the ′ for the s′−derivative. We have

c′0(γ,m, s′, v) = C ′(γ,m, s′)Ws′(a) + C(γ,m, s′)W ′s′(a)(2.10.1)

and want to evaluate this for s′ = 0. For m < 0, one has C(γ,m, 0) = 0. Moreover, from
(2.3.11)

Ws′(a) = |a|s′e−|a|/2Ψ∓`(s, |a|) for a = 4πmv > 0, resp. < 0,

and from (2.4.1)

W0(a) = e−a/2 for a = 4πmv > 0,

= e−a/2Γ(−3/2, |a|) for a = 4πmv < 0

= e−|a|/2
1

Γ(5/2)
J−(3/2, |a|)

= e−|a|/2|a|−3/2

∫ ∞
1

e|a|tdt/t5/2.

For m > 0, we get

d

ds′
Ws′(a) = log a · as′e−|a|/2Ψ−`(s, a) + |a|s′e−|a|/2 d

ds′
Ψ−`(s, a).(2.10.2)

Using [KRY] (15.9), one has

Ψ−`(`− 1, a) = 1, Ψ′−`(`− 1, a) = −(1/2)(log a− J(`− 1, a))(2.10.3)

Here the derivative ’ is with respect to s. For F (s) = F (2s′+ `− 1), one has (d/ds′)F (s) =
2F ′(s). Hence, for m > 0,

(d/ds′)W0(a) = log a e−a/2 − 2 · (1/2)(log a− J+(`− 1, a))e−a/2

= J+(3/2, a)e−a/2 = J+(3/2, a)W0(a)(2.10.4)
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For m > 0, by direct computation or [BK] (4.75), from (2.5.1) we get

C ′(γ.m, 0) = C(γ.m, 0)
(
4
ζ ′(−3)

ζ(−3)
− 2

L′(χD0 ,−1)

L(χD0 ,−1)
(2.10.5)

+ 2
σ′γ,m(5/2)

σγ,m(5/2)
− log(π/4) + log|m/D2

0|+
Γ′(5/2)

Γ(5/2)

)
.

and from (2.6.1)

C ′(γ,m, 0) = 26 · 3 · 5 · π−2|m|3/2L(χD0 , 2)σγ,m(5/2)

×
(

logπ + log|m|+ 2
L′(χD0 , 2)

L(χD0 , 2)
− 4

ζ ′(4)

ζ(4)
− Γ′(5/2)

Γ(5/2)
+
σ′γ,m(5/2)

σγ,m(5/2)

)
.(2.10.6)

2.11. Summary 2. For m > 0, using the formula above or (2.10.5), we get

c′0(γ,m, 0, v) = C ′(γ,m, 0)W0(a) + C(γ,m, 0)W ′0(a)

= C(γ,m, 0)e−a/2(J+(3/2, a) + C ′(γ,m, 0)/C(γ,m, 0))

= 26 · 3 · 5 · π−2|m|3/2L(χD0 , 2)σγ,m(5/2) e−a/2(J+(3/2, a) +
C ′(γ,m, 0)

C(γ,m, 0)
)

= 27 · 3 · 5 |m/D0|3/2L(χD0 ,−1)σγ,m(5/2)e−a/2
(
4
ζ ′(−3)

ζ(−3)
− 2

L′(χD0 ,−1)

L(χD0 ,−1)

+ 2
σ′β,m(5/2)

σβ,m(5/2)
− log(π/4) + log|m/D2

0|+
Γ′(5/2)

Γ(5/2)
+ J+(3/2, a)

)
.(2.11.1)

And for m < 0, using (2.9.1) and (2.4.1),

c′0(γ,m, 0, v) = C ′(γ,m, 0)W0(a)(2.11.2)

=
23π5/2|m|3/2L(χD0 , 2)

ζ(4)
σγ,m(5/2)e−|a|/2Ψ5/2(3/2, |a|)

= 24 · 32 · 5 · π−3/2|m|3/2L(χD0 , 2)σγ,m(5/2)e|a|/2Γ(−3/2, |a|)
= 26 · 3 · 5 · π−2|m|3/2L(χD0 , 2)σγ,m(5/2)e−|a|/2J−(3/2, |a|).

In our case, we have q(x) = x2
3 − x2x4 − x1x5, detL = 2, a = 4πmv and L′/L ' Z/2Z,

hence γ has just the two values 0̄ + L and 1̄ + L. These correspond to two cases, Case A
and B, where m ∈ Z resp.m− 1/4 ∈ Z which later show up again. In the formulae above,
the index m is related to the fundamental discriminant D0 via (2.5.2), namely by

D0f
2 = 4m for m ∈ Z Case A(2.11.3)

= 42m for m− 1/4 ∈ Z Case B.(2.11.4)
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The formulae for the coefficients of the Eisenstein series we took over from [BK], are ob-
tained for quadratic forms of signature (2,3) though, following Kudla, we have signature
(3,2). But as [BK] have Eisenstein series for a Weil representation dual to the one of Kudla,
we can take their formulae (as done for instance in 3.5.1 in Klöcker [Kl]).

Eisenstein coefficients and Geometry

2.12. As well known, the coefficients of our Eisenstein series also have a geometric meaning:
Above, in (2.9.1) we got

c0(γ,m, 0, v) = −26 · 3 · 5 · π−2|m|3/2L(χD0 , 2)σγ,m(5/2) · e−a/2 for m > 0(2.12.1)

In [BK] (4.3) for λ ∈ V with negatice norm, β ∈ L′/L, m ∈ Z + q(β) a negative number,

H(β,m) :=
∑

λ∈L+β,q(λ)=m

λ⊥(2.12.2)

is a Γ(L)−invariant divisor on Gr(V ), the Heegner divisor of discriminant (β,m). In [BK]
Gr(V ) is the Grassmannian of positive definite subspaces ν ⊂ V of dimension 2. From
[BK] (4.33), one has deg (H(γ,−n)) =

∫
H(γ,−n)

Ω2. [BK] Proposition 4.8 (4.52) specialized
to our situation, says

E0(τ, 0) = 2e0 − (2/B)
∑

γ∈L′/L

∑
n∈Z−q(γ),n>0

deg (H(γ,−n))eγ(nτ),

B = ζ(−1)ζ(−3) = 2−53−25−1,(2.12.3)

and (4.53)

deg (H(γ,−n))/B = −25 · 3 · 5/π2 · n3/2L(χD0 , 2)σγ,n(5/2).(2.12.4)

This is consistent with the usual results concerning the voluminae of Humbert surfaces
and we shall come back to this later in the calculation of the Green function integral (see
(12.23.8)).

2.13. Summary 3. Via Kloosterman sums [BK] (3.29) leads to

c0(γ,m, 0, v) = −26 · 3 · 5 · π−2|m|3/2L(χdF , 2)σγ,m(5/2)e−a/2,

where one has from [BK] (3.24) 4m = dFf
2 for m ∈ Z and 16m = dFf

2 for m = M +
1/4,M ∈ Z. As mentioned above, [BK] Proposition 4.8 (4.52) specialized to our situation,
says

E0(τ, 0) = 2e0 − (2/B)
∑

γ∈L′/L

∑
n∈Z−q(γ),n>0

deg (H(γ,−n))eγ(nτ),

B = ζ(−1)ζ(−3) = 2−53−25−1,(2.13.1)
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and (4.53)

deg (H(γ,−n))/B = −25 · 3 · 5/π2 · n3/2L(χD0 , 2)σγ,n(5/2).(2.13.2)

The coefficients in the two cases A and B relate to integrals of appropriate versions of
Kudla’s Green function which will be introduced using the following object.

3 The Majorant

The majorant of an indefinite quadratic form and its description have been propagated by
Siegel while introducing and discussing thetas for indefinite quadratic forms and this is also
essential for the development of the Schwartz forms à la Kudla-Millson. There are differ-
ent approaches. At first we shall follow Siegel’s article [S4] and specialize it to our situation.

3.1. We have a vector space V = Rn with quadratic form

q(x) = (1/2)(x, x), (x, y) = txQy, signatureQ = (p, q), p+ q = n.(3.1.1)

and have (x, y) = q(x+y)−q(x)−q(y). Following Siegel, we also writeQ[x] = (x, x) = txQx.
A majorant of Q[x] is a positive definite quadratic form P [x] such that P [x] ≥ Q[x] for all
x ∈ Rn. On the first pages of [S4] it is shown that P ∈ Mn(R) defines such a majorant
exactly if

PQ−1P = Q, tP = P > 0.(3.1.2)

And, if C is such that for x = Cy one has txQx = tyQ0y = y2
1 + · · ·+ y2

p − y2
p+1 − · · · − y2

n,
we get such a

P = (CtC)−1.(3.1.3)

The orthogonal group G = SO(Q) = {A; tAQA = Q} via

A 7→ tAPA

acts transitively on the set P = P(Q) of these P, which Siegel calls the representation
space. For τ = u+ iv ∈ H

θ(τ, P ) :=
∑
x∈Zn

e2iπR[x], R = uQ+ ivP(3.1.4)

is a Siegel theta series with its well known nice properties of convergence and transforma-
tion.
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3.2. The following approach (as for instance contained in [Ku1]) is more adequate to
Kudla’s world. We restrict to the special case of signature (p,2) and realize the space
G/K by the set D of oriented negative planes X =< v1, v2 >⊂ V, i.e., with (v1, v2) =
0, (v1, v1) = (v2, v2) = −η < 0. A minimal majorant (x, x)z of (x, x) with respect to Xz is
given by

(x, x)X = (x, x) for x ∈ X⊥

= −(x, x) for x ∈ X.(3.2.1)

To make this more explicit, we decompose x ∈ V into its positive and negative part with
respect to Xz. For

x = x′ + αv1 + βv2, α, β ∈ R(3.2.2)

with

(x′, v1) = (x′, v2) = 0,(3.2.3)

one has

α = −(x, v1)/η, β = −(x, v2)/η(3.2.4)

and, hence,

(x, x) = (x′, x′)− (α2 + β2)η = (x′, x′)− ((x, x(z))2 + (x, y(z))2)/η.(3.2.5)

Now we see that one has the minimal majorant given by

(x, x)X = (x′, x′) + (α2 + β2)η = (x′, x′) + ((x, v1)2 + (x, v2)2)/η

= (x, x) + 2((x, v1)2 + (x, v2)2)/η.(3.2.6)

Here we take over Kudla’s notation and write

(x, x)X = (x, x) + 2R(x,X), R(x,X) := ((x, v1)2 + (x, v2)2)/η.(3.2.7)

Following Kudla, we also remark R(x,X) = −(prXx, prXx), where prX : V → X is the
projection with kernel X⊥, i.e., x 7→ prX(x) = ((x, v1)v1 + (x, v2)v2)/(−η).
Using (1.4.3), for z ∈ DT , we can also write as in [Ku1] (1.16)

R(x,X) := |(x,w(z))|2|y|−2.(3.2.8)

Lacking a better expression, we call R the kernel of the majorant.

3.3. Remark 1. With A ∈ G = SO(Q), one has the following invariance property

R(x,AX) = R(A−1x,X).(3.3.1)

33



Here, AX is the plane spanned by Av1 and Av2 and, with QA = tA−1Q, we have

R(x,AX) = ((x,Av1)2 + (x,Av2)2)/η

= ((txQAv1)2 + (txQAv2)2)/η

= ((txtA−1Qv1)2 + (txtA−1Qv2)2)/η

= ((t(A−1x)Qv1)2 + (t(A−1x)Qv2)2)/η

= R(A−1x,X).

Remark 2. As a consequence, one has the following kind of covariance relation. For
tyQ0y = txQx, x = Cy, we have tCQC = Q0 and for A ∈ SO(Q), Â := C−1AC ∈ SO(Q0).
With X =< v1, v2 > and Y = C−1X =< u1 := C−1v1, u2 := C−1v2 >, we get

R(x,X) = ((x, v1)2 + (x, v2)2)/η

= ((txQv1)2 + (txQv2)2)/η

= ((tytCQCu1)2 + (tytCQCu2)2)/η

= ((y, u1)2 + (y, u2)2)/η = R(y, Y ).

ergo

R(x,X) = R(u, U).(3.3.2)

3.4. For signature (1,q), one takes as space the space D of positive lines X = 〈v〉, v ∈
V, (v, v) = η > 0 and the majorant is now

(x, x)X = −(x, x) forx ∈ X⊥(3.4.1)

= (x, x) forx ∈ X.

Writing x = x′ + αv, (x′, v) = 0, (v, v) = η > 0, one has α = (x, v)/η and

(x, x) = (x′, x′) + α2(v, v) = (x′, x′) + (x, v)2/η(3.4.2)

(x, x)X = −(x′, x′) + α2η = −(x, x) + 2(x, v)2/η.

For pr : V → X, the projection with kernel X⊥, we have R1(x,X) := (prXx, prXx) =
(x, v)2/η. Hence, parallel to the notation from the signature (p,2)-case, here one has

(x, x)X = −(x, x) + 2(x, v)2/η = −(x, x) + 2R1(x,X).(3.4.3)

3.5. Key Relation Using Siegel’s approach, the majorant can be determined as follows.
Given a matrix Q with the form txQx, look for a matrix P0 with P0Q

−1P0 = Q. For
A ∈ SO(Q), we have a majorant txtAP0Ax. In particular, this is helpful if one has an
homomorphism ρ : G̃→ SO(Q) where z ∈ G̃/K̃ =: D̃ is a parameter for the representation
space P(Q). Hence, take A := A(z)−1 = ρ((gz)

−1), where gz ∈ G̃ is such that gz(z0) = z
for a base point z0 ∈ D̃. For X = ρ((gz)

−1)X0 =: Xz, one has

(x, x)z = t(ρ((gz)
−1)x)P0(ρ((gz)

−1)x)(3.5.1)
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In the following examples below, this way, we shall get the same value for the majorant as
before.

3.6. Remark. It is a triviality but perhaps useful to observe the following: If one has
(x, x)z = t(ρ((gz)

−1)x)P0(ρ((gz)
−1)x) and another form

(y, y) = tyQ̂y = (x, x) with x = Cy, Â = C−1AC, Q̂ = tCQC,(3.6.1)

as above one has (x, x)z = (y, y)z. Hence, also

R̂(y, z) = R(C−1x, z).(3.6.2)

3.7. Summary. For V with (x, x) = txQx and signature (p,2) and D 3 X = 〈v1, v2〉 ⊂
V, (v1, v1) = (v2, v2) = −η < 0 we have the majorant

(x, x)X = (x, x) + 2((x, v1)2 + (x, v2)2)/η = (x, x) + 2R(x,X),(3.7.1)

R(x,X) = −(prX(x), prX(x)) = ((x, v1)2 + (x, v2)2)/η.

For signature (1,q) and X = 〈v〉 ⊂ V, (v, v) = η > 0 we have the majorant

(x, x)X = −(x, x) + 2((x, v)2/η = −(x, x) + 2R1(x,X),(3.7.2)

R1(x,X) = (prX(x), prX(x)) = (x, v)2/η.

if, as in the Key Relation above, one has a homomorphism ρ : G̃ → SO(Q) where z ∈
G̃/K̃ =: D̃ is a parameter for the representation space P(Q), i.e., such that X = Xz, in
the following examples, we get the same value for the majorant (x, x)z := (x, x)X ,

(x, x)z = t(ρ((gz)
−1)x)P0(ρ((gz)

−1)x)(3.7.3)

Now, we discuss the explicit outcome for some special cases.

3.8. Example (3,2). We have from (1.8.1

Q0 =


1

1
1
−1

−1

 , Q =


−1

−1
2

−1
−1

 .

and with

u = t(u1, u2, u3, u4, u5) = t(x1 + x5, x2 + x4, x3, x4 − x2, x5 − x1)/
√

2

i.e.,with u = Cx and x = C−1u we have (u, v) = tuQv and

txQ0x = x2
1 + x2

2 + x2
3 − x2

4 − x2
5 = tuQu = 2(u2

3 − u2u4 − u1u5),(3.8.1)
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hence Q = tCQ̃C, such that

G̃ = SO(Q) = {Ã; tÃQÃ = Q} = CGC−1, G = SO(Q0).(3.8.2)

For

v0
1 = t(1, 0, 0, 0, 1), (v0

1, v
0
1) = −2, (v0

1, u) = −u5 − u1(3.8.3)

v0
2 = t(0,−1, 0,−1, 0), (v0

2, v
0
2) = −2, (v0

1, u) = +u4 + u2

X0 =< v0
1, v

0
2 >

we get

R(u,X0) = −(prX0
u, prX0

u) = −((v0
1, u)2 + (v0

2, u)2)/(−2)(3.8.4)

= (u2
1 + u2

2 + u2
4 + u2

5 + 2u1u5 + 2u2u4)/2

(u, u)X0 = (u, u) + 2R(X0, u)

= u2
1 + u2

2 + 2u2
3 + u2

4 + u2
5 =: tuPu,

where

P = (CtC)−1 =


1

1
2

1
1

 , as it should, fulfills PQ−1P = Q.(3.8.5)

As in (16.23.3), we have the homomorphism

A : Sp(2,R)→ SO(Q), g 7→ A(g), gM(u)tg = M(A(g)u)

In particular, for g = gz, as in (1.8.14), such that gz < iE >= z =

(
z1 z2

z2 z3

)
∈ H2, with

η =
√
y1y3 − y2

2, ζ =
√
x1x3 − x2

2,(3.8.6)

one has from (1.8.16) and (1.8.17)

A(gz) =


η ηx3/y3 2(x3y2 − x2y3)/y3 (x3y

2
2 − 2x2y2y3 + x1y

2
3)/(ηy3) −ζ2/η

η/y3 2y2/y3 y2
2/(ηy3) −x1/η

1 y2/η −x2/η
y3/η −x3/η

1/η


and

A(gz)
−1 =


1/η −x3/η 2x2/η −x1/η −ζ2/η

y3/η −2y2/η y2
2/(y3η) (x3y

2
2 − 2x2y2y3 + x1y

2
3)/(ηy3)

1 −y2/y3 (x2y3 − y2x3)/y3

η/y3 ηx3/y3

η

 .
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We take as a base point of D the plane from (1.9.1)

X0 := XiE2 =< u(1), u(2) >, u(1) = t(1, 0, 0, 0, 1), u(2) = t(0,−1, 0,−1, 0)

and then we get

A(gz)u
(1) = (1/η)t(η2 − ζ2,−x1,−x2,−x3, 1),(3.8.7)

A(gz)u
(2) = (1/η)t(2x2yy − x1y3 − y1x3,−y1,−y2,−y3, 0),

and with u(z) = t(u1(z), . . . , u5(z)) from (1.9.3)

u1(z) = z2
2 − z1z3, u2(z) = −z1, u3(z) = −z2, u4(z) = −z3, u5(z) = 1

we have the negative plane

Xz :=< (1/η) Re u(z), (1/η) Im u(z) >= A(gz)XiE2 .

where

( Re u(z), Re u(z)) = ( Im u(z), Im u(z)) = −η2 < 0.(3.8.8)

Now, for our quadratic form we want to determine the majorant (u, u)z := (u, u)Xz with
respect to Xz. From the key relation (3.2.7)

(u, u)AX0 = (u, u) + 2R(u,AX0) = t(A−1u)P (A−1u)

and (3.8.4), by some calculation, we come to

R(u, z) := R(u,Xz) =
|u1 − u2z3 + 2u3z2 − u4z1 + u5(z2

2 − z1z3)|2

2(y1y3 − y2
2)

=
|ψu(z)|2

2η2
.(3.8.9)

One observes that for ž = (i, 0, i) one has

(u, u)ž = (u2
1 + u2

2 + 2u2
3 + u2

4 + u2
5).(3.8.10)

3.9. Example (2,2). Slightly changing (1.7.1) and (1.7.2) we take

Q0 =


1

1
−1

−1

 , Q =


1

−1
−1

1

 , C = (1/
√

2)


1 1
−1 1
1 1

1 −1

 ,

and

V = {M =

(
a b
c d

)
, a, b, c, d ∈ R} ' R4
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with

M ≡ a := t(a, b, c, d) = (1/
√

2)t(x1 + x4,−x2 − x3, x2 − x3, x1 − x4), i.e., a = Cx

and

(M,M ′) = (a, a’) = (ad′ + a′d− bc′ − b′c) = taQa’,(3.9.1)

(M,M) = 2 detM

q(a) = (1/2)(a, a) = detM = x2
1 + x2

2 − x2
3 − x2

4.

We fix again as base point of the space D of oriented negative 2-planes X = 〈v1, v2〉 in
V the negative 2-plane X0 spanned by v0

1 := M1 = ( 1
−1 ) and v0

2 := M2 =
( −1
−1

)
with

(M1,M1) = (M2,M2) = −2 = −η.
We stick to the action of Ḡ = SL(2,R)2 on V via M 7→ g ·M = M g := g1M

tg2 =: M ′ and
one has a map a 7→ a′ = A(g)a with A(g) as in (1.7.8) and get

A(z) := A(gz1 , gz2) = (1/
√
y1y2)


y1y2 y1x2 x1y2 x1x2

y1 x1

y2 x2

1

(3.9.2)

and, hence,

gz1M1
tgz2 = (y1y2)−1/2

(
y1y2 − x1x2 −x1

−x2 −1

)
= −(y1y2)−1/2 Re Z =: M1(z)

gz1M2
tgz2 = (y1y2)−1/2

(
−x1y2 − x2y1 −y1

−y2 0

)
= −(y1y2)−1/2 Im Z =: M2(z).

where Z is given as above by Z = ( z1z2 z1z2 1 ). One has

(M,M1(z)) = (η/(
√
y1y2)(−a− bx2 − cx1 − d(x1x2 − y1y2))

(M,M2(z)) = (η/(
√
y1y2)(−by2 − cy1 − d(x1y2 + y1x2))(3.9.3)

and by (3.2.6) for the majorant

(M,M)z = (M,M) + 2((M,M1(z))2 + (M,M2(z))2)/(2)(3.9.4)

= (1/(y1y2))|a− bz2 − cz1 + dz1z2|2 + 2(ad− bc).

The same way, we can take

A(g−1
z1
, g−1
z2

) = (1/
√
y1y2)


1 x2 −x1 x1x2

y2 x1y2

y1 −y1x2

y1y2

(3.9.5)
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and via

a′ := A(g−1
z1
, g−1
z2

)a(3.9.6)

= (1/
√
y1y2)


a+ bx2 − cx1 + dx1x2

by2 + dx1y2

cy1 − dy1x2

dy1y2



with P0 = E4 get as above

ta′P0a
′ = (M,M)z(3.9.7)

and

(a, a)Xz = (a, a) + 2R(a, z),

R(M, z) = R(a, z) = (1/(2y1y2))|a− bz2 − cz1 + dz1z2|2(3.9.8)

In particular, one has

(a, a)(i,i) = 2(ad− bc) + ((a− d)2 + (b− c)2 = a2 + b2 + c2 + d2

= x2
1 + x2

2 + x2
3 + x2

4.(3.9.9)

3.10. Example (1,2). Here we have

Ṽ = {M =

(
a b
c −a

)
; a, b, c ∈ R},

detM = −(a2 + bc) = (M,M) = taQ̃a, Q̃ = −

1
1/2

1/2


(M,M ′) = −(aa′ + bc′/2 + cb′/2)(3.10.1)

and we identify M = a = t(a, b, c), x = t(x1, x2, x3). With a = x3, b = x2 + x1, c = x2 − x1

one has

−a2 − bc = x2
1 − x2

2 − x2
3.

As fixed in (1.12.2), one has a homomorphism

G′ = SL(2,R) −→ G̃ = SO(Q̃), g 7−→ A(g)

where, in particular, for z = x+ iy, gz =

(
y1/2 xy−1/2

y−1/2

)
, we get

A(gz) =

 1 0 x/y
−2x y −x2/y

0 0 1/y

 , A(g−1
z ) =

 1 0 −x
2x/y 1/y −x2/y

0 0 y

 ,(3.10.2)
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Looking at Ṽ of signature (p,2) with p = 1, we take D as space of negative oriented 2-planes
X ⊂ V, and as base point the plane

Xi := 〈M1,M2〉, M1 =

(
1
−1

)
,M2 =

(
−1

−1

)
.

Via gz this plane is transported to

Xz :=< M ′
1,M

′
2 >, M

′
1 = M1(z) := (1/y)

(
y −2xy
−y

)
,M ′

2 = M2(z) = (1/y)

(
−x x2 − y2

−1 x

)
.

i.e., for Z = (1/y)

(
−z̄ z̄2

−1 z̄

)
one has Xz = 〈 Im Z, Re Z〉.

To determine the majorant, as usual, we decompose M ∈ Ṽ with respect to the negative
2-plane Xz into its positive and negative parts

M = M ′ + αM1(z) + βM2(z).

We get

α = −(1/2y)(M,M1(z)) = −(1/2y)(2ax+ b− c(x2 − y2))

β = −(1/2y)(M,M2(z)) = −(1/2y)(−2ay + 2cxy)

and, hence, the majorant

(M,M)z = (M,M) + (1/(2y2))((M,M1(z))2 + (M,M2(z))2)

= −(a2 + bc) + (1/2y2)(4a2(x2 + y2) + b2 + c2(x2 + y2)2

+ 4abx− 4acx(x2 + y2)− 2bc(x2 − y2)

=: (M,M) + 2R(M, z)(3.10.3)

i.e.,

R(M, z) = R(M,Xz) = (1/4y2)|2az + b− cz2|2.(3.10.4)

In particular, one has, as to be expected,

(M,M)i = (a2 + b2/2 + c2/2) = 2(x2
1 + x2

2 + x2
3)(3.10.5)

3.11. Using the signature (1,q) version for the majorant, we take (M,M) = −(a2 + bc),
v0 = t(0, 1,−1) and have (v0, v0) = η = 1 > 0. With (3.10.2) we get M(z) := A(gz)v0 =
(1/y)t(−x, |z|2,−1) and from (3.3.2)

(M,M(z)) = −(1/(2y))(−2ax− b+ c|z|2)

(M,M)z = 2(M,M(z))2 − (M,M)

= (1/(2y2))(a2(4x2 + 2y2) + b2 + c2|z|4 + 4abx− 4acx|z|2 − 2bcx2)

R1(M, z) = (M,M(z))2

= (1/2)((M,M)z + (M,M) = (1/(4y2))(2ax+ b− c|z|2)2(3.11.1)
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3.12. Remark. The same formula for the majorant comes out in both cases (emphazising
p = 1 or q = 2) and also using (1.12.2) resp. (3.10.2) and the ’Key Relation’ with

P0 =

1
1/2

1/2



a′ = A(g−1
z )a = (1/y)

 ay − cxy
a2x+ b− cx2

cy2


ta′P0a

′ = (1/2y2)(a2(4x2 + 2y2) + b2 + c2|z|4 + 4abx− 4acx|z|2 − 2bcx2

= −(a2 + bc) + (1/2y2)|2az + b− cz2|2

= (a2 + bc) + (1/2y2)(2ax+ b− c|z|2)2

(3.12.1)

In [BF] one has the same result in a slightly different shape, namely

R(z,M) = (1/2y2)(c|z|2 − 2ax− b)2 + 2(a2 + bc)(3.12.2)

3.13. Example (1,2)bis. To follow the same procedure as in the other examples, we use
the alternative action from 1.6 M 7→ gM tg. For

M = a =

(
a b
b c

)
, (M,M) = ac− b2, M 7→ gM tg = M ′ = (A(g)a,(3.13.1)

with (1.6.6), we come to

a′ = A(g−1
z )a = (1/y)

a/y − 2bx/y + cx2/y
b− cx
cy


(M,M)z = (a, a)z = ta′P0a

′

R(M, z) = ((M,M)z − (M,M))/2 = (1/4y2)|a− 2bz + z2|2.(3.13.2)

3.14. Example (1,3). Here we take

V = {M = M(y) =

(
y1 y2 + iy3

y2 − iy3 y4

)
; y1, y2, y3, y4 ∈ R},

detM = (M,M) = tyQy = (y1y4 − y2
2 − y2

3), Q =


1/2

−1
−1

1/2


(M,M ′) = (y1y

′
4/2− y2y

′
2 − y3y

′
3 + y4y

′
1/2).(3.14.1)
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As in (1.15.2) G′ = SL(2,C) acts transitively on H+ = C×R>0 where gP (0, 1) = (z, r) = P

for gP =

(
r1/2 zr−1/2

r−1/2

)
. As fixed in (1.16.2), one has a homomorphism

ρ : G′ = SL(2,C) −→ G̃ = SO(Q), g 7−→ ρ(g)

given by (g,M(y)) 7→ gM(y)tḡ =: M(ρ(g)y). From (1.17.2) we get

ρ(gP ) =


r 2x 2y |z|2/r

1 x/r
1 y/r

1/r

 , ρ(g−1
P ) =


1/r −2x/r −2y/r |z|2/r

1 0 −x
1 −y

r

 .(3.14.2)

and

ρ(gP )y =


ry1 + 2xy2 + 2yy3 + |z|2y4/r

y2 + xy4/r
y3 + yy4/r

y4/r

 , ρ(g−1
P )y =


y1/r − 2xy2/r − 2yy3/r + |z|2y4/r

y2 − xy4

y3 − yy4

ry4

 .

(3.14.3)

For M0 =

(
1

1

)
= M(v0), v0 := t(1, 0, 0, 1) one has (M0,M0) = 1 > 0 and

M(P ) := M(ρ(gP )v0) = ρ(gP )v0 = (1/r)


r2 + |z|2

x
y
1

(3.14.4)

(M,M(P )) = (1/2r)(y1 − 2xy2 − 2yy3 + (r2 + |z|2)y4).

From (3.4.3) one has the majorant

(M,M)P = 2(M,M(P ))2 − (M,M) = 2R1(M,P )− (M,M)(3.14.5)

= (1/(2r2))(y2
1 + (4x2 + 2r2)y2

2 + (4y2 + 2r2)y3 + (r2 + |z|2)2y2
4

− 4xy1y2 − 4yy1y3 + 2|z|2y1y4

+ 8xyy2y3 − 4x(r2 + |z|2)y2y4 − 4y(r2 + |z|2)y3y4).

The same result comes out evaluating the ’Key Relation’, i.e., for the matrix P0 =

(
1/2

1
1

1/2

) with P0Q
−1P0 = Q and y′ := ρ(g−1

P )y from (3.14.3) one has ty′P0y
′ = (M,M)P

as in (3.14.5).
From (3.7.1) and (3.7.2) we have

R1(M,P ) = (1/2)((M,M)P + (M,M)) = (M,M(P ))2(3.14.6)

= (1/(4r2))(y1 − 2xy2 − 2yy3 + (|z|2 + r2)y4)2.
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3.15. Example (1,1). We take

V = R2 3 y = t(y1, y2), v0 = t(1, 1)

(y, y) = tyQ̂y = 2y1y2, Q̂ =

(
1

1

)
,

SO(Q̂) 3 g(t) =

(
t

1/t

)
, g(t)v0 = t(t, 1/t) =: vt, g(t)y = t(y1t, y2/t) =: yt,

D = {〈v〉 ⊂ R2; (v, v) > 0}.(3.15.1)

With P0 = E, the Key relation gives the majorant

(y, y)t = ty−t · y−t = y2
1/t

2 + y2
2t

2,

and one has

R1(y, t) = (1/2)((y, y)t + (y, y)) = (1/2)(y1/t+ y2t)
2.(3.15.2)

For

V = R2 3 x = t(x1, x2), v0 = t(1, 0)

(3.15.3)

(x, x) = txQx = x2
1 − x2

2, Q =

(
1
−1

)
,

SO(Q) 3 g(t) =

(
ch t sh t
sh t ch t

)
, g(t)v0 = t(ch t, sh t) =: vt, g(t)x = t(x1ch t, x2sh t) =: xt,

D = {〈v〉 ⊂ R2; (v, v) > 0},

with P0 = E, the Key relation gives the majorant

(x, x)t = tx−t · x−t = ((ch t)2 + (sh t)2)(x2
1 + x2

2)− 4ch t · sh t · x1x2

and one has

R1(x, t) = (1/2)((x, x)t + (x, x)) = (x1ch t− x2sh t)2.(3.15.4)

3.16. Example Summary. (i) From (3.8.9) one has

(u, u) = tuQu = 2(u2
3 − u1u5 − u2u4), D+ ' H2 3 z =

(
z1 z2

z2 z3

)
,

(3.16.1)

R(u, z) = (1/2)((u, u)z − (u, u)) =
|u1 − u2z3 + 2u3z2 − u4z1 + u5(z2

2 − z1z3)|2

2(y1y3 − y2
2)

,

w(z) = t(1, z1, z2, z3,−z2
2 + z1z3),

(x, x) = x2
1 + x2

2 + x2
3 − x2

4 − x2
5,

R(x, z) =
|x1(1 + (z2

2 − z1z3)) + x2(z1 − z2) + x3z2 + x4(−z1 − z2) + x5(1 + (z2
2 − z1z3)|2

4(y1y3 − y2
2)
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(ii) From (3.9.8) one has

(M,M) = taQa = 2(ad− bc), D+ ' H2 3 z = (z1, z2),

R(M, z) = R(a, z) = (1/(2y1y2))|a− bz2 − cz1 + dz1z2|2

w(z) = t(1, z1, z2, z1z2),(3.16.2)

(iii) From (3.13.2) one has

(M,M) = taQa = b2 − ac, D+ ' H 3 z,
R(M, z) = R(M,Xz) = (1/4y2)|a− 2bz + cz2|2, R1(M,Xz) = (1/(4y2))(a− bx− c|z|2)2

w(z) = (1, z, z2)

(iv) From (3.14.6 we get

(M,M) = tyQy = (y1y4 − y2
2 − y2

3), D+ ' H+ 3 P = (x+ iy, r),

R1(M,P ) = (1/2)(M,M)P + (M,M)(= (1/(4r2))(y1 − 2xy2 − 2yy3 + (|z|2 + r2)y4)2

u(P ) = t(1, x, y, r2 + x2 + y2).

(v) From (3.15.1) and (3.15.3) we have

(y, y) = tyQ̂y = 2y1y2, D+ ' R∗ 3 t,
R1(y, t) = (1/2)((y, y)t + (y, y)) = (1/2)(y1/t+ y2t)

2,

(x, x) = txQx = x2
1 − x2

2, D+ ' R 3 t,
R1(x, t) = (1/2)((x, x)t + (x, x)) = (x1ch t− x2sh t)2.

4 Kudla’s Green function

4.1. We go back to our original situation in (1.8.3) and (1.8.1) with V = R5 and the
quadratic form q̃(u) = (1/2)tuQ̃u = u2

3 − u2u4 − u1u5 The symplectic group Ǧ = Sp(2,R)
acts (transitively) on (16.23.1) V ' V via

(g,M(u)) 7−→ gM(u)tg =: M(A(g)u) =: M(u′)(4.1.1)

preserving the quadratic form q̃. As usual, this leads to a homomorphism Ǧ −→ G̃ where
g ∈ Ǧ is mapped to the matrix A(g) with u′ = A(g)u. We coordinatize the homogeneous

space D := G̃/K̃ = {X(z) oriented negative plane inV } via z =

(
z1 z2

z2 z3

)
∈ H2.

4.2. We look at the majorant of the quadratic form q̃(u). From (3.16.1) we know that
the majorant (u, u)z = (M,M)z with respect to the negative plane X(z) belonging to the
matrix Z = M(u(z)) is given by

(M,M)z =: (M,M) + 2R(u, z),(4.2.1)
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where

R(u, z) = R(u; z1, z2, z3) =
|u1 − u2z3 + 2u3z2 − u4z1 + u5(z2

2 − z1z3)|2

2(y1y3 − y2
2)

=:
|ψu(z)|2

2η2
.

(4.2.2)

4.3. Remark. As usual, for x ∈ V with positive norm, one has the special divisor on D

Z(x) = {z ∈ D; z⊥x}(4.3.1)

= {z ∈ D;R(x, z) = 0}.

This comes out as follows. In our parametrization by H2, elements of D are negative planes
Xz = 〈Reu(z), Imu(z)〉, z ∈ H2 with

u1(z) = z2
2 − z1z3, u2(z) = −z1, u3(z) = −z2, u4(z) = −z3, u5(z) = 1.(4.3.2)

Hence,

Z(x) = {z ∈ D(V ); z⊥x},(4.3.3)

' {z ∈ H2; tu(z)Q̃x = 0},
' {z ∈ H2;ψu(z),x = x1 − x2z3 + 2x3z2 − x4z1 + x5(z2

2 − z1z3) = 0}.

This is a Humbert equation for the tuple (x1, x2, 2x3, x4, x5), i.e., with discriminant ∆ =
4x2

3 − 4x1x5 − 4x2x4 = 4q̃(x).

4.4. It is well known that Γ = Sp2(Z) acts on the set of Humbert surfaces H(y) with
equations H(y) = y1−y2z3+y3z2−y4z1+y5(z2

2−z1z3) = 0 with primitive integer quintuples
y. Γ−orbits with discriminants ∆(y) = 4m are parametrized by am = (1, 0, 0, 0,−m),m 6=
0, and those with discriminant ∆(y) = 4m+1 by a′m = (0, 1, 1,−m, 0). From the discussion
of the coefficients of the Eisenstein series we have to look at u ∈ L′ with q̃(u) = m and
m ∈ Z and m ∈ Z + 1/4. Hence, for m ∈ Z we put

Z(0,m) =
∑
n,n2|m

∑
γ∈Γ/Γa

m/n2

Z(nγam/n2),(4.4.1)

and for m = M + 1/4,M ∈ Z

Z(1,m) =
∑

n,n2|4m

∑
γ∈Γ/Γa′

4m/n2

Z(nγa′4m/n2),(4.4.2)
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With dγ = 1, resp. = 2 for m ∈ Z or m = M + 1/4,M ∈ Z, we also put

L(γ,m) =
∑

n,n2|d2γm

nL∗γ,m/n2 ,

(4.4.3)

L∗γ,m = {y ∈ Lγ,m; gcd(y) = 1}
L0,m = {y ∈ Z5; q̂(y) = y2

3 − 4y1y5 − 4y2y4 = 4m} form ∈ Z
L1,m = {y ∈ Z5; q̂(y) = y2

3 − 4y1y5 − 4y2y4 = 4M + 1 = 4m} form ∈ Z + 1/4.

4.5. From Kudla’s work we know that β(2πvR(z, x)) is a Green function on D for the
cycle Z(x). Hence, we introduce a two component Kudla Green function on X = Γ\D

Ξ(0,m, v, z) = (1/2)
∑

x∈L0,m

β(2πvR(x, z)) form ∈ Z,(4.5.1)

Ξ(1,m, v, z) = (1/2)
∑

x∈L1,m

β(2πvR(x, z)) form ∈ Z + 1/4.

4.6. Aim. We want to compare the s−derivatives of the Fourier coefficients c(γ,m, s, v)
(in s = 0) of the Eisenstein series with the Green function integrals

I(0,m, v) : =

∫
X

Ξ(0,m, v, z)dµz = (1/2)
∑

x∈L0,m

∫
X

β(2πvR(x, z))dµz,(4.6.1)

I(1,m, v) : =

∫
X

Ξ(1,m, v, z)dµz = (1/2)
∑

x∈L1,m

∫
X

β(2πvR(x, z))dµz.

4.7. Using (4.4.1) and (4.4.2) and unfolding X = Γ\D, one has (by the invariance of
R(x, z))

I(0,m, v) = (1/2)
∑
n,n2|m

∫
Γa
m/n2

\D
β(2πvR(nam/n2 , z))dµz,(4.7.1)

I(1,m, v) = (1/2)
∑

n,n2|4m

∫
Γa′

4m/n2
\D
β(2πvR(na′4m/n2 , z)dµz.

As a first step, we try to describe the unit groups appearing here and their covolume.

5 Notions from Number Theory

To prepare the field, we collect some elementary facts from number theory (see e.g.[Za]):
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For square free rational integer d0 6= 0 the maximal order in F = Q(j), j =
√
d0 is given

by

O = Z + ω Z, ω = j if d0 ≡ 2, 3 mod 4 (Case 1)(5.0.1)

ω =
1 + j

2
if d0 ≡ 1 mod 4 (Case 2).

The discriminant of F is given by dF = 4d0 in Case 1 and dF = d0 in Case 2. Such a
discriminant also is called a fundamental discriminant and it is either ≡ 0 or ≡ 1 mod 4.

For an Z−module M ⊂ F, the complementary module M∗ is given by M∗ = {x ∈
F,Tr(xy) ∈ Z for all y ∈ M} and (M∗)−1 = {x ∈ F ; (xy) ∈ M for all y ∈ M∗} is the
different. In particular, the ideal D := (O∗)−1 is the different of F. Hence, for Case 1 with
O = Z[j] = Z + j Z, one has

O∗ = (1/(2j))O = (1/2)Z + (1/(2j))Z,(5.0.2)

D = (O∗)−1 = 2jO = 2j Z + 2dZ.

Then, in Case 2 with

O = Z[ω] = Z + (j + 1)/2Z,(5.0.3)

= {x = (2x1 + x2)/2 + x2j/2; x1, x2 ∈ Z}

one has

O∗ = (1/j)O(5.0.4)

D = (O∗)−1 = jO

And for Mf = Z + fjZ = {a = a1 + fja2; a1, a2 ∈ Z}, one has

M∗
f = (1/(2fj))Mf = {c = c2/2 + c1/(2fd0)j; c1, c2 ∈ Z},(5.0.5)

(M∗
f )−1 = 2fjMf = {b = b22f 2d0 + b12fj; b1, b2 ∈ Z}.

We also need the order with conductor f, f ∈ N, defined by

Of := Z + fωZ.

Hence, in Case 1, we have

Of = Z + fj Z = {a = a1 + a2fj; a1, a2 ∈ Z},(5.0.6)

O∗f = (1/(2fj))Mf = {c = c2/2 + c1/(2fd0)j; c1, c2 ∈ Z},
(O∗f )−1 = (2fj)Mf = {b = b22f 2d0 + b12fj; b1, b2 ∈ Z}.

Here one has

aā = a2
1 − f 2d0a

2
2, bb̄ = 4f 4d2b2

2 − 4f 2d0b
2
1, cc̄ = c2

2/4− c2
1/(4f

2d0)(5.0.7)
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And in Case 2, d0 = 1 + 4M,M ∈ Z,

Of = Z + f((1 + j)/2)Z = {a = (2a1 + fa2)/2 + fa2j/2; a1, a2 ∈ Z},(5.0.8)

O∗f = (1/(fj))Of = {c = c2/2 + (2c1 + fc2)j/(2fd0); c1, c2 ∈ Z},
Df = (O∗f )−1 = (fj)Of = {b = b2f

2d0/2 + (2b1 + fb2)fj/2; b1, b2 ∈ Z},

with

aā = a2
1 + fa1a2 − f 2a2

2M,(5.0.9)

bb̄ = −(b2
1 + fb1b2 + f 2b2

2M)f 2d0,

cc̄ = (c2
2f

2M − c2
1 − fc1c2)/(f 2d0).

6 Some classical Unit Group Covolumes

6.1. Given a symmetric matrix S ∈Mn(Q), we associate to it the unit group

Γ(S) = {A ∈ SLn(Z); tASA = S}.(6.1.1)

As we shall see later while determining the Green function integrals, we are led to treat
two special cases:

Case A. We take

2q(u) = 2q̂(u) = u2
3 − 4u2u4 − 4u1u5 = tuQ̂u = (u, u),

S = Q̂ =


−2

−2
1

−2
−2

 ,

Ĝ = SO(Q̂) = {g ∈ SL(5,R); tgQ̂g = Q̂} ' SO(3, 2),

and

am = t(1, 0, 0, 0,−m), m ∈ Z\{0}, i.e. 2q̂(am) = 4m,(6.1.2)

Ĝam = {g ∈ Ĝ; gam = am},
Γ̂am = Γ(Q̂, am) = {W ∈ Γ(Q̂);Wam = am},

Case B. We take

a′m = t(0,−1, 1,M, 0), M ∈ Z\{0}, i.e. 2q̂(a′m) = 4m = 4M + 1,(6.1.3)

Ĝa′m = {g ∈ Ĝ; ga′m = a′m},
Γ̂a′m = Γ(Q̂, a′m) = {W ∈ Γ(Q̂);Wa′m = a′m},
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and, for a = am resp. a = a′m, and Da the symmetric space belonging to Ĝa, we want to
know

κm = vol(Γ̂a\Da).(6.1.4)

As Ĝam and Ĝa′m are either isomorphic to SO(2, 2) or to SO(3, 1) we are in the world of
Hilbert or Bianchi groups.

6.2. Remark. In the book by Elstrodt, Grunewald and Mennicke [EGM], one has in their
Theorem 1.1 in Chapter 7 the following result:
Let K be an imaginary quadratic field of discriminant dK < 0 and let O be its ring of
integers. Then the covolume of the group PSL(2,O) (in its action on the 3-dimensional
hyperbolic space H+) is

V1,3 := vol(PSL(2,O)\H+) =
|dK |3/2

4π2
ζK(2)(6.2.1)

=
|dK |3/2

24
L(2, χK), L(s, χK) :=

∑
n>0

(
dK
n

)n−s.

This is also called Humbert’s formula and goes back to a result of Humbert from 1919.
Here, with H+ 3 P = (x, y, r), the volume is measured with the volume form

dvH+ =
dxdydr

r3
.(6.2.2)

6.3. Remark. From [HG] p.172 for m = m0f
2 > 0,m0 = dK a fundamental discriminant,

K = Q(
√
m0), we have

vol(SL(2, (Of ,O∗f )\H2) = 2f 3
∏
p|f

(1− (
m0

p
)p−2)ζQ(

√
m0)(−1)(6.3.1)

= 2f 3
∏
p|f

(1− (
m0

p
)p−2)|dK |3/22−2π−4ζQ(

√
m0)(2)

= f 3
∏
p|f

(1− (
m0

p
)p−2)|dK |3/2L(2, χQ(

√
m0))1/(12π2)

where, with H2 3 (z1 = x1 + iy1, z2 = x2 + iy2), the volume is measured by

dvHG =
dx1dy1dx2dy2

(2πy1y2)2
,(6.3.2)

and we used the functional equation

ζK(−1) = ζK(2)d
3/2
K /(4π4).(6.3.3)
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Here Of is an order of conductor f, and

SL(2, (Of ,O∗f )) = {
(
a b
c d

)
; a, d ∈ Of , c ∈ O∗f , b ∈ O∗−1

f , ad− bc = 1}(6.3.4)

with

O∗f = {x ∈ K; Tr(xa) ∈ Z for all a ∈ Of}(6.3.5)

6.4. The formula above goes back to a result by Siegel. As a special case of [S2] (19), one
can conclude that

vol(SL(2,O)\H2) = (2/π2)|dK |3/2ζK(2) = |dK |3/2L(χK , 2)/3 =: V2,2(6.4.1)

= 8π2ζK(−1) for dK > 0

where, here, the volume is measured by

dvH2 :=
dx1dy1dx2dy2

(y1y2)2
.(6.4.2)

6.5. In [BK] section 4, Bruinier-Kühn treat the general situation: If β ∈ L′/L and
m ∈ Z + q(β) > 0, then

H(β,m) =
∑

x∈L+β,q(x)=m

x⊥

is a Γ(L)−invariant divisor on Gr2(V ), called the Heegner divisor of discriminant (β.m).
It gets the same name as divisor on XΓ. For a divisor D on XΓ with volume form ω, one
defines

deg(D) =

∫
D

ω.

By some highly nontrivial manipulations Bruinier-Kühn get in [BK] Proposition 4.8 the
mysterious and wonderful result:

2

B
deg (H(γ,m)) = −C0(γ,m, 0).(6.5.1)

For the (2,3) case from the example above, this comes down to

deg (H(γ,m)) = −(B/2)C(γ,m, 0) = −3−1 · π−2|m|3/2L(χdF , 2)σγ,m(5/2)(6.5.2)

with

B =

∫
XL

Ω3 = ζ(−1)ζ(−3) = (1/12)(1/120) = 2−5 · 3−2 · 5−1

dvBK := Ω2 =
1

8π2

dx1dy1dx2dy2

(y1y2)2
.(6.5.3)
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where Ω = 1
4π

(dx1dy1
y21

+ dx2dy2
y22

), and the generalized divisor sum [BK] (3.28) σγ,m(5/2) which

will here reappear later.

6.6. Aim. We try to relate these results to our volumes κm resp. κ′m. Led by [BK] (3.24)
resp. (2.11.3) and (2.11.4), for F = Q(

√
d) with fundamental discriminant dF , we have to

treat the two cases:
Case A

4m = dFf
2, form ∈ Z(6.6.1)

and Case B

4 · 4m = dFf
2, form = M + 1/4,M ∈ Z(6.6.2)

At first, we come to the following.

6.7. Proposition. For a = am and a = a′m, in both cases, we have

Γ̂a ' PSL(2, (Of ,O∗f )).(6.7.1)

Our proof again goes back to Siegel:

7 Siegel’s Approach

7.1. Siegel in [S3] Section 3, on his way to define a Darstellungsmass, discusses the
following situation: We are given a rational symmetric matrix S belonging to a quadratic
form S[y] = tySy = (y, y) =: 2q(y) of type (p, q), p + q = n and a ∈ Zn (primitive) with
2q(a) = m. We have the notion of an associated unit group

Γ(S) := {U ∈ GL(n,Z), tUSU = S}

and want to determine the isotropy group

Γa := Γ(S, a) := {U ∈ Γ(S), Ua = a}.

Siegel proposes to describe the isotropy group Γa as a unit group in one dimension less.
Following his procedure, this leads to

Γ(S, a) ' {W ∈ Γ(K); tWb ≡ bmodm},(7.1.1)

where one chooses a matrix B such that the matrix A with first column a, i.e., A = (a,B)
is unimodular and has

b := tBSa, K := tBSB − btb/m.(7.1.2)
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7.2. We give some details leading to his result: With G :=

(
m tb

E

)
, one has

tASA =

(
ta
tB

)
S (a,B) =

(
taSa taSB
tBSa tBSB

)
=

(
m tb
b K + btb/m

)
= tG

(
m−1

K

)
G.

(7.2.1)

As for Ua = a, one has UA = U(a,B) = (a, UB), an element U ∈ Γ(S, a) has a form

UA = A

(
1 tc

W

)
with integer (n− 1)−column c and integer (n− 1)× (n− 1)−matrix W. Introducing this
into the condition tUSU = S leads to

tUSU = tA−1

(
1
c tW

)
tASA

(
1 tc

W

)
A−1 = S

i.e., (
1
c tW

)
tASA

(
1 tc

W

)
= tASA

and, with (7.1.2),(
1
c tW

)
tG

(
m−1

K

)
G

(
1 tc

W

)
= tG

(
m−1

K

)
G

and, moreover,(
1
c tW

)(
m tb
b K + btb/m

)(
1 tc

W

)
= tG

(
m−1

K

)
G =

(
m tb
b K + btb/m

)
.

Evaluating the left hand side and comparing to the right hand side, asks for the conditions
from the remark above

mc+ tWb = b, tWKW = K.

We evaluate this in some cases near to our situation.
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7.3. Example. We look again at

q̃(u) = (1/2)(u, u) = (1/2)tuQ̃u = u2
3 − u2u4 − u1u5,

S = Q̃ =


−1

−1
2

−1
−1

 ,

G̃ = SO(Q̃) = {g ∈ SL(5,R); tgQ̃g = Q̃} ' SO(3, 2),

Γ(Q̃) = {W ∈ SL(5,Z); tWQ̃W = Q̃},
a = am = t(1, 0, 0, 0,−m), m ∈ Z\0, i.e. q(a) = q̃(am) = m,

Ǧa = {g ∈ G̃; ga = a},
Γ̃a = Γ(S, a) = Γ(Q̃, am) = {U ∈ Γ(Q̃);Ua = a}

We take

A = (a,B) =


1

1
1

1
−m 1

 ,(7.3.1)

and, by Siegel’s prescription, get

b = tBSa =


0
0
0
−1

 , K = tBSB − btb/(2m) =


−1

2
−1

−1/(2m)

 .(7.3.2)

Hence, we have

Γ(Q̂, am) ' {W ∈ Γ(K); tWb ≡ bmod 2m},(7.3.3)

or, as well,

Γ(Q̂, am) ' {W ∈ Γ(Km); tWb ≡ bmod 2m},(7.3.4)

where

Km := 2mK =


−2m

4m
−2m

−1

 , b = t(0, 0, 0,−1),(7.3.5)
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i.e., the unit group Γ(Km) belongs to the quadratic form

qm(u) = −4mu1u3 + 4mu2
2 − u2

4.(7.3.6)

7.4. Example. We look at

2q(u) = 2q̂(u) = u2
3 − 4u2u4 − 4u1u5 = tuQ̂u = (u, u),

S = Q̂ =


−2

−2
1

−2
−2

 ,

Ĝ = SO(Q̂) = {g ∈ SL(5,R); tgQ̂g = Q̂} ' SO(3, 2),

Γ(Q̂) = {W ∈ SL(5,Z); tWQ̃W = Q̂},
a = am = t(1, 0, 0, 0,−m), m ∈ Z\0, i.e. (a, a) = 2q̂(am) = 4m,

Ĝa = {g ∈ Ĝ; ga = a},
Γ̂a = Γ(S, a) = Γ(Q̂, am) = {U ∈ Γ(Q̂);Ua = a}

We take

A = (a,B) =


1

1
1

1
−m 1

 ,(7.4.1)

and, by Siegel’s prescription, get

b = tBSa =


0
0
0
−2

 , K = tBSB − btb/4m =


−2

1
−2

−1/m

 .(7.4.2)

Hence, we have

Γ(Q̂, am) ' {W ∈ Γ(K); tWb ≡ bmod 4m},(7.4.3)

or, as well,

Γ(Q̂, am) ' {W ∈ Γ(Km); tWb ≡ bmod 4m},(7.4.4)

where

Km = mK =


−2m

m
−2m

−1

 , b = t(0, 0, 0,−2),(7.4.5)
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i.e., the unit group Γ(Km) belongs to the quadratic form

q̂m(u) = −4mu1u3 +mu2
2 − u2

4.(7.4.6)

7.5. Example. We look at

2q(u) = 2q̂(u) = u2
3 − 4u2u4 − 4u1u5 = tuQ̂u = (u, u),

S = Q̂ =


−2

−2
1

−2
−2

 ,

Ĝ = SO(Q̃) = {g ∈ SL(5,R); tgQ̂g = Q̂} ' SO(3, 2),

Γ(Q̂) = {W ∈ SL(5,Z); tWQ̂W = Q̂},
a = am = t(0,−1, 1,M, 0), M ∈ Z\0, i.e. (a, a) = 2q̂(am) = 4M + 1 = ∆,

Ĝa = {g ∈ G̃; ga = a},
Γ̂a = Γ(S, a) = Γ(Q̂, am) = {U ∈ Γ(Q̂);Ua = a}

We take

A = (a,B) =


0 1
−1 0
1 1
M 1
0 1

 ,(7.5.1)

and, by Siegel’s prescription, get

b = tBSa =


0
1
2
0

 , K = tBSB − btb/∆ =


0 −2
0 1− 1/∆ −2/∆ 0
0 −2/∆ −4/∆ 0
−2 0

 .(7.5.2)

Hence, we have

Γ(Q̂, am) ' {W ∈ Γ(K); tWb ≡ bmod ∆},(7.5.3)

or, as well,

Γ(Q̂, am) ' {W ∈ Γ(Km); tWb ≡ bmod ∆},(7.5.4)

where

Km = ∆ ·K =


0 −2∆
0 ∆− 1 −2 0
0 −2 −4 0
−2∆ 0

 , b = t(0, 1, 2, 0),(7.5.5)
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i.e., the unit group Γ(Km) belongs to the quadratic form

qm(u) = −4∆u1u4 + (∆− 1)u2
2 − 4u2u3 − 4u2

3.(7.5.6)

7.6. Pseudo-Example. The same way as above, we are tempted to look at

2q(x) = 2q0(x) = x2
1 + x2

2 + x2
3 − x2

4 − x2
5 = txQ0x,

S = Q0 =


1

1
1
−1

−1

 ,

G = SO(3, 2)

a = am = t(α, 0, 0, 0, α′), α = (1 +m)/2, α′ = (1−m)/2, i.e. 2q0(am) = m,

Ĝa = {g ∈ G̃; ga = a},
Γ̂a = Γ(S, a) = Γ(Q0, am) = {U ∈ Γ(Q0);Ua = a}

But here a is not integer as it should be. Hence, cheating, we take anyway

A = (a,B) =


α −1

1
1

1
α′ 1

 ,(7.6.1)

and, again using Siegel’s prescription, get

b = tBSa =


0
0
0
−1

 , K = tBSB − btb/m =


1

1
−1

−1/m

 .(7.6.2)

Hence, we get formally

Γ?(Q0, am) ' {W ∈ Γ(K); tWb ≡ bmodm},(7.6.3)

or, as well,

Γ?(Q0, am) ' {W ∈ Γ(Km); tWb ≡ bmodm},(7.6.4)

where

Km = m ·K =


m

m
−m

−1

 , b = t(0, 0, 0,−1),(7.6.5)

i.e., the unit group Γ(Km) belongs to the quadratic form

q0
m(u) = mu2

1 +mu2
2 −mu2

3 − u2
4.(7.6.6)

But we don’t really know what we got?
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8 Proof of the Proposition 6.7, Case A

8.1. Orthogonal and SL2−matrices. The matrix W of the examples above can be
realized by an SL2-matrix. We try the following approach. With j =

√
m
′
,m′ ∈ Z,m′ 6= 0,

and y1, ..., y4 ∈ Q, we put

X(y) =

(
y1 y2 + jy3

y2 − jy3 y4

)
,

where

detX(y) = y1y4 − y2
2 +m′y2

3 = tyDm′y,Dm′ =


1/2

−1
m′

1/2

 .(8.1.1)

With

g =

(
a b
c d

)
∈ SL(2,Q(j))

we get a map ρ : SL(2,Q(j))→ SO(Dm′), g 7→ ρ(g) given by

X(y) 7→ gX(y)tḡ = X(y′), y′ = ρ(g)y,(8.1.2)

ρ(g) =


|a|2 ab̄+ āb (ab̄− āb)j |b|2

(ac̄+āc)
2

(ad̄+ād+bc̄+c̄b)
2

(ad̄−ād+cb̄−c̄b)j
2

(bd̄+b̄d)
2

ac̄−āc
2j

ad̄−ād+bc̄−b̄c
2j

ad̄+ād−cb̄−c̄b
2

bd̄−b̄d
2j

|c|2 cd̄+ c̄d (cd̄− c̄d)j |d|2

 ,

where ρ(g) has elements in Q. We want to use this to analyze units of the quadratic forms
coming up in the examples by Siegel’s method.

Case A1.

8.2. As in (2.5.2), from [BK] (3.24), we are led to treat the relation between the index
m ∈ Z of the Fourier coefficient of the Eisenstein series and fundamental discriminant dF
of the associated quadratic field F = Q(

√
d)

4m = dFf
2, f ∈ Z.(8.2.1)

At first we treat the case where d ≡ 2 or 3 mod 4, i.e,.dF = 4d. Hence, with m = df 2 we go
to Example 7.4 where for our unit group fixing am = t(1, 0, 0, 0,−m) we have as in (7.4.4)

Γ(Q̂, am) ' {W ∈ Γ(Km); tWb ≡ bmod 4m},

with

Km = mK =


−2m

m
−2m

−1

 , b = t(0, 0, 0,−2),
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i.e., W should be a matrix W =

(
W3 b
tc d

)
, where the entries are rational integers and c

and d− 1 are multiples of 2m and the unit group Γ(Km) belongs to the quadratic form

qm(u) = −4mu1u3 +mu2
2 − u2

4.

Now, in (8.1.1), we choose m′ = d and compare

y1y4 − y2
2 + dy2

3 = −4mu1u3 +mu2
2 − u2

4,(8.2.2)

= −4f 2du1u3 − u2
4 + f 2du2

2,

and, with j =
√
d, put

− 4f 2du1 = y1, fu2 = y3, u3 = y4, u4 = y2,(8.2.3)

or

y = Cu,C =


−4df 2

1
f

1

 .(8.2.4)

Hence, the matrix ρ(g) for the y−variables from (8.1.1), via the map ν given by A 7→
C−1AC, changes to a matrix for the u−variables

WSie = ρ′m(g) = (wij)(8.2.5)

=


|a|2 − (ab̄−āb)j

4fm′
− |b|2

4f2m′
− ab̄+āb

4f2m′

−4fm′(ac̄−āc)
2j

ad̄+ād−bc̄−c̄b
2

bd̄−b̄d
2fj

ad̄−ād−cb̄+c̄b
2fj

−4f 2m′|c|2 (cd̄− d̄c)fj |d|2 cd̄+ c̄d

−2f 2m′(ac̄+ āc) (ad̄−ād+cb̄−c̄b)fj
2

bd̄+b̄d
2

ad̄+ād+bc̄+c̄b
2

 .

8.3. Remark. We get an integer element U ∈ Γ̃am if the components of ρ′m(g) are integer
and c and d− 1 are divisible by 2m. And this is the case if we take Mf from (5.0.6) and

g ∈ SL(2, (Mf ,M
?
f )), i.e., a, d ∈Mf , b ∈ (M?

f )−1, c ∈M?
f .(8.3.1)

This can be seen by some tiny standard verifications. We present some examples. We have
b = 2f 2db1 + 2fjb2, b1, b2 ∈ Z, and c = (1/2)c1 + (1/(2fj))c2, c1, c2 ∈ Z. Hence, we get

w13 = bb̄/(4f 2d) = (4f 4m′2b2
1 − 4f 2j2b2

2))/(4f 2d) ∈ Z,
(8.3.2)

−w31 = 4f 2dcc̄ = 4f 2md((1/4)c2
1 − (1/4f 2j2)c2

2) ∈ Z,
−w41 = 2f 2d(ac̄+ āc)

= 2f 2d((a1 + fja2)((1/2)c1 − (1/2fj)c2) + (a1 − fja2)((1/2)c1 + (1/2fj)c2)

= 2f 2d(a1c1 − a2c2) ∈ 2f 2Z,
w32 = (cd̄− c̄d)2fj = ((c1/2 + c2j/(2f))(d1 − fjd2) + . . . )2fj = 2(c2d1 − c1d2f

2d) ∈ Z
w24 = (−a1d2 + a1d2 + b1c2 − b2c1)/2.
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From ad− bc = (a1 + a2fj)(d1 + d2fj)− (b12f 2m′ + b22fj)(c1/2 + c2j/(2fd)) = 1 we get

a1d1 − b2c2 + (a2d2 − b1c1)f 2m′ = 1, a1d2 + a2d1 − b2c1 − b1c2 = 0.(8.3.3)

Hence, one has

w44 = d = (ad̄+ ād+ bc̄+ b̄c)/2(8.3.4)

= a1d1 − a2d2f
2m′ + b1c1f

2m′ − b2c2

= 1 + (b1c1 − a2d2)2f 2m′.

8.4. Summary. As remarked above, in Case A1, we have Mf = Of . The map ρ′ = νρ :

SL(2,Q(j)) → SO(Km) restricts to ρ′ : SL(2, (Of ,O∗f )) → Γ̂am and, hence, we have the
formula (6.4.1)

Γ̂am ' PSL(2, (Of ,O∗f ))(8.4.1)

from Proposition 6.7.

8.5. Remark. Strangely enough, the same procedure doesn’t seem to work starting with
the example 7.3 for the quadratic form q̃(u) = u2

3 − u1u5 − u2u4 : As in (8.2.2), we would
be led to

y1y4 − y2
2 − dy2

3 = −4mu1u3 + 4mu2
2 − u2

4,(8.5.1)

= −4f 2du1u3 − u2
4 + 4f 2du2

2,

and

−4f 2du1 = y1, 2fu2 = y3, u3 = y4, u4 = y2.

Hence, using the same way as above, we get an element w̃24 = ad̄−ād−cb̄+c̄b
4fj

but which is not
an integer.

Case A2.

8.6. We take d = 4N + 1, N ∈ Z, i.e., dF = d and, this time, have 4m = df 2. Again we
relate (8.1.1)

detX(y) = y1y4 − y2
2 +m′y2

3 = tyDm′y,Dm′ =


1/2

−1
m′

1/2

 .

and (7.4.6)

qm(u) = −4mu1u3 +mu2
2 − u2

4.
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We choose m′ = d, and

df 2u1 = y1, u4 = y2, fu2/2 = y3, u3 = y4.(8.6.1)

Hence, the relation y′ = ρ(g)y = (aij)y with

ρ(g) =


|a|2 ab̄+ āb (ab̄− āb)j |b|2

(ac̄+āc)
2

(ad̄+ād+bc̄+c̄b)
2

(ad̄−ād+cb̄−c̄b)j
2

(bd̄+b̄d)
2

ac̄−āc
2j

ad̄−ād+bc̄−b̄c
2j

ad̄+ād−cb̄−c̄b
2

bd̄−b̄d
2j

|c|2 cd̄+ c̄d (cd̄− c̄d)j |d|2

 = (aij)

from (8.1.2) changes to u′ = ρ′(g)u = (wij)u with

ρ′(g) = (wij) =


a11 −a13/(2df) −a14/(df

2) −a12/(df
2)

−a312df a33 a342/f a322/f
−a41df

2 a43f/2 a44 a42

−a21df
2 a23f/2 a24 a22

 .(8.6.2)

We take (
a b
c d

)
∈ SL(2;Of ,O∗f )(8.6.3)

i.e.,

a = (2a1 + fa2 + fja2)/2, b = fj(2b1 + fb2 + fjb2)/2,(8.6.4)

c = (fj)−1(2c1 + fc2 + fjc2)/2, d = (2d1 + fd2 + fjd2)/2,

and get

ad̄ = A1 + A2fj, A1 = a1d1 + (a1d2 + a2d1)f/2− a2d2N,A2 = (a2d1 − a1d2)/2,
(8.6.5)

ab̄ = −fj(A′1 + A′2fj), A
′
1 = a1b1 + (a1b2 + a2b1)f/2− a2b2N,A

′
2 = (a2b1 − a1b2/2,

ac̄ = −(1/fj)(A′′1 + A′′2fj), A
′′
1 = a1c1 + (a1c2 + a2c1)f/2− a2c2N,A

′′
2 = (a2c1 − a1c2)/2,

bc̄ = −((B1 +B2fj), B1 = b1c1 + (b1c2 + b2c1)f/2− b2c2N,B2 = (b2c1 − b1c2)/2,

bd̄ = fj(B′1 +B′2fj), B
′
1 = b1d1 + (b1d2 + b2d1)f/2− b2d2N,B

′
2 = (b2d1 − b1d2)/2,

cd̄ = (1/fj)(C1 + C2fj), C1 = c1d1 + (c1d2 + c2d1)f/2− c2d2N,C2 = (c2d1 − c1d2)/2.

60



Hence, with 4m = df 2 = (1 + 4N)f 2, by some standard computation, we come to

w11 = |a|2 = a2
1 + a1a2f − a2

2f
2N(8.6.6)

w12 = −(ab̄− āb)j/(2df) = A′1,

w13 = −|b|2/(df 2) = b2
1 + b1b2f − b2

2N,

w14 = −(ab̄+ āb)/(df 2) = 2A′2,

w21 = −2f(ac̄− āc)/(2j) = 2A′′1,

w22 = (ad̄− bc̄+ ād− cb̄)/2 = A1 +B1

w23 = (bd̄− bd̄)f/j = 2B′2
w24 = (ad̄+ bc̄− bā+ cb̄)f/j = 2(A2 −B2),

w31 = −df 2|c|2 = c2
1 + c1c2f − c2

2N,

w32 = (cd̄− dc̄)jf/2 = C1,

w33 = |d|2 = d2
1 + d1d2f − d2

2N,

w34 = cd̄+ c̄d = 2C2,

w41 = −df 2|(ac̄+ cā)/2 = df 2A”2,

w42 = (ad̄+ cb̄− ād− c̄b)fj = (A2 +B2)df 2/2,

w43 = (bd̄+ db̄)/2 = df 2B′2,

w44 = (ad̄+ bc̄+ dā+ cb̄)/2 = A1 −B1.

We observe that these expressions are integers as one has A1, 2A2, A
′
1, 2A

′
2 ∈ Z etc. because

in 4m = (1 + 4N)f 2 f must be even. Concerning the congruence relations, we prepare
some identities: From the determinant relation

1 = ad−bc = [(2a1 +fa2 +a2fj)(2d1 +fd2 +d2fj)− (2b1 +fb2 +b2fj)(2c1 +fc2 +c2fj)]/4

we get for the ’imaginary part’

0 = a1d2 + a2d1 + fa2d2 − b1c2 − b2c1 − fb2c2(8.6.7)

and for the ’real part’ using (8.6.7)

1 = [(2a1 + a2f)(2d1 + fd2) + a2d2df
2 − (2b1 + fb2)(2c1 + fc2)− b2c2df

2]/4,(8.6.8)

= a1d1 − b1c1 + (1/2)(a1d2 + a2d1 − b1c2 − b2c1)f + (a2d2 − b2c2)f 2(1 + d)/4,

= a1d1 − b1c1 + (1/2)(b2c2 − a2d2)f 2 + (a2d2 − b2c2)f 2(1 + d)/4,

= a1d1 − b1c1 + (a2d2 − b2c2)f 2(d− 1)/4 = a1d1 − b1c1 + (a2d2 − b2c2)f 2N.

Hence, using (8.6.5), (8.6.6) and 4m = f 2(4N + 1), we have

A1 −B1 = a1d1 − b1c1 + (1/2)(a2d1 + a1d2 − b2c1 − b1c2)f + (a2d2 − b2c2)f 2(1− d)/4
(8.6.9)

= 1− (a2d2 − b2c2)f 2N + (1/2)(b2c2 − a2d2)f 2 − (a2d2 − b2c2)f 2N

= 1− (a2d2 − b2c2)2m,
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and

A2 +B2 = (1/2)(a2d1 − a1d2 + b2c1 − b1c2)(8.6.10)

= (1/2)(b2c1 − a1d2 + (b2c2 − a2d2)f − a1d2 + b2c1)

= b2c1 − a1d2 + (1/2)(b2c2 − a2d2)f.

Finally for Siegel’s congruence relations, using (8.6.6), (8.6.10) and f even, we get

w41 = A′′2df
2 = A′′24m ≡ 0 mod 2m,(8.6.11)

w42 = (A2 +B2)2m ≡ 0 mod 2m,

w43 = B′2df
2 = B′24m ≡ 0 mod 2m,

w44 = A1 −B1 ≡ 1 mod 2m.

We see that we have integral elements wij and Siegel’s congruence conditions are fulfilled
(f odd is not possible in 4m = f 2d = f 2(1 + 4N)).

8.7. Summary. In Case A2, we have the formula (6.4.1)

Γ̂am ' PSL(2, (Of ,O∗f ))(8.7.1)

from Proposition 6.7.

8.8. The treatment of the square free case, i.e., f = 1 also is contained in the careful
considerations of unit groups for quadratic forms in Section 10.2 in [EGM]: For m′ ∈ N,
they take

Q′m(x) = −x2
1 −m′x2

2 + x3x4(8.8.1)

and, via a prescription g 7→ Ψ′m(g), in analogy to the one given above, provide an isomor-
phism

Ψ′m : PSL(2,R′m)→ SO+
4 (Z, Q′m) ' PSO+

4 (Z, Q′m)(8.8.2)

where the group with entries in R′m = Z[
√
−m′] has an index in the group with entries in

the ring O of integers in Q(
√
−m′) given by

[PSL(2,O) : PSL(2,R′m)] = 1 m ≡ 1, 2 mod 4,(8.8.3)

= 6 m ≡ 7 mod 8,

= 10 m ≡ 3 mod 8.
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Namely, with j =
√
−m′, here one has

Ψ′m(g) =


ad̄+ād+bc̄+b̄c

2
(ad̄−ād+bc̄−b̄c)j

2
ac̄+āc

2
bd̄+b̄d

2
ad̄−ād+bc̄−b̄c

2j
ad̄+ād−bc̄−b̄c

2
ac̄−āc

2j
bd̄−b̄d

2j

ab̄+ āb (ab̄− āb)j aā bb̄
cd̄+ c̄d (cd̄− c̄d)j cc̄ dd̄

 .(8.8.4)

In (7.4.6)

tuKmu = −4mu1u3 + 4mu2
2 − u2

4 = qm(u).

we change −m = m′ and, to compare to (8.8.2) put

x3 = −4mu1, x4 = u3, x2 = 2u2, x1 = u4.

Hence, the matrix Ψ′m(g) changes to a matrix for the u−variables which is the same as in
(8.2.5) for f = 1,m = m0

W ′
Sie = ρ′m(g)(8.8.5)

=


|a|2 − (ab̄−āb)j

2m0
− |b|

2

4m0
−ab̄+āb

4m0

−2fm0(ac̄−āc)
2j

ad̄+ād−bc̄−c̄b
2

bd̄−b̄d
4j

ad̄−ād−cb̄+c̄b
4j

−4m0|c|2 (cd̄− d̄c)2j |d|2 cd̄+ c̄d

−2m0(ac̄+ āc) (ad̄− ād+ cb̄− c̄b)j bd̄+b̄d
2

ad̄+ād+bc̄+c̄b
2

 .

The same way as in Remark 8.3, we have

8.9. Remark. The components of Ψ′m(g) are in Z, if g is of the type

g =

(
a b
c d

)
, a, d ∈ Rm, b ∈ (1/j)Rm, c ∈ jRm.(8.9.1)

And if g is of this type, Siegel’s congruence condition from Remark (8.3) is fulfilled auto-
matically.

8.10. As well, we find a discussion of the (2,2)-case in Bruinier’s text [Br] Section 2.7.

For squarefree d ∈ N take F = Q(
√
d) with discriminant D = d,OF = Z + 1+

√
d

2
Z for

d ≡ 1 mod 4 and D = 4d, OF = Z +
√
dZ for d ≡ 2, 3 mod 4 and different dF = (D). For a
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fractional ideal a, one denotes

Γ(OF ⊕ a) := {g =

(
a b
c d

)
∈ SL(2, F ), a, d ∈ OF , b ∈ a−1, c ∈ a}(8.10.1)

ΓF := Γ(OF ⊕OF ),

Ṽ := {X =

(
y1 w′

w y4

)
y1, y4 ∈ Q, w ∈ F},

Q̃(X) = −detX,

L := Z⊕ Z⊕OF = {
(
y1 w′

w y4

)
∈ Ṽ , y1, y4 ∈ Z, w ∈ OF}

L∧ := Z⊕ Z⊕ d−1
F = {

(
y1 w′

w y4

)
∈ Ṽ , y1, y4 ∈ Z, w ∈ d−1

F }

L(a) := {
(
y1 w′

w Ay4

)
∈ Ṽ , y1, y4 ∈ Z, w ∈ a}, A = N(a).

Sp(2, F ) ' SpinV acts isometrically on Ṽ by

X 7→ gX tg′(8.10.2)

and (Proposition 2.25) one has SpinL = ΓF and, (Remark 2.26) Γ(OF ⊕ a) preserves the
lattice L(a).

9 Proof of the Proposition 6.7, Case B

9.1. Again, we look at the quadratic form

2q̂(u) = u2
3 − 4u2u4 − 4u1u5 = tuQ̂u = (u, u), Q̂ =


−2

−2
1

−2
−2

 .(9.1.1)

This time, we take

a′ := t(0,−1, 1,M, 0), such that (a′, a′) = 4m = 4M + 1 =: ∆.(9.1.2)

We want to determine Γ̂a′ := SO(Q̂,Z)a′ .

9.2. From Example 7.5 in Siegel’s approach, we have

Km := K ·∆ =


0 −2∆
0 ∆− 1 −2 0
0 −2 −4 0
−2∆ 0

 , b = t(0, 1, 2, 0)(9.2.1)

64



and

qm(x) := txKmx = −4∆x1x4 + (∆− 1)x2
2 − 4x2x3 − 4x2

3,(9.2.2)

and, via Siegel’s prescription

Γa′ ' {W ∈ SO(Km,Z); tWb ≡ bmod ∆}.(9.2.3)

These matrices W can be realized by SL2−matrices. From (2.11.4) we have

4∆ = dFf
2.

Case B1.

For dF = 4d, d = 2 + 4N or d = 3 + 4N one has ∆ = 4M + 1 = (2 + 4N)f 2 or
4M + 1 = (3 + 4N)f 2 which both is not possible. Hence, we only have to look at:

Case B2.

9.3. For

F = Q(j), j2 = d = dF , 4∆ = 4(4M + 1) = f 2j2 = f 2d(9.3.1)

with d ≡ 1 mod 4, we put d = 4N + 1, N ∈ Z. We observe that here f must be even.

For

g =

(
a b
c d

)
∈ SL(2, F ),(9.3.2)

X(y) =

(
y1 w
w̄ y4

)
, w = y2 + y3ω, y1, . . . , y4 ∈ Q, ω := 1 + fj/2, f ∈ Z, f 6= 0,

we use the standard proceeding

X(y) =

(
y1 w
w̄ y4

)
7→ gX(y)tḡ =: X(y′), y′ = ρ(g)y.(9.3.3)

This map preserves the determinant and, for ω = 1 + fj/2, f ∈ Z, f 6= 0, one has

detX(y) = y1y4 − w̄w = y1y4 − y2
2 − 2y2y3 − |ω|2y2

3

= y1y4 − y2
2 − 2y2y3 − (1− f 2d)y2

3/4 = y1y4 − y2
2 − 2y2y3 + 4My2

3

= tyDmy, Dm =


0 1/2
0 −1 −1 0
0 −1 4M 0

1/2 0

 .(9.3.4)
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Hence, generalizing [EGM] p.463 for ∆ < 0, one has an isomorphism

ρ : PSL(2, F )→ SO+(Dm, F ),(9.3.5)

where

ρ(g) =


|a|2 ab̄+ āb ωab̄+ ω̄āb |b|2

ω̄ac̄−ωāc
ω̄−ω

−ω(ād+b̄c)+ω̄(bc̄+d̄a)
ω̄−ω

−ω2cb̄+ω̄2c̄b−|ω|2(dā−d̄a)
ω̄−ω

−ωdb̄+ω̄d̄b
ω̄−ω

ac̄−āc
ω−ω̄

ad̄−ād+bc̄−c̄b
ω−ω̄

(ad̄−b̄c)ω−(ad̄−c̄b)ω̄
ω−ω̄

bd̄−b̄d
ω−ω̄

|c|2 cd̄+ c̄d cd̄ω + c̄dω̄ |d|2

(9.3.6)

9.4. Remark. We observe that matrices g with elements in O are transformed into ma-
trices ρ(g) with components in Z.

9.5. We use this for the description of our isotropy group Γa′ : One has

ω = 1 + fj/2, 4∆ = 4(4m) = 4(4M + 1) = f 2j2 = f 2d = f 2(1 + 4N),(9.5.1)

ω − ω̄ = 2, ω + ω̄ = jf, |ω|2 = 1− f 2d/4 = 1−∆, ω2 = 1 + ∆ + fj,

Of = Z + f(1 + j)/2 · Z,O∗f = (jf)−1Of , (O∗f )−1 = jfOf .

From (9.2.2) and (9.3.4), we take

qm(x) = −4∆x1x4 + (∆− 1)x2
2 − 4x2x3 − 4x2

3,

detX(y) = y1y4 − y2
2 − (ω + ω̄)y2y3 − |ω|2y2

3

= y1y4 − y2
2 − 2y2y3 − (1−∆)y2

3,

and we put

− 4∆x1 = y1, x4 = y4, 2x3 = y2, x2 = y3.(9.5.2)

From y′ = ρ(g)y = (aij) with (9.3.6)

ρ(g) =


|a|2 ab̄+ āb ωab̄+ ω̄āb |b|2

ω̄ac̄−ωāc
ω̄−ω

−ω(ād+b̄c)+ω̄(bc̄+d̄a)
ω̄−ω

−ω2cb̄+ω̄2c̄b−|ω|2(dā−d̄a)
ω̄−ω

−ωdb̄+ω̄d̄b
ω̄−ω

ac̄−āc
ω−ω̄

ad̄−ād+bc̄−c̄b
ω−ω̄

(ad̄−b̄c)ω−(dā−c̄d)ω̄
ω−ω̄

bd̄−b̄d
ω−ω̄

|c|2 cd̄+ c̄d cd̄ω + c̄dω̄ |d|2


we get x′ = ρ′(A)x = (wij)x with

x′1 = a11x1 − a13/(4∆)x2 − a12/(2∆)x3 − a14/(4∆)x4(9.5.3)

x′2 = −4∆a31x1 + a33x2 + a322x3 + a34x4

x′3 = −2∆a21x1 + a23x2/2 + a22x3 + a24x4/2

x′4 = −4∆a41x1 + a43x2 + a422x3 + a44x4.
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We take

g =

(
a b
c d

)
∈ SL(2;Of ,O∗f )(9.5.4)

i.e., with a1, . . . , d2 ∈ Z,

a = (2a1 + fa2 + fja2)/2, b = fj(2b1 + fb2 + fjb2)/2,(9.5.5)

c = (fj)−1(2c1 + fc2 + fjc2)/2, d = (2d1 + fd2 + fjd2)/2,

and get

ad̄ = A1 + A2fj, A1 = a1d1 + (a1d2 + a2d1)f/2− a2d2N,A2 = (a2d1 − a1d2)/2,
(9.5.6)

ab̄ = −fj(A′1 + A′2fj)

= −f 2dA′2 − A′1fj, A′1 = a1b1 + (a1b2 + a2b1)f/2− a2b2N,A
′
2 = (a2b1 − a1b2)/2,

ac̄ = −(1/fj)(A′′1 + A′′2fj)

= −A′′2 − A′′1/(f 2d)fj, A′′1 = a1c1 + (a1c2 + a2c1)f/2− a2c2N,A
′′
2 = (a2c1 − a1c2)/2,

bc̄ = −(B1 +B2fj), B1 = b1c1 + (b1c2 + b2c1)f/2− b2c2N,B2 = (b2c1 − b1c2)/2,

bd̄ = fj(B′1 +B′2fj)

= B′2f
2d+B′1fj, B′1 = b1d1 + (b1d2 + b2d1)f/2− b2d2N,B

′
2 = (b2d1 − b1d2)/2,

cd̄ = (1/fj)(C1 + C2fj)

= C2 + C1/(f
2d)fj, C1 = c1d1 + (c1d2 + c2d1)f/2− c2d2N,C2 = (c2d1 − c1d2)/2.
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Hence, by some standard computation, one has

w11 = |a|2 = a2
1 + a1a2f − a2

2f
2N

(9.5.7)

w12 = −(ab̄ω + ābω̄)/(4∆) = (−f 2dA′2 − A′1fj)(1 + fj/2) + . . . )/(4∆) = −2A′2 − A′1
w13 = −(ab̄+ āb)/(2∆) = 4A′2,

w14 = −|b|2/(4∆) = b2
1 + b1b2f − b2

2f
2N,

w21 = −4∆(ac̄− āc)/(fj) = 2A′′1,

w22 = ((ad̄− cd̄)ω − (ād− bc̄)ω̄)/(fj)

= (A1 + A2fj +B1 −B2fj)(1 + fj/2)− . . . )/(fj) = 2A2 − 2B2 + A1 +B1

w23 = 2(ad̄+ bc̄)− (ād+ cb̄))/(fj) = 4A2 − 4B2

w24 = (bd̄− db̄)/(fj) = 2B′1,

w31 = −2∆(ac̄ω − ācω̄)/(fj)

= −2∆(−A′′2 − A′′1/(f 2d)fj)(1 + fj/2)− . . . )/(fj) = 2A′′2∆− A′′1,
w32 = ((dā− ad̄)|ω|2 + b̄cω2 − bc̄ω̄2)/(2fj)

= (−2A2fj(1−∆) + (−B1 +B2fj)(1 + ∆ + fj)− . . . )/(2fj)
= −A2(1−∆) +B2(1 + ∆)−B1

= ∆(A2 +B2) +B2 − A2 −B1 = 4M(A2 +B2) + 2B2 −B1,

w33 = ((dā+ cb̄)ω − (ād+ bc̄ω̄))/(fj)

= (A1 − A2fj −B1 +B2fj)(1 + fj/2)− . . . )/(fj) = A1 −B1 − 2A2 + 2B2

w34 = ((db̄ω − d̄bω̄)/(2fj) = B′22∆−B′1,
w41 = −4∆|c|2 = −(c2

1 + c1c2f − c2
2f

2N),

w42 = cd̄ω + dc̄ω̄ = (C1 + C2fj)(1 + fj/2) + · · · = 2C2 + C1,

w43 = 2(cd̄+ dc̄) = 4C2,

w44 = |d|2 = d2
1 + d1d2f − d2

2f
2N.

We observe that these expressions are rational integers as one has 2A2 ∈ Z and for even
f has also A1 ∈ Z etc. Concerning the congruence relations in (7.5.4), we prepare some
identities: From the determinant relation

1 = ad−bc = [(2a1 +fa2 +a2fj)(2d1 +fd2 +d2fj)− (2b1 +fb2 +b2fj)(2c1 +fc2 +c2fj)]/4

we get for the ’imaginary part’

0 = a1d2 + a2d1 + fa2d2 − b1c2 − b2c1 − fb2c2(9.5.8)
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and for the ’real part’ using (9.5.8)

1 = [(2a1 + a2f)(2d1 + fd2) + a2d2f
2d− (2b1 + fb2)(2c1 + fc2)− b2c2f

2d]/4,(9.5.9)

= a1d1 − b1c1 + (1/2)(a1d2 + a2d1 − b1c2 − b2c1)f + (a2d2 − b2c2)f 2(1 + d)/4,

= a1d1 − b1c1 + (1/2)(b2c2 − a2d2)f 2 + (a2d2 − b2c2)f 2(1 + d)/4,

= a1d1 − b1c1 + (a2d2 − b2c2)f 2(d− 1)/4 = a1d1 − b1c1 + (a2d2 − b2c2)f 2N.

Hence, using (9.5.9) and 4∆ = f 2(4N + 1), we have

A1 −B1 = a1d1 − b1c1 + (1/2)(a2d1 + a1d2 − b2c1 − b1c2)f + (a2d2 − b2c2)f 2(1− d)/4
(9.5.10)

= 1− (a2d2 − b2c2)f 2N + (1/2)(b2c2 − a2d2)f 2 − (a2d2 − b2c2)f 2N

= 1− (a2d2 − b2c2)f 2(2N + 1/2) = 1− (a2d2 − b2c2)2∆.

Finally for Siegel’s congruence relations, using (9.5.10), we get

w21 + 2w31 = −2A′′2∆ ≡ 0 mod ∆,(9.5.11)

w24 + 2w34 = 4B′2∆ ≡ 0 mod ∆,

w22 + 2w32 = 2(A2 −B2) + A1 +B1 − 2B1 + 2B2 − 2A2 + 2∆(A2 +B2)

= A1 −B1 + 2∆(A2 +B2) ≡ 1 mod ∆

w23 + 2w33 = 4(A2 −B2) + 2A1 − 2B1 − 4A2 + 4B2 = 2(A1 −B1) ≡ 2 mod ∆.

We see that we have integral elements wij and Siegel’s congruence conditions are fulfilled.

9.6. Summary. In Case B2, we have the formula (6.4.1)

Γ̂a′ ' PSL(2, (Of ,O∗f ))(9.6.1)

from Proposition 6.7.
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10 Some subgroup considerations

10.1. One has the following standard facts (Shimura [Sh] p.23)

SL(2,Z/NZ) =
r∏
i=1

SL(2,Z/peii Z), N =
r∏
i=1

peii(10.1.1)

|SL(2,Z/fZ)| = f 3
∏
p|f

(1− 1/p2),

|GL(2,Z/plZ)| = p4(l−1)(p2 − 1)(p2 − p), |(Z/plZ)∗| = pl − pl−1

|PSL(2,Z/fZ)| = f 3/2
∏
p|f

(1− 1/p2), f > 2

|PSL(2,Z/2Z)| = 6,

and with q = pe (Artin [Ar] p.169)

|GL(2,Fq)| = (q2 − 1)(q2 − q),(10.1.2)

|SL(2,Fq)| = (q2 − 1)q,

|PSL(2,Fq)| = (q2 − 1)q/2, q odd,

|PSL(2,Fq)| = (q2 − 1)q, q even.

10.2. For m0 ∈ Z, there is the Legendre symbol

(
m0

p
) = ±1(10.2.1)

if p is prime and does not divide m0 and one finds x with x2 ≡ m0 mod p or not. For p|m0

one has (m0

p
) = 0. We observe that, for all odd m0, one has (m0

2
) = 1.

Moreover, if D is a fundamental discriminant, i.e. D ∈ Z with

D ≡ 0 mod 4, D/4 square free, D/4 ≡ 2 or 3 mod 4 (case 1),(10.2.2)

or

D ≡ 1 mod 4, D square free, (case 2),

there is [Za] p.38) a function χD : N→ Z modulo |D| defined by

χD(p) = (
D

p
) p an odd prime(10.2.3)

χD(2) = 0 if D ≡ 0 mod 4,

= 1 if D ≡ 1 mod 8,

= −1 if D ≡ 5 mod 8,

χD(pn1
1 . . . pnkk ) = χD(pn1

1 ) . . . χD(pnkk ).
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And χD defines a primitive Dirichlet character modulo |D| (also denoted by χD) with

χD(−1) = 1 if D > 0,(10.2.4)

= −1 if D < 0.

And [Za] p.40, for D1, D2 fundamental discriminants

χD1D2 = χD1χD2 .(10.2.5)

10.3. We want use this to verify the formula from [EGM] above cited as (8.8.3): For
j =
√
−m,m ∈ N, square free, Rm = Z[j] has an index in the ring O of integers in Q(j)

given by

rm := [PSL(2,O) : PSL(2,Rm)] = 1 m ≡ 1, 2 mod 4,

= 6 m ≡ 7 mod 8,

= 10 m ≡ 3 mod 8.

The first relation is trivial as O = Z+ jZ. For m = 7 + 8M (case a) and m = 3 + 8M (case
b) one has O = Z + ωZ, ω = (1 + j)/2, where

ω2 = ω − 2− 2M, case a,

ω2 = ω − 1− 2M, case b.

Here, we have

Rm = O2 = Z + 2ωZ
2O = 2Z + 2ωZ

and, hence,

O/2O = (Z/2Z)[ω] ' F2 × F2, case a,(10.3.1)

' F4, case b,

O2/2O = F2.

Now, using

SL(2,O/O2) = SL(2,O/2O)/SL(2,O2/2O)(10.3.2)

and (10.1.1) and (10.1.2), we get rm = 6 × 6/6 = 6 in case a and rm = 60/6 = 10 in case
b. In both cases, with (10.6.1), one also may write

rm = 23(1− χ−m(2)/22).(10.3.3)
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10.4. We look at F = Q(j), j =
√
d, d ∈ Z, d 6= 0 square free, f ∈ N, and want to

determine

ψ(d, f) := [PSL(2,O) : PSL(2,Of )],(10.4.1)

where O = Z+ωZ,Of = Z+fωZ. Already for m = dFf
2 > 0, from van der Geer’s formula

(6.3.1) one may deduce

[SL(2,O) : SL(2,Of )] ∼ f 3
∏
p|f

(1− (
dF
p

)p−2)(10.4.2)

with the Legendre symbol (d
p
), but we look into this a bit more closely:

10.5. We have

SL(2,O/Of ) = SL(2,O/fO)/SL(2,Of/fO),(10.5.1)

where

Of/fO ' Z/fZ(10.5.2)

O/fO = (Z + ωZ)/(fZ + fωZ) ' (Z/fZ)[ω].

This is a special case of the general classic formula for a number field F of degree n =∑g
i=1 eifi

O/fO = O/(pe11 × · · · × pegg ).(10.5.3)

10.6. For a rational prime p in F = Q(
√
d) with discriminant D, one has (e.g. [Za] p.100)

χD(p) = 1 iff p is split: p = p1 × p2, p1 6= p2, henceO/pO ' Fp × Fp,(10.6.1)

χD(p) = 0 iff p is ramified: p = p2, henceO/pO ' Z/p2Z
χD(p) = −1 iff p is inert: p = p, henceO/pO ' Fp2 .

Hence, in the first case we have O/pO ' Fp × Fp and

|GL(2,O/pO)| = ((p2 − p)(p2 − 1))2,(10.6.2)

|SL(2,O/pO)| = p6(1− (1/p2))2,

in the third case O/fO ' Fp2 and

|GL(2,O/pO)| = (p4 − 1)(p4 − p2),(10.6.3)

|SL(2,O/pO)| = p6(1− (1/p4)) = p6(1− (1/p2))(1 + (1/p2))
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and in the second case O/pO ' Z/p2Z and

|SL(2,O/pO)| = p6(1− (1/p2)).(10.6.4)

With |SL(2,Op/pO)| = p3(1−(1/p2)), consistent (at least for odd primes) with the formula
of van der Geer, we get

|SL(2,O/Of )| = p3(1− χD(p)/p2).(10.6.5)

10.7. In the case f = pp′, p 6= p′ one has Z/fZ = Z/pZ× Z/p′Z and

O/fO = Z + ωZ/(fZ + fωZ) = Fp[ω]× Fp′ [ω],(10.7.1)

|SL(2,O/fO)| = p6(1− (1/p2))(1− χD(p)/p2))p′6(1− (1/p′2))(1− χD(p′)/p′2),

|SL(2,O/fO)|/|SL(2,Z/fZ)| = p3p′3(1− χD(p)/p2))(1− χD(p′)/p′2),

again as in van der Geer’s formula (6.3.1).

10.8. For f = pl, we follow Shimura as in his proof of (10.1.1) and look at the exact
sequence

1→ X → GL(2,O/plO)
ρ→ GL(2,O/pO)→ 1,(10.8.1)

where the homomorphism ρ is given by ρ(a + plO) = a + pO, a ∈ O. For χD(p) = ±1
the elements of O/plO are of the type (α, β) resp. αω + β, α, β ∈ Z/plZ. Elements from
ρ−1(0 + pO) show up if α and β are represented by

νp, ν = 0, 1, . . . (pl−1 − 1).(10.8.2)

Hence, in both cases, we have |ρ−1(0 + pO)| = p2(l−1) and the kernel X of ρ has |X| =
p4(2l−2). Using (10.6.2) and (10.7.1), from

|GL(2,O/plO)| = |X||GL(2,O/pO)|,
(10.8.3)

= p4(2l−2)((p2 − p)(p2 − 1))2 = p8l(i− 1/p2)2(1− 1/p)2 if χD(p) = 1,

= p4(2l−2)(p4 − 1)(p4 − p2) = p8l(1− 1/p4)(1− 1/p2) if χD(p) = −1

we deduce

|SL(2,O/plO)| = p6l(i− 1/p2)2 if χD(p) = 1,(10.8.4)

= p6l(1− 1/p4) if χD(p) = −1,

as one has |(O/plO))∗| = (pl − pl−1)2 resp. = p2l−2(p2 − 1). Finally, with SL(2,Of/plO) =
p3l(1− 1/p2) from (10.1.1) we get

|SL(2,O/Opl)| = p3l(1− χD(p)/p2).(10.8.5)
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One gets the same formula in the ramified case χD(p) = 0 as one has O/plO ' Z/p2lZ
and, hence, |SL(O/plO)| = p6l(1− 1/p2).
Thus we have proved

10.9. Proposition. For F = Q(
√
d), d squarefree, with discriminant dF , maximal order

O, and order Of with conductor f one has

ψ(dF , f) := [PSL(2,O) : PSL(2,Of )] = f 3
∏
p|f

(1− χdF (p)/p2).(10.9.1)

10.10. Summary. We looked at the following ingredients.

Case A. We take

am = t(1, 0, 0, 0,−m), m ∈ Z\0, i.e. 2q̂(am) = 4m,(10.10.1)

Ĝam = {g ∈ Ĝ; gam = am},
Γ̂am = Γ(Q̂, am) = {U ∈ Γ(Q̂);Uam = am}.

Case B. We take

a′m = t(0,−1, 1,M, 0), M ∈ Z\0, i.e. 2q̂(am) = 4m = 4M + 1 = ∆,(10.10.2)

Ĝa′m = {g ∈ G′; ga′m = a′m},
Γ̂a′m = Γ(Q̂, a′m) = {U ∈ Γ(Q̂);Ua′m = a′m},

and we want to know in both cases

κ0
m = vol(Γ̂am\Ĝam), resp.κ′0m = vol(Γ̂a′m\Ĝa′m)

κm = vol(Γ̂am\Dam), resp.κ′m = vol(Γ̂a′m\D
′
a′m

),(10.10.3)

where Da stands for the respective symmetric space. Above, in Proposition 6.7, we already
related the unit groups Γ̂a and Γ̂a to discrete groups belonging to the SL-theory. Thus,
at first we shall determine the volumes of these groups in their associated homogeneous
spaces H+ resp. H2.

10.11. For the integers m resp. ∆, we have to distinguish the way they are related to
fundamental discriminants dF of quadratic fields F = Q(

√
dF ). With d, f non-zero integers,

we put

Case 1.

F = Q(j) ⊃ O = Z + jZ ⊃ Of = Z + fjZ, j2 = d ≡ 2 or 3 mod 4, dF = 4d.(10.11.1)
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Case 2.

F = Q(j) ⊃ O = Z + ((1 + j)/2)Z ⊃ Of = Z + f((1 + j)/2)Z, j2 = d ≡ 1 mod 4, dF = d.
(10.11.2)

Hence, from Proposition 6.7, we have in both cases

Γ̂am and Γ̂a′m ' PSL2(Of ,O∗f ).(10.11.3)

10.12. Remark. One has(
α

1

)(
a b
c d

)(
1/α

1

)
=

(
a αb
c/α d

)
.

Hence, PSL2(Of ,O∗f ) is conjugate to PSL2(Of ) and their fundamental domains in H2 resp.

H+ have the same volume. For F = Q(
√
d), d < 0, we have

volH+(Γa\H+) = volH+(PSL2(O)\H+)[PSL2(O) : PSL2(Of )](10.12.1)

and a similar formula for d > 0.

Hence, using Remarks 6.2.1 and 6.3.1 and Proposition 10.9, we get

10.13. Proposition. For dF < 0, with dvH+ = dxdydr/r3, one has

volH+(Γa\H+) = volH+(PSL2(O)\H+)[PSL2(O) : PSL2(Of )](10.13.1)

=
|dF |3/2

4π2
ζF (2)f 3

∏
p|f

(1− χdF (p)/p2)

=:
|dF |3/2

24
L(χdF , 2)ψ(dF , f) =: v−

and for dF > 0, with dvH2 = dx1dy1dx2dy2/(y1y2)2,

volH2(Γa\H2) =
|dF |3/2

3
L(χdF , 2)f 3

∏
p|f

(1− χdF (p)/p2)(10.13.2)

=
|dF |3/2

3
L(χdF , 2)ψ(dF , f) =: v+.

11 Siegel’s volume of our fundamental domains

11.1. As already said in the Summary 10.10, we want to know

κ0
a := vol(Γ̂a\Ĝa) and κa := vol(Γ̂a\Da).(11.1.1)
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Above, we related the unit groups Γ̂a to discrete subgroups of SL2 and determined the
volumes of their fundamental domains in H+ resp. H2. We will use this to calculate κa.

11.2. Siegel’s Volume Formula. In [S4], Siegel treats the following situation (simplified
for our application): One has a quadratic form

S[x] = txSx =
m∑

k,l=1

sklxkxl, S = tS ∈Mm(R), sign(S) = (n,m− n).(11.2.1)

Let be x = Cy such that S[Cy] = y2
1 + · · ·+ y2

n − y2
n+1 − · · · − y2

m, resp.

S[C] = tCSC = S0, S0 =

(
En

−Em−n

)
.(11.2.2)

Hence, P = (CtC)−1 is a majorant for S and one has

PS−1tP = S, tP = P.(11.2.3)

The set D(S) of these majorants is a homogenous space for the orthogonal group SO(S)
of S (the representation space from p.88 in [S5]) and can be parametrized as follows.
At first look at S = S0. Take a matrix Y ∈ Mn,m−n(R) with E − Y tY > 0. Hence, an
element P of D(S0) is given by

P =

(
E+Y tY
E−Y tY (E − Y tY )−1Y

tY (E − Y tY )−1 E+tY Y
E−tY Y

)
.(11.2.4)

For the general case, one has to choose a fixed C = C0 with S[C0] = S0 and, in the equation
above, replaces P by P [C0].

We put

Dn,m−n := D(S0) = {Y ∈Mn,m−n(R);E − Y tY > 0}(11.2.5)

G = SO(S0) acts transitively on D(S0)

G 3 g =

(
A B
C D

)
mapsY 7→ g(Y ) = (AY +B)(CY +D)−1(11.2.6)

A G−invariant volume element is given by ((6) in [S4])

dvSie = (det(E − Y tY ))−m/2
n∏
k=1

m−n∏
l=1

dykl.(11.2.7)

If Γ(S) is the unit subgroup of G, i.e. Γ(S) = G ∩Mm(Z), µ(S) the measure of a fun-
damental domain of Γ(S) in G (with respect to the form dω given by (12) in [S4]) and

76



κS = vol(Γ(S)\Dn,m−n) the volume of a fundamental domain in the representation space
(with respect to (11.2.7)), one has ((13) in [S4], Theorem 7 in [S5], or (1) in [GHS]) Siegel’s
volume formula

2µ(S) = ρnρm−n|detS|−(m+1)/2κS, ρl =
l∏

k=1

πk/2

Γ(k/2)

ρ1 = 1, ρ2 = π, ρ3 = 2π2.(11.2.8)

We rewrite this as

2 volS(Γ(S)\G(S)) = ρnρm−n|detS|−(m+1)/2volS(Γ(S)\Dm,m−n).(11.2.9)

For n = 2,m = 4 and S = S0 = E2,2 =

(
E2

−E2

)
, we get our prototype formula

volS(Γ(S0)\SO(2, 2)) = (π2/2) volS(Γ(S0)\D2,2).(11.2.10)

11.3. The (2,2) Case. It is well known that in this case the representation space is
isomorphic to H2. We shall need some more details and put

Q0 =

(
E2

−E2

)
, Q̂ = (1/2)


1

−1
−1

1

 , Ĉ =


1 1
−1 1
1 1

1 −1

(11.3.1)

As in Example 2.2 in 1.7, one has the standard way to connect G1 := (SL2(R))2 with
G = SO(Q0) = SO(2, 2) :

We identify a = t(a, b, c, d) ≡M =

(
a b
c d

)
. For g = (g1, g2) ∈ G1 the map

a ≡M 7→ g1M
tg2 = M ′ ≡ a’ =: A(g)a

preserves the determinant, i.e. A(g) is an element of SO(Q̌), the orthogonal group of the

quadratic form taQ̌a. For z = (z1, z2) ∈ H2 and gzj =

(
yj

1/2 xjyj
−1/2

yj
−1/2

)
one has

A(z) := A(gz1 , gz2) =


q1 x2q2 x1/q2 x1x2/q1

q2 0 x1/q1

1/q2 x2/q1

1/q1

 , q1 =
√
y1y2, q2 =

√
y1/y2.(11.3.2)
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To go over from A(z) ∈ SO(Q̂) to G = SO(Q0), we change to x = Ĉa with txQ0x =
x2

1 + x2
2 − x2

3 − x2
4 and have

Â(z) :=ĈA(z)Ĉ−1 =

(
A B
C D

)
∈ G

=(1/2)


q1 + 1/q1 + x1x2/q1 −x2q2 + x1/q2 x2q2 + x1/q2 q1 − 1/q1 − x1x2/q1

(−x1 + x2)/q1 q2 + 1/q2 −q2 + 1/q2 (x1 − x2)/q1

(x1 + x2)/q1 −q2 + 1/q2 q2 + 1/q2 −(x1 + x2)/q1

q1 − 1/q1 + x1x2/q1 −x2q2 + x1/q2 x2q2 + x1/q2 q1 + 1/q1 − x1x2/q1

 , .

(11.3.3)

D2,2 is a symmetric space belonging to G = SO(2, 2) and from (11.2.6) one has a map

G 3 g =

(
A B
C D

)
7→ BD−1 = Z ∈ D2,2.(11.3.4)

If we take g = Â(z) from (11.3.2), with

ζ = detD = (1/(4y1y2))ξ, ξ := ((|z1|2 + 1)y2 + (|z2|2 + 1)y1),

we get the map Ψ : H2 → D2,2 we wanted

H2 3 z = (z1, z2) 7→ Z = BD−1

= (1/ξ)

(
2(x1y2 + x2y1) (|z1|2 − 1)y2 + (|z2|2 − 1)y1

−(|z1|2 − 1)y2 + (|z2|2 − 1)y1 2(x1y2 − x2y1)

)
=

(
a b
c d

)
∈ D2,2.(11.3.5)

With

δ = ad− bc =
−(|z1|2 + 1)y2 − (|z2|2 + 1)y1

(|z1|2 + 1)y2 + (|z2|2 + 1)y1

,

a small calculation leads to

∆ := det(E − ZtZ) = 1− a2 − b2 − c2 − d2 + δ2

= 24y2
1y

2
2/((|z1|2 + 1)y2 + (|z2|2 + 1)y1)2 = ζ−2(11.3.6)

Another, a bit more substantial, calculation leads to

da ∧ db ∧ dc ∧ dd = 26y2
1y

2
2/(|z1|2 + 1)y2 + (|z2|2 + 1)y1)4 dx1 ∧ dy1 ∧ dx2 ∧ dy2.(11.3.7)

Hence, for our case, Siegel’s formula (11.2.7) shows up to the factor 1/4 the ’usual’ volume
element for H2

dvSie ·Ψ∗ = (1/(4y2
1y

2
2)) dx1 ∧ dy1 ∧ dx2 ∧ dy2 = (1/4)dvH2 .(11.3.8)
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11.4. The (1,3) Case. For n = 1,m = 4 and S = S0 = E1,3 =

(
E1

−E3

)
, we get the

prototype formula

volS(Γ(S0)\SO(1, 3)) = π2 volS(Γ(S0)\D1,3).(11.4.1)

As in Example 1.3 in 1.14, similarly, one may treat the case n = 1,m = 4 where Siegel’s
representation space comes out as the hyperbolic 3-plane H+. For instance from the first
pages of [EGM], we know that Ḡ = SL(2,C) has H+ as homogeneous space and, with

g =

(
a b
c d

)
, acts on H+ by

H+ 3 P = (z, r) = (x, y, r) 7→ g(P ) = (z′, r′)

z′ =
(az + b)(c̄z̄ + d̄) + ac̄r2

|cz + d|2 + |c|2r2
, r′ =

r

|cz + d|2 + |c|2r2
.(11.4.2)

With gP =

(√
r z/

√
r

1/
√
r

)
and j = (0, 1) ∈ H+, one has

gP (j) = (z, r)(11.4.3)

and the Ḡ−invariant metric and volume form

ds2 =
dx2 + dy2 + dr2

r2
, dvH+ =

dx ∧ dy ∧ dr
r3

.(11.4.4)

There is the standard procedure to relate Ḡ = SL(2,C) to an orthogonal group of signature
(1,3): For yj ∈ R, j = 1, . . . , 4, we take a matrix

X(y) =

(
y1 w
w̄ y4

)
, w = y2 + iy3,(11.4.5)

with

det(X(y)) = y1y4 − y2
2 − y2

3 = tyQ̄y, Q̄ =


1/2

−1
−1

1/2

 ,(11.4.6)

and, with g =

(
a b
c d

)
∈ Ḡ, via

X(y) 7→ gX(y)tḡ =: X(y′), y′ = ρ(g)y(11.4.7)

get a surjection ρ : Ḡ→ SO(Q̄), g 7→ ρ(g) where

ρ(g) =


|a|2 ab̄+ āb (ab̄− āb)i |b|2

(ac̄+ āc)/2 (ad̄+ ād+ bc̄+ c̄b)/2 (ad̄− ād+ cb̄− c̄b)i/2 (bd̄+ b̄d)/2
(ac̄− āc)/(2i) (ad̄− ād+ bc̄− c̄b)/(2i) (ad̄+ ād− cb̄− c̄b)/2 (bd̄− b̄d)/(2i)

|c|2 cd̄+ d̄c (cd̄− c̄d)i |d|2

 .

(11.4.8)
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In particular, for g = gP , we have

ρ(gP ) =


r 2x 2y |z|2/r

1 x/r
1 y/r

1/r

 =: ĀP .(11.4.9)

We want to transform this to G = SO(1, 3) = SO(Q0) and introduce

Q0 =


1
−1

−1
−1

 , C =


1/2 1/2

1
1

1/2 −1/2

 , C−1 =


1 1

1
1

1 −1

 .

(11.4.10)

With x = Cy, we have q̄(y) = tyQ̄y = txQ0x = q(x) and get

ν : SO(Q̄)→ SO(Q0), Ā 7→ ν(Ā) = CĀC−1 =: A.(11.4.11)

Hence, we get

ν(ĀP ) =


(|z|2 + 1 + r2)/(2r) x y (r2 − |z|2 − 1)/(2r)

x/r 1 −x/r
y/r 1 −y/r

(|z|2 − 1 + r2)/(2r) x y (r2 − |z|2 + 1)/(2r)

 =: AP(11.4.12)

and we have a map ρ̃ : H+ → SO(1, 3), P 7→ AP . For G = SO(1, 3), Siegel’s representation
space is parametrized by the unit ball

D(1,3) = {X = (x1, x2, x3) ∈ R3; ||X||2 = x2
1 + x2

2 + x2
3 < 1}(11.4.13)

From (11.2.6) we know that G = SO(1, 3) acts transitively on D1,3 via

G 3 g =

(
A B
C D

)
mapsX 7→ g(X) = (AX +B)(CX +D)−1(11.4.14)

where, here, A is a scalar, B and C are triples and D is a three by three matrix. We get
a map Ψ

H+ 3 P 7→ XP = BD−1 ∈ D1,3(11.4.15)

if we take

B = (x, y, (r2 − |z|2 − 1)/(2r)), D =

1 −x/r
1 −y/r

x y (r2 − |z|2 + 1)/(2r)

 .(11.4.16)
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We put Ξ := det(D) = (1 + r2 + x2 + y2)/(2r) and get

XP = BD−1 = (x, y, r − Ξ) ·

Ξ− x2/r −xy/r x/r
−xy/r Ξ− y2/r y/r
−x −y 1

 (1/Ξ)(11.4.17)

= (1/(rΞ))(x, y, rΞ− 1)

One has 1−XP
tXP = Ξ−2 and with rΞ = (1/2)(x2 + y2 + r2)

d(x/(rΞ)) ∧ d(y/(rΞ)) ∧ d(1− 1/(rΞ)) = (rΞ)−4rdx ∧ dy ∧ dr.

Hence, for n = 1,m = 4 Siegel’s volume element (11.2.7) comes out as

dvSie = (det(E −X tX)−m/2
n∏
k=1

m−n∏
l=1

dxkl,

dvSie ·Ψ∗ = Ξ4 · (rΞ)−4rdx ∧ dy ∧ dr,

=
dx ∧ dy ∧ dr

r3
= dvH+(11.4.18)

i.e., exactly the standard volume element for the hyperbolic three-space.

11.5. The (3,1) Case. By conjugation with C = (
1

1
1

1
), one has an isomorphism

σ : SO(3, 1)→ SO(1, 3), A = (aij) 7→


a44 a42 a43 a41

a24 a22 a23 a21

a34 a32 a33 a31

a14 a12 a13 a11

 ,(11.5.1)

Hence, similarly, for A : SL2(C)→ SO(3, 1) and the map Ψ : H+ → D31, we have

AP := A(gP ) = (1/2r)


−|z|2 + 1 + r2 2xr 2yr r2 + |z|2 − 1

−2x 2r 2x
−2y 2r 2y

−|z|2 − 1 + r2) 2xr 2yr r2 + |z|2 + 1

(11.5.2)

and

XP = tb · d−1 =

r2 + |z|2 − 1
2y
2x

 (1/Ξ) =

x1

x2

x3

 , Ξ = r2 + x2 + y2 + 1

We get

dx1 ∧ dx2 ∧ dx3 = (4r/Ξ4)dx ∧ dy ∧ dr,
det(E3 −XP

tXP ) = 4r2Ξ−2,
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hence, for dvSie = (det(E3 −XP
tXP ))−2dx1 ∧ dx2 ∧ dx3 again

Ψ∗dvSie =
dx ∧ dy ∧ dr

r3
= dvH+

11.6. The (1,2) Case. In the case n = 1,m = 3. we get Siegel’s prototype formula

volS(Γ(S0)\SO(1, 2)) = π/2 volS(Γ(S0)\D1,2).(11.6.1)

One has the standard way to relate the signature (1, 2) groups to G1 := SL(2,R) : Take

g =

(
α β
γ δ

)
∈ G1(11.6.2)

M(a) =

(
a b
c −a

)
, det(M) = −a2 − bc = taQ̂a, Q̂ =

−1
−1/2

−1/2

 .

One has a map ρ : G1 → SO(Q̃), g 7→ ρ(g) where

gM(a)g−1 = M(ρ(g)a), ρ(g) =

αδ + βγ −αγ βδ
−2αβ α2 −β2

2γδ −γ2 δ2

 .(11.6.3)

We put a = x3, b = x2 + x1, c = x2 − x1, i.e.,

a = Cx, C =

 1
1 1
−1 1

 , x = C−1a, C−1 =

 1/2 −1/2
1/2 1/2

1

(11.6.4)

to get

taQ̂a = txQ0x = x2
1 − x2

2 − x2
3, Q0 =

1
−1

−1


and an isomorphism

ν : SO(Q̃)→ SO(Q0) = SO(1, 2), A 7→ C−1AC.

Hence we have the surjection ρ′ = ν · ρ : G1 → SO(1, 2), g 7→ C−1ρ(g)C =: A(g) with

A(g) = (1/2) ·

α2 + β2 + γ2 + δ2 α2 + β2 − γ2 − δ2 −2(αβ + γδ)
α2 + β2 − γ2 − δ2 α2 − β2 − γ2 + δ2 2(γδ − αβ)
−2(αγ + βδ) −2αγ + 2βδ 2(αδ + βγ)

 .(11.6.5)
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In particular, for gz =

(√
y x/

√
y

1/
√
y

)
, we obtain

ρ(gz) =

 1 0 x/y
−2x y −x2/y

0 0 1/y

 .(11.6.6)

and

A(gz) = (1/2y) ·

x2 + y2 + 1 −x2 + y2 − 1 −2xy
x2 + y2 − 1 −x2 + y2 + 1 −2xy
−2x +2x 2y

 =

(
A B
C D

)
(11.6.7)

where

B = (1/(2y))(−x2 + y2 − 1,−2xy), D = (1/(2y))

(
−x2 + y2 + 1 −2xy

2x 2y

)
.(11.6.8)

One has det(D) = (1/(2y))(|z|2 + 1) =: (1/(2y))ξ and

X = X(z) = BD−1(11.6.9)

= (−x2 + y2 − 1,−2xy)

(
2y 2xy
−2x y2 − x2 + 1

)
(1/ξ)

= (1/(|z|2 + 1))(|z|2 − 1,−2x) =: (1/ξ)(ζ,−2x)

with 1−X tX = 4y2/ξ2. Hence, we have a map

Ψ : H→ D1,2 = D = {X = (x1, x2) ∈ R2;X tX < 1}(11.6.10)

z 7→ (1/(|z|2 + 1))(|z|2 − 1,−2x) = (1/ξ)(ζ,−2x) = (x1, x2)

and get

dx1 ∧ dx2 = d(ζ/ξ) ∧ d(−2x/ξ) = (23y/ξ3)dx ∧ dy.(11.6.11)

Thus, in this case, Siegel’s volume (11.2.7) comes out as it should

dvSie = (1−X tX)−3/2dx1 ∧ dx2(11.6.12)

dvSie ·Ψ∗ = (4y2/ξ2)−3/2(23y/ξ3)dx ∧ dy =
dx ∧ dy
y2

.

11.7. Volumes of fundamental domains in the representation space. We want
to use these singular relations between the orthogonal and the SL2−world to determine
the volumes vol(Γ̂\Ĝ) with the formula (11.2.8) where we determine the volume of the
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fundamental domain F of Γ̂ in the representation space of Ĝ with the information from
the SL2−world we got above. We have the following general situation.

Γ1

��

// Γ

��
G1

��

Φ // G

��
D1

��

Ψ // D

��
F1 ' Γ1\D1

// Γ\D ' F

(11.7.1)

Hence, one has ∫
F1

dvSie ·Ψ∗ =

∫
Ψ(F1)

dvSie.(11.7.2)

We have to make this concrete in our different cases.

11.8. For F = Q(j), j2 = d > 0, we have the situation with the natural maps and the
maps explained below

Γ1 = PSL2(Of ,O∗f )

��

// Γm

��

// Γ0

��
PSL2(F )

ι

��

ρd // SO+(Dd,Q)

ιd
��

ν // SO+(Km,Q)

id
��

σ // SO+(2, 2)

id
��

(PSL2(R))2

��

ρ0 // SO+(D0,R)
ν0 // SO+(Km,R)

��

σ // SO+(2, 2)

��
H2

��

Ψ
11Dm

��

D2,2

��
F1 ' PSL2(Of ,O∗f )\H2

11Γm\Dm Γ0\D2,2 ' F .

(11.8.1)

Here Γm = Γam or = Γa′m in Case A or B, and Γ0 = σ(Γm),
and in Case A1

Dd =
( 1/2

−1
d

1/2

)
, D0 =

( 1/2
−1/2

−1/2
1/2

)
), Km =

( −2m
m

−2m
−1

)
,(11.8.2)
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- ρd is given by

for g ∈ SL2(F ), X(y) =

(
y1 w
w̄ y4

)
, w = y2 + jy3, one has gX(y)tḡ = X(ρd(g)y)

- ρ0 is given by

for g = (g1, g2) ∈ (SL2(R))2, X(a) =

(
a b
c d

)
, one has g1X(a)tg2 = X(ρ0(g)a)

- for m = df 2(i.e., case A1), ν, ν0, σ are given by conjugation with (respectively)

C =
( −4m

1
f

1

)
, C0 =

( −4m
µ 1
−µ 1

1

)
, Cµ =

( −1/(4m) 1/(4m)
1/µ

1 1
1

)
, µ =

√
m,

- ι is given by ι(g) = (g, ḡ) and ιd by conjugation with

J =
( 1

1/2 1/2
1/(2µ) −1/(2µ)

1

)
, µ =

√
d,

- Dm and D2,2 are Siegel’s representation spaces of the groups above, and Ψ is the map
(11.3.5).

11.9. Proposition. Applying (11.7.2) to the diagram we have

κm = volSie(Γ
0\D2,2) = volH2(PSL2(Of ,O∗f )\H2)/4(11.9.1)

= (1/12)|dF |3/2L(χF , 2) · f 3
∏
p|f

(1− χdF (p)/p2).

11.10. To get the volume of the fundamental domain of Γ0 in the group G we want to
apply Siegel’s formula (11.2.8), resp. the prototype formula (11.2.10)

vol(Γ(S0)\G(S0)) = (1/2)π2κ0, κ0 := volSie(Γ(S0)\D2,2).

for S0 =

(
E2

−E2

)
and

SO(2,2)+ =: G(S0), Γ0 ∩ Γ(S0) =: Γ0(S0), [Γ0 : Γ0(S0)] =: λm, [Γ(S0) : Γ0(S0)] =: µm
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From (11.8.1) we deduce

Γ1 = PSL2(Of ,O∗f )

��

// Γ0

''

Γ0(S0)oo //

��

Γ(S0)

ww
(PSL2(R))2

��

// SO+(2, 2)

��
H2

��

Ψ // D2,2

��ww ''
F1 ' PSL2(Of ,O∗f )\H2 // F ' Γ0\D2,2

// Γ0(S0)\D2,2
// Γ(S0)\D2,2

.(11.10.1)

Hence
volSie(Γ

0(S0)\D2,2) = µmvolSie(Γ(S0)\D2,2) = λmvolSie(Γ
0\D2,2),

and
volSie(Γ

0(S0)\G(S0)) = µmvolSie(Γ(S0)\G(S0)) = λmvolSie(Γ
0\G(S0)).

From here, finally

11.11. Corollary. We have

κ0
m = vol(Γ0\SO(2, 2)) = (µm/λm)vol(Γ(S0)\G(S0))

= (µm/λm)(π2/2)volSie(Γ(S0)\D2,2) = (π2/2)volSie(Γ
0\D2,2)(11.11.1)

= (π2/8)volH2((PSL2(Of ,O∗f )\H2)

= (π2/24)|dF |3/2L(χF , 2) · f 3
∏
p|f

(1− χdF (p)/p2).

11.12. In Case A2, we have 4m = df 2. with d ≡ 1 mod 4. Everything is essentially as
above: only in the description of ν, we have to change C to

C ′ =
( −4m

1
f/2

1

)
,

and again we come to the result (11.11.1).

In Case B2, we have to look at 4∆ = 4(4M + 1) = df 2, d = dF = 4N + 1, j =
√
d, and we

have more changes in the interpretation of the diagram above. Here Dd and Km change to

D∆ =
( 1/2

−1 −1
−1 ∆−1

1/2

)
, K∆ =

( −2∆
∆−1 −2
−2 −4

−2∆

)
,
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and ρd changes to the the map ρ∆ : PSL2(F )→ SO+(D∆), where ρ∆ is given by

for g ∈ SL2(F ), X(y) =

(
y1 w
w̄ y4

)
, w = y2 + (1 + fj/2)jy3, one has gX(y)tḡ = X(ρ∆(g)y),

ν changes to ν∆, ν0 to ν0,∆, σ to σδ and ιd to ι∆ given by conjugation with

C∆ =
( −4∆

2
1

1

)
,

C0,∆ =
( −1/(4∆)

1/(2δ) 1/(2δ)
1/2−1/(2δ) 1/2+1/(2δ)

1

)
,

C0,δ =
( −1/(4∆) 1/(4∆)

1/δ
−1/(2δ) 1/2

1 −1

)
, δ =

√
∆,

J∆ =
( 1

1−1/(2δ) 1+1/(2δ)
1/(2δ) −1/(2δ)

1

)
,

Using all this, the same way as in Case A1, we get (11.11.1).

11.13. For F = Q(j), j2 = d < 0, we have slight changes in our diagram and come to

Γ1 = PSL2(Of ,O∗f )

��

// Γm

��

// Γ0

��
PSL2(F )

ι

��

ρd // SO+(Dd,Q)

ιd
��

ν // SO+(Km,Q)

id
��

σ // SO+(1, 3)

id
��

PSL2(C)

��

ρ0 // SO+(D0,R)
ν0 // SO+(Km,R)

��

σ // SO+(1, 3)

��
H+

��

Ψ
11Dm

��

D1,3

��
F1 ' PSL2(Of ,O∗f )\H+

11Γm\Dm Γ0\D1,3 ' F

(11.13.1)

Here, we have Γm = Γam or = Γa′m in Case A or B, and Γ0 = σ(Γm),
and in Case A1

Dd =
( 1/2

−1
d

1/2

)
, D0 =

( 1/2
−1
−1

1/2

)
, Km =

( −2m
m

−2m
−1

)
,
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- ρd is given by

for g ∈ SL2(F ), X(y) =

(
y1 w
w̄ y4

)
, w = y2 + jy3, one has gX(y)tḡ = X(ρd(g)y)

- ρ0 is given by

for g ∈ SL2(C), X(v) =

(
v1 v2 + iv3

v2 − iv3 v4

)
, i2 = −1, one has gX(v)tḡ = X(ρ0(g)v),

- for m = df 2(i.e.,Case A1), ν, ν0, σ are given by conjugation with (respectively)

C =
( −4m

1
f

1

)
, C0 =

( −4m
1

µ
1

)
, Cµ =

( −1/(4m) 1/(4m)
1/µ

1 1
1

)
, µ =

√
−m,

- ι is given by ι(g) = g and ιd by conjugation with

J =
( 1

1
1/µ

1

)
, µ =

√
−d,

- Dm and D1,3 are Siegel’s representation spaces of the groups above, and Ψ is the map
(11.4.15).

In Case A2, hence 4m = df 2 < 0, we change ν to ν̌ with C to Č =
( −4m

1
f/2

1

)
.

In Case B, we have 4∆ = df 2,∆ = 4M + 1, d = 4N + 1 and we change Dd and Km to

D∆ =
( 1/2

−1 −1
−1 ∆−1

1/2

)
, K∆ =

( −2∆
∆−1 −2
−2 −4

−2∆

)
,

Moreover, we change νd, ν0, σ to ν∆, ν
′
0, σ

′ given by conjugation (respectively) with

C∆ =
( −4∆

2
f

1

)
, C ′∆ =

( −4∆
δ
1 2

1

)
, C ′ =

( −(1/(4∆)) −(1/(4∆))
1/δ

−1/(2δ) 1/2
1 −1

)
.

ι again is the simple injection and ιm is to be replaced by ι∆ with y = C̃v given by
conjugation with

C̃ =
( 1
−1/δ 1
1/δ

1

)
.

From the diagram (11.13.1) in all cases, one can compute the same way as above for d > 0.
Usig the protoformula (6.2.1) from [EGM] and Proposition 10.9

κm = volSie(Γ
0\D1,3) = volH+(PSL2(Of ,O∗f )\H+)(11.13.2)

= (1/24)|dF |3/2L(χF , 2) · f 3
∏
p|f

(1− χdF (p)/p2).
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From Siegel’s formula (11.2.8), resp. its prototype (11.4.1), we have

κ(S1) = vol(Γ(S1)\G(S1)) = π2κ1, κ1 = volSie(Γ(S1)\D1,3), S1 =

(
1
−E3

)
.

Applying (11.7.2), one has

volH+(PSL2(Of ,O∗f )\H+) = volSie(Γ
0\D1,3).(11.13.3)

With
Γ0
a′ ∩ Γ(S1) =: Γ∗, [Γ0

a′ : Γ∗] =: λ, [Γ(S0) : Γ∗] =: µ

one has
volSie(Γ

∗\D1,3) = µκ1 = λ volSie(Γ
0
a′\D1,3),

hence
volSie(Γ

0\D1,3) = (µ/λ)κ1

and finally with (11.13.3)

κ0
m = vol(Γ0\SO(1, 3)) = (µ/λ)π2κ1 = π2volSie(Γ

0
a′\D1,3)(11.13.4)

= π2volH+(PSL2(Of ,O∗f )\H+)

= (π2/24)|dF |3/2L(χF , 2) · f 3
∏
p|f

(1− χdF (p)/p2).

11.14. Summary. For m > 0, we have the voluminae

κm = volSie(Γ
0\D2,2) = (1/12)|dF |3/2L(χF , 2) · f 3

∏
p|f

(1− χdF (p)/p2),(11.14.1)

κ0
m = vol(Γ0\SO(2, 2)) = (π2/24)|dF |3/2L(χF , 2) · f 3

∏
p|f

(1− χdF (p)/p2),

and for m < 0

κm = volSie(Γ
0\D1,3) = (1/24)|dF |3/2L(χF , 2) · f 3

∏
p|f

(1− χdF (p)/p2),(11.14.2)

κ0
m = vol(Γ0\SO(1, 3)) = (π2/24)|dF |3/2L(χF , 2) · f 3

∏
p|f

(1− χdF (p)/p2).

Apparently, these voluminae could be determined more elegantly: κm may be interpreted
as the real Tamagawa (Haar) measure α∞(Lm) of the lattice Lm belonging to Km, and
hence, essentially is the inverse of the product of the (finite) local densities αp(Lm). But
here one easily is lost in subtle calculations in particular concerning the prime p = 2.
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12 The Kudla Green function integral for signature

(3,2)

We want to determine the value of Kudla’s Green function integral from (4.6.1).

I(0,m, v) : =

∫
X

Ξ(0,m, v, z)dµz = (1/2)
∑

x∈L0,m

∫
X

β(2πvR(x, z))dµz,

I(1,m, v) : =

∫
X

Ξ(1,m, v, z)dµz = (1/2)
∑

x∈L1,m

∫
X

β(2πvR(x, z))dµz,

resp. from (4.7.1)

I(0,m, v) = (1/2)
∑
n2|m

∫
Γa
m/n2

\D
β(2πvR(nam/n2 , z))dµz =:

∑
n2|m

I(0,m, n, v),

I(1,m, v) = (1/2)
∑
n2|4m

∫
Γa′

4m/n2
\D
β(2πvR(na′4m/n2,z)dµz =:

∑
n2|4m

I(1,m, n, v).

Kudla’s Green-integral formula

12.1. To evaluate the integrals, we try to follow closely Kudla in [Ku1] p.318. There, he
looks at the integral∫

Γx\D+

βσ+1(2πvR(x, z))dµz, βσ+1 :=

∫ ∞
1

e−tνν−σ−1dν,(12.1.1)

where he treats a more general SO(p, 2)−case and x ∈ V (R) with Q(x) = m : For m > 0,
he chooses a basis v for V (R) so that the inner product has matrix Ip,2 and so that
the respective special element x is a nonzero multiple of the first basis vector v1, i.e.
x = 2αv1. Then SO(V )(R)+ = SO+(p, 2) = G and the subgroup stabilizing x is isomorphic
to SO+(p− 1, 2) = Gx. Kudla further proposes z0 ∈ D to be the oriented negative 2-plane
spanned by vp+1 and vp+2 and let K = SO(n) × SO(2) be its stabilizer in G. The plane
spanned by v1 and vp+1, the first negative basis vector, has signature (1,1). The identity
component of the special orthogonal group of this plane is a 1-parameter subgroup

A = {at; t ∈ R} ' {( cosh t sinh t
sinh t cosh t ) ; t ∈ R}(12.1.2)

where at · v1 = v1 cosh t + vn+1 sinh t. Let A+ the subset of a′ts with t ≥ 0. Then, from
the general theory of semisimple symmetric spaces - with Flensted-Jensen [FlJ] Sect.2 as
a reference - Kudla has a ’double set decomposition’

G = GxA+K(12.1.3)
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and the integral formula (3.21)∫
G

Φ(g)dg =

∫
Gx

∫
A+

∫
K

Φ(gxatk)|sinh t|(cosh t)p−1dgxdtdk.(12.1.4)

For z = gxat · z0, one has

R(x, z) = 2m sinh2t.(12.1.5)

and, from [Ku1] (3.23) with a positive constant C depending on normalization of invariant
measures, what we will cite as Kudla’s Green-integral formula∫

Γx\D+

∫ ∞
1

e−2πvR(x,z)rdr/rdµ(z)

= Cvol(Γx \Gx)vol(K)

∫ ∞
0

∫ ∞
1

e−4πv|m| sinh2 trdr/r sinh t(cosh t)p−1dt.(12.1.6)

We abbreviate

Ip+(v,m) :=

∫ ∞
0

∫ ∞
1

e−4πv|m| sinh2 trdr/r sinh t(cosh t)p−1dt(12.1.7)

and will determine this for p = 1, 2, 3 later in Summary 12.22. For m < 0, we do alike
and choose a basis for V (R) such that x = 2αvp+1, Q(x) = −2α2 = m. Here, we have
Gx ' SO(p, 1) and, with a similar reasoning as above, with (12.1.3) and

R(x, z) = 2|m| cosh2t.(12.1.8)

∫
Γx\D+

∫ ∞
1

e−2πvR(x,z)rdr/rdµ(z)

= Cvol(Γx \Gx)vol(K)Ip−(v,m)(12.1.9)

with

Ip−(v,m) :=

∫ ∞
0

∫ ∞
1

e−4πv|m| cosh2 trdr/r(sinh t)p−1 cosh tdt.(12.1.10)

Flensted-Jensen’s integral formula

12.2. We add some comments and variants to Kudla’s formulae. The background to the
integral formula is something like∫

Γx\D
=

∫
Γx\G/K

=

∫
Γx\GxA+

.(12.2.1)
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The main point is the formula (12.1.3) G = GxA+K, a variant of the Cartan decomposi-
tion to be found for instance in Theorem 2.4 in Heckman-Schlichtkrull [HS]. This is the
background to Flensted-Jensen’s important integration formula (2.14) in his Theorem 2.6
in [FlJ] which Kudla is using above.

To discuss this, for a moment, we go back to the (3,2)-case: Elements of G = SO(3, 2) are
described by 10 parameters, elements of Ga = SO(2, 2) =: H by 6 parameters, elements of
K = SO(3)× SO(2) by 4 parameters. Hence on the right hand side of (12.1.3), one has 11
parameters. And, moreover, the element(

cosh t sinh t
1

1
1

sinh t cosh t

)
= exp(tX1,5) ∈ G(12.2.2)

looks as if it is not to be found on the right hand side. But one easily verifies Ad(`)expX1,5 =

expX1,4, for ` = {

(
1

1
1

0 −1
1 0

)
∈ K. As to be extracted from [FlJ] Sect.2, we get the

following: For the corresponding Lie algebras, we have

g = k + p

= {( A B ) , A ∈M3(R) skew, B ∈M2(R) skew}+ {
(

C
tC

)
, C ∈M3,2(R)}

= 〈X1,2, X1,3, X2,3, X4,5〉+ 〈X1,4, X1,5, X2,4, X2,5, X3,4, X3,5〉
= h + q

= 〈X2,3, X4,5, X2,4, X2,5, X3,4, X3,5〉+ 〈X1,2, X1,3, X1,4, X1,5〉.(12.2.3)

There are the Lie relations

[X1,5, X1,2] = X2,5, [X1,5, X1,3] = X3,5

[X1,5, X2,5] = X1,2, [X1,5, X3,5] = X1,3

[X1,4, X4,5] = X1,5, [X1,4, X2,5] = 0(12.2.4)

and many similar. Here k, p are the ±1 eigenspaces of the Cartan involution τ with
τX = −tX and h, q are the ±1 eigenspaces of the involution σ with σX = E1,4XE1,4. Cor-
responding groups are K = SO(3)×SO(2) and H ' SO(2, 2). We put L = K∩H, l = LieL,
choose b maximal abelian in p ∩ q, and

M = ZL(b) = {` ∈ L; Ad(`)B = B for all B ∈ b}.

In our case, we have l = k ∩ h = 〈X2,3, X4,5〉, p ∩ q = 〈X1,4, X1,5〉, and b = 〈X1,4〉. Hence
M = {exptX2,3; t ∈ R} ' SO(2).

The background of Kudla’s and Flensted-Jensen’s integral formolae is in the following
geometric consideration: In [FlJ] p.261, one observes that the map L/M × b→ p∩ q given
by

(lM,B) 7→ Ad(l)B(12.2.5)
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is a diffeomorphism onto an open dense set. Therefore, the map

Φ : p ∩ h× L/M × b→ G/K(12.2.6)

given by
Φ(X, lM,B) = π(expX l expB),

where π : G→ G/K is the canonical map, is a diffeomorphism unto an open dense set and
also Φ′ : X 7→ expXL is a diffeomorphism of p ∩ h unto H/L.

The Killing form defines Riemannian (i.e., Euclidean) structures on p ∩ h, b+, and L/M,
and one lets the measure on L/M be vol(L/M)−1 times the volume element. Via Killing
form, one has Riemannian structures on G/K and H/L, and by their volume elements also
measures. Moreover, following Flensted-Jensen, we take measures on G and H such that∫

G

f(x)dx =

∫
G/K

∫
K

f(xk)dkdxK,

∫
K

dk = 1, for f ∈ Cc(G)∫
H

f(x)dx =

∫
H/L

∫
L

f(xk)dkdxL,

∫
L

dk = 1, for f ∈ Cc(H).(12.2.7)

Taking the Jacobians J(X, lM,B) = |det dΦ(X,lM,B)| and J1(X) = |det dΦ1
(X)| with refer-

ence to the respective Riemannian structures, one has for f ∈ Cc(G) and f1 ∈ Cc(H)∫
G/K

f(x)dx = vol (L/M)

∫
p∩h

∫
L/M

∫
b+
f(Φ(X, lM,B))J(X, lM,B)dBdlMdX

= vol (L/M)

∫
H/M

∫
b+
f(h expB)δ1(B)dBdh(12.2.8)

where δ1(B) = |det dΦ(0,eM,B)|, B ∈ b+. From here (his formula (2.9)), Flensted-Jensen
comes to the formula (2.14) in his Theorem 2.6∫

G

f(g)dg = vol (L/M)

∫
K

∫
H

∫
b+
f(k expH ′h)δ(H ′)dH ′dhdk for f ∈ Cc(G)(12.2.9)

where δ given by formula (2.12) comes from the δ1. This also is taken on in a similar way
by Kudla-Millson [KMII] (4.35) and (4.37) as

∫
Γ\G

f(g)dg = vol (L/M)

∫
K

∫
Γ\H

∫
b+
f(h expX ′k)δ(X)dXdhdk for f ∈ Cc(G).

(12.2.10)

In the sequel, we shall use this to interpret Kudla’s Green integral. At first, some remarks
concerning the function to be integrated:
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The integrand

12.3. In the (3,2)-case, one has a two-component Green function and, as above from
(4.7.1), the Green function integrals

I(0,m, v) = (1/2)
∑
n2|m

∫
Γa
m/n2

\D
β(2πvR(nam/n2 , z))dµz =:

∑
n2|m

I(0,m, n, v),(12.3.1)

I(1,m, v) = (1/2)
∑
n2|4m

∫
Γa′

4m/n2
\D
β(2πvR(na′4m/n2 , z))dµz =:

∑
n2|4m

I(1,m, n, v).

We want to determine I(γ, v,m, n) and may use Flensted-Jensen’s resp.Kudla’s formulae,
as we know from (3.3.1) that our R(x, z) is left Gx− and right K− invariant and depends
only on the hyperbolic group A. To do this, we have to assemble and clarify step by step
several items. We distinguish between m > 0, Case I, and m < 0, Case II. Moreover, as
above, Case A for m ∈ Z and Case B for m ∈ Z + 1/4.

12.4. In Case I, the formula (12.1.5)

R(x, z) = 2m sinh2 t

can be derived as follows. We remember the ’Key Relation’ (3.5)

(x, x)z = (x, x) + 2R(x, z) = t((A(gz))
−1x)P0((A(gz))

−1x).

Here we have (x, x) = tx2E3,2x, x = t(2α, 0, 0, 0, 0) and A(gz) = g(x)at, g(x) ∈ Gx, P0 = E,
hence

t((A(gz))
−1x) = (cosh t, 0, 0,− sinh t, 0)2α

and, as (x, x) = 2Q(x) = 4α2 = 2m, the Key Relation says

(x, x) + 2R(x, z) = 4α2 + 2R(x, z) = (cosh2 t+ sinh2 t)4α2 = (2 sinh2 t+ 1)4α2,

i.e., R(x, z) = 2m sinh2 t.

Form < 0, i.e., Case II, we do alike and choose a basis for V (R) such that x = 2αvp+1, Q(x) =
−2α2 = m. Here, we have Gx ' SO(p, 1). And for x = t(0, . . . , 0, 2α, 0) and A(gz) =
g(x)at, g(x) ∈ Gx, hence

t((A(gz))
−1x) = (− sinh t, 0, 0, cosh t, 0)2α

and, as (x, x) = 2Q(x) = −4α2 = 2m, the Key Relation says

(x, x) + 2R(x, z) = −4α2 + 2R(x, z) = (cosh2 t+ sinh2 t)4α2 = (2 cosh2 t− 1)4α2,
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i.e.,

R(x, z) = 2|m| cosh2 t.(12.4.1)

Hence we have verified the following.

12.5. Remark. From (12.1.5) and (12.4.1) with z = gxat · z0, one has

R(x, z) = 2m sinh2t in Case I with m > 0

= 2|m| cosh2t in Case II with m < 0.

Differential forms and measures

12.6. In Kudla’s Green function integrals above for the (p, 2)−case, the measure dµ(z) on
X is given by Ω3 as in [Ku1] (5.8) or [BK] (4.50) with

Ω3 = − 3

16π3
det(y)−3(

i

2
)3dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3.(12.6.1)

In the paper [BY] by Bruinier and Yang, there is another formula relating differential forms
and measures. From Proposition 3.4 in [BY], we have

(d`x)
∗(−Ω)p = ± p!

(2π)p
νp(12.6.2)

Here, we are in the following situation. We have a vector space V of dimension n + 1
with a quadratic form Q of signature (p,2), bilinear form (., .), the associated orthogonal
group H = SO(V ), and the homogenous space D = H(R)/K∞, and Shimura variety
XK = H(Q)\(D ×H(Af )/K).
One has a map Q : V n → Symn, x 7→ ((xi, xj)i,j). Let α be a gauge form for V n, i.e., a top
level differential of V n, a generator of (∧n(n+1)V n)∗, and similarly β a gauge n(n+1)/2−form
for Symm. In [BY] Section 2.2, it is explained that one can find ν ∈ (∧n(n+1)/2V )∗ on V n

reg

with α = Q∗(β) ∧ ν. This ν may be identified with a top degree invariant form on SO(V )
which again is called ν., and gives a Haar measure dh = dνh = dh+dh−dhp on SO(V ).
Here, we apply this with n = 4, p = 3 and, hence, may identify νp with dx in (16.16.12).
We take this to realize the Flensted-Jensen formula for an integral of a Green function f
as above via∫

Γx\D
f(z)dµ(z) = (p!/(2π)p) · vol (L/M)

∫
K

∫
Γx\Gx

∫
b+
f(h expX ′k)δ(X)dXdhdk,

= (p!/(2π)p) · vol (L/M) · vol(Γx \Gx) · Ip±(v,m),(12.6.3)

where dµ(z) = Ωp and Γx and Ip±(v,m) has to be spezified in each case.
Now, for G = SO(3, 2), Case I, and H = SO(2, 2), with a0,m/n2 =: x (12.2.10), by the usual
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unfolding we have

I(m, v) = (1/2)

∫
Γ\D

∑
x∈Lm

β(2πmR(x, z))dµ(z)

(12.6.4)

= (1/2)
∑

x∈Γ\Lm

∫
Γx\D

β(2πmR(x, z))dµ(z).

=
∑
n2|m

I(0,m, n, v)

·I(0,m, n, v) = (1/2)

∫
Γa

0,m/n2
\H2

∫ ∞
1

e−4πvR(na0,m/n2 ,z)rdr/rdµ(z)

= (1/2)
3!

(2π)3

∫
Γa\G/K

f(z)dz

= (1/2)
3!

(2π)3
vol (SO(2))

∫
Γx\H

∫ ∞
0

∫ ∞
1

e−4πvm(sinh t)2r|sinh(t)|cosh2(t)dr/rdtdh

= (1/2)
3!

(2π)3
vol (SO(2))

∫
Γx\H

dh I3
+(v,m)

= (3/(4π2))

∫
Γx\H

dh I3
+(v,m)

I3
+(v,m) =

∫ ∞
0

∫ ∞
1

e−4πvm(sinh t)2r|sinh(t)|cosh2(t)dr/rdt

Similarly, for Case II, H = SO(3, 1), we get

2 · I(0,m, n, v) =

∫
Γa
m/n2

\H2

∫ ∞
1

e−4πvR(nam/n2 ,z)rdr/rdµ(z)

(12.6.5)

=
3!

(2π)3

∫
Γa\G/K

f(z)dz

=
3!

(2π)3
vol (SO(3)/SO(2))

∫
Γx\H

∫ ∞
0

∫ ∞
1

e−4πvm(cosh t)2r(sinh(t))2cosh(t)dr/rdtdh

=
3!

(2π)3
vol (SO(3)/SO(2))

∫
Γx\H

dh I3
−(v,m).

= (3/π2)

∫
Γx\H

dh I3
−(v,m).

I3
−(v,m) =

∫ ∞
0

∫ ∞
1

e−4πvm(cosh t)2r(sinh(t))2cosh(t)dr/rdt.

96



In (12.22.1) below, we assemble the I±−integrals (with a = 4πmv) and get

I3
+(v,m) = (1/3)

∫ ∞
0

e−αw((w + 1)3/2 − 1)dw/w = (1/3)J+(3/2, a)

I3
−(v,m) = (1/3)e−|a|

∫ ∞
1

e−|a|rr3/2dr/(r + 1) = (1/3)e−|a|J−(3/2, |a|)

Here we used that, e.g., from [GHS] (3) and (4), one has vol (SO(2)) = 2π, vol (SO(3)) =
8π2 and vol (SO(3)/SO(2)) = 4π. Hence, we have to find the concrete meaning of the
measure dh and to determine

vol∗(Γx\H) :=

∫
Γx\H

dh.(12.6.6)

As cornerstones we have the classical results (10.13.1) from [EGM] and (10.13.2) from [HG]
For F = Q(

√
d) with discriminant dF < 0, with dvH+ = dxdydr/r3 = dvSie, one has

volH+(Γa\H+) = volH+(PSL2(O)\H+)[PSL2(O) : PSL2(Of )]

=
|dF |3/2

24
L(χdF , 2)f 3

∏
p|f

(1− χdF (p)/p2) =: v−

and for dF > 0, with

dvH2 = dx1dy1dx2dy2/(y1y2)2 = 4π2dvHG = 8π2dvBK = 4dvSie,

volH2(Γa\H2) = vol(SL(2, (Of ,O∗f )\H2)

=
|dF |3/2

3
L(χdF , 2)f 3

∏
p|f

(1− χdF (p)/p2) =: v+.

Moreover, there is Siegel’s volume formula (11.2.9) relating the volumes of fundamental
domains in the group to those in the homogeneous spaces. In our situation, one has from
(11.2.10)

volS(Γ(S0)\SO(2, 2)) = (π2/2) volS(Γ(S0)\D2,2),

volS(Γ(S0)\SO(3, 1)) = π2 volS(Γ(S0)\D3,1).

But in Flensted-Jensen and also in [Ku1], one usually works with the normalization
∫
K
dk =

1. Moreover, by the geometric meaning of the Eisenstein series (see (2.13.1)) we are led
to measure the volumes as volumes in the representation space, i.e., here D22 ' H2 resp.
D31 ' H+. We try to put all this together starting by (12.2.10) (and do NOT use Siegel’s
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formula above!): From (11.14.1) and (11.13.3) we have

volSie(Γ
0\D2,2) = volH2(PSL2(Of ,O∗f )\H2)/4

= (1/12)|dF |3/2L(χF , 2) · f 3
∏
p|f

(1− χdF (p)/p2),

volSie(Γ
0\D1,3) = volH+(PSL2(Of ,O∗f )\H+)(12.6.7)

= (1/24)|dF |3/2L(χF , 2) · f 3
∏
p|f

(1− χdF (p)/p2),

where Γ0 stands for the image of Γam resp. Γa′m in the corresponding group H. (This comes
up to interpret dh in (12.6.6) as dvSie.)

12.7. To introduce these voluminae into the formulae above, we still have to work out the
sum of n2|d2

γm and discuss σγ,m(5/2) from (2.5.3) . This is helped by the discussion of the
geometric content of the Eisenstein coefficients for positive indices m:

Humbert volumes

12.8. From [vdG] p. 211, resp [Ku1] p.338, for ∆ = D0f
2, D0 a fundamental discriminant,

and H∆ a Humbert surface in Γ2\H2, we have

G∆ := ∪r2|∆H∆/r2 .(12.8.1)

and

volHGH∆ = (1/12π2)f 3
∏
p|f

(1− χD0(p)p
−2)D

3/2
0 L(χD0 , 2) = 2volBKH∆(12.8.2)

i.e.,

volHGG∆ =
∑
r|f

(1/12π2)ψ(D0, f/r)D
3/2
0 L(χD0 , 2) = (1/12π2)τ(D0, f)D

3/2
0 L(χD0 , 2),

(12.8.3)

where, to abbreviate, for ∆ = D0f
2, D0 a fundamental discriminant, we introduce

ψ(D0, f) := f 3
∏
p|f

(1− χD0(p)p
−2), ψ(D0, 1) = 1,(12.8.4)

τ(D0, f) :=
∑
d2|∆

ψ(D0, f/d) =
∑
d|f

ψ(D0, f/d).

From [vdG] p.213, to G∆ we associate g∆ ∈ H2(V,Q) and the series
∑
g∆q

∆ can be
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identified with Cohen’s modular form
∑

N≡0,1 mod 4H(2, N)qN , where

H(2, D0f
2) = L(−1, (

D0

.
))
∑
d|f

µ(d)(
D0

d
)d σ3(f/d)(12.8.5)

= −L(2, (
D0

.
))D

3/2
0 /(2π2)

∑
d|f

µ(d)(
D0

d
)d σ3(f/d).

Again, to abbreviate, we introduce ξ(D0, f) :=
∑

d|f µ(d)(D0

d
)d σ3(f/d) and verifying for

f = pk immediately, remark

ξ(D0, f) = τ(D0, f).(12.8.6)

12.9. In Bruinier-Kühn [BK] (4.3) the Heegner divisor of discriminant (β,m) is introduced
as a Γ(L)−invariant divisor on Gr(V ) for β ∈ L′/L and negative m ∈ Z + q(β)

H(β,m) =
∑

λ∈L+β,q(λ)=m

λ⊥(12.9.1)

From [BK] p.1721, we take that the Heegner divisor (1/2)H(β,−D/4) (β determined by
D = D0f

2) can be identified with the Humbert surface G(D) of discriminant D of [vdG].
And (5.3) says

deg(G(D)) = −(B/4)C(D, 0) = (1/2)ζK(−1) = 2−33−1(1/2π2)D
3/2
0 L(χD0 , 2).(12.9.2)

From [BK] (4.56) and (4.18), for 4d2
γm = D0f

2, i.e., m3/2 = D
3/2
0 (f/2dγ)

3, we have

(2/B)deg(H(β,m)) = −C(β,m, 0)(12.9.3)

where the [BK] formulae reproduced above, e.g. (2.9.1), give

C(β,m, 0) = 26 · 32 · 5 · (1/3π2)m3/2L(χ, 2)σβ,m(5/2),

i.e.,

volBK((H(β,m)) = −(1/3π2)m3/2L(χ, 2)σβ,m(5/2)(12.9.4)

(showing that in (12.9.2) resp. [BK] (5.3) D is a fundamental discriminant). With (12.8.3)

volHGG∆ = 2volBKG∆ = (1/12π2)τ(D0, f)D
3/2
0 L(χD0 , 2) we come to the important rela-

tion

m3/2σβ,m(5/2) = (1/8)D
3/2
0 τ(D0, f).(12.9.5)

Further down, we will discuss generalized divisor sums following [BrKu], and give hints to
a direct proof of this relation even for nonpositive m (see (12.23.8)).

99



12.10. To compare, we also reproduce Kudla’s treatment. In [Ku1] p.337ff, things look
like this. We have

E(τ, 3/2;ϕ0) = 1 + ζ(−3)−1

∞∑
m=1

H(2, 4m)qm =
∑

A0(m, v)qm(12.10.1)

E(τ, 3/2;ϕ1) = ζ(−3)−1

∞∑
m−1/4=0

H(2, 4m)qm =
∑

A1(m, v)qm

ζ(−3)−1 = 23 · 3 · 5, 4m = D0f
2, D0 ≡ 0, 1 mod 4 ([Ku1](5.18)),

H(2, 4m) = L(−1, χD0)
∑
d|f

µ(d)χD0(d)d σ3(f/d)

= −L(2, χD0)D
3/2
0 /(2π2)

∑
d|f

µ(d)χD0(d)d σ3(f/d)

= −(1/(2π2))L(2, χD0)D
3/2
0 ξ(D0, f),

ξ(D0, f) =
∑
d|f

µ(d)χD0(d)d σ3(f/d).

Hence, Kudla’s Eisenstein series is half of the series in Bruinier-Kühn and here we have
the coefficients

A(m, v) = 23 · 3 · 5 ·H(2, 4m)(12.10.2)

= 23 · 3 · 5 · L(2, χD0)D
3/2
0 /(2π2)

∑
d|f

µ(d)χD0(d)d σ3(f/d),

= 26 · 3 · 5 · L(2, χD0)m
3/2/(2π2)f−3ξ(D0, f).

From [Ku1] (5.22), one has

deg (Z(m,ϕµ)) = degG4m = −(1/12)H(2, 4m)(12.10.3)

= (1/(24π2)) ·D3/2
0 L(χD0 , 2)ξ(D0, f).

Together with (12.8.3) and 4m = D0f
2, again we get∑

d|f

ψ(D0, f/d) = τ(D0, f) = ξ(D0, f).(12.10.4)

12.11. [BrKu] on p.447, for β ∈ L′/L with q(β) ∈ Z look at the Eisenstein series

Eβ(τ) = (1/2)
∑

(M,ϕ)∈Γ̃∞\Mp2(Z)

eβ|∗k(M,ϕ)(12.11.1)

=
∑

γ∈L′/L

∑
n∈Z−q(γ),n>0

qβ(γ, n)eγ(nτ).
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Remark. From [BrKu] Example 10 p.454, for −4m = ∆f 2, one has

q(γ,m) = −23π5/2m3/2

Γ(5/2)

L(2, χ∆)

ζ(4)

∑
d|f

µ(d)χ∆(d)d−2 σ−3(f/d)(12.11.2)

= −26 · 3 · 5/π2 ·m3/2L(2, χ∆)
∑
d|f

µ(d)χ∆(d)d−2 σ−3(f/d)

= −26 · 3 · 5/π2 ·m3/2L(2, χ∆)f−3
∑
d|f

µ(d)χD0(d)d σ3(f/d),

i.e., here we find q(γ,m) = −2A(m, v).

Remark. Comparizon of the A(m, v) with the coefficients (2.12.1) from Bruinier-Kühn

c0(γ,m, 0, v) = −26 · 3 · 5 · π−2|m|3/2L(χD0 , 2)σγ,m(5/2) · e−a/2 for m > 0

again leads to

σγ,m(5/2) = f−3ξ(D0, f).(12.11.3)

From [BK] p.1721, with D = D0f
2 we also have

σβ,D/4(5/2) =
∑
d|f

µ(d)χD0(d)d−2 σ−3(d/f),(12.11.4)

= f−3
∑
d|f

µ(d)χD0(d)d σ3(d/f) = f−3ξ(D0, f).

12.12. Summary. We have

ψ(D0, f) = f 3
∏
p|f

(1− χD0(p)p
−2), ψ(D0, 1) = 1(12.12.1)

ξ(D0, f) =
∑
d|f

µ(d)χD0(d)d σ3(f/d) = f 3σβ,m(5/2)

τ(D0, f) =
∑
d|f

ψ(f/d) = ξ(D0, f)

Our final aim

We go back to the determination of the Green function integral (12.3.1) and want to use
the preceding to show:

12.13. Proposition. For m > 0, with a = 4πmv, and J+(3/2, a) =
∫∞

0
e−ar((r + 1)3/2 −

1)dr/r, one has

(4/B)I(0,m, v) = C(0,m, 0)J+(3/2, a)(12.13.1)

27 · 32 · 5 · I(0,m, v) = 26 · 3 · 5/π2 ·m3/2L(2, χD0)σ0,m(5/2)J+(3/2, a)

I(0,m, v) = (1/6π2) ·m3/2L(2, χD0)σ0,m(5/2)J+(3/2, a).

101



Proof. In the (3,2)-case, one has a two-component Green function and, as above from
(4.7.1), the Green function integrals

I(0,m, v) = (1/2)
∑
n2|m

∫
Γa
m/n2

\D
β(2πvR(nam/n2 , z))dµz =:

∑
n2|m

I(0,m, n, v),(12.13.2)

I(1,m, v) = (1/2)
∑
n2|4m

∫
Γa′

4m/n2
\D
β(2πvR(na′4m/n2 , z)dµz =:

∑
n2|4m

I(1,m, n, v).

For Case I, m ∈ N, H = SO(2, 2), with am/n2 =: x, we got above with (12.2.10) and
(12.17.2)

I(0,m, n, v) = (1/2)(3/2π2)

∫
Γx\H

dh I3
+(v,m) = (1/2)(1/2π2)

∫
Γx\H

dh (1/3)J3
+(3/2, a).

(12.13.3)

As we already assembled

dvH2 = dx1dy1dx2dy2/(y1y2)2 = 4π2dvHG = 8π2dvBK = 4dvSie,

and (11.14.1) and (11.13.3), we have

volSie(Γ
0\D2,2) = volH2(PSL2(Of ,O∗f )\H2)/4(12.13.4)

= (1/12)|dF |3/2L(χF , 2) · f 3
∏
p|f

(1− χdF (p)/p2),

volSie(Γ
0\D1,3) = volH+(PSL2(Of ,O∗f )\H+)

= (1/24)|dF |3/2L(χF , 2) · f 3
∏
p|f

(1− χdF (p)/p2).

If we use this, with (12.10.4)

τ(D0, f) =
∑
d|f

ψ(D0, f/d) =
∑
d|f

µ(d)χD0(d)d σ3(d/f) = ξ(D0, f)

and ∑
r|f

ψ(D0, f/r) = τ(D0, f) = f 3σβ,m(5/2)

we get

I(0,m, v) =
∑
n|f

I(0,m, n, v),(12.13.5)

=
∑
n|f

(1/4π2)
|D0|3/2

12
L(χD0 , 2)ψ(D0, f/n)J+(3/2, a)

= (1/(6π2))|D0|3/2L(χD0 , 2)(f/2)3σβ,m(5/2)J+(3/2, a).
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With m3/2 = D
3/2
0 (f/2)3, this is the formula (12.13.1) we aimed at. �

12.14. For m ∈ Z,m < 0, with J−(3/2, a) = e−a
∫∞

0
e−|a|rr3/2(r + 1)−1dr, one has the

corresponding formula

(4/B)I(0,m, v) = C(0, |m|, 0)J−(3/2, a)e−a/2(12.14.1)

I(0,m, v) = (1/6π2) · |m|3/2L(2, χD0)σ0,m(5/2)J−(3/2, a)e−a.

Proof. We have H = SO(3, 1) and from (12.6.5) with vol ((SO(3)/SO(2)) = 4π and
(12.13.4)

I(0,m, n, v) = (1/2)

∫
Γa

0,m/n2
\H2

∫ ∞
1

e−2πvR(na0,m/n2 ,z)rdr/rdµ(z)

= (1/2)
3!

(2π)3
vol ((SO(3)/SO(2))

∫
Γx\H

dh I3
−(v,m)

= (1/2)(3/π2)

∫
Γx\H

dh I3
+(v,m) = (1/π2)

∫
Γx\H

dh (1/3)J−(3/2, a)e−|a|

= (1/2π2)
|D0|3/2

24
L(χD0 , 2)ψ(D0, f/n)J−(3/2, a)e−|a|

Above, the relations in (12.12.1) ξ(D0, f) =
∑

d|f µ(d)χD0(d)d σ3(f/d) = τ(D0, f) =

f 3σβ,m(5/2) came up for positive m but, as to be seen later in (12.22), may be used
here too to give

I(0,m, v) =
∑
n|f

I(0,m, n, v),

=
∑
n|f

(1/2π2)
|D0|3/2

24
L(χdF , 2)ψ(D0, f/n)J+(3/2, a)

= (1/(6π2))|D0|3/2L(χdF , 2)(f/2)3σ0,m(5/2)J−(3/2, a).

Here again, for the determination of the integral J−(3/2, a), we refer to below in (12.22.1).
�

With corresponding considerations and results, one can treat the case B with m − 1/4 =
M ∈ Z (This may appear a bit more subtle and lead to Example 10 in [BrKu]. One has
to be careful as in [BK] one has D = 4 · 4 ·m and in [Ku1] D = 4m all the way). �
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Finally, with the relations already introduced above and to be shown below in ((12.22.1))

I+(v,m) = (1/3)J+(3/2, a), a = 4πv|m|,(12.14.2)

I−(v,m) = (1/3)e−aJ−(3/2, a),

J+(3/2, a) =

∫ ∞
0

e−ar((r + 1)3/2 − 1)dr/r,

J−(3/2, a) = e−a
∫ ∞

0

e−|a|rr3/2(r + 1)−1dr,

we obtain

12.15. Proposition (Green Integral Summary). We have the Green function integrals

I(γ, v,m) =

∫
X

Ξ(γ,m, v)dµ

= (1/(6π))m3/2L(χD0 , 2)σγ,m(5/2)(1/3)J+(3/2, a), for m > 0,

= (1/(6π))|m|3/2L(χD0 , 2)σγ,m(5/2)(1/3)J−(3/2, a)e−a, for m < 0.(12.15.1)

If we join this with the results for the coefficients of the Eisenstein series

C(γ,m, 0) := −26 · 3 · 5 · π−2|m|3/2L(χdF , 2)σγ,m(5/2)(12.15.2)

c0(γ,m, 0, v) =

{
C(γ,m, 0)e−a/2 form > 0,

0, form < 0,

c′0(γ,m, 0, v) =

{
C(γ,m, 0)e−a/2(J+(3/2, a) + C′(γ,m,0)

C(γ,m,0)
), form > 0,

C(γ,m, 0)e−|a|/2 · J−(3/2, a), form < 0,

we get our central result.

12.16. Theorem. For the (3,2) case, one has

(4/B) · I(γ,m, v) =

{
C(γ,m, 0)J+(3/2, a), form > 0,

C(γ,m, 0)J−(3/2, a)e−|a|, form < 0.

(4/B) · IBK(γ,−m, v) =

{
−C(γ,m, 0)

(C′(γ,m,0)
C(γ,m,0)

+ log(4π)− Γ′(1)
)
, form > 0,

0, form < 0.

(12.16.1)

Here IBK(γ,m, v) =
∫
X
Gγ,m(Z)Ω3 is the integral of the Green function Gγ,m(Z) from

Bruinier-Kühn [BK] Definition 4.5 and Theorem 4.10.

12.17. Corollary. We have

c′0(γ,m, 0, v) = e−a/2((4/B) · (I(γ,m, v)− IBK(γ,−m, v)) + ∗ c0(γ,m, 0, v)).(12.17.1)
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Now, we treat the results we used above.

The Ip±−Integrals

Here, we determine the integrals I±(v,m) from (12.1.7) and (12.1.10)

Ip+(v,m) =

∫ ∞
0

∫ ∞
1

e−4πv|m| sinh2 trdr/r sinh t(cosh t)p−1dt,(12.17.2)

Ip−(v,m) =

∫ ∞
0

∫ ∞
1

e−4πv|m| cosh2 trdr/r(sinh t)p−1 cosh tdt.

We will do this for p = 3, 2 and 1:

12.18. To evaluate I−(v,m) in the (3,2)-case, we try the substitution sinh2 t = w, i.e.,
2 cosh t sinh tdt = dw. We get (at least formally) with α = 4πv|m|

I−(v,m) =

∫ ∞
0

∫ ∞
1

e−4πv|m| cosh2 trdr/r sinh2 t cosh tdt

= (1/2)

∫ ∞
0

∫ ∞
1

e−α(w+1)rdr/rdw
√
w

= (1/2)

∫ ∞
1

e−αr
∫ ∞

0

e−αwrdw
√
wdr/r

= (1/2)

∫ ∞
1

e−αr(
[
e−αrww3/22/3

]∞
0

+

∫ ∞
0

(αr)e−αwrdww3/22/3)dr/r

= (α/3)

∫ ∞
0

∫ ∞
1

e−α(w+1)rdrdww3/2

= (α/3)

∫ ∞
0

[
(−1/(α(w + 1))e−α(w+1)r

]∞
1
dww3/2

= (1/3)

∫ ∞
0

(w3/2/((w + 1))e−α(w+1)dw

= (1/3) e−α
∫ ∞

0

w3/2(w + 1)−1e−αwdw =: (1/3) e−αJ−(3/2, α).(12.18.1)

12.19. For m > 0 we do a similar evaluation starting by (12.17.2). With α = 4πmv and
the substitution sinh2 t = w, dw = 2 sinh t cosh tdt, we get
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I+(v,m) =

∫ ∞
0

∫ ∞
1

e−4πvm sinh2 trdr/r sinh t cosh2 tdt

= (1/2)

∫ ∞
0

∫ ∞
1

e−αwrdr/rdw(w + 1)1/2

= (1/2)

∫ ∞
1

∫ ∞
0

e−αwrdw(w + 1)1/2dr/r

= (1/2)

∫ ∞
1

(
[
e−αrw(w + 1)3/22/3

]∞
0

+

∫ ∞
0

(αr)e−αwrdw(w + 1)3/22/3)dr/r

= (1/2)

∫ ∞
1

(−2/3 +

∫ ∞
0

(αr)e−αwrdw(w + 1)3/22/3)dr/r

= (1/3)

∫ ∞
0

∫ ∞
1

αe−αwrdrdw((w + 1)3/2 − 1)

= (1/3)(

∫ ∞
0

e−αww−1((w + 1)3/2 − 1)dw) =: (1/3)J+(3/2, α),(12.19.1)

where we used∫ ∞
0

∫ ∞
1

αe−αwrdrdw =

∫ ∞
1

∫ ∞
0

αe−αwrdwdr =

∫ ∞
1

[−(1/r)e−αwr]∞0 dr =

∫ ∞
1

dr/r.

12.20. For p = 2 and m > 0, with the same substitution as above, we get

I+(v,m) =

∫ ∞
0

∫ ∞
1

e−4πvm sinh2 trdr/r sinh t cosh tdt

= (1/2)

∫ ∞
0

∫ ∞
1

e−αwrdr/rdw

= (1/(2α))

∫ ∞
1

dr/r2

= (1/(2α)) = 1/(8πvm).(12.20.1)

And for m < 0 again with α = 4πv|m|

I−(v,m) =

∫ ∞
0

∫ ∞
1

e−4πv|m| cosh2 trdr/r sinh t cosh tdt

= (1/2)

∫ ∞
0

∫ ∞
1

e−α(w+1)rdr/rdw

= (1/2)

∫ ∞
1

e−αr
∫ ∞

0

e−αwrdwdr/r

= (1/2α)

∫ ∞
1

e−αrdr/r2

= (1/2)(e−α/α−
∫ ∞

1

e−αrdr/r).(12.20.2)
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12.21. For p = 1 and m > 0, with the same substitution as above, we get

I+(v,m) =

∫ ∞
0

∫ ∞
1

e−4πvm sinh2 trdr/r sinh tdt

= (1/2)

∫ ∞
0

∫ ∞
1

e−αwrdr/r(w + 1)−1/2dw

= (1/2)

∫ ∞
1

(−1 +

∫ ∞
0

αe−αwr(w + 1)1/2dw)dr/r

= (1/2)

∫ ∞
0

∫ ∞
1

αe−αwr((w + 1)1/2 − 1)drdw

= (1/2)

∫ ∞
0

e−αw((w + 1)1/2 − 1)dw/w.(12.21.1)

And for m < 0 again with α = 4πv|m|

I−(v,m) =

∫ ∞
0

∫ ∞
1

e−4πv|m| cosh2 trdr/r cosh tdt

= (1/2)

∫ ∞
0

∫ ∞
1

e−α(w+1)rdr/rw−1/2dw

= (1/2)

∫ ∞
1

e−αr
∫ ∞

0

e−αwrw−1/2dwdr/r

= (1/(2
√
α))Γ(1/2)

∫ ∞
1

e−αrr−3/2dr.(12.21.2)

12.22. Summary (The I−Integrals). We sum up what we got (with a = 4πmv) and
(2.3.9)

J+(s, a) :=

∫ ∞
0

e−aw((w + 1)s − 1)dw/w,

J−(s, a) :=

∫ ∞
0

e−awwsdw/(w + 1),
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where the first line is for positive and the second line for negative m.

p = 1 : I+(v,m) = (1/2)

∫ ∞
0

e−aw((w + 1)1/2 − 1)dw/w = (1/2)J+(1/2, a)

I−(v,m) = (1/(4
√
|m|v))

∫ ∞
1

e−|a|rr−3/2dr = (1/2)e−|a|J−(1/2, |a|)

p = 2 : I+(v,m) = (1/2a)

I−(v,m) = (1/(2|a|)(e|a| −
∫ ∞

1

e−|a|dr/r)

p = 3 : I+(v,m) = (1/3)

∫ ∞
0

e−αw((w + 1)3/2 − 1)dw/w = (1/3)J+(3/2, a)

I−(v,m) = (1/3)e−|a|
∫ ∞

1

e−|a|rr3/2dr/(r + 1) = (1/3)e−|a|J−(3/2, |a|)

= (1/(4|a|3/2)
√
π

∫ ∞
1

e−|a|rdr/r5/2.(12.22.1)

The Generalized divisor sum

12.23. In the formulae for the Fourier coefficients of the Eisenstein series in Bruinier-
Kühn [BK] and (implicient) in Bruinier-Kuss [BrKu], the notion of a generalized divisor
sum σγ,m(s) appears which albeit rather complicated can be related to our τ(D0, f) from
(12.8.4. In [BK] (3.28) (for r = 5 odd) we find the definition (which already came up in
(2.5.3))

σγ,m(s) :=
∏

p|2d2γm detL

1− χD0(p)p
(1/2)−s

1− p1−2s
L(p)
γ,m(p−(3/2)−s).(12.23.1)

Here one has a lattice L ' Zr, r = 5 with quadratic form q(x) and L′/L ' Z/2Z. For
γ ∈ L′/L, we take over from [BK] (3.17), (3.23), (3.18), (3.14) and (3.20) (having its
source in [BrKu] (22))

dγ := min {b ∈ Z>0; bγ ∈ L}

2d2
γm detL = D0f

2
(12.23.2)

wp := 1 + νp(2mdγ), νp the (additive) p− adic valuation onQ
Nγ,m(a) := |{x ∈ L/aL; q(x− γ) +m ≡ 0 mod a}|, the representation number mod a,

L(p)
γ,m(X) := Nγ,m(pwp)Xwp + (1− p4X)

wp−1∑
ν=0

Nγ,m(pν)Xν ∈ Z[X].

108



From here with X = p1−r/2−s we get with the notion from [BrKu]

Lγ,m(s, p) := L(p)
γ,m(X) = Nγ,m(pwp)pwp(1−r/2−s) + (1− pr/2−s)

wp−1∑
ν=0

Nγ,m(pν)pν(1−r/2−s).

(12.23.3)

For X = p−4 and s = 5/2 the definition above specializes to

σγ,m(5/2) =
∏
p|D

1− χD0(p)p
−2

1− p−4
Nγ,m(pwp)p−4wp , D = 2d2

γm detL.(12.23.4)

In [BrKu] Theorem 6 (a partial reformulation of Siegel [S1] Hilfssatz 16), one finds ex-
pressions for the representation numbers Nγ,m namely for r > 3, odd, D = D0f

2 (where
D0 ∈ Q and f ∈ N) such that (f, detL) = 1 and ν`(D0) ∈ {0, 1} for all primes ` with
(`, 2 detL) = 1. Let D̃0 = D0d

2
γ and D = 2(−1)(r+1)/2D̃0 detL. Then, for a prime p not

dividing 2 detL and α ∈ Z with α > νp(m) one has

pα(1−r)Nγ,m(pα) =
1− p1−r

1− χD(p)p(1−r)/2 × (σ2−r(p
νp(f))− χD(p)p(1−r)/2σ2−r(p

νp(f)−1)).

(12.23.5)

If we specialize to our case r = 5, νp(f) =: kp = k, and α = wp > νp(m), we get

Nγ,m(pwp) =
1− p−4

1− χD(p)p−2
× (σ−3(pk)− χD(p)p−2σ−3(pk−1))p4wp ,

=
1− p−4

1− χD(p)p−2
× (1 + p−3 + · · ·+ p−3k − χD(p)(p−2 + · · ·+ p−3k+1))p4wp ,

=
1− p−4

1− χD(p)p−2
× p4wp−3k(1 +

k∑
ν=1

p3ν(1− χD(p)p−2)).(12.23.6)

Remark. For f =
∏

i p
ki
i , one has

τ(D0, f) =
∑
d|f

ψ(D0, f/d) =
∏
i

(1 +

ki∑
di=1

p3di
i (1− χD0(pi)p

−2
i )).(12.23.7)

Proof. For primes p and q, one has

τ(D0, p
k) = ψ(D0, p

k) + ψ(D0, p
k−1) + · · ·+ 1 =

k∑
ν=1

p3ν(1− χD0(p)p
−2) + 1

τ(D0, pq) = τ(D0, p)τ(D0, q)

Hence, for f =
∏

i p
ki
i , τ(D0, f) =

∏
i(
∑ki

νi=1 p
3νi(1− χD0(pi)p

−2
i ) + 1). �
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For appropriate m, with (12.23.7) we get from (12.23.4)

σγ,m(5/2) =
∏
p|D

1− χD0(p)p
−2

1− p−4
Nγ,m(pwp)p−4wp ,(12.23.8)

=
∏
p|f

p−3kp(1 +
k∑
ν=1

p3ν(1− χD(p)p−2)),

= f−3τ(D0, f).

In the case SO(2, 2), there is a similar relation with ψ′(m) := m
∏

p|m(1 + 1/p) and the
nice formula ∑

n2|m

ψ′(m/n2) = σ(m) =
∑
d|m

d.(12.23.9)

13 The Kudla Green function integral for signature

(2,2)

13.1. We treat Kudla’s approach to calculate the Green function integral for the case
p = 2, i.e., here G = SO(2.2), G/K ' D, L = M2(Z), X = SO(L)\D+. As already in
previous sections, we take M = ( a bc d ) ∈ V ' R4, z = (z1, z2) ∈ H2 resp. X, and from (3.9.8)

R(M, z) =
|a− bz2 − cz1 + dz1z2|2

2y1y2

.

For m 6= 0, we have

I(v,m) =

∫
X

Ξ(m, v, z)dµ(z), X = (Γ\H)2,(13.1.1)

with Kudla’s Green function

Ξ(m, v, z) = (1/2)
∑
M∈Lm

ξ(v, z,M),

ξ(v, z,M) = β(2πvR(M, z)), βσ+1(t) =

∫ ∞
1

e−tuu−σ−1du, β = β0,

Lm = {M ∈M2(Z); det(M) = m},

dµ(z) = Ω2 =
1

2π2

dx1dy1dx2dy2

(y1y2)2
= 2dvHG Ω = ddc log (−(y, y)) ([BY] Lemma 3.3).

(13.1.2)

One knows

L∗m = {M ∈ Lm;M primitive} = Γ (m 1 ) (Γ0(|m|)\Γ), Γ = SL(2,Z),(13.1.3)
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and for m > 0

ψ(m) := m
∏
p|m

(1 + 1/p) = [L∗m : Γ] = [Γ : Γ0(m)],

σ(m) :=
∑
d|m

d =
∑
n2|m

ψ(m/n2).(13.1.4)

Γ̄ = Γ× Γ acts transitively on L∗m via M 7→ γ1M
tγ2 and we have

L∗m = (Γ̄/Γ̄am)am, am = t(1, 0, 0,m)(13.1.5)

i.e.,

Lm =
∑
n2|m

nL∗m/n2 =
∑
n2|m

n(Γ̄/Γ̄am/n2 )am/n2 .(13.1.6)

Hence, unfolding, we get

I(v,m) = (1/2)
∑
n2|m

∫
Γ̄a
m/n2

\H2

β(2πvR(nam/n2,z))dµ(z).(13.1.7)

13.2. To evaluate this, Kudla proposes the procedure already explained in 12.3. For
m > 0, choose a basis v for V (R) such that the inner product has the matrix I2,2 i.e.,
(x, x) = x2

1 + x2
2 − x2

3 − x2
4, and x = 2αv1. Hence, one has q(x) = 2α2 = m and

G = SO(V (R)) ' SO(2, 2) = Gx · A ·K

and in Flensted-Jensen notation ([FlJ] Section 2) H = Gx ' SO(1, 2), L ' SO(2) and
M ' {±1}. Evaluating (12.2.10) as above in the previous section, we get∫

Γx\D+

∫ ∞
1

e−2πvR(nx,z)rdr/rdµ(z),

= (1/2π2)vol(SO(2)/SO(1))vol(Γx \Gx)vol(K)

∫ ∞
0

∫ ∞
1

e−4πvm sinh2 tr sinh t cosh tdr/rdt,

= (1/π)vol(Γx \Gx)vol(K)I±(v,m).
(13.2.1)

13.3. To evaluate vol(Γx \ Gx), again with vol(Γx \ Gx) = vol(Γx \ D1,2), we relate our
orthogonal groups to the SL−theory. Ḡ = (SL(2,R))2 acts on Ṽ = M2(R) via M 7→
g ·M = g1M

tg2 =: M ′. Hence, we have a map

Ḡ = (SL(2,R))2 → G = SO0(Q̃), Q̃ =

(
1

−1
−1

1

)

g = (g1, g2) 7→ A(g) =


α1α2 α1β2 β1α2 β1β2

α1γ2 α1δ2 β1γ2 β1δ2

γ1α2 γ1β2 δ1α2 δ1β2

γ1γ2 β1δ2 δ1γ2 δ1δ2

 .(13.3.1)
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As above, we use Siegel’s method to determine Γ̃am with

Γ̃am = Γ(Q̃, am) = {γ ∈ Γ(Q̃); γam = am}, am = t(1, 0, 0,m)

With S = Q̃ and

A = (am, B) =

(
1

1
1

m 1

)
, (am, am) = 2m

one has from (7.1.1) and (7.1.2)

Γ̃am = Γ(S, am) = {W ∈ Γ(K); tWb ≡ bmod 2m}

b = tBSam = tB

(
1

−1
−1

1

)(
1

m

)
=
(

0 1
1

1

)(m
0
0
1

)
=
(

0
0
1

)
,

K = tBSB − btb/(2m) =
(

0 1
1

1

)( 0 1
−1

−1
1

)(
0
1

1
1

)
− (1/(2m))

(
0

0
1

)
=
(

0 0 −1 0
0 −1 0 0
1 0 0 0

)( 0
1

1
1

)
− (1/(2m))

(
0

0
1

)
= −

(
0 1
1 0

(1/(2m))

)
.(13.3.2)

Hence, to simplify, for the following, we assume m > 0 and look at

(u, u) = tuKmu = (4mu1u2 + u2
3); Km =

(
0 2m

2m 0
1

)
(13.3.3)

and want to determine Γ(Km). One has the standard way to relate the signature (2, 1)
groups to G1 := SL(2,R) : Take

g =

(
α β
γ δ

)
∈ G1(13.3.4)

M(a) =

(
a b
c −a

)
,−det(M) = a2 + bc = (1/2)taQ̃a, Q̃ =

2
1

1

 .

One has a map ρ : G1 → SO(Q̃), g 7→ ρ(g) where

gM(a)g−1 = M(ρ(g)a), ρ(g) =

αδ + βγ −αγ βδ
−2αβ α2 −β2

2γδ −γ2 δ2

 .(13.3.5)

We have 4mu1u2 + u2
3 = a2 + bc and put a = u3, b = 2u2, c = 2mu1, i.e.,

a = Cu, C =

 1
2

2m

 , u = C−1a, C−1 =

 1/2m
1/2

1

(13.3.6)
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and get an isomorphism

ν : SO(Q̃)→ SO(Km), A 7→ C−1AC.

Hence we have the surjection ρ′ = ν · ρ : G1 → SO0(Km), g 7→ C−1ρ(g)C =: A(g) with

A(g) =

 δ2 −γ2/m γδ/m
−mβ2 α2 −αβ
2mβδ −2αγ αδ + βγ

 = W = (wij).(13.3.7)

We want to have wij ∈ Z and Siegel’s condition tWb ≡ bmod 2m, i.e.,

w31 ≡ w32 ≡ 0, w33 ≡ 1 mod 2m.

Now, if g ∈ Γ0(m), one has γ ≡ 0 modm and all these conditions are fulfilled. Thus, we
get

Γ̃am ' Γ0(m)/{±12}.(13.3.8)

Similarly to (11.8.1), with Γm = ν(ρ(Γ0(m))) and Γ0 = σ(ν(ρ(Γ0(m)))) we get

Γ0(m)

��

// Γm

��

// Γ0

��
SL2(R)

��

ρd // SO+(Q̃) ν // SO+(Km)

��

σ // SO+(1, 2)

��
H

��

Ψ
11Dm

��

D1,2

��
F1 ' Γ0(m)\H 11Γm\Dm Γ0\D1,2 ' F

.(13.3.9)

For x+ iy ∈ H and X = (x1, x2) ∈ D1,2, from (11.6.12) we know

dvSie =
dx1dx2

(1− x2
1 − x2

2)(3/2)
; dvSie ◦Ψ∗ =

dxdy

y2
= dvH.(13.3.10)

One has vol(Γ\H) = π/3, vol(Γ0(m)\H) = ψ(m)π/3, and

vol(Γ0\D1,2) = ψ(m)π/3.(13.3.11)

13.4. We use this for our calculation of the Green function integral 13.1.1).

I(v,m) =

∫
X

Ξ(m, v, z)dµ(z) = (1/2)
∑
x∈Lm

∫
(Γ\H)2

∫ ∞
1

e−2πvR(z,x)rdr/rdµ(z)

= (1/2)
∑
n2|m

∫
Γ̄a
m/n2

\H2

∫ ∞
1

e−2πvn2R(z,nam/n2 )rdr/rdµ(z).
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With (12.20.1) I+(v,m) = 1/(8πvm) and
∑

n2|m ψ(m/n2) = σ(m) we get

I(v,m) = (1/2)(1/π)σ(m)π/3 · (1/(2α)) = (1/2)(1/(6α)σ(m), α = 4πvm > 0.(13.4.1)

The same way, using (12.20.2), we get for m < 0

I(v,m) = πσ(m)π/3 · (1/(2|α|))(e−|α| + |α|Ei(−|α|)), α = 4πvm.(13.4.2)

Both formulae are up to a factor from different normalization of measures the same as
those from Theorem 4.2 in [BeKII].

14 The Green function integral for signature (1,2)

Here, one has a lot of material in the literature. We take out small pieces which may be
related to the procedure we followed above, mainly from the report [Ya] by Yang and the
detailed paper [KRY] by Kudla, Rapoport and Yang.

14.1. In [KRY], Kudla, Rapoport and Yang treat the case of an indefinite division quater-
nion algebra B over Q with maximal order OB. Here D(B) is the product of all primes p
at which B is division. One takes V = {x ∈ B| tr(x) = 0} with quadratic form Q(x) =
−x2 = N0(x) given by the restriction of the reduced norm, H = GSpin(V ),Γ = O×B , and
L = V (Q) ∩OB, L(m) = {x ∈ L|Q(x) = m}.
D is the space of oriented negative planes in V (R) and, as usual, R(x, z) = (prz(x), prz(x) >
0 for x ∈ V (R, z ∈ D, and Ξ(m, v) =

∑
x∈Lm ξ(v

1/2x, z), ξ(x, z) = −Ei(−2πR(x, z)).
In Section 12, for m = Q(x) > 0, (so that Γx is finite) and D(B) > 1, they calculate

κ(m, v) : = (1/4)

∫
Γ\D

∑
x∈L(m)

ξ(v1/2x, z)dµ(z), dµ(z) = 1/(2π)dxdy/y2,(14.1.1)

= (1/4)
∑

x∈L(m),mod Γ

∫
Γx\D

ξ(v1/2x, z)dµ(z)

= (1/2)
∑

x∈L(m),mod Γ

|Γx|−1

∫
D

ξ(v1/2x, z)dµ(z)

=
∑

x∈L(m),mod Γ

|Γx|−1

∫
D+

ξ(v1/2x, z)dµ(z)

Since ξ(gx, gz) = ξ(x, z) for g ∈ GL(2,R), one may assume that

x = m1/2 · x0 = m1/2 · ( 1
−1 ).

Then, writing z = kθ(e
ti) ∈ H ' D+, Kudla, Rapoport and Yang come to R(x, z) =

2msinh2(t). Hence, with

J(t) =

∫ ∞
0

e−tw((w + 1)1/2 − 1)dw/w,(14.1.2)
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they get

κ(m, v) =
∑

x∈L(m),mod Γ

|Γx|−1

∫
D+

−Ei(−2πR(v1/2x, z))dµ(z)(14.1.3)

=
∑

x∈L(m),mod Γ

|Γx|−1(1/(2π))

∫ π

0

∫ ∞
0

−Ei(−4πmvsinh2(t))2sinh(t)dtdθ

=
∑

x∈L(m),mod Γ

|Γx|−1(1/2)

∫ ∞
0

(

∫ ∞
1

e−4πmvsinh2(t)rdr/r)2sinh(t)dt

=
∑

x∈L(m),mod Γ

|Γx|−1(1/2)

∫ ∞
0

(

∫ ∞
1

e−4πmvwrdr/r)(w + 1)−1/2dw

=
∑

x∈L(m),mod Γ

|Γx|−1

∫ ∞
0

e−4πmvw((w + 1)1/2 − 1)dw/w

=
∑

x∈L(m),mod Γ

|Γx|−1J(4πmv)

= δ(d,D)H0(m;D)J(4πmv).

where the last equality uses [KRY] Lemma 9.2 and one has 4m = n2d,−d a fundamental
discriminant, and [KRY] (8.20) and (8.19)

δ(d,D) =
∏
p|D

(1− χd(p)), H0(m,D) =
h(d)

w(d)
(
∑

c|n,(c,D)=1

c
∏
`|c

(1− χd(`)`−1))

where h(d) is the class number and w(d) = |O×kd |.

14.2. For our SO(1, 2), if we follow the usual procedure as in (3.10.1). here we have

Ṽ = {M =

(
a b
c −a

)
; a, b, c ∈ R},

q̃(M) = detM = −a2 − bc = (1/2)(M,M),

−(M,M ′) = 2aa′ + bc′ + cb′(14.2.1)

and we identify

M = a = t(a, b, c), x = t(x1, x2, x3).

With a = x3, b = x2 + x1, c = x2 − x1 one has

q̃(M) = −a2 − bc = x2
1 − x2

2 − x2
3 = q0(x).

As fixed in (1.12.2) one has a homomorphism

G′ = SL(2,R) −→ G̃ = O0(Q̃), g 7−→ A(g)
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where, in particular, for z = x+ iy, gz =

(
v1/2 xy−1/2

y−1/2

)
, we get

A(gz) =

 1 0 x/y
−2x y −x2/y

0 0 1/y

 , A(g−1
z ) =

 1 0 −x
2x/y 1/y −x2/y

0 0 y

 ,

As usual, we take D as space of oriented negative 2-planes Y ⊂ V, and as base point the
plane

Xi :=< M1,M2 >, M1 =

(
1
−1

)
,M2 =

(
−1

−1

)
.

Via gz this plane is transported to

Xz :=< M ′
1,M

′
2 >, M

′
1 = (1/y)

(
y −2xy
−y

)
,M ′

2 = (1/y)

(
−x x2 − y2

−1 x

)
.

i.e., for Z =

(
−z̄ z̄2

−1 z̄

)
one has Xz =< Re Z, Im Z > .

As at the beginning, in (3.10.4), we get the kernel of the majorant

R(z,M) = R(Xz,M) = (1/2y2)|2az + b− cz2|2.

In particular, one has, as to be expected,

(M,M)i = 2a2 + b2 + c2 = 2(x2
1 + x2

2 + x2
3)

14.3. For m > 0, we can take over the computation from [KRY] reproduced above. We
supplement their reasoning. For x = m1/2 · x0 = m1/2 · ( 1

−1 ), the equation

R(x, z) = (1/(2y2))|2az + b− cz2|2 = 2m(sinhϑ)2

comes out in the ’hyperbolic coordinates’ from (1.13.1) as in (1.13.4) as well as the relation

dx ∧ dy
y2

= sinhϑ dr ∧ dϑ.

Hence, one has

I(v,m) =

∫
X

Ξ(m, v, z)dµ(z), X = (Γ\H), dµ(z) =
dxdy

2πy2

=
∑

x∈L(m),mod Γ

|Γx|−1J(4πmv)

= H0(m, 1)J(a), a = 4πmv.(14.3.1)

116



The last equation follows as Lemma 9.2 from [KRY] works also for D = 1.

14.4. For m < 0, again we can follow the computation in [KRY]. Given x ∈ V, q̃(x) = m,
by conjugating with a suitable g ∈ SL2(R), one can assume

x′ := g · x =
√
|m|( 1

−1 ).

Let Γ′ be the corresponding conjugate of Γ in SL2(R), and remark that Γ′x′ will generated by

±E2 and (
ε(x)

ε(x)−1 ) for ε(x) > 1 the fundamental unit of norm 1 in the order i−1
x (M2(Z))

in Q(
√
|m|). For x = x′, one has R(x, z) = (1/(2y2))|2az + b− cz2|2 = 2|m|/y2|z|2. Using

polar coordinates x = rcosϕ, y = rsinϕ we get R(g · x, z) = 2|m|
(sinϕ)2

and

I(v,m)x = 1/(2π)

∫
Γx\H

β(2πvR(g · x, z))dµ(z), dµ(z) =
dxdy

2πy2

= 1/(2π)

∫
Γx\H

(

∫ ∞
1

e
−4πv|m| 1

(sinϕ)2
w
dw/w)

drdϕ

r(sinϕ)2
.(14.4.1)

As in [Fu] p.309, x′ = ( ε ε−1 ) acts on z ∈ H as z 7→ |m|z. Hence, a fundamental domain F
of Γx′\H is the domain bounded by the semi arcs |z| = 1 and |z| = ε(x)2 > 1 in H. So, we
get

I(v,m)x = 1/(2π)

∫
Γx′\H

β(2πvR(x′, z))dµ(z)

= (1/π)log |ε(x)|
∫ π

0

(

∫ ∞
1

e
−4πv|m| 1

(sinϕ)2
w
dw/w)

dϕ

(sinϕ)2
.(14.4.2)

With t = (sinϕ)−2, one has (sinϕ)−2dϕ = −(1/2)(t− 1)−1/2dt, and

I(v,m)x = (1/π) log |ε(x)|
∫ ∞

1

(

∫ ∞
1

e−4π|m|vtwdw/w)
dt√
t− 1

= (1/π) log |ε(x)|
∫ ∞

1

e−4πmvw(

∫ ∞
0

e−4π|m|vwdw/w)dt/
√
t)dw/w

= (1/π) log |ε(x)|Γ(1/2)(4πmv)−1/2

∫ ∞
1

e−4π|m|vwdw/w3/2

= (1/(2π)) log |ε(x)|(|m|v)−1/2

∫ ∞
1

e−4π|m|vwdw/w3/2,

I(v,m) =
∑

x∈Γ\Lm

I(v,m)x.(14.4.3)

As again Lemma 12.3 from [KRY] is valid for D = 1, namely

(
∑

x∈Γ\Lm

2δ−1
x log |ε(x)|) = 4δ(d;D)H0(m,D),(14.4.4)
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one has

I(v,m) =
∑

x∈Γ\Lm

I(v,m)x = H0(m, 1)(1/(2π
√
|m|v))

∫ ∞
1

e−4π|m|vwdw/w3/2.(14.4.5)

14.5. As an alternative, we treat Kudla’s approach to calculate the Green function integral
using Kudla’s formula [Ku1] (3.23) for the case p = 1. In the case of signature (1,2) the
use of Kudla’s formula (12.1.6) resp.Flensted-Jensen’s formula (12.2.10) depends on the
decomposition

G = SO(1, 2) = Gx · A ·K, K = SO(2)

For x = t(0, 0, 1), one has Gx = SO(1, 1)

Gx = SO(1, 1), A = {a(t) =
(

cosh t sinh t
1

sinh t cosh t

)
= exp(tX1,3), t ∈ R},(14.5.1)

while, for x = t(1, 0, 0), one has Gx = SO(2), i.e., a Cartan decomposition G = KAK. For
m < 0, we have

I(v,m) =

∫
X

Ξ(m, v, z)dµ(z), X = (Γ\H), dµ(z) =
dxdy

2πy2
(14.5.2)

with Green function

Ξ(m, v, z) = (1/2)
∑
M∈Lm

ξ(v, z,m),

ξ(v, z,m) = β(2πvR(z,M)), βσ+1(t) =

∫ ∞
1

e−tuu−σ−1du, β = β0,

R(z,M) = (1/2y2)|2az + b− cz2|2,
Lm = {M ∈M2(Z); tr(M) = 0, det(M) = m}(14.5.3)

Γ = Γ(L) acts on Lm via M 7→ γMγ−1 = γ ·M and on has Lm = ∪j Γ ·Mj

Hence, unfolding, we get

I(v,m) = (1/2)
∑
j

∫
ΓMj \H

β(2πvR(z,Mj))dµ(z).(14.5.4)

To evaluate this, Kudla proposes the procedure already explained in 12.3. For m < 0, as
explained above, choose a basis v for V (R) such that the inner product has the matrix
I1,2 i.e., (x, x) = x2

1 − x2
2 − x2

3. and x = αv3. Hence, one has q(x) = −α2 = m and
SO(V (R) ' SO(1, 2) = G and Gx ' SO(1, 1). Similar to (12.4.1) we get

R(x, z) = 2|m| cosh2 t

118



and with (12.2.10) and (12.22.1)∫
Γx\D+

∫ ∞
1

e−2πvn2R(x,z)rdr/rdµ(z)

= (1/2π)vol(Γx \Gx)

∫ ∞
0

∫ ∞
1

e−4πv|m| cosh2 tr cosh tdr/rdt

= (1/2π)vol(Γx \Gx)I−(v,m)

= (1/2π)vol(Γx \Gx)(1/(4
√
|m|v))

∫ ∞
1

e−|a|rdr/r3/2.(14.5.5)

14.6. As above, we apply Siegel’s method to determine an example of an isotropy group
Γx. We choose

x = Mm = ( m
−1 ) ≡ (0,m,−1) =: am

with q̃(Mm) = m and want to know

ΓMm = Γ(Q̃, am) = {γ ∈ Γ(Q̃); γam = am}.

With S = Q̃ = −
(

1
1/2

1/2

)
and

A = (am, B) =
(

1
m 1
−1

)
, 2q(am) = (am, am) = 2m

one has from (7.1.1) and (7.1.2)

Γ̃am = Γ(S, am) = {W ∈ Γ(K); tWb ≡ bmod 2m}
b =

(
1/2
0

)
,

K = tBSB − btb/m = −
(

1/(4m)
1

)
.(14.6.1)

Hence, to simplify, for the following, we look at

qm = tuKmu = (u2
1 + 4mu2

2); Km = ( 1
4m ) .(14.6.2)

Here, we find some information in [S6] p.258, namely Siegel treats the example q(x) =
x2

2−Sx2
1, S not a square. Let t, u be solutions of Pell’s equation t2−Su2 = 1 with smallest

t + u
√
S > 1, then, 0 6 x1 <

u
t
x2 describes a fundamental domain with respect to the

group of unities with determinant 1 and one has

vol(Γ\R2) = (
√
S/2)

∫ u/t

0

dz

1− Sz2
= (1/2)log(t+ u

√
S).(14.6.3)
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If we put (14.6.3) together with (14.5.5), we get∫
Γx\D+

∫ ∞
1

e−2πvn2R(x,z)rdr/rdµ(z)

= (1/2π)vol(Γx \Gx)

∫ ∞
0

∫ ∞
1

e−4πv|m| cosh2 tr cosh tdr/rdt

= (1/2π)vol(Γx \Gx)I−(v,m)

= (1/2π)vol(Γx \Gx)(1/(4
√
|m|v))

∫ ∞
1

e−|a|rdr/r3/2.

= (1/2π)(1/2)log(t+ u
√
S)(1/(4

√
|m|v))

∫ ∞
1

e−|a|rdr/r3/2.(14.6.4)

As Pell’s equation produces fundamental units ε this is up to a factor the formula

I(m, v)x = (1/(2π)) log |ε(x)|(|m|v)−1/2

∫ ∞
1

e−4π|m|vwdw/w3/2

from (14.4.3).

Remark. If m is a square, say m = −n2, we have qm(u) = (u1 +2nu2)(u1−2nu2), i.e., one
has Gx ' SO(1, 1), Γx ' {±E2} and vol(Γx\Gx) =∞. Hence the Green integral diverges.
This is consistent with the observation at the end of Yang’s [Ya] (Part (3) of Proposition
3:1).

For m > 0, as explained above, choose a basis v for V (R) with
x = αv1. Hence, one has Gx ' SO(2). Similar to (12.4.1) we get

R(x, z) = 2m sinh2 t

and with (12.2.10) and (12.22.1)∫
Γx\D+

∫ ∞
1

e−2πvn2R(x,z)rdr/rdµ(z)

= (1/2π)vol(Γx \Gx)

∫ ∞
0

∫ ∞
1

e−4πvm sinh2 tr sinh tdr/rdt

= (1/2π)vol(Γx \Gx)I+(v,m)

= (1/2π)vol(Γx \Gx)(1/2)

∫ ∞
1

e−ar((r + 1)1/2 − 1)dr/r.(14.6.5)

Hence, one has as above in (14.3.1)

I(v,m) =

∫
X

Ξ(m, v, z)dµ(z), X = (Γ\H), dµ(z) =
dxdy

2πy2

=
∑

x∈L(m),mod Γ

|Γx|−1J(4πmv)

= H0(m, 1)J(a), a = 4πmv.
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14.7. Eisenstein series. It is natural, to ask how much of these results for the Green
function integrals lead to the Fourier coefficients of the derivatives of the 3/2-Eisenstein
series E(τ, s) as for instance Theorem 3.2 in Yang’s report [Ya]. In Theorem 3.4, he affirms:
The Eisenstein series E(τ, s) in Theorem 4.2 has the following Fourier expansion

E(τ, s) =
∑

m≡0,−1 mod 4

Am(v, s)qm

where

Am(v, s) = Λ(1/2− s, χm)(4πmv)(s−1/2)/2Ψ−3/2(s, 4πmv) form > 0,(14.7.1)

Am(v, s) =
(s2 − 1/4)Λ(1/2− s, χm)(4π|m|v)(s−1/2)/2Ψ3/2(s, 4π|m|v)

4
√
πe4πmv

form < 0,

A0(v, s) = − 1

2π
(G(s) +G(−s)), G(s) = (4v)(1/2−s)/2(s+ 1/2)Λ(1 + 2s).

Here, Ψn(s, a) is as in (2.3.5) and

Λ(s, χm) = |m|3/2π−(s+a)/2Γ((s+ a)/2)L(s, χm) = Λ(1− s, χm), a = (1 + sign(m))/2

with

L(s, χm) = L(s, χd)
∏
p|n

bp(n, s), bp(n, s) =
1− χd(p)X + χd(p)p

kX1+2k − (pX2)1+k

1− pX2

where X = p−s and k = ord pn. In Yang’s paper, he writes m = dn2 such that −d is the
fundamental discriminant of Km = Q(

√
−m). Part 2 of his Theorem 3.2 states that

E(τ, 1/2) = EZagier(τ) = − 1

12
+

1

8π
√
v

+
∞∑
m=1

H0(m)qm +
∑
n>0

2g(n, v)qn
2

(14.7.2)

where H0(m) is the Hurwitz class number of binary quadratic forms of discriminant −m,
and

g(n, v) =
1

16π
√
v

∫ ∞
1

e−4πn2vrdr/r3/2.

And Part 3 of Yang’s Theorem 3.2 states

E ′(τ, 1/2) =
∑
m

< Ẑ(m, v), ω̂ > qm.(14.7.3)

The Fourier coefficients of E ′(τ, 1/2) are to be found in Kudla-Yang [KY]. There, in
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Theorem 6.6, one has (with −m = dc2, µ = 0, 1/2)

E ′0(τ, 1/2,Φ3/2,µ) = δ0,µ(
1

2
log v − 3

π
√
v

(
1

2
log v − γ − log8π +

ζ ′(−1)

ζ(−1)
))

(14.7.4)

when m > 0 andm ∈ −µ2 + Z

E ′m(τ, 1/2,Φ3/2,µ) = −12H(4m)qm(1 +
ζ ′(−1)

ζ(−1)
− 1

2
logπ − log d

− L′(0, χ−m)

L(0, χ−m)
−
∑
p|c

(
b′p(−m, 0)

b′p(−m, 0)
− 2kp(c)log p) +

1

2
J(

1

2
, 4πmv))

when m < 0 andm ∈ −µ2 + Z, and −m is not a square,

E ′m(τ, 1/2,Φ3/2,µ) = − 3

π
√
v

H(4m)√
|m|

∫ ∞
1

e4πmvrdr/r3/2 qm

when m =− c2 ∈ −µ2 + Z,
E ′−c2(τ, 1/2,Φ

3/2,µ)

E−c2(τ, 1/2,Φ3/2,µ)
=

1

2
log v + 2− 2 log 2 +

1

2
log 2π − 1

2
γ + 2

ζ ′(−1)

ζ(−1)
−
∑
p|2c

b′p(−m, 0)

bp(−m, 0)
+

Ψ′3/2
Ψ3/2

.

From (15.2.1) and Proposition 6.5 in [KY], we may deduce

E(τ, s) = ζ(−1)(E(4τ, s,Φ3/2,0) + E(4τ, s,Φ3/2,1/2).

14.8. Comparison. We relate this to our results for the Green function integrals. From
(14.3.1) we have for a = 4πmv,m > 0

I(m; v) = H0(m, 1)J(s) = H0(m, 1)J(1/2, a), J(n, a) =

∫ ∞
0

ear
(1 + r)n − 1

r
dr,

and, for m < 0,m not a square, from (14.4.5)

I(v,m) = H0(m, 1)
1

π
√
|m|v

∫ ∞
1

e|a|rdr/r3/2.

Using Kudla’s approach to the Green integral, we got (14.6.4)∫
Γx\D+

∫ ∞
1

e−2πvn2R(x,z)rdr/rdµ(z)

= (1/2π)vol(Γx \Gx)vol(K)

∫ ∞
0

∫ ∞
1

e−4πv|m| cosh2 tr cosh tdr/rdt

= (1/2π)vol(Γx \Gx)vol(K)I±(v,m)

= (1/2π)vol(K)(1/2)log(t+ u
√
S)(1/(4

√
|m|v))

∫ ∞
1

e−|a|rdr/r3/2,
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and with Lemma 12.3 from [KRY] and the footnote to (8.23) from [KRY] 2H0(m, 1) =
H(4m)

I(m, v) = (1/2π)vol(K)H0(m, 1)(1/(4
√
|m|v))

∫ ∞
1

e−|a|rdr/r3/2.

Hence, up to some still mysterious (or erroneous?) factors, the same principal values for
the integrals and the Fourier coefficients.

15 Epilogue

Here, we look back to give an overview over what we have done up to now. In the main
body of the paper, we treated the following situation. We are given an R−vector space V
of dimension n with a bilinear form (., .) of signature (p, 2) and a lattice L. Expressed in a
pedestrian way, Kudla’s conjecture relates the Fourier coefficients of the s−derivative of the
associated Eisenstein series E(τ, s) at s = 0 up to a volume factor B to the integral I(m, v)
of an appropriate Green function Ξ(m, v, z). As mentioned in the Introduction, there are
already a lot ofl papers to make this precise and extend it to more general situations. Here,
we assemble to an overview our explicit calculations above for the cases p = 1, 2, 3 following
an approach proposed by analyzing the formula (3.23) in Kudla’s seminal paper [Ku1]:

Kudla’s Green function integral formula.

15.1. In the special cases, the following has to be more refined and adapted. Let

G = SO(V ) ⊃ Γ = SO(V,Z), D = G/K,X = Γ\D,(15.1.1)

Lm = {u ∈ Zn; q(u) = m},
2R(u, z) = (u, u)z − (u.u), (u, u)z the majorant of the bilinear form (.,.) in z ∈ D,

β(s) =

∫ ∞
1

e−srdr/r,

Ξ(m, v)(z) = (1/2)
∑
x∈Lm

β(2πmR(x, z)), z ∈ D, v > 0,

I(m, v) =

∫
X

Ξ(m, v)(z)dµ(z) = (1/2)

∫
Γ\D

∑
x∈Lm

β(2πmR(x, z))dµ(z).

And, as Γ acts on Lm with finitely many orbits, i.e., Lm =
∑

a(Γ/Γa)a, and one has the
invariance R(γx, z) = R(x, γ−1z) one gets by the usual unfolding

I(m, v) = (1/2)

∫
Γ\D

∑
x∈Lm

β(2πmR(x, z))dµ(z)(15.1.2)

= (1/2)
∑

x∈Γ\Lm

Ix(m, v), Ix(m, v) :=

∫
Γx\D

β(2πmR(x, z))dµ(z).
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Now, one has to determine Ix(m, v). One has a ’double set decomposition’

G = GxA+K.(15.1.3)

For x ∈ V with Q(x) = m > 0, and z = gxat · z0, in our special cases, one has

R(x, z) = 2m sinh2t.(15.1.4)

Going back to [FlJ] (and [BY]), we interpreted this by the ’Flensted-Jensen formula’
(12.2.10) via∫

Γ\D
f(z)Ωp = (p!/(2π)p) · vol (L/M)

∫
K

∫
Γx\Gx

∫
b+
f(h expX ′k)δ(X)dXdhdk,

= (p!/(2π)p) · vol (L/M) · vol(Γx \Gx) · vol(K) · I+(p, a),(15.1.5)

For x with
Q(x) = m < 0,

similar we deduce

I(m, v) =

∫
Γa\D

∫ ∞
1

e−2πvn2R(z,a)rdr/rdµ(z)

= (p!/(2π)p) · vol (L/M) · vol(Γa \Ga) · vol(K) · I−(p, a),

I−(p, a) :=

∫ ∞
0

∫ ∞
1

e−4πv|m| cosh2 trdr/r sinhp−1 t cosh tdt.(15.1.6)

In (12.22.1) we assembled the I-Integrals (with a = 4πmv):

p = 1 : I+(1, a) = (1/2)

∫ ∞
0

e−aw((w + 1)1/2 − 1)dw/w = (1/2)J+(1/2, a)

I−(1, a) = (1/2)e|a|
∫ ∞

1

e−|a|rr1/2dr/(r + 1) =: (1/2)e|a|J−(1/2, |a|)

= (1/(4
√
|m|v))

∫ ∞
1

e−|a|rr−3/2dr.

p = 2 : I+(2, a) = (1/2a)

I−(2, a) = (1/(2|a|)(e|a| − |a|
∫ ∞

1

e−|a|dr/r)

p = 3 : I+(3, a) = (1/3)

∫ ∞
0

e−αw((w + 1)3/2 − 1)dw/w = (1/3)J+(3/2, a)

I−(3, a) = (1/3)e|a|
∫ ∞

1

e−|a|rr3/2dr/(r + 1) = (1/3)e|a|J−(3/2, |a|)

= (1/(4|a|3/2)
√
π

∫ ∞
1

e−|a|rdr/r5/2.
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Below, we will discuss the other factors in Kudla’s formula but at first we assemble the
terms with which we have to compare the Green integrals.

The Eisenstein series.

15.2. For p = 1, in [Ya] Theorem 3.4 the 3/2-series E(τ, s) has the following Fourier
expansion

E(τ, s) =
∑

m≡0,−1 mod 4

Am(v, s)qm

where

(1) Am(v, s) = Λ(1/2− s, χm)(4πmv)(s−1/2)/2Ψ−3/2(s, 4πmv), m > 0

(2) Am(v, s) =
(s2 − 1/4)Λ(1/2− s, χm)(4π|m|v)(s−1/2)/2Ψ3/2(s, 4π|m|v)

4
√
πe4πmv

, m < 0

(3) A0(v, s) = − 1

2π
(G(s) +G(−s)), G(s) = (4v)(1/2−s)/2(s+ 1/2)Λ(1 + 2s).

For more details see (14.7.1). In Yang’s paper, he writes m = dn2 such that −d is the
fundamental discriminant of Km = Q(

√
−m). Part 2 of his Theorem 3.2 states that

E(τ, 1/2) = EZagier(τ) = − 1

12
+

1

8π
√
v

+
∞∑
m=1

H0(m)qm +
∑
n>0

2g(n, v)qn
2

(15.2.1)

where H0(m) is the Hurwitz class number of binary quadratic forms of discriminant −m,
and

g(n, v) =
1

16π
√
v

∫ ∞
1

e−4πn2vrdr/r3/2.

And Part 3 of Yang’s Theorem 3.2 states

E ′(τ, 1/2) =
∑
m

< Ẑ(m, v), ω̂ > qm.(15.2.2)

The Fourier coefficients of E ′(τ, 1/2) are to be found in Kudla-Yang [KY]. There, in The-
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orem 6.6, one has (with −m = dc2, µ = 0, 1/2)

E ′0(τ, 1/2,Φ3/2,µ) = δ0,µ(
1

2
log v − 3

π
√
v

(
1

2
log v − γ − log8π +

ζ ′(−1)

ζ(−1)
))

(15.2.3)

when m > 0 andm ∈ −µ2 + Z

E ′m(τ, 1/2,Φ3/2,µ) = −12H(4m)qm(1 +
ζ ′(−1)

ζ(−1)
− 1

2
logπ − log d

− L′(0, χ−m)

L(0, χ−m)
−
∑
p|c

(
b′p(−m, 0)

b′p(−m, 0)
− 2kp(c)log p) +

1

2
J(

1

2
, 4πmv))

when m < 0 andm ∈ −µ2 + Z, and −m is not a square,

E ′m(τ, 1/2,Φ3/2,µ) = − 3

π
√
v

H(4m)√
|m|

∫ ∞
1

e4πmvrdr/r3/2 qm

when m =− c2 ∈ −µ2 + Z,
E ′−c2(τ, 1/2,Φ

3/2,µ)

E−c2(τ, 1/2,Φ3/2,µ)
=

1

2
log v + 2− 2 log 2 +

1

2
log 2π − 1

2
γ + 2

ζ ′(−1)

ζ(−1)
−
∑
p|2c

b′p(−m, 0)

bp(−m, 0)
+

Ψ′3/2
Ψ3/2

.

From (15.2.1) and Proposition 6.5 in [KY], we may deduce

E(τ, s) = ζ(−1)(E(4τ, s,Φ3/2,0) + E(4τ, s,Φ3/2,1/2).

15.3. For p = 2, in [BeKII] we took over classical material from Zagier’s article [Za1]
p.32f. One has the analytic Eisenstein series, respective their modifications

E(τ, s) := (1/2)
∑′

c,d

vs

| cτ + d |2s

E∗(τ, s) := π−sΓ(s)E(τ, s)

E2(τ, s) := (1/(2πi))∂τE
∗(τ, s) =

∑
m∈Z

a(v, s,m)qm

E2(τ, s) := −12ψ(s)E2(τ, s), ψ(s) = −1 + 4(
ζ ′(−1)

ζ(−1)
+

1

2
)(s− 1) +O((s− 1)2)

=
∑
m∈Z

A(v, s,m)qm

Denoting by E ′2(τ, s) the derivative of E2(τ, s) with respect to s, and so from [BeKII], we
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take over

a(v, 1,m) =


σ(m) =

∑
d|m d for m > 0

−1/24 + 1/(8πv) for m = 0

0 for m < 0

(15.3.1)

a′(v, 1,m) =


σ(m)(1/(4πmv) + σ′(m)/σ(m)) for m > 0

−(1/24)(24ζ ′(−1) + γ − 1 + log(4πv))

−(1/(8πv))(−γ + log(4πv)) for m = 0

σ(m)(Ei(−4π|m|v) + 1/(4π|m|v)e−4π|m|v) for m < 0.

(15.3.2)

A′(v, 1,m) = −12



σ(m)(4(ζ ′(−1)/ζ(−1) + 1/2) + 1/(4πmv)

+σ∗′1/2(m)/σ∗1/2(m))) for m > 0

3ζ ′(−1)− (1/8) + (γ/24) + (1/24) log(4πv)

+(1/8πv)(−48ζ ′(−1)− γ + 2 + log(4πv)). for m = 0

σ(|m|)(Ei(−4π|m|v) + 1/(4π|m|v)e−4π|m|v) for m < 0

The sigmas in these terms are those from the paper by Zagier

σ∗s(n) := |n|s
∑

d|n,d>0

d−2s = σ∗−s(n).

Hence one has
√
mσ∗1/2(m) =

∑
d|m d = σ(m) and σ′(m)/σ(m) := σ∗′(m)1/2/σ

∗
1/2(m) =

(σ(m) logm− 2
∑

d|m d log d)/σ(m).

15.4. For p = 3, one can find similar formulae for weight 5/2-series determined by the
lattice L and the associated Weil representation in [Ku1] and [BK]. As we did from the
beginning, we follow [BK] and from (4.52) have

E0(τ, 0) =
∑

γ∈L′/L

∑
m∈Z−q(γ),m>0

c0(γ,m, 0, v)e(mu)eγ(15.4.1)

=
∑

γ∈L′/L

∑
m∈Z−q(γ),m>0

C0(γ,m, 0)eγ(mτ)

= 2e0 −
2

B

∑
γ∈L′/L

∑
m∈Z−q(γ),m>0

deg (H(γ,−m))eγ(mτ).
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From (2.9.1), (2.11.1) and (2.11.2), we have

c0(γ,m, 0, v) = C(γ,m, 0)e−a/2 form > 0,

= 0, form < 0,

c′0(γ,m, 0, v) =
∂

∂s
c0(γ,m.s.v)|s=0

= C(γ,m, 0)e−a/2(J+(3/2, a) +
C ′(γ,m, 0)

C(γ,m, 0)
), form > 0,

= C(γ,m, 0)e−|a|/2 · J−(3/2, a), form < 0,

C(γ,m, 0) := −26 · 3 · 5 · π−2|m|3/2L(χdF , 2)σγ,m(5/2).(15.4.2)

Comparisons.

We relate the results for Fourier coefficients to our results for the Green function integrals.

15.5. For p = 1 and a = 4πmv,m > 0, from (14.3.1) by the direct calculation of the
Green integrals in [KRY] we have

I(m; v) = H0(m, 1)J(a) = H0(m, 1)J+(1/2, a), J+(n, a) =

∫ ∞
0

ear
(1 + r)n − 1

r
dr,

and, for m < 0,m not a square, from (14.4.5) as well

I(v,m) = H0(m, 1)
1

2π
√
|m|v

∫ ∞
1

e|a|rdr/r3/2 = e−|a|J−(1/2, |a|).(15.5.1)

For x with q(x) = m < 0, one may also try to use Kudla’s approach to the Green integral.
We got (14.6.4)∫

Γx\D+

∫ ∞
1

e−2πvn2R(x,z)rdr/rdµ(z)

= (1/2π)vol(Γx \Gx)(1/(4
√
|m|v))

∫ ∞
1

e−|a|rdr/r3/2,

= (1/2π)(1/2)log(t+ u
√
S)(1/(4

√
|m|v))

∫ ∞
1

e−|a|rdr/r3/2.

Here, for the fundamental domain volume term, we used a result from Siegel [S6]: For
q(x) = x2

2 − Sx2
1, S no square, he comes to the volume of a fundamental domain of the

full group of units as v(S) =
√
S

2

∫ u/t
0

dz
1−z2 = 1

2
log (t+ u

√
S), where t, u the solutions from

t2 − u2S = 1 with smallest t + u
√
S > 1. And with Lemma 12.3 from[KRY] and (8.22)

from [KRY] 2H0(m, 1) = H(4m)

I(m, v) = (1/2π)H0(m, 1)(1/(4
√
|m|v))

∫ ∞
1

e−|a|rdr/r3/2.
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Hence, essentially up to a factor 12 (from somewhere different normalizations?) we get the
same principal values for the integrals and the Fourier coefficients of the Eisenstein series.
Moreover, we see that, as for m = −d2 one has a finite unit group, the Green function
integral diverges and has to be modified as proposed in Yang’s paper.

15.6. For p = 2 and m 6= 0, as in [BeKI] (2.0.2), we have

I(v,m) =

∫
X

Ξ(m, v, z)dµ(z), X = (Γ\H)2, dµ(z) =
dx1dy1dx2dy2

(y1y2)2
(15.6.1)

with Γ = SL(2,Z) and Green function

Ξ(m, v, z) = (1/2)
∑
M∈Lm

ξ(v, z,m),

ξ(v, z,m) = β(2πvR(z,M)), R(z,M) =
|a− bz2 − cz1 + dz1z2|2

2y1y2

,

Lm = {M ∈M2(Z); det(M) = m}(15.6.2)

In [BeKII] Theorem 4.2, by a direct evaluation of the Green function integral with dµ(z) =
dvH2 , for m > 0 resp.m < 0, we got

I(v,m) = σ(m)(2π2/(3a)), a = 4πmv,

= σ(|m|)(2π2/(3|a|))(e−|a| − |a|
∫ ∞

1

e−|a|rdr/r).

(15.6.3)

Remark. If we relate this to the Fourier coefficients of the Eisenstein series (15.3.1), we
get

18

π2
· I(m, v) = A′(m, 1, v) + . . .(15.6.4)

where the factor in [BeKII] is identified via the Chern class

ĉ1(L̄)2 =
72

4π2

dx1 ∧ dy1 ∧ dx2 ∧ dy2

y2
1y

2
2

i.e., a factor B′ = 36 if the Green function integral is done with the measure

Ω2
H2 =

1

8π2

dx1 ∧ dy1 ∧ dx2 ∧ dy2

y2
1y

2
2

(15.6.5)

from [BK] (5.7) (while in [vdG] p.59 ωH2 = 1
4π2

dx1∧dy1∧dx2∧dy2
y21y

2
2

).
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Now, as an alternative, above we evaluated the Green function integral using Kudla’s for-
mula following the procedure already explained in 12.3.

With dµ = Ω2 = (1/4π2)dvH2 in (13.4.1) and (13.4.2), we got

I(v,m) = σ(m)/(6α), α = 4πvm > 0.

= σ(m)/(6|α|))(e−|α| + |α|Ei(−|α|)), α = 4πvm < 0.

Both formulae are up to a factor 22 (from somewhere different normalizations?) the same
as those from Theorem 4.2 in [BeKII].

15.7. For p = 3 one has a two-component Green function Ξ(γ,m, v) with γ = 0 for m ∈ Z
and γ = 1 for m ∈ Z + 1/4, and as in (4.6.1) the Green function integrals

I(0,m, v) : =

∫
X

Ξ(0,m, v)(z)dµz =
∑

x∈L0,m

∫
Γ\H2

β(2πvR(x, z))dµz,

I(1,m, v) : =

∫
X

Ξ(1,m, v)(z)dµz =
∑

x∈L1,m

∫
Γ\H2

β(2πvR(x, z))dµz.(15.7.1)

with Lγ,m = {u ∈ Z5; q̂(u) = u2
3 − 4u2u4 − 4u1u5 = 4m}. As usual, with a = aγ,m =

t(1, 0, 0, 0,−m) or = t(0, 1, 1,−(4m− 1)/4, 0) for γ = 0 or = 1, we infer

I(0, v,m) =
∑
n2|δγm

I(0, v,m, n), I(0, v,m, n) =

∫
Γa

0,m/n2
\H2

∫ ∞
1

e−2πvR(na0,m/n2 ,z)rdr/rdµ(z),

(15.7.2)

and similarly, for I(1, v,m). Finally, we got in (12.16.1) that the integrals over Kudla’s
Green function and the Green function from Bruinier-Kühn [BK] Definition 4.1 and The-
orem 4.10 essentially add up to the coefficient of the derivative of the Eisenstein series.

15.8. Corollary. For m 6= 0, and B =
∫
X

Ω3 = 2−53−25−1, we have

c′0(γ,m, 0, v) = e−a/2((4/B) · (I(γ,m, v)− IBK(γ,−m, v)) + ∗ c0(γ,m, 0, v)).(15.8.1)

This is in line with the result from Ehlen-Sankaran [ES] Theorem 3.6: For each z ∈ D0(V ),
in the q−series

−log vϕ∨0 +
∑
m

(GrK0 (m, v)−GrB0 (m))qm(15.8.2)

is the q−expansion of a modular form in A!
κ(ρ
∨
L) of weight κ = p/2 + 1.
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16 Appendix: Gauge forms, invariant differentials and

measures.

As the evaluation of Kudla’s for this text central integration formula depends on the nor-
malization of measures, we assemble some material related to this topic which, though here
finally superfluous may also be interesting in some other context.

Measures from Bruinier-Yang and Lie Algebras

16.1. In his famous article [Ta], Tamagawa on his way to translate Siegel’s mass for-
mula from [S6] into the adelic language, restates the following Siegel material. Take
S ∈ Symn(Z). LetG be the algebraic group of real n×nmatricesX = (xij) with tXSX = S
and detX = 1. For X ∈ Mn(R), let tXSX = T = (tij) and let tij, 1 6 i 6 j 6 m be the
coordinate functions of the n(n + 1)/2−dimensional affine space of all n × n symmetric
matrices. Then the tij are polynomials of xij, so one has a n(n− 1)/2−form ω̄ such that

∧ni,j=1dxij = ∧i6jdtij ∧ ω̄.(16.1.1)

One has the injection map ι : G→ Mn(R), so that ι∗(ω̄) = ω is a n(n− 1)/2−form on G.

16.2. As allready used above in (12.6.2), in [BY], Bruinier and Yang extending part of
Section 5.3 from [KRY] propose a kind of refinement which comes down to the following.
Let F be a (local) field and V = F n with a quadratic form q(x) = (1/2)txSx of signature
(p,q). Let α be a gauge form for V n−1, i.e., a highest order exterior differential form

α = ∧16i6n,16j6n−1dxij ∈ (∧n(n−1)V n−1)∗(16.2.1)

and β a gauge form for Symn−1(F ), i.e.,

β = ∧16i<j6n−1dtij ∈ (∧n(n−1)/2Symn−1(R))∗.(16.2.2)

Take

Q : V n−1 → Symn−1(F ), x 7→ (1/2)((xi, xj))(16.2.3)

and let V n−1
reg be the subset of x ∈ V n−1 with detQ(x) 6= 0, and Symreg

n−1(F ) be the subset of
T ∈ Symn−1(F ) with detT 6= 0. Then Q reduces to a regular map from V n−1

reg to Symreg
n−1(F ).

Fix an x = (x1, . . . , xn−1) ∈ V n−1
reg with Q(x) = T and identify the tangent space Tx(V

n−1
reg )

with V n−1. Then the differential dQx is given by

dQx(v) = (1/2)((x, v) + (v, x)) ∈ Symn−1(F ), v ∈ V n−1.

Let

jx : Symn−1(F )→ V n−1, u 7→ jx(u) = (1/2)xQ(x)−1u.(16.2.4)
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Then one has dQx ◦ jx(u) = u and the decomposition

Tx(V
n−1

reg ) = Im(jx)⊕ ker(dQx).

Choose u = (u1, . . . , un(n−1)/2) ∈ Symreg
n−1(F ) with β(u) 6= 0 and define a n(n− 1)/2−form

ν ∈ ((∧n(n−1)/2V n−1)∗ as follows: for t = (t1, . . . , tn(n−1)/2) ∈ V n(n−1)/2, put

ν(t) := α(jx(u), t)β(u)−1.(16.2.5)

One can verify that this ν is independent of u and (see [KRY] Lemma 5.3.1) that one has

α = Q∗(β) ∧ ν and ν = (h, g)∗ν(16.2.6)

for h ∈ SO(V ) and g ∈ GLn−1, where SO(V ) × GLn−1 acts on V n−1 via (h, g)x = hxg−1.
One may identity ker dQx with the tangent space Tx(Q

−1(T )) of Q−1(T ), and, hence, ν
defines a gauge form on Q−1(T ). Finally, using the isomorphism

ix : SO(V )→ Q−1(T ), h 7→ ix(h) = hx(16.2.7)

one obtains a gauge form i∗x(ν) on SO(V ) which is again denoted by ν. This form does
not depend on x or T and gives a Haar measure dh = dνh on H = SO(V ). In [BY]
Section 2.3, this is made more explicit: Let e = (e1, . . . , en) be an ordered basis of V and
J := Q(e) = (1/2)((ei, ej)) ∈ Symn(F ). Let Eij denote a matrix whose (ij)−entry is one
and all other entries are zero. Then one has V n−1 = 〈Eij, 1 6 i 6 n; 1 6 j 6 n − 1〉. Let
deij be the dual basis and α = ∧ijdeij with

α((Eij)) = α(E11, E12, . . . , En,n−1) = 1.

Hence, Yij = Eij + Eji; 1 6 i 6 j 6 n − 1 is a basis of Symn−1(F ). Let dyij be the dual
and β = ∧ijdyij with

β(Y11, Y12, . . . , Yn−1,n−1) = 1.

Now, assume J = diag(a1, . . . , an) and let be Xij := ajEij − aiEji. Hence, one has h =
so(V ) = 〈Xij; 1 6 i < j 6 n〉 and ([BY] Prop. 2.5)

ν(X12, X13, . . . , Xn−1,n) = ±1.(16.2.8)

In section 3, Bruinier and Yang proceed as follows. Let V have signature (m, 2) with Witt
decomposition V = V0 +eR+fR, e, f isotropic with (e, f) = 1. Let D be the Grassmannian
of oriented negative 2-planes in V and

H = {z = x+ iy ∈ V0,C; (y, y) < 0}

the associated tube domain where G = SO(V ) acts as

gw(z) = j(w, z) · w(gz), g ∈ G,w(z) = z + e− q(z)f ∈ VC.(16.2.9)
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Hence, the first Chern form of the dual of the tautological bundle over D is the (1,1)-form
on D ' H

Ω = ddclog(−(y, y))(16.2.10)

as in [Ku1] Prop.4.11, given by

Ω = − 1

2πi
(−(y, dz) ∧ (y, dz̄)

(y, y)2
+

(dz, dz̄)

2(y, y)
).(16.2.11)

As in [Ku1] (5.8) or [BK] (4.50), the measure dµ(z) on D ' H is given by Ω3 with

Ω3 = − 3

16π3
det(y)−3(

i

2
)3dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3.(16.2.12)

In the paper [BY] by Bruinier and Yang, there is another formula relating differential forms
and measures. From Proposition 3.4 in [BY], we have

(d`x)
∗(−Ω)m = ± m!

(2π)m
νp(16.2.13)

Here, fixing a base point z ∈ H, in [BY] (3.10) and (3.11) one has explicit isomorphisms
`z : G(R)/K∞ ' H and d`z : p ' V0,C inducing

(d`x)
∗(dx2 ∧ dy2 ∧ · · · ∧ dxn−1 ∧ dyn−1) = ±νp.(16.2.14)

νp is part of the decomposition ν = ν+ ∧ ν− ∧ νp corresponding to the decomposition

g = k+ ⊕ k− ⊕ p.(16.2.15)

To get back to our case, we look at:

16.3. The Lie algebra g = so(3, 2). We have

g = k + p

= {( A B ) , A ∈M3(R) skew, B ∈M2(R) skew}+ {
(

C
tC

)
, C ∈M3,2(R)}

= 〈X1,2, X1,3, X2,3, X4,5〉+ 〈X1,4, X1,5, X2,4, X2,5, X3,4, X3,5〉
(16.3.1)

Here we put X12 = E12 − E21 etc. and X14 = E14 + E41 etc,, i.e., the negative of the Xij

from [BY] above.
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There are the Lie relations

[X1,2, X1,3] = −X2,3, [X1,2, X2,3] = X1,3,(16.3.2)

[X1,2, X1,4] = −X2,4, [X1,2, X2,4] = X1,4,

[X1,2, X1,5] = −X2,5, [X1,2, X2,5] = X1,5,

[X1,2, X3,4] = 0, [X1,2, X3,5] = 0, [X1,2, X4,5] = 0,

[X1,3, X1,4] = −X3,4, [X1,3, X2,4] = 0,

[X1,3, X1,5] = −X3,5, [X1,3, X2,5] = 0,

[X1,3, X3,4] = X1,4, [X1,3, X3,5] = X1,5, [X1,3, X4,5] = 0,

[X1,4, X1,5] = X4,5, [X1,4, X2,3] = 0,

[X1,4, X2,4] = X1,2, [X1,4, X2,5] = 0,

[X1,4, X3,4] = X1,3, [X1,4, X3,5] = 0, [X1,4, X4,5] = X1,5,

[X1,5, X2,3] = 0, [X1,5, X3,4] = 0,

[X1,5, X2,4] = 0, [X1,5, X3,5] = X1,3,

[X1,5, X2,5] = X1,2, [X1,5, X4,5] = −X1,4,

[X2,3, X2,4] = −X3,4, [X2,3, X2,5] = −X3,5,

[X2,3, X3,4] = X2,4, [X2,3, X3,5] = X2,5, [X2,3, X4,5] = 0,

[X2,4, X3,4] = X2,3, [X2,4, X3,5] = 0,

[X2,4, X2,5] = X4,5, [X2,4, X4,5] = X2,5,

[X2,5, X3,4] = 0, [X2,5, X3,5] = X2,3, [X2,5, X4,5] = −X2,4

[X3,4, X3,5] = X4,5, [X3,4, X4,5] = X3,5, [X3,5, X4,5] = −X3,4.

Here k, p are the ±1 eigenspaces of the Cartan involution τ with τX = −tX, Moreover, we
look at three involutions σ commuting with τ,

σ1X =

(
1 0
−1
−1
−1

0 −1

)
X

(
1 0
−1
−1
−1

0 −1

)
, (case I)

σ3X =

(
1 0

1
−1

1
0 1

)
X

(
1 0

1
−1

1
0 1

)
, (case I’)

σ5X =

(
1 0

1
1

1
0 −1

)
X

(
1 0

1
1

1
0 −1

)
, (case II)(16.3.3)

h, q denote (respectively) the ±1 eigenspaces of the involution σ, b a maximal abelian
subalgebra of p∩q, and m the centralizer of b in l = k∩h and l′ the orthogonal complement
of m in l.
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Hence, we have g = k + p

k = 〈X1,2, X1,3, X2,3, X4,5〉 p = 〈X1,4, X1,5, X2,4, X2,5, X3,4, X3,5〉
(16.3.4)

and g = h + q for the respective cases I,I’ and II

(16.3.5)
h = 〈X2,3, X4,5, X2,4, X2,5, X3,4, X3,5〉 q = 〈X1,2, X1,3, X1,4, X1,5〉,

= 〈X1,2, X4,5, X1,4, X1,5, X2,4, X2,5〉 = 〈X1,3, X2,3, X3,4, X3,5〉,
= 〈X1,2, X1,3, X2,3, X1,4, X2,4, X3,4〉 = 〈X1,5, X2,5, X3,5, X4,5〉,

with

l = k ∩ h = 〈X2,3, X4,5〉 p ∩ q = 〈X1,4, X1,5〉, b = 〈X1,5〉, m = 〈X2,3〉,
= 〈X1,2, X4,5〉, = 〈X3,4, X3,5〉, = 〈X3,5〉 = 〈X1,2〉,
= 〈X1,2, X1,3, X2,3〉, = 〈X1,5, X2,5, X3,5〉, = 〈X1,5〉, = 〈X2,3〉

and
h ∩ p = 〈X2,4, X2,5, X3,4, X3,5〉, l′ = 〈X4,5〉,

= 〈X1,4, X1,5, X2,4, X2,5〉, = 〈X4,5〉,
= 〈X1,4, X2,4, X3,4〉, = 〈X1,2, X1,3〉.

Corresponding groups are G = SO(3, 2), K = SO(3)× SO(2) and

H = SO(2, 2), L = SO(2)× SO(2), L/M ' SO(2)
= SO(2, 2), = SO(2)× SO(2), ' SO(2)
= SO(3, 1), = SO(3), ' SO(3)/SO(2).

16.4. Guided by Heckman-Schlichtkrull [HS] p.109f, we also look at the following (here
we restrict to the cases I and II). Take

g+ = k ∩ h + p ∩ q = 〈X2,3, X4,5〉+ 〈X1,4, X1,5〉,
= 〈X1,2, X1,3, X2,3〉+ 〈X1,5, X2,5, X3,5〉,

g− = k ∩ q + p ∩ h = 〈X1,2, X1,3〉+ 〈X2,4, X2,5, X3,4, X3,5〉,
= 〈X4,5〉+ 〈X1,4, X2,4, X3,4〉,

and, for α ∈ b∗, with gα = {Y ∈ g; [B, Y ] = α(B)Y for allB ∈ b} one has in case I

g0 = 〈X2,3, X1,5, X2,4, X3,4〉
g1 = 〈X1,2 +X2,5, X1,3 +X3,5, X4,5 −X1,4〉

g−1 = 〈X1,2 −X2,5, X1,3 −X3,5, X4,5 +X1,4〉.(16.4.1)

We decompose gα = g+
α ⊕ g−α where g±α = gα ∩ g±, put m±α = dim g±α and

J(Y ) =
∏

α∈Σ+(b,g)

sinhm
+
αα(Y )coshm

−
αα(Y )(16.4.2)
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Hence, in our situation we get

J(B) = sinh t cosh2t in Case I,

= sinh2t cosh t in Case II.(16.4.3)

16.5. For a := 〈X1,5, X24〉 and Ψ := ∆(a, g) one has the root spaces gαj = GjR

G1,5 = X1,3 ±X3,5, G3,7 = X2,3 ±X3,4,

G2,4 = X1,2 ±X2,5 ±X4,5 −X1,4,

G3,8 = X1,2 ±X2,5 ∓X4,5 +X1,4,(16.5.1)

i.e., one has the roots Ψ = {(0,±1), (±1, 0), (1,±1), (−1,±1)}.

16.6. For a moment, we stay with [HS]. As a refinement of the Cartan decomposition
G = K exp p from Heckman-Schlichtkrull [HS] Theorem 2.4, we have the decomposition

G = KA+H, A = exp b+(16.6.1)

which also appears in Kudla [Ku1] p.318. As already remarked above, this formula looks
as if the right hand side doesn’t cover the elements of the left hand side, i.e., in our Case
I, {exp tX1,4; t ∈ R} does not appear in one of the three factors on the right hand side but

one easily verifies Ad(`)expX1,5 = expX1,4, for ` = {

(
1

1
1

0 −1
1 0

)
∈ K. Similarly in Case

II, on the Lie algebra level, one has on the right hand side

〈X12, X13, X23, X45〉, 〈X15〉, 〈X12, X13, X23, X14, X24, X34〉

but one has [X1,2, X1,5] = −X2,5 and [X1,3, X1,5] = −X3,5.

Oda-Tsuzuki’s integral formula

16.7. In [OT] p.49, we find the relation

g = (Ad at)h + RX15 + k, at = exp tX15.(16.7.1)

There is still more background. Oda and Tsuzuki [OT] have the fundamental integration
formula (1.3.2)∫

G

ϕ(g)dg =

∫
H

dµH(h)

∫
K

dk

∫ ∞
0

ϕ(h exp(tY0)k)γH\G(t)dt,

γH\G(t) = (sinh(t))m
+
λ (cosh(t))m

−
λ (2−1sinh(2t))m

+
2λ(cosh(2t))m

−
2λ(16.7.2)
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for which they refer to Heckmann-Schlichtkrull [HS] p.110,Th.2.5. This theorem says that
an invariant measure dx on X = G/H is given by∫

X

f(x)dx =

∫
K

∫
a+q

f(k exp(Y ) · o)J(Y )dY dk(16.7.3)

where J(Y ) is given by (16.4.2) is the γ in the formula above. There is no proof of the
general result in [HS] but the discussion of the example G = SOe(p, q), H = SOe(p, q − 1),
i.e.,

X = G/H = {x ∈ Rp+q : x2
1 + · · ·+ x2

p − x2
p+1 − · · · − x2

p+q = 1}.

The Lebesgue measure dx = dx1 . . . dxp+q on Rp+q is G−invariant. One takes polar co-
ordinates (v, r) ∈ Sp−1 × R+ and (w, s) ∈ Sq−1 × R+ on the first p and last q entries,
respectively, to get

dx = dvdwrp−1drsq−1ds,

where dv and dw are rotation invariant measures on the two spheres. Restricting to
the open set where r > s one can write the pair (r, s) as (ξcosh t, ξsinh t), and one has
drds = ξdξdt. Hence,

dx = dvdwξp+q−1dξ coshp−1t sinhq−1tdt,

and as X is given by ξ = 1, we get that the measure

dvdw coshp−1t sinhq−1tdt

is invariant on X and this is said to be in accordance with the theorem above.

16.8. Another way to the proof of Theorem 2.5 in [HS] is indicated by their Example 2.2.
For

X = SOe(p, q)/SOe(p− 1, q)(16.8.1)

= {x ∈ Rp+q;x2
1 + · · ·+ x2

p − x2
p+1 − · · · − x2

p+q = 1}, x1 > 1 if p = 1,

b = RX1,p+q is maximal abelian in p ∩ q and the centralizer CK∩H(b) of X1,p+q in K ∩H
consists of elements of the form(

1
V
W

1

)
, V ∈ SO(p− 1),W ∈ SO(q − 1).

Hence K/CK∩H(b) can be identified with Sp−1×Sq−1 and one has a polar coordinate map
Φ given by

Sp−1 × Sq−1 × R = K/CK∩H(b)× R→ X(16.8.2)

(v, w, t) 7→ (v1ch t, . . . , vpch t, w1ch t, . . . , wqch t)
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This leads to a transformation formula∫
X

f(x)dx =

∫
K/CK∩H(b)

∫
b

f(k̇expB · o)J(v, w, t)dtdk̇,(16.8.3)

where J(v, w, t) is the functional determinant.

16.9. Remark. This is still not the formula appearing in [HS] Theorem 2.5 where the
integral on the right is done over K. (I would like to know how this is done.)

Tsuzuki’s Formula.

16.10. Finally, in a paper by Tsuzuki [Ts], we found a refinement of the fundamental
integration formula from [OT] (1.3.2) (here cited by (16.7.2)) resp. Kudla’s Green-integral
formula (12.1.6). We take over from [Ts] Section 4. Let Γ be a discrete subgroup of
G = U(n, 1) and H ⊂ G,KH = H ∩K, such that H/KH is of codimension r in G/K, and
ΓH = Γ∩H. Moreover, let dk and dk0 be the Haar measures of the compact groups K and
KH with total volume 1. There is a unique Haar measure dg on G such that the quotient
measure dg/dk corresponds to the measure on the symmetric space G/K determined by
the invariant volume form vol. Define dh on H analogously: dh/dk0 corresponds to the
measure on H/KH determined by volH . Then Tsuzuki has his
Lemma 4.1. For any measurable function f on G we have∫

G

f(g)dg =

∫
H

dh

∫
K

dk

∫ ∞
0

f(hatk)ρ(t)dt(16.10.1)

with dt the usual Lebesgue measure on R and

ρ(t) = 2cr(sinht)2r−1(cosht)2n−2r+1, cr = πr/(r − 1)!.

Proof: For closed subgroups Q1 ⊂ Q2 of G with Lie algebras qi, i = 1, 2 regard (q2/q1)∗ ⊂
q+ by the dual map of the orthogonal projection q → q2 and the canonical surjection
q2 → q2/q1. Let volq2/q1 be the element ξ1∧· · ·∧ξs ∈ ∧(q2/q1)∗ with (ξi) any orthogonal ba-
sis of (q2/q1)∗. Assume Q1 is compact, then there exists a unique left Q2−invariant s−form
ZQ2/Q1 on Q2/Q1 whose value at o = eQ2 is volq2/q1 . Let dZQ2/Q1 be the Q2−invariant
measure on Q2/Q1 corresponding to ZQ2/Q1 . For example volg/k = vol and volh/m =
volH ∧ volh∩k/m.

From [HS] Theorem 2.4 p.108 resp. [FlJ] p.262, one takes that the decomposition G =
HAK jields a diffeomorphism

j : H/M × (0,∞)→ (G−HK)/K, (ḣ, t) 7→ hatK(16.10.2)

Here, for G = U(n, 1), from [Ts] p. 314, one has

A = {at = exp(tY0) = diag(In−1, ( cosh t sinh t
sinh t cosh t )), t ∈ R}(16.10.3)

M = {diag(u1, u2, u0, u0);u1 ∈ U(n− r), u2 ∈ U(r − 1), u0 ∈ U(1)}
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Analyzing the differential forms resp. the Lie algebra relations, one can prove

j∗ZG/K = 2(sinh t)2r−1(cosh t)2n−2r+1ZH/M ∧ dt.(16.10.4)

Using j as an identification, we then have for the corresponding measures

dg/dk = dZG/K(ġ) = 2(sinh t)2r−1(cosh t)2n−2r+1dZH/M(ḣ)dt.(16.10.5)

Let dm be the Haar measure of M with total volume one. The resulting quotient measure
dh/dm is proportional to dZH/M(ḣ), i.e.,

dh/dm = C0dZH/M(ḣ)(16.10.6)

Since dZH/H∩K(ḣ) = dh/dk0, one has

dZH/M(ḣ) = dh/dk0 · dZH∩K/M(k̇0)

and, using dh/dm = (dh/dk0)(dk0/dm), one comes to

dk0/dm = C0dZH∩K/M(k̇0).(16.10.7)

From 1 =
∫
K∩H dk0 =

∫
K∩H/M dk0/dm

∫
M
dm, one has

∫
K∩H/M dk0/dm = 1 and obtains

C−1
0 =

∫
K∩H/M

dZH∩K/M(k̇0).(16.10.8)

To compute this integral, use the diffeomorphism K∩H/M 7→ S2r−1 to get C−1
0 = πr/Γ(r).

Putting all this skillfully together should lead to the above proposed formula:

∫
G

f(g)dg =

∫
G/K

dg/dk

∫
K

dkf(ġk)

(16.10.9)

=

∫
G/K

dZG/K(ġ)

∫
K

dkf(ġk)

=

∫
H/M

dZH/M(ḣ)

∫
K

dkf(hatk)

∫ ∞
0

2(sinh t)2r−1(cosh t)2n−2r+1dt

=

∫
H/M

dh/dm(ḣ)(1/C0)

∫
K

dk

∫ ∞
0

f(hatk)2(sinh t)2r−1(cosh t)2n−2r+1dt.

16.11. Remark. For G = SO(3, 2) and H = SO(2, 2) (Case I) resp. = SO(3, 1) (Case II)
the same procedure leads to∫

G

f(g)dg =

∫
H

dh

∫
K

dk

∫ ∞
0

f(hatk)ρ(t)dt(16.11.1)
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with

ρ(t) = 2(sinht)(cosht)22π,Case I,(16.11.2)

= 2(sinht)2(cosht)4π,Case II.

Namely, here one hasK∩H/M = (SO(2)×SO(2))/SO(2) resp. = SO(3)/SO(2), i.e.,c = 2π,
resp. = 4π.

From p.313 in [Ts], in our case we have dg/dk = vol = (1/3!)ω3 (and dh/dk0 = volH =
(1/2!)ωH . for Case II). If we apply the fomula (16.11.2) with these normalizations to Kudla’s
formula for the Green integral, we get the formulae used above in the main text.

Flensted-Jensen’s integration formula

16.12. The decomposition formula (16.6.1) is also the background for Flensted-Jensen’s
important integration formula. To be careful, we reproduce still more from Section 2 of
[FlJ]. There the Killing form defines Riemannian (i.e., Euclidean) structures on p ∩ h, b+,
and L/M, and one lets the measure on L/M be vol(L/M)−1 times the volume element.
Via Killing form, one has Riemannian structures on G/K and H/L, and by their volume
elements also measures.
Remark. g = so(p, q) has the Killing form

B(X;Y ) = (p+ q − 2) tr (XY ).(16.12.1)

Hence, for (p, q) = (3, 2)), and the Xij from above, we have B(Xij, Xij) = 6.
Moreover, take measures on G and H such that∫

G

f(x)dx =

∫
G/K

∫
K

f(xk)dkdxK,

∫
K

dk = 1, for f ∈ Cc(G)∫
H

f(x)dx =

∫
H/L

∫
L

f(xk)dkdxL,

∫
L

dk = 1, for f ∈ Cc(H).(16.12.2)

One has the standard diffeomorphism ( [FlJ] (2.1))

Φ0 : p ∩ h× p ∩ q×K → G, (X, Y, k) 7→ expX · expY · k.(16.12.3)

In [FlJ] p.261, from Helgason ([He] X Lemma 1.16) one has that the map

Ψ : L/M × b→ p ∩ q, (lM,B) 7→ Ad(l)B(16.12.4)

is a diffeomorphism onto an open dense set. Therefore, the maps

Φ1 : p ∩ h× L/M × b×K → G, (X, lM,B) 7→ (expX l expB),(16.12.5)
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and

Φ : p ∩ h× L/M × b→ G/K(16.12.6)

given by
Φ(X, lM,B) = π(expX l expB),

where π : G→ G/K is the canonical map, are diffeomorphisms unto open dense sets.

Taking the Jacobians J(X, lM,B) = |det dΦ(X,lM,B)| and J1(X) = |det dΦ1
(X)| with refer-

ence to the respective Riemannian structures, one has for f ∈ Cc(G) and f1 ∈ Cc(H)∫
H/M

f1(x)dx =

∫
p∩h

∫
L/M

f1(expx lM)J1(X)dlMdX∫
G/K

f(x)dx = vol (L/M)

∫
p∩h

∫
L/M

∫
b+
f(Φ(X, lM,B))J(X, lM,B)dBdlMdX

= vol (L/M)

∫
H/M

∫
b+
f(h expB)δ1(B)dBdh(16.12.7)

where δ1(B) = |det dΦ(0,eM,B)|, B ∈ b+. From here (his formula (2.9)), Flensted-Jensen
comes to the formula (2.14) in his Theorem 2.6∫

G

f(x)dx = vol (L/M)

∫
K

∫
H

∫
b+
f(k expBh)δ(B)dBdhdk for f ∈ Cc(G)

where δ given by Flensted-Jensen’s formula (2.12) comes from the δ1.
We observe that in this formula the number of variables to be integrated may be dif-
ferent on both sides. For our case A of SO(3, 2) we have 10 on the left and 11 on the
right. By private mail of Flensted-Jensen this is explained as follows. As M is compact, in
(16.12.7) one can write H instead of H/M in his formula (2.9) and use the rest of his proof.

16.13. The following here helpful observation to reduce the number of integrations is owed
to Jens Funke: If M is compact, there is an invariant measure dx and one has

∫
M

∫
M

f(x1 · x2)dx1dx2 =

∫
M

(

∫
M

f(x)dx)dx2

= vol(M)

∫
M

f(x)dx.(16.13.1)

In formula (16.15.12) M is the centralizator of A in H ∩ K and one has members of M
in H and K which can be brought together by commuting with expB ∈ A. Apparently,
Flensted-Jensen had this in mind.
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16.14. In addition, we reproduce two integration formulas from Knapp’s book [Kn]:
Theorem 8.32. Let G be a Lie group, let S and T be closed subgroups such that S ∩T is
compact, multiplication S×T → G is an open map, and the set of products ST exhausts G
except possibly for a set of Haar measure 0. Let ∆T and ∆G denote the modular functions
of T and G. Then the left Haar measures on G,S, and T can be normalized so that∫

G

f(x)dlx =

∫
S×T

f(st)
∆T (t)

∆G(t)
dlsdlt(16.14.1)

for all Borel functions f > 0 on G.
Theorem 8.36. Let G be a Lie group, let H be a closed subgroup, and let ∆G and ∆H

be the respective modular functions. Then the necessary and sufficient condition for G/H
to have a nonzero G invariant Borel measure is that the restriction to H of ∆G is equal to
∆H . In this case such a measure dµ(gH) is unique up to a scalar, and it can be normalized
so that ∫

G

f(g)dlg =

∫
G/H

[

∫
H

f(gh)dlh]dµ(gH) for all f ∈ Cc(G).(16.14.2)

16.15. Now, we follow Flensted-Jensen for G = SO(p, q) : There, the Killing form defines
Riemannian (i.e., Euclidean) structures on p ∩ h, b+, and L/M, and Flensted-Jensen lets
the measure on L/M be vol(L/M)−1 times the volume element. Via Killing form, one has
Riemannian structures on G/K and H/L, and by their volume elements also measures.
Remark. g = so(p, q) has the Killing form

B(X;Y ) = (p+ q − 2) tr (XY ).(16.15.1)

Hence, for (p, q) = (3, 2)), and the Xij from above, we have B(Xij, Xij) = 6.
Moreover, take measures on G and H such that∫

G

f(x)dx =

∫
G/K

∫
K

f(xk)dkdxK,

∫
K

dk = 1, for f ∈ Cc(G)∫
H

f(x)dx =

∫
H/L

∫
L

f(xk)dkdxL,

∫
L

dk = 1, for f ∈ Cc(H).(16.15.2)

One has the standard diffeomorphism ([FlJ] (2.1))

Φ0 : p ∩ h× p ∩ q×K → G, (X, Y, k) 7→ expX · expY · k.(16.15.3)

In [FlJ] p.261, from Helgason ([He] X Lemma 1.16) one has that the map

Ψ : L/M × b→ p ∩ q, (lM,B) 7→ Ad(l)B(16.15.4)

is a diffeomorphism onto an open dense set. Therefore, the maps

Φ1 : p ∩ h× L/M × b×K → G, (X, lM,B) 7→ (expX l expB),(16.15.5)
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and

Φ : p ∩ h× L/M × b→ G/K(16.15.6)

given by
Φ(X, lM,B) = π(expX l expB),

where π : G→ G/K is the canonical map, are diffeomorphisms unto open dense sets.

Taking the usual transformation formula, Flensted-Jensen gets∫
G/K

f(x)dx = vol (L/M)

∫
p∩h

∫
L/M

∫
b+
f(Φ(X, lM,B))J(X, lM,B)dBdlMdX

(16.15.7)

with the Jacobian J(X, lM,B) = |det dΦ(X,lM,B)|. As above, one has the diffeomorphism

Φ′ : p ∩ h→ H/L, X 7→ expXL(16.15.8)

and the appropriate transformation formula∫
H/L

f(x)dx =

∫
p∩h

f(Φ′(X))J1(X)dX J1(X) = |det dΦ′(X)|.(16.15.9)

Via
∫
H/M

=
∫
H/L

∫
L/M

this extends to Flensted-Jensens formula∫
H/M

f1(x)dx =

∫
p∩h

∫
L/M

f1(expXlM)J1(X)dlMdX, J1(X) = |det dΦ′(X)|.(16.15.10)

Since the measure on G/K is H−invariant, he has J(X, lM,B) = J1(X)δ1(B) and joins
(16.15.7) and (16.15.10) to his equation (2.9)∫

G/K

f(x)dx = vol (L/M)

∫
L/M

∫
b+
f(h expB)δ1(B)dBdh.(16.15.11)

From here (his formula (2.9)), Flensted-Jensen comes to the formula (2.14) in his Theorem
2.6 ∫

G

f(x)dx = vol (L/M)

∫
K

∫
H

∫
b+
f(k · expBh)δ(B)dBdhdk for f ∈ Cc(G)(16.15.12)

where δ given by Flensted-Jensen’s formula (2.12) comes from the δ1.
In his text he provides the calculation of dΦ(0,eM,B). We will reproduce part of this below.
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Our application revisited

16.16. We can use this for our interpretation of Kudla’s formula for our Green integral.
Here, our integrand is a function which from the left is H−invariant and from the right
K−invariant, hence essentially depends on the group A. Hence, we can apply (16.12.7) to
write ∫

G/K

f(x)dx = vol (L/M)

∫
H

∫
b+
f(h expB)δ1(B)dBdh(16.16.1)

with

dx = dx14dx15dx24dx25dx34dx35

dBdh = dx15dx23dx45dx24dx25dx34dx35

= dx15dx12dx13dx23dx14dx24dx34(16.16.2)

in case I resp II. And one has to determine δ1(B), i.e., the derivative of Φ(0,eM,B).

In [FlJ] this is done as follows. We have by [FlJ] (2.8)

φ : p ∩ h× L/M × b→ G/K, φ(X, lM,B) = π(expX l expB).

Fix an B ∈ b+, put a = expB, s = (0, eM,B) and, for the canonical map π : G→ G/K, one
has the differential at e dπ : g→ g/k ' p, i.e., for X ∈ g we have dπ(X) = (1/2)(X−τX) =
(1/2)(X + tX). Then Φ(s) = π(a) and the tangent spaces are given by

Ts = p ∩ h× l′ × b+, Tπ(a) ' p.

Flensted-Jensen now chooses orthonormal bases in Ts and Tπ(a). In our cases, for Ts, this
comes to the following.
- For

p ∩ h = ⊕β∈Σ+∪{0}Vβ

Vβ = {X ∈ p ∩ h; (adB)2X = 〈β,X〉2X for allB ∈ b}

using from above 16.3, we have in Case I p ∩ h = 〈X24, X25X34, X35〉

Vβ = V1 = 〈X25, X35〉, V0 = 〈X24, X34〉(16.16.3)

and in Case II p ∩ h = 〈X14, X24X34〉

Vβ = V1 = 〈X14〉, V0 = 〈X24, X34〉(16.16.4)

- Similarly, for

l′ = ⊕α∈∆+∪{0}l
′
α

l′α = {T ∈ l′; (adB)2T = 〈α, T 〉2X for allB ∈ b},
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in Case A we have l′α = l′1 = 〈T := X45〉, and l′α = l′1 = 〈T1 := X12, T2 := X13〉 in Case B.
- For b, in both cases, we have B = X15 Hence, taking together the three types of elements
Xij, we have an orthogonal base for Ts where the Killing form (16.12.1) says, we should
apply a factor 1/6 to get normalization.
Concerning Tπ(a) ' p∩h+ p∩ q, one has the following general remark. Since B is in b and
b is maximal abelian in p ∩ q, it follows that adB(l′) + b = p ∩ q and that

Y i
α = −〈α,B〉−1[B, T iα], α ∈ ∆+

0

and i = 1, . . . ,mα is a basis for adB(l′). In particular, in Case A, we only have Y =
−〈α,B〉−1X14, and in Case B we come to Y1 = −〈α,B〉−1X25 and Y= − 〈α,B〉−1X35. We
get a basis of Tπ(a) if we take B = X15, these Y and the X from (16.16.3) resp. (16.16.4).

Again, in the general case, Flensted-Jensen has his result for the factor δ in the integral,
if he verifies

dφs(B) = B for B ∈ b

dφs(T
i
α) = sinh〈α,B〉Y i

α forα ∈ ∆+
0 , i = 1, . . . ,mα

dφs(X
j
β) = cosh〈β,B〉Xj

β for β ∈ ∆+
b , i = 1, . . . , qβ.(16.16.5)

If (X,T,B′) ∈ Ts then dφs(X,T,B
′) is the tangent vector γ.(0) to the curve through

π(a), a = expB,

γ(t) = π(exp tX exp tT exp (B + tB′))

= aπ(exp tAd(a−1)X exp tAd(a−1)T exp (tB′))(16.16.6)

Then, he gets
!.) If X = T = 0 then γ.(0) = B′,
2.) If X = B′ = 0 and T = T iα then

γ.(0) = dπ(Ad(a−1)T iα) = (1/2)(e−adBT iα − τ(e−adBT iα))

= (1/2)(e−adBT iα − eadBT iα) = −sinh〈α,B〉
〈α,B〉

[B, T iα] = sinh〈α,B〉Y i
α,(16.16.7)

3.) If T = B′ = 0 and X = Xj
β then

γ.(0) = dπ(Ad(a−1)Xj
β) = (1/2)(e−adBXj

β − τ(e−adBXj
β))

= (1/2)(e−adBXj
β + eadBXj

β) = cosh〈β,B〉Xj
β.(16.16.8)

Here, apparently, one uses Ad(expX) = eadX and the fact that the adBX in the formulae
above are skew while the adB T are symmetric.
In our situation this restricts to the following. In Case A we have

dφs(B) = B,(16.16.9)

dφs(T ) = sinh(t)Y,

dφs(X25) = cosh(t)X25 and dφs(X35) = cosh(t)X35,

145



i.e., for the missing factor in (16.16.1) we have

δ1(B) = |sinh(t)|cosh2(t)(16.16.10)

and analogously in Case B

δ1(B) = sinh2(t)cosh(t).(16.16.11)

As they should, these formulae are consistent with Kudla’s formulae (3.23) in [Ku1]. Hence,
in our situation, we have from (16.16.1), for a discrete Γx ⊂ H∫

Γx\G/K
f(x)dx = vol (L/M)

∫
Γx\H

∫
b+
f(h expB)δ1(B)dBdh(16.16.12)

δ1(B) = |sinh(t)|cosh2(t) in Case A

= sinh2(t)cosh(t) in Case B

16.17. Here, to show some more background, we reproduce some standard material from
Helgason’s book on differential geometry [He]. Given a manifold M with affine connection,
on p.32/3 he denotes by Exp = Expp the exponential mapping from an open neighborhood
of 0 ot the tangent space TpM to an open neighborhood of p in M given by X 7→ γX(1)
as described in Theorem 6.1. Theorem 6.5 (with a long proof) gives a formula for the
differential of the map Exp. In Chapter II Theorem 1.7, this is used for the derivative of
the map

exp : g = LieG→ G, X 7→ expX

with Lhg = hg to get

d expX = d(LexpX )e ◦
1− e−adX

adX
.(16.17.1)

On p.179 in Chapter IV, this is applied to take g = k + p with sX = −X and for X ∈ p,
let

TX := (adX)2|p,
and π : G → G/K the natural mapping, o = π e and τ(g) the mapping xK → gxK of
G/K onto itself. dπ identifies p with the tangent space To(G/K). Hence, Theorem 4.1 says
that the Exponential mapping of p to G/K is independent of the choice of the Riemannian
structure and its differential is given by

dExpX = dπ(expX)o ◦
∞∑
n=0

(TX)n

(2n+ 1)!
, X ∈ p.(16.17.2)

Injections and measures

16.18. In the application of Kudla’s central formula, we have the problem of the relation
between the measures for the different volume integrals, namely for the signature (3,2) and
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the signature (2,2) and (3,1). We have already discussed Siegel’s approach to parametrize
his representation spaces. It is tempting to use this here:
We have

G0 = SO(2, 1)→ G− = SO(3, 1)→ G = SO(3, 2) ← G+ = SO(2, 2) ← G0 = SO(2, 1)
(16.18.1)

and use the embeddings ι given by

G0 3 g0 =

(
A b
tc d

)
7→

 A b 02
tc d 0
t02 0 1

 ∈ G+ A ∈M22, b, c ∈M21, d ∈M11

G0 3 g0 =

(
A b
tc d

)
7→

1 t02 0
02A b
0 tc d

 ∈ G− A ∈M22, b, c ∈M21, d ∈M11

G− 3 g− =

(
A b
tc d

)
7→

 A b 03
tc d 0
t03 1

 ∈ G A ∈M33, b, c ∈M31, d ∈M11

G+ 3 g+ =

(
A B
C D

)
7→

1 t02
t02

02A B
02C D

 ∈ G A,B,C,D ∈M22.(16.18.2)

As one has the maps to the homogeneous spaces, Siegel’s representation spaces D

G 3 g =

(
A B
C D

)
7→ BD−1 = Z ∈ D,

we get injections

D2,1 → D3,1 → D3,2 ← D2,2 ← D2,1(16.18.3)

and one could hope that this helps in the understanding how to normalize in the factor
vol(Γx\Gx), Gx = G− or = G+ in Kudla’s formula.
We already discussed the (3,1)-case and for the parametrizing by the space H+ got in
(11.4.18)

dvSie = (det(E −X tX)−m/2
n∏
k=1

m−n∏
l=1

dxkl =
dx ∧ dy ∧ dr

r3
= dvH+

and in the (2,2)-case for H2 we got in (11.3.8)

dvSie = (1/(4y2
1y

2
2)) dx1 ∧ dy1 ∧ dx2 ∧ dy2 = (1/4)dvH2 .

Unfortunately, the (3,2)-case is a bit more tiresome to compute.
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For the parametrization Ψ of the representation space D32 by the elements z =

(
z1 z2

z2 z3

)
of Siegel’s half space H2, and the map Ã : Sp(2,R)→ G̃ = SO(Q̃), we have from (1.8.16)

Ã(gz) =


η ηx3/y3 2(x3y2 − x2y3)/y3 (x3y

2
2 − 2x2y2y3 + x1y

2
3)/(ηy3) −ζ2/η

η/y3 2y2/y3 y2
2/(ηy3) −x1/η

1 y2/η −x2/η
y3/η −x3/η

1/η



=:


a1 a2 a3 a4 a5

b2 b3 b4 b5

1 c4 c5

d4 d5

e5

(16.18.4)

One has
G = SO(3, 2) = C−1G̃C

with (3.8.1)

C = (1/
√

2)


1 1

1 1
1

−1 1
−1 1

 , C−1 = (1/
√

2)


1 −1

1 −1
2

1 1
1 1

 ,

Hence, with

η2 = y1y3 − y2
2, ζ

2 = x1x3 − x2
2, I = x3y1 − 2x2y2 + x1y3, II = η2 − ζ2,
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A(gz) = C−1Ã(gz)C =:

(
A B
C D

)

= (1/2)


1 −1

1 −1
2

1 1
1 1



a1 a2 a3 a4 a5

b2 b3 b4 b5

1 c4 c5

d4 d5

e5




1 1
1 1

1
−1 1

−1 1

(16.18.5)

= (1/2)


a1 a2 a3 a4 a5 − e5

b2 b3 b4 − d4 b5 − d5

2 2c4 2c5

b2 b3 b4 + d4 b5 + d5

a1 a2 a3 a4 a5 + e5




1 1
1 1

1
−1 1

−1 1



= (1/2)


a1 − a5 + e5 a2 − a4 a3 a2 + a4 a1 + a5 − e5

−b5 + d5 b2 − b4 + d4 b3 b2 + b4 − d4 b5 − d5

2 2c4 2c5

−b5 − d5 b2 − b4 − d4 b3 b2 + b4 + d4 b5 + d5

a1 − a5 − e5 a2 − a4 a3 a2 + a4 a1 + a5 + e5


B = (1/η)

 I II − 1
y1 − y3 x3 − x1

2y2 −2x2


D = (1/η)

(
y1 + y3 −x1 − x3

I II + 1

)
Z = BD−1

= (1/D̂)

 2I I(x1 + x3) + (II − 1)(y1 + y3)
(y1 − y3)(II + 1) + (x1 − x3)I 2(y1x3 − x1y3)

2y2(II + 1) + 2x2I 2y2(x1 + x3)− 2x2(y1 + y3)

 ,

= (1/D̂)

z11 z12

z21 z22

z31 z32

 ,

D̂ = η2detD = (y1 + y3)(1 + η2 − ζ2) + (x3y1 − 2x2y2 + x1y3)(x1 + x3).

z11 = 2(x3y1 − 2x2y2 + x1y3)

z12 = y1(|z3|2 − 1 + x2
2 − y2

2) + y3(|z1|2 − 1 + x2
2 − y2

2)− 2x2y2(x1 + x3)

z21 = −y1(|z3|2 − 1 + x2
2 − y2

2) + y3(|z1|2 − 1 + x2
2 − y2

2)− 2x2y2(x3 − x1)

z22 = 2(y1x3 − x1y3)

z31 = 2(y1y2y3 − y3
2 − x1x3y2 + y2 + x1x3y1 + x1x3y3 − x2

2y2)

z32 = 2(x1y2 − x2y1 − x2y3 + x3y2).

Though perhaps this won’t help here much, but for the sake of some completeness, we add
the corresponding results for the other cases.
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i) For A : SL2(R)→ SO(1, 2) and Ψ : H→ D12 we have from (11.6.7)

A(gz) = (1/2y) ·

x2 + y2 + 1 −x2 + y2 − 1 −2xy
x2 + y2 − 1 −x2 + y2 + 1 −2xy
−2x +2x 2y

 =

(
a b
tc D

)
and from (11.6.9)

Ψ(z) = Zz = bD−1

= (−x2 + y2 − 1,−2xy)

(
2y 2xy
−2x y2 − x2 + 1

)
(1/ξ), ξ = x2 + y2 + 1

= (1/(|z|2 + 1))(|z|2 − 1,−2x)

and Ψ∗dvSie = dvH.

Similarly, one has for A : SL2(R)→ SO(2, 1) and Ψ : H→ D21

A(gz) = (1/2y) ·

 2y −2xy −2xy
2x −x2 + y2 + 1 −x2 + y2 − 1
−2x x2 + y2 − 1 x2 + y2 + 1

 =

(
A b
tc d

)
and this time

Ψ(z) = Zz = b · d−1 = (1/(x2 + y2 + 1))

(
−2xy

−x2 + y2 − 1

)
:=

(
x1

x2

)
.(16.18.6)

Here, with ξ = x2 + y2 + 1, we get

dx1 ∧ dx2 = −8(y2/ξ3)dx ∧ dy, and det(E2 − ZztZz) = 4y2/ξ2,(16.18.7)

hence, for dvSie = det(E2 − ZztZz)−3/2dx1 ∧ dx2 (strangely enough?)

Ψ∗dvSie =
dx ∧ dy

y
= y · dvH(16.18.8)

ii) For A : SL2(C)→ SO(1, 3) and the map Ψ : H+ → D13, we have from (11.4.12)

AP := A(gP ) =


(|z|2 + 1 + r2)/(2r) x y (r2 − |z|2 − 1)/(2r)

x/r 1 −x/r
y/r 1 −y/r

(|z|2 − 1 + r2)/(2r) x y (r2 − |z|2 + 1)/(2r)


If here we take (as in (11.4.16))

tb = (x, y, (r2 − |z|2 − 1)/(2r)), D =

1 −x/r
1 −y/r

x y (r2 − |z|2 + 1)/(2r)

 .
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and put Ξ := det(D) = (1 + r2 + x2 + y2)/(2r) we get

XP = tb ·D−1 = (x, y, r − Ξ) ·

Ξ− x2/r −xy/r x/r
−xy/r Ξ− y2/r y/r
−x −y 1

 (1/Ξ)

= (1/(rΞ))(x, y, rΞ− 1)

One has 1−XP
tXP = Ξ−2 and with rΞ = (1/2)(x2 + y2 + r2)

d(x/(rΞ)) ∧ d(y/(rΞ)) ∧ d(1− 1/(rΞ)) = (rΞ)−4rdx ∧ dy ∧ dr.

Hence, from (11.4.18) for n = 1,m = 4 Siegel’s volume element (11.2.7) comes out as

dvSie = (det(E −X tX)−m/2
n∏
k=1

m−n∏
l=1

dxkl,

= Ξ4 · (rΞ)−4rdx ∧ dy ∧ dr,

=
dx ∧ dy ∧ dr

r3
,(16.18.9)

i.e., exactly the standard volume element dvH+ for the hyperbolic three-space.

Similarly, for A : SL2(C)→ SO(3, 1) and the map Ψ : H+ → D31, we have

AP := A(gP ) = (1/2r)


−|z|2 + 1 + r2 2xr 2yr r2 + |z|2 − 1

−2y 2r 2y
−2x 2r 2x

−|z|2 − 1 + r2)/(2r) 2yr 2xr r2 + |z|2 + 1


and

XP = tb · d−1 =

r2 + |z|2 − 1
2y
2x

 (1/Ξ) =

x1

x2

x3

 , Ξ = r2 + x2 + y2 + 1

We get

dx1 ∧ dx2 ∧ dx3 = (4r/Ξ4)dx ∧ dy ∧ dr,
det(E3 −XP

tXP ) = 4r2Ξ−2,

hence, for dvSie = (det(E3 −XP
tXP ))−2dx1 ∧ dx2 ∧ dx3 again

Ψ∗dvSie =
dx ∧ dy ∧ dr

r3
= dvH+(16.18.10)
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iii) For A : SL2(R)2 → SO(2, 2) = G and the map Ψ : H2 → D22, with z = (z1, z2) ∈
H2, q1 =

√
y1y2, q2 =

√
y1/y2 we have from (11.3.3)

A(z) =

(
A B
C D

)
∈ G

(16.18.11)

= (1/2)


q1 + 1/q1 + x1x2/q1 −x2q2 + x1/q2 −x2q2 − x1/q2 q1 − 1/q1 − x1x2/q1

(−x1 + x2)/q1 q2 + 1/q2 −q2 + 1/q2 (x1 − x2)/q1

(x1 + x2)/q1 −q2 + 1/q2 q2 + 1/q2 −(x1 + x2)/q1

q1 − 1/q1 + x1x2/q1 −x2q2 + x1/q2 x2q2 + x1/q2 q1 + 1/q1 − x1x2/q1

 , .

We have ζ = detD = (1/(4y1y2))ξ, ξ := ((|z1|2 + 1)y2 + (|z2|2 + 1)y1), and, hence, from
(11.3.5) we get the map Ψ : H2 → D2,2

H2 3 z = (z1, z2) 7→ Z = BD−1

= (1/ξ)

(
2(x1y2 + x2y1) (|z1|2 − 1)y2 + (|z2|2 − 1)y1

(|z1|2 − 1)y2 − (|z2|2 − 1)y1 2(x1y2 − x2y1)

)
=

(
a b
c d

)
∈ D2,2.

With δ = ad− bc = −(|z1|2+1)y2+(|z2|2+1)y1
(|z1|2+1)y2+(|z2|2+1)y1

, we have

∆ := det(E − ZtZ) = 1− a2 − b2 − c2 − d2 + δ2

= 24y2
1y

2
2/((|z1|2 + 1)y2 + (|z2|2 + 1)y1)2 = ζ−2

and

da ∧ db ∧ dc ∧ dd = 26y2
1y

2
2/(|z1|2 + 1)y2 + (|z2|2 + 1)y1)4 dx1 ∧ dy1 ∧ dx2 ∧ dy2.

Hence, for our case, Siegel’s formula (11.2.7) shows up to the factor 1/4 the usual volume
element for H2

Ψ∗dvSie = (1/(4y2
1y

2
2)) dx1 ∧ dy1 ∧ dx2 ∧ dy2 = (1/4)dvH2 .(16.18.12)

Similary to (16.18.11), we have

A(z)−1 =

(
A B
C D

)
∈ G

(16.18.13)

= (1/(2q1))


1 + x1x2 + y1y2 −x1 + x2 −x1 − x2 1− x1x2 − y1y2

(x1 − x2)y2 y1 + y2 y1 − y2 (x1 − x2)y2

−(x1 + x2)y2 y1 − y2 y1 + y2 (x1 + x2)y2

1 + x1x2 − y1y2 −x1 + x2 −x1 − x2 1− x1x2 + y1y2

 , .
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16.19. Summary. using the embeddings (16.18.2) we realize the injections from (16.18.3)

D12 3 Ψ12(z) =
1

|z|2 + 1
(|z|2 − 1, 2x) 7→ 1

|z|2 + 1

(
0 0

|z|2 − 1 2x)

)
∈ D22,

(16.19.1)

D21 3 Ψ21(z) =
1

|z|2 + 1

(
−2xy

−x2 + y2 − 1

)
7→ 1

|z|2 + 1

(
−2xy 0

−x2 + y2 − 1 0

)
∈ D22,

D31 3 Ψ31(P ) =
1

r2 + |z|2 + 1

r2 + |z|2 − 1
2y
2x

 7→ 1

r2 + |z|2 + 1

r2 + |z|2 − 1 0
2y 0
2x 0

 ∈ D32,

D22 3 Ψ22(z1, z2) =
1

Ξ

(
2(x1y2 + x2y1) (|z1|2 − 1)y2 + (|z2|2 − 1)y1

−(|z1|2 − 1)y2 + (|z2|2 − 1)y1 2(x1y2 − x2y1)

)

7→ 1

Ξ

 0 0
2(x1y2 + x2y1) (|z1|2 − 1)y2 + (|z2|2 − 1)y1

−(|z1|2 − 1)y2 + (|z2|2 − 1)y1 2(x1y2 − x2y1)

 ∈ D32,

D32 3 Ψ32(z1, z2, z3) =
1

D̂

 2I I(x1 + x3) + (II − 1)(y1 + y3)
(y1 − y3)(II + 1) + (x1 − x3)I 2(y1x3 − x1y3)

2y2(II + 1) + 2x2I 2y2(x1 + x3)− 2x2(y1 + y3)


with Ξ = (|z1|2 + 1)y2 + (|z2|2 + 1)y1, D̂ = (y1 + y3)(II + 1) + (x1 + x3)I, and

η2 = y1y3 − y2
2, ζ

2 = x1x3 − x2
2, I = x3y1 − 2x2y2 + x1y3, II = η2 − ζ2.

In particular, we get

D32 3 Ψ32(z1, 0, z3) =
1

D̂

 2(x1y3 + x3y1) y1(|z3|2 − 1) + y3(|z1|2 − 1)
−y1(|z3|2 − 1) + y3(|z1|2 − 1) 2(y1x3 − x1y3)

0 0


(16.19.2)

with D̂ = y1(|z3|2 + 1) + y3(|z1|2 + 1).

16.20. Remark. This is very near to what one would expect from the embedding of D22

in D32 given above (the zero-line has the wrong place). This can be cured by changing the
embedding above of SO(2, 2) into SO(3, 2) to

SO(2, 2) 3
(
A B
C D

)
7→

A B
1

C D

 ∈ SO(2, 2)(16.20.1)
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Done this, one has the following picture of our orthogonal world

H2

��

// H2

��

H+

��

SL2(OF+)

��

&&

Sp2(Z)

%%

SL2(OF−)

��

&&
SL2(R)2

OO

J //

��

Sp2(R)

OO

��

SL2(C)

OO

��

Γ(Q̃+)

&&

Γ(Q̃)

%%

Γ(Q̃−)

&&
SO(2, 2) �

� //

��

SO(3, 2)

��

SO(3, 1)? _oo

��
D22
� � // D32 D31

? _oo

(16.20.2)

Hence, with

J : SL(2,R)× SL(2,R)→ Sp(2,R), (g1, g2) 7→


a1 b1

a2 b2

c1 d1

c2 d2

 ,

and Z =

(
z1 z2

z2 z3

)
, from (16.19.1) one has maps

H2 3 (z3, z1)

��

� // Z ∈ H2

��

P = (x, y, r) ∈ H+

��
Ψ22(z3, z1) // Ψ32(Z) Ψ31(P )oo

.(16.20.3)

The square on the left hand side is commutative, while we have not found a nice formula
for a map from H+ to H2 resp. from SL2(C) to Sp2(R).
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16.21. . Trying to find some, we attempted the following: We have from (11.4.12)

A(gP ) =


(|z|2 + 1 + r2)/(2r) x y (r2 − |z|2 − 1)/(2r)

x/r 1 −x/r
y/r 1 −y/r

(|z|2 − 1 + r2)/(2r) x y (r2 − |z|2 + 1)/(2r)

 ∈ SO(3, 1)

=:


α1 x y α4

x/r 1 −x/r
y/r 1 −y/r
δ1 x y δ4


and this nor as

α1 x y α4

x/r 1 −x/r
y/r 1 −y/r
δ1 x y δ4

1

 neither as


α1 x y α4

x/r 1 −x/r
y/r 1 −y/r

1
δ1 x y δ4


fits into an element (16.18.5) from SO(3, 2)

A(gz) = (1/2)


a1 − a5 + e5 a2 − a4 a3 a2 + a4 a1 + a5 − e5

−b5 + d5 b2 − b4 + d4 b3 b2 + b4 − d4 b5 − d5

2 2c4 2c5

−b5 − d5 b2 − b4 − d4 b3 b2 + b4 + d4 b5 + d5

a1 − a5 − e5 a2 − a4 a3 a2 + a4 a1 + a5 + e5

 .

16.22. Above in (16.3.1) we treated the Lie algebra of SO(3,2). It is isomorphic to the Lie
algebra of G = Sp(2,R) and we discuss this here:
One has

G = {g = ( A B
C D ) ; tAD − tCB = E, tCA = tAC, tDB = tBD},

K = {g =
(
A B
−B A

)
; (A+ iB) ∈ U(2)},

LieG = g = sp(2,R) = {X = ( A B
C D ) , A = −tD,B = tB,C = tC ∈M(2,R)}

= k + p,

k = {X = ( A B
C D ) , A = D = −tD,B = tB = −C = −tC ∈M(2,R)},

p = {X = ( A B
C D ) , A = tA = −tD = −D,B = tB = C = tC ∈M(2,R), }.(16.22.1)

We take as basis for k

K1 =

(
1

−1
1

−1

)
, K2 =

(
0 0 1
0
−1
0

)
,

K3 =

(
0
1
0

0 −1 0 0

)
, K4 =

(
1

1
−1

−1

)
,(16.22.2)
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and for p

A1 =

(
1

0
−1

0

)
, A2 =

(
0

1
0
−1

)
,

G1 =

(
0 0 1 0
0
1
0

)
, G2 =

(
0
1
0

0 1 0 0

)
,

G3 =

(
1

1
1

1

)
, G4 =

(
1 0

1
−1

0 −1 0

)
.(16.22.3)

16.23. A way to realize the isomorphism between sp(2,R) and so(3, 2) is hidden in the
problems in [Kn] p.208. We propose to proceed as follows.
Here (clearly going back to Siegel [S3, S4] and as in [GN]), we realize V = R5 as the space
V of skew-symmetric matrices

M = M(u) =

(
u1J XJ
JX −u5J

)
∈ M4(R)(16.23.1)

with

X =

(
u2 u3

u3 u4

)
, J =

(
0 1
−1 0

)
∈ M2(R).(16.23.2)

The symplectic group Ǧ = Sp(2,R) acts (transitively) on V via

(g,M(u)) 7−→ gM(u)tg =: M(A(g)u) =: M(u′)(16.23.3)

preserving the quadratic form q̃ = (1/2)tuQ̃u = u2
3 − u2u4 − u1u5. As usual, this leads

to a homomorphism Sp(2,R) −→ G̃ where g ∈ Ǧ is mapped to the matrix Ã(g) with

u′ = Ã(g)u. With g =

(
A B
C D

)
, this leads to

gM(u)tg =

=

(
u1AJ

tA+BJX tA+ AXJ tB − u5BJ
tB u1AJ

tC +BJX tC + AXJ tD − u5BJ
tD

u1CJ
tA+DJX tA+ CXJ tB − u5DJ

tB u1CJ
tC +DJX tC + CXJ tD − u5DJ

tD

)

=

(
u′1J X ′J
JX ′ −u′5J

)
.

(16.23.4)

If we apply this to the element g = exp tX from the 1-parameter subgroup of Sp(2,R)
generated by an X ∈ sp(2,R), we come to an element Ã(g) ∈ SO(Q̃) and via conjugation
with C we get C−1Ã(g)C = A(g) ∈ SO(3, 2), leading to an element φ(X) ∈ so(3, 2).

As an example, we take X = G4 =

(
1 0

1
−1

0 −1 0

)
, get

g = exp tG4 =

(
C S 0
S C

C −S
0 −S C

)
, C := ch t, S := sh t
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and, using C2 − S2 = 1,

Ã(g) =

( 1 0
C2 2CS S2

CS C2+S2 CS
S2 2CS C2

0 1

)
, andA(g) = C−1Ã(g)C =

(
1 0

1
C2+S2 2CS

2CS C2+S2

0 1

)
.

Remembering C := ch t, S := sh t, and deriving, with d
dt

(sh t)|t=0 = 0, we get(
0 0

0
0 2
2 0

0 0

)
= 2X34 ∈ so(3, 2).

In the same way, we get the map φ : sp(2)→ so(3, 2) given by

K1 7→ X23, A1 7→ X15 +X24, G3 7→ −2X35,(16.23.5)

K2 7→ −X12 −X45, A2 7→ X15 −X24, G4 7→ 2X34.

K3 7→ X12 −X45, G1 7→ X14 −X25,

K4 7→ −X13, G2 7→ X14 +X25.
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