
AN END DEGREE FOR DIGRAPHS

MATTHIAS HAMANN† AND KARL HEUER

Abstract. In this paper we define a degree for ends of infinite digraphs. The well-
definedness of our definition in particular resolves a problem by Zuther. Furthermore, we
extend our notion of end degree to also respect, among others, the vertices dominating the
end, which we denote as combined end degree. Our main result is a characterisation of the
combined end degree in terms of certain sequences of vertices, which we call end-exhausting
sequences. This establishes a similar, although more complex relationship as known for
the combined end degree and end-defining sequences in undirected graphs.

§1. Introduction

The notion of ends became crucial for analysing the structure of infinite graphs. An end
of a graph is an equivalence class of one-way infinite paths, where two such paths are called
equivalent if they are joined by infinitely many disjoint paths. Degree parameters were
defined for ends as well, see e.g. [2, 7], where the basic definition is as follows. The degree
of an end ω of a graph is the supremum of the number of disjoint one-way infinite paths in
ω. It is a non-trivial theorem by Halin [6] that the supremum in this definition is actually
an attained maximum. End degrees turned out to be useful parameters for infinite graphs,
e.g. for characterising a topological notion of infinite cycles [2], or when studying extremal
questions regarding the existence of infinite grid-like subgraphs [7].

A different way to describe the degree of an end is by certain sequences of nested finite
vertex separators, so-called defining sequences. It was shown in [4] that one can characterise
the degree of an end together with the number of vertices dominating it, also referred to
as combined end degree, via the sizes of the separators within defining sequences. Here,
a vertex v is said to dominate an end ω if there exist infinitely many paths from v to a
one-way infinite path in ω which are all disjoint except from v.

In this paper we shall consider directed graphs, briefly denoted as digraphs, which are
infinite, and we shall define analogous concepts of end degrees as mentioned above for
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undirected graphs. For this we follow a notion of ends of digraphs defined by Zuther [8, 9],
which is a natural and analog definition to the one for undirected graphs. An end of a
digraph is defined as an equivalence class of rays and anti-rays, where a (anti-)ray is an
orientation of a one-way infinite path such that each edge is oriented towards (resp. away
from) infinity (see Section 2 for a precise definition). Zuther called two rays or anti-rays
R1, R2 of a digraph D equivalent if there exist infinitely pairwise disjoint directed paths
from R1 to R2 and vice versa. Note that this definition allows that e.g. R1 is a ray and R2

is an anti-ray.
The first result of this paper, Theorem 3.1, resolves a problem stated by Zuther [8,

Problem 2] and proves that an end of a digraph which contains any finite number of
disjoint rays also contains infinitely many disjoint rays. Hence, Theorem 3.1 is an analogous
result to the aforementioned theorem by Halin [6], and allows us to define the in-degree
(resp. out-degree) of an end as the maximum number of disjoint rays (resp. anti-rays) in
that end.

The natural question arises whether an end with infinite in- and out-degree might admit
a system of pairwise disjoint rays and anti-rays witnessing both of these degrees. By
Theorem 4.1 we answer this question negatively and construct a digraph with infinite in-
and out-degree where each ray intersects each anti-ray.

The main contribution of this paper is the introduction of end-exhausting sequences, a
concept for ends of digraphs similar to defining sequences for ends of undirected graphs.
Similarly, although more complex as for undirected graphs, we define a combined in-
degree (and out-degree) for ends, and prove an equality to a parameter solely based on
end-exhausting sequences in the following main result of this paper:

Theorem 1.1. Let D be a digraph and let ω be an end of D that contains at least one but
at most countably many rays. Then the combined in-degree of ω is the same as

inf
!

lim inf
iPN

|Ui|

ˇ

ˇ

ˇ
pUiqiPN is an ω-exhausting sequence

)

.

Qualitatively, Theorem 1.1 establishes the same duality between end-exhausting sequences
and combined in-degrees (or out-degrees) of ends for digraphs as it is known for end-defining
sequences and the combined end degree in the undirected case.

The structure of this paper is as follows. After introducing some terminology in Section 2,
we prove in Section 3 that the in- and out-degree of an end is well-defined. In Section 4 we
construct a digraph containing infinitely many disjoint rays and infinitely many disjoint
anti-rays such that each ray intersects each anti-ray. In Section 5 we define end-exhausting
sequences and the combined in- and out-degree of ends, followed by the proof of Theorem 1.1.
Finally, we briefly discuss in Section 6 how the results from Section 3 and Section 4 can be
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proved when edge-disjoint rays (and anti-rays) are considered instead of vertex-disjoint
ones.

§2. Preliminaries

For general facts and notation regarding graphs we refer the reader to [3], regarding
digraphs in particular to [1].

We call a digraph D weak if it is weakly connected. For the sake of brevity we call a
directed cycle just a dicycle and a directed path just a dipath. Given a dipath P containing
two vertices a, b such that b is reached from a via P , we define aPb as the subdipath of
P starting at a and ending in b. Given two vertex sets A, B, we call a dipath P an A–B

dipath if P starts in A, ends in B and is internally disjoint from A Y B.
We call a weak digraph where each vertex has in- and out-degree 1 except one vertex

v which has in-degree (resp. out-degree) 0 and out-degree (resp. in-degree) 1 a ray (resp.
anti-ray). The vertex v is called the starting vertex (resp. end vertex) of the ray (resp.
anti-ray). We say that a ray starts in a vertex set A if it has its starting vertex in A. Given
a ray R with starting vertex v and some x P V pRq we denote by Rx the subdipath vRx of
R. A tail of R is a subray of R. If this tail starts at x, then we denote it by xR. Similarly,
for an anti-ray Q with end vertex v and some x P V pQq, we denote by xQ the subdipath
xQv of Q and by Qx the subanti-ray of Q that ends at x, which we will also call a tail
of Q. We call a weak digraph where each vertex has in- and out-degree 1 a double ray. The
tails of a double ray are its subdigraphs that are rays or anti-rays.

Let Q and R be rays or anti-rays. We write Q ď R if there are infinitely many pairwise
disjoint Q–R dipaths and we write Q „ R if Q ď R and R ď Q. Then ď is a preorder on
the set of rays and anti-rays in a digraph D and „ is an equivalence relation on that set.
Note that ď is not anti-symmetric as witnessed by a ray and one of its proper tails. The
equivalence classes of „ are the ends of D and we can extend the relation ď to the ends:
we write η ď ω for ends η and ω if there are Q P η and R P ω with Q ď R. Note that
η ď ω if and only if Q ď R for every Q P η and R P ω. In particular, we have η ď ω and
ω ď η if and only if η “ ω. So, ď is a partial order on the ends of a digraph.

We call an oriented tree A that contains a vertex x such that each vertex y P V pAq

is reachable from x (resp. reaches x) in A by a dipath, an out-arborescence (resp. in-
arborescence). The vertex x is called the root of A. An out-arborescence (resp. in-
arborescence) S with root c whose underlying tree is a star is called an out-star (resp. in-
star) with centre c.

An undirected tree C is called a comb if it is obtained from a system P of infinitely
many pairwise disjoint finite paths and a one-way infinite path R by gluing one end vertex
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of each path to a vertex on R such that different paths are glued to different vertices on R.
The one-way infinite path R naturally exists as a subgraph in C and is called the spine
of C. All those end vertices of paths in P that do not lie on R and those that belong
to trivial paths (i.e. paths that consist of just one vertex) are called the teeth of C. An
orientation of a comb is called an out-comb (resp. in-comb) if the spine of the comb is
oriented as a ray (resp. anti-ray) and each path of P is oriented as a dipath directed away
from (resp. towards) R.

We shall need the following analog for digraphs of the Star-Comb Lemma [3, Lemma 8.2.2]
for undirected graphs. The proof is very similar to the undirected version, but since it is
short, we include it for the sake of completeness.

Lemma 2.1 (Star-Comb Lemma). Let D be a digraph and let x P V pDq and U Ď V pDq

be infinite such that there exists an x–u dipath for every u P U . Then there exists either an
out-comb with all its teeth in U or a subdivided infinite out-star with all its leaves in U .

Proof. By Zorn’s lemma, there exists a maximal out-arborescence T containing the vertices
of U such that for every vertex t of V pT q there exists an x–t dipath in T and such that
every vertex of T without out-neighbour lies in U . Since U is infinite, T is infinite as well.
If T has a vertex of infinite out-degree, then it contains a subdivided infinite out-star as
out-arborescence with its centre as root and its leaves in U . So let us assume that all
vertices of T have finite out-degree. Then there exists a ray in T starting at x, which we
denote by R. In order to construct infinitely many pairwise disjoint R–U dipaths in T , let
us assume that we have already constructed P0, . . . , Pn´1 such that the starting vertex of
Pi lies before that of Pj on R for i ă j. Let v be the starting vertex of Pn´1 and let w be
its out-neighbour on R. Then the edge vw lies on an x–u dipath in T for some u P U . This
dipath contains a maximal R–U dipath Pn, which is disjoint to all Pi with i ă n. Thus,
we obtain infinitely many pairwise disjoint R–U dipaths. Then R together with all dipaths
Pi for i P N is an out-arborescence with root x, that is an out-comb. □

§3. End degree

Zuther [8, Theorem 2.17], see also Gut et al. [5], proved that every digraph that contains
an arbitrarily large finite number of pairwise disjoint rays contains countably infinitely
many pairwise disjoint rays. Zuther posed the problem [8, Problem 2] whether this also
holds when we ask all rays to lie in a common end. We settle his problem in the positive.

Theorem 3.1. Let D be a digraph.
(i) If an end of D contains n pairwise disjoint rays for all n P N, then it contains

countably infinitely many pairwise disjoint rays.



5

(ii) If an end of D contains n pairwise disjoint anti-rays for all n P N, then it contains
countably infinitely many pairwise disjoint anti-rays.

Proof. It suffices to prove (i), since (ii) follows by applying (i) to the digraph with all edge
directions reversed.

Let ω be an end of a fixed digraph D such that for all n P N there are n pairwise
disjoint rays in ω and let R be a ray in ω. For all n P N, we will recursively construct a set
Rn “ tRn

1 , . . . , Rn
nu of n pairwise disjoint rays, a set Xn :“ txn

1 , . . . , xn
nu of n vertices, and

a set Pn of 2n dipaths, such that the following hold for all n ě 1:

(1) Rn Ď ω;
(2) xn

i lies on Rn
i for all 1 ď i ď n;

(3) Rn´1
i xn´1

i is a proper starting subdipath of Rn
i xn

i for all 1 ď i ď n ´ 1;
(4) Pn contains a dipath from R to xn´1

i Rn
i xn

i and a dipath from xn´1
i Rn

i xn
i to R for

all 1 ď i ď n ´ 1 that avoid
Ť

jăn Pj, where x0
i denotes the starting vertex of Ri.

Let R1 be a set consisting of a single ray R1
1 in ω, let P1 consist of an R–R1

1 dipath and
an R1

1–R dipath and let X1 consist of a vertex of R1
1 that lies after all vertices of dipaths

in P1 on R1
1. By these definitions, (1)–(4) are satisfied for n “ 1. Let us now assume that

we have already constructed Rn, Xn and Pn. See Figure 3.1 for a rough overview of the
construction step from n “ 2 to 3.

Let X be the set of vertices on the dipaths Rn
i xn

i for 1 ď i ď n and let Q Ď ω be a set of
n ` 1 pairwise disjoint rays. Let Q1, . . . , Qn`1 be tails of the elements of Q that avoid X.
For all 1 ď i ď n and 1 ď j ď n ` 1, let P 1

i,j, . . . , P n
i,j be n pairwise disjoint xn

i Rn
i –Qj

dipaths that avoid X ∖ Xn, which exist since all considered rays lie in a common end. For
all 1 ď i ď n let hi denote the last vertex on Rn

i that lies on any of the dipaths P k
i,j. Now,

for all 1 ď ℓ ď n ` 1, let yℓ be a vertex on Qℓ that lies after all vertices on dipaths P k
i,j

on Qℓ and after all vertices on segments xn
i Rn

i hi.
Let D1 be the finite subdigraph of D induced by all dipaths xn

i Rn
i z, where z is a starting

vertex of some P k
i,j , by all dipaths P k

i,j , and by all dipaths z1Qjyj , where z1 is an end vertex
of some dipath P k

i,j. Let S be a set of fewer than n vertices in D1. Then S avoids at
least one ray xn

i Rn
i , at least one Qj and at least one P k

i,j, that is, we find an xn
i –yj dipath.

Menger’s theorem implies that there are n disjoint dipaths from Xn to ty1, . . . , yn`1u. We
may assume that the indices are such that we find dipaths Pi from xn

i to yi for all 1 ď i ď n.
We set Rn`1

i :“ Rn
i xn

i PiyiQi for all 1 ď i ď n and choose Rn`1
n`1 as a tail of Qn`1 which is

disjoint from all Rn`1
i . Finally, we set Rn`1 :“ tRn`1

i | 1 ď i ď n ` 1u. By construction,
(1) holds for Rn`1. Let Pn`1 be a set of dipaths, one from R to Rn`1

i and one from Rn`1
i

to R for all 1 ď i ď n, such that all these dipaths avoid the vertices in
Ť

jďn Pj . Note that
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these dipaths exist as all rays lie in a common end. For 1 ď i ď n ` 1, let xn`1
i be a vertex

on Rn`1
i after all vertices of elements of Pn`1. In particular, xn`1

i lies after xn
i on Rn`1

i .
Then, (2)–(4) hold by construction.

R2

X

Q

D 1 R3

R
x2

j

x3
j

P2

P3

Figure 3.1. The step n “ 2 in the construction for Theorem 3.1.

Thus t
Ť

Rn
i xn

i | n P N, 1 ď i ď nu is an infinite set of pairwise disjoint rays that are all
equivalent to R, and hence lie in ω. □

For higher cardinalities, we note the following remark:

Corollary 3.2. Let D be a digraph, let ω be an end of D and let R (resp. A) be the set
of all sets of disjoint rays (resp. anti-rays) in ω. Then supMPR |M | “ maxMPR |M | and
supMPA |M | “ maxMPA |M |.

Proof. It suffices to prove the corollary for rays as we can obtain the result for anti-rays
by applying the result for rays to the digraph with all edge directions reversed. Let
κ “ supMPR |M |. Then we can find a sequence pMαqαďλ for some λ ď κ of elements of R
such that κ “ supαďλ |Mα| and |Mα| ă |Mβ| for all α ă β. Due to Theorem 3.1 we may
assume that no Mα is a finite set. Now we greedily construct a set M˚ P R such that
|M˚| “ κ, which will complete our proof. For that, we will construct a sequence pM 1

αqαďλ

with M 1
α Ď M 1

β for all α ď β ď λ and such that |M 1
λ| “ κ. We start with M 1

1 :“ M1. Then
there are only |M1| ¨ ℵ0 “ |M1| elements of M2 that contain vertices from elements of M1.
In particular, we can unite M1 with |M2| many elements of M2 that are disjoint from the
rays of M1 and obtain a set M 1

2. We continue transfinitely and follow the same approach
for successor ordinals α ` 1: only |Mα| many rays from Mα`1 contain vertices from the
rays of M 1

α. So there are |Mα`1| rays in Mα`1 disjoint from the elements of M 1
α that we

add to M 1
α to obtain M 1

α`1. Say, for any limit ordinal β, we already constructed sets M 1
α
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for every α ă β. Then we set M2
β :“

Ť

αăβ M 1
α, which is by construction a set of disjoint

rays in ω. Since M2
β P R, the set Mβ must exist. Furthermore, |Mβ| ě |M2

β | holds. If
|Mβ| “ |M2

β |, we set M 1
β :“ M2

β . Otherwise, we add, as in the successor ordinal case, |Mβ|

many ray from Mβ which are disjoint to the elements of M2
β to M2

β in order to form M 1
β.

With this we can now continue transfinitely, but as our construction stops after at most λ

many steps, the supremum is an attained maximum. □

The in-degree of an end ω, denoted by d´pωq, is the maximum number of pairwise
disjoint rays in that end, which is well-defined due to Corollary 3.2. Analogously, we define
the out-degree, denoted by d`pωq, with respect to anti-rays.

§4. Example

In this section, we will discuss an example of a digraph with infinitely many pairwise
disjoint rays and infinitely many pairwise disjoint anti-rays such that every ray and every
anti-ray share a vertex.

Theorem 4.1. There exists a digraph D with the following properties:
(i) D contains infinitely many pairwise disjoint rays.
(ii) D contains infinitely many pairwise disjoint anti-rays.
(iii) Every ray and every anti-ray of D share a vertex.

Proof. For all i P N and i1 :“ p
ři´1

j“1 jq ` 1, let Ri “ xi
i1xi

i1`1 . . . be a ray. Let D be the
union of all rays Ri with additional edges xi`1

k xi
k for all i P N and all feasible k and with

additional edges from x1
k with k “ p

ři
j“1 jq ` k1 to xi

i2 with i2 “ p
ři´1

j“1 jq ` k1, for every
k1 P t1, . . . , iu. We call these latter edges diagonal. Note that this digraph is planar. See
Figure 4.1 (a) for one picture of D and Figure 4.1 (b) for a planar drawing of D.

We note that (i) and (ii) are trivially true. So let Q be a ray and P be an anti-ray in D.
Moving on P along the edges in opposite direction away from the end vertex of P , we must
meet R1 after finitely many edges of the form xm`1

n xm
n or xm

n xm
n`1. This implies that P

meets R1 infinitely many times. Thus, P must also meet R2 infinitely often, and so on. So
P meets each Ri infinitely often. Thus, if Q and some Ri have a common tail, then Q and
P must have infinitely many common vertices.

So let us assume that Q has no common tail with any Ri. Note that Q must leave Ri

towards Ri´1, and Ri´1 towards Ri´2, and so on until it meets R1. Then Q must use a
diagonal edge to some Rk with k ě i when leaving R1. Afterwards, Q must again traverse
all Rk1 with k1 ď k. Note that for each ray Ri there are only finitely many diagonal edges
that are directed towards that ray. So eventually, Q must use a diagonal edge to some Rk

with k ą i when leaving R1. Hence, we obtain that Q meets all Ri infinitely often. Note,
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R1

R2

R3

(a) The digraph D.

R1

R2

R3

(b) A planar drawing of the digraph D.

Figure 4.1. Two drawings of the digraph D.

furthermore, that due to planarity it is not possible for Q to traverse a ray Ri first through
some vertex ri

n and later through some vertex ri
m for m ă n as the ri

n–R1 subdipath of Q

together with the R1–ri
m subdipath of Q would cause ri

mQ to intersect Qri
m in another

vertex than ri
m, which is impossible, cf. Figure 4.2 (a).

R1

R2

R3

(a) The blue dipath cannot be extended to a
ray Q since the finite face bounded by the red
dipath and itself cannot be left.

R1

R2

R3

(b) No anti-ray P disjoint to the blue ray Q

can enter the finite face bounded by the red
dipath and a finite subdipath of Q.

Figure 4.2. Two cases from the proof of Theorem 4.1.
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This implies that there exists xj
ℓ1 and xj

ℓ2 on some Rj and on Q with ℓ1 ă ℓ2 such that
xj

ℓ1Rjx
j
ℓ2 does not meet Q and that there exists xj

ℓ on P such that ℓ ă ℓ1, but there is no
xj

ℓ˚ on P with ℓ ă ℓ˚ ă ℓ1. Hence, P must use a diagonal edge x1
kxj1

ℓ1 after the vertex xj
ℓ

with ℓ1 ď ℓ and j1 ě j for some k P N. Since ℓ ă ℓ1, the dipath xj
ℓ1Qxj

ℓ2 must also use a
diagonal edge x1

k1x
j2

ℓ2 with k1 ą k for some j2, ℓ2 P N. Now it follows that xj
ℓ lies in the

interior of the face bounded by xj
ℓ1Qxj

ℓ2 Y xj
ℓ1Rjx

j
ℓ2 . Since P intersects Rj again after xj

ℓ,
but uses the diagonal edge x1

kxj1

ℓ1 , we get that P must intersect the subdipath xj
ℓ1Qx1

k1 of Q,
cf. Figure 4.2 (b), which is a contradiction. □

This leaves the following problem open.

Problem 4.2. If a digraph D has an end ω such that D contains for all n P N a set of
n rays and n anti-rays that are pairwise disjoint and lie in ω, does there exist a set of
infinitely many rays and infinitely many anti-rays in ω that are pairwise disjoint?

Note that the proof method used in Theorem 3.1 does not work here since we would
need to find two disjoint dipath systems, one for rerouting our initial segments of rays, and
one for our endsegments of anti-rays. This, however, is not guaranteed by an application
of Menger’s theorem as done before.

The previous problem is also motivated by Proposition 4.4 and the following problem by
Gut et al. [5], as we shall see below.

Problem 4.3. [5, Problem 1.3] Is the double ray ubiquitous?∗

Proposition 4.4. For every n P N, if a digraph D contains a set of n rays and n anti-rays
that are all pairwise disjoint and lie in the same end, then there exists a set of n pairwise
disjoint double rays in D all of whose tails lie in that end.

Proof. Let R1, . . . , Rn be rays and Q1, . . . , Qn be anti-rays all in the same end ω of the
digraph D and all pairwise disjoint. Let P be a set of pairwise disjoint dipaths that consists
of n many Qi–Rj dipaths for all 1 ď i, j ď n. This is possible to choose since all rays
and anti-rays lie in ω. For all 1 ď i ď n, let xi be a vertex on Qi such that Qixi contains
no vertex from any dipath in P. Let yi be a vertex on Ri such that yiRi contains no
vertex from any dipath in P . Let H be the finite digraph on the final subdipaths xiQi, the
starting dipaths Riyi and the dipaths in P . Then every set of less than n vertices misses
one dipath xiQi, one dipath Rjyj and one Qi–Rj dipath P P P . Thus, this vertex set does
not separate X :“ txi | 1 ď i ď nu from Y :“ tyi | 1 ď i ď nu. By Menger’s theorem, there

∗A digraph H is ubiquitous if, for any digraph D, the existence of n pairwise disjoint copies of H in D

for all n P N implies the existence of infinitely many pairwise disjoint copies of H in D.
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exist n pairwise disjoint X–Y dipaths in H and hence in D. These dipaths together with
the tails Qixi and yiRi form n pairwise disjoint double rays all of whose tails lie in ω. □

Let us briefly discuss how Problem 4.2 follows from a positive answer for Problem 4.3
for one-ended digraphs. Assume that the end ω of a one-ended digraph D has for all n P N
a subset of n rays and n anti-rays that are pairwise disjoint. Then Proposition 4.4 implies
that there are n pairwise disjoint double rays in D. So a positive answer for Problem 4.3
gives us infinitely many pairwise disjoint double rays in D which directly implies the
existence of a set of infinitely many rays and infinitely many anti-rays in D that are all
pairwise disjoint and lie in the unique end ω.

§5. End-exhausting sequences

In this section we define a generalisation of the in-degree of an end, the so-called combined
in-degree, and characterise it in terms of certain sequences of vertex sets. Hence, we focus on
ends that contain rays. Everything can be done for the out-degree and anti-rays completely
analogously, which is why we omit the details for that here.

Let D be a digraph and ω an end of D which contains a ray. Furthermore, let pUiqiPN

be a sequence of finite vertex sets of D. We say that the sequence pUiqiPN is ω-exhausting
if for every ray in ω there exists an i P N such that this ray contains a vertex of Ui and
if a ray in ω contains a vertex of Ui, then it contains a vertex of Ui`1. Note that the
vertices of the ray in Ui and in Ui`1 need not be distinct. Furthermore, note that obviously
every countable digraph admits an ω-exhausting sequence for every end ω that contains a
ray of the digraph. For uncountable digraphs this is not necessarily true. The following
proposition characterises the existence of exhausting sequences and is an analogue of
Lemma 5.1 in [4], which characterises the existence of so-called end-defining sequences for
ends of undirected graphs.

Proposition 5.1. Let D be a digraph and let ω be an end of D that contains a ray. Then
there exists an ω-exhausting sequence if and only if there exist at most countably many
disjoint rays in ω.

Proof. If there are uncountably many disjoint rays in ω, then clearly there cannot exist an
ω-exhausting sequence.
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Conversely, let R :“ tRi “ xi
0x

i
1 . . . | i P Nu be a maximal set of countably many disjoint

rays in ω. We set

V1 :“ tx1
0u

V2 :“ V1 Y tx1
1, x2

0u

V3 :“ V2 Y tx1
2, x2

1, x3
0u

...

Let R be a ray in ω. By the maximality of R, there exists some vertex from a ray in R
that lies on R. Let xi

j be the first such vertex on R. Since xi
j lies in Vi`j and thus in Vk for

all k ě i ` j, we conclude that pViqiPN is an ω-exhausting sequence. □

Let us call an end ω of a digraph D countable if it contains at most countably many
disjoint rays. So by the proposition above, every countable end with at least one ray admits
an exhausting sequence.

Let X and Y be disjoint sets of ends of D. We say that a vertex set S Ď V pDq separates
X from Y in D if for every ω P Y every R P ω has a tail Q such that every ray in elements
of X that starts at a vertex of Q meets S. In case X (or Y ) is a singleton set, we ease the
notation and analogously define that the end ωX P X (or X) is separated from Y (or from
the end ωY P Y ). Note that, if η ă ω for ends η and ω, then η is separated from ω by a
finite set of vertices.

Similarly, we define for W Ď V pDq and a set of ends Y of D that a vertex set S Ď V pDq

separates W from Y in D if for every ω P Y every R P ω has a tail Q such that every Q–W

dipath meets S. As before, we ease the notation and make corresponding definitions in
case W or Y are singleton sets. Finally, we accordingly define how a set of vertices and
ends is separated from a set of ends.

For an end ω of D, set

ω´ :“ tη ă ω | η end of D, d´
pηq ě 1u.

For a vertex v P V pDq and a ray R, we call an infinite family of v–R dipaths an infinite
v–R fan if they pairwise meet only in v.

A vertex v dominates an end ω of a digraph D if ω contains a ray and for every ray
R P ω there is an infinite v–R fan and an R–v dipath. We denote by dompωq the set of
vertices dominating the end ω. Note that looking at infinitely many distinct tails of R, the
definition implies the existence of infinitely many distinct R–v dipaths. In contrary to the
v–R fan, these dipaths may pairwise intersect in more vertices than just v. Note that, if η
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and ω are ends with η ă ω and if v P V pDq dominates η, then either v also dominates ω,
or v, and hence η, is separated from ω by the empty set.

For an arbitrary end ω of a digraph D, we define the combined in-degree of ω, denoted
by ∆´pωq, as

d´
pωq ` inft|S| | S Ď V pDq separates ω´

Y dompωq from ωu.

Analogously, it is possible to define the combined out-degree of ω.
Note that ∆´pωq “ d´pωq holds if d´pωq ě ℵ0, since the vertex set of a maximal collection

of disjoint rays in ω is a set separating ω´ Y dompωq from ω of size d´pωq. Furthermore,
note for the case where d´pωq is finite that ∆´pωq ď ℵ0 as, similarly as before, the vertex
set of a maximal collection of disjoint rays in ω is a countable set separating ω´ Y dompωq

from ω. The same holds for the out-degree and combined out-degree.
In graphs the combined degree of an end is the maximum number of disjoint rays plus

the number of vertices dominating that end. This is known to be equal to the infimum over
the sizes of the vertex sets in defining sequences of that end if the end is countable (see [4]).
For digraphs, the infimum over the sizes of the sets of exhausting sequences is not the
same as the in-degree plus the number of dominating vertices of that end as the following
example shows:

Example 5.2. Let D be the digraph as depicted in Figure 5.1. The in-degree of the end
ω containing R is 1 and there is no dominating vertex of that end. Intuitively, the ray
R´ serves as a dominating vertex that is stretched out as a ray. The combined in-degree
of ω is 2 as we can simply let S consist of the bottom left vertex for the definition of the
combined in-degree. Furthermore, if Ui is a set consisting of the i-th vertex of R together
with its in-neighbour on R´, then pUiqiPN is an exhausting sequence of ω and there is no
exhausting sequence of ω with smaller limit inferior.

RÐ

R

R´

Figure 5.1. The end containing R has combined in-degree 2, but contains
no two disjoint rays and is not dominated by any vertex.

Our aim in the rest of this section is to show that the combined in-degree can be
characterised via exhausting sequences as it is indicated by Example 5.2.
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Lemma 5.3. Let D be a digraph and ω an end of D where 1 ď d´pωq ă 8. Suppose there
exists a finite S Ď V pDq separating dompωq Y ω´ from ω. Then there is a sequence pUiqiPN

with Ui Ď V pDq and |Ui| “ d´pωq for all i P N such that every ray in ω meets some Ui and
if it meets Ui and avoids S then it also meets Ui`1.

Proof. Let U1 be a vertex set of size d´pωq such that d´pωq many disjoint rays R1, . . . , Rd´pωq

with Ri “ xi
0x

i
1 . . . for all 1 ď i ď d´pωq in ω start at U1. Since S is finite, we may assume

that no xi
j lies in S and that no Ri–dompωq dipath exists in D ´ S for any i. We define

the Ui recursively for all i P N. Let us assume that we have already defined Ui. Then there
is a smallest vertex set Ui`1 with Ui X Ui`1 “ ∅ that separates all but finitely many Xℓ

from Ui in D ´ S. Note that this set is finite since there are otherwise infinitely many
Ui–Xℓ dipaths that only share their starting vertex. Hence, there would exist a vertex
from dompωq in Ui, which cannot be. By definition, we have |Ui| ď |Ui`1|. Then there is
a set Pi of |Ui| pairwise disjoint Ui–Ui`1 dipaths in D ´ S by Menger’s theorem. Note
that every P P Pi is disjoint from every P 1 P Pj for j ă i: otherwise there exists a Uj–Ui`1

dipath that avoids Ui, which can be extended to a Uj–Xℓ dipath that avoids Ui as Ui`1 was
chosen smallest. Concatenating the elements of the sets Pi for all i ě j any j P N yields a
set of at least |Uj| many disjoint rays, all of which lie in an end µ ď ω by construction.
But as all the dipaths used to construct the rays avoid S, these rays must be in ω. This
shows |Uj| ď d´pωq. Since d´pωq “ |U1| ď |Uj|, we obtain |Uj| “ d´pωq.

Now, let R P ω be such that R avoids S and let us assume there is an i P N such that R

contains a vertex v from Ui. Hence, v P V pRjq for some 1 ď j ď d´pωq. Since R P ω, it
contains infinitely many vertices from the rays R1, . . . , Rd´pωq. This implies that R contains
vertices from Xn for every n P N. As Ui`1 separates some Xm from Ui in D ´ S and R is
disjoint from S, we know that vR intersects Ui`1.

Let us now assume that R P ω does not meet any Ui. By the choice of R1, . . . , Rd´pωq,
the ray R meets some Ri. Let Q be the ray xi

0RixR, where x is a vertex in Ri X R. Then
Q meets any Uj only in xi

0Rix and thus it meets only finitely many Uj. Since it meets at
least U1, this contradicts the property that we just proved. Thus, the sequence pUiqiPN

satisfies the claim. □

Lemma 5.3 shows that under its assumptions there exists an exhausting sequence all of
whose elements have size ∆´pωq: simply take the sequence pUi Y SqiPN. While this just
seems to be a part of a special case of Theorem 1.1, it will actually help us in the proof of
that theorem.
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Lemma 5.4. Let D be a digraph and let ω be a countable end of D with d´pωq ě 1. Let
pUiqiPN be an ω-exhausting sequence such that |Ui| ď k for some k P N and all i P N. Then
the following hold.

(i) For every η P ω´, either there exists a finite vertex set S that separates η from ω

and lies in all but finitely many Ui or pUiqiPN is η-exhausting.
(ii) There exists a finite vertex set S that separates dompωq from ω and lies in all but

finitely many Ui.

Proof. Let η P ω´. Let us assume that there is no finite vertex set that separates η from ω

and that lies in all but finitely many Ui. Let us suppose that there is a ray Q P η that
avoids all vertex sets Ui. Let S be the set of vertices that are contained in all but finitely
many Ui. Hence, S is a finite set, and does not separate η from ω by assumption. So there
is a ray R P ω such that for every tail T of R there is a ray QT P η starting at T and
avoiding S. By considering a tail, if necessary, and since pUiqiPN is ω-exhausting, we may
assume that R is disjoint from S and the first vertex of R lies in Un for some n ě 1. By
assumption, we know that QR P η is a ray starting at a vertex v on R and avoiding S. See
Figure 5.2 (a) for a figurative sketch of the situation in the proof. Since Q and QR are
equivalent, there exists a QR–Q dipath P2, starting at qR and ending at q, that is disjoint
to S. Then there exists N P N with N ě n such that for all j ą N there is no common
vertex of Uj and the ray Q˚ :“ RvQRqRP2qQ. Because of η ď ω, there are infinitely many
pairwise disjoint qQ–R dipaths. Thus, there exists one such dipath P3 with first vertex q˚

and last vertex r˚ ‰ v such that neither P3 nor r˚R contains any vertex from Uk for some
k ą N . Then the digraph Q˚q˚P3r

˚R contains a ray R˚ that lies in ω, contains a vertex
from Un but not from Uk. This is a contradiction to pUiqiPN being ω-exhausting. Thus,
every ray in η meets some set Ui.

R

Un

UN

Uk

S

QRQ

P2

P3
Q˚

v

r˚

qRq

q˚

(a) The blue ray Q˚ intersects Un but not Uk.

R

Un

UN

Uk

S

dompωq

Q

P

P 1

r

r˚

v

(b) The blue ray Q intersects UN but not Uk.

Figure 5.2. Two cases from the proof of Lemma 5.4.
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Let us suppose that there exists a ray Q P η such that Q contains a vertex from Ui but
not from Ui`1. Let x be on a ray R P ω such that xR avoids Ui`1, too, which is possible
as Ui`1 is finite. Since Q ď R, there exists a Q–xR dipath P with starting vertex y and
end vertex z that avoids Ui`1 such that Qy meets Ui. Then QyPzR contains a ray in ω

that contains a vertex from Ui but not from Ui`1. This is impossible since pUjqjPN is
ω-exhausting. Thus, (i) follows.

Suppose that there is no finite vertex set separating dompωq from ω that lies in all but
finitely many Ui. Let S be the set of vertices that are contained in all but finitely many Ui.
Hence, S is a finite set and does not separate some v P dompωq from ω by assumption.
Again, we may assume that there is a ray R P ω that is disjoint from S. Similarly as in the
proof of statement (i), we can find an R–v dipath P starting at some r P R that avoids S.
See Figure 5.2 (b) for a picture of the situation in this proof. We may choose r such that
Rr contains a vertex from some Un. Then there exists N ě n such that RrP contains a
vertex u P UN but uRrP or uP , depending on whether u lies on R or on P , meets UM for
M ě N at most in u. Furthermore, let k ą N such that Uk X UN Ď S. Then uRrP or
uP is disjoint from Uk. Let R1 be a tail of R that is disjoint from Uk. Since there exists
a v–R1 fan, there is a v–R1 dipath P 1 with end vertex r1 on R1 that avoids Uk and such
that P 1 intersects uRrPv only in v. Then uRrPvP 1r1R1 or uPvP 1r1R1 is a ray Q in ω that
contains a vertex from UN but avoids Uk, which contradicts that pUiqiPN is ω-exhausting.
This shows (ii). □

Now we are able to prove our main result.

Theorem 5.5. Let D be a digraph and let ω be a countable end of D with d´pωq ě 1.
Then

Kpωq :“ inf
!

lim inf
iPN

|Ui|

ˇ

ˇ

ˇ
pUiqiPN is an ω-exhausting sequence

)

is the same as the combined in-degree ∆´pωq.

Proof. Let us define the following:

δ´
pωq :“ inf

#

|S| `
ÿ

ηPB

d´
pηq

ˇ

ˇ

ˇ

ˇ

ˇ

A Y B “ ω´
Y tωu, A X B “ ∅, ω P B,

S Ď V pDq separates A Y dompωq from B

+

.

We will actually prove that Kpωq “ δ´pωq “ ∆´pωq. Note that Kpωq is at most ℵ0 by
definition. Since ω is countable by assumption, we have ∆´pωq ď ℵ0 as noted earlier.
Trivially, we have δ´pωq ď ∆´pωq and hence δ´pωq ď ℵ0, too.
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In order to prove Kpωq ě δ´pωq, it suffices to prove the assertion for finite Kpωq. Let
pUiqiPN be an ω-exhausting sequence. By thinning out the sequence pUiqiPN, we may assume
without loss of generality that all sets Ui have the same finite size. Let pA, Bq be a partition
of ω´ Y tωu such that B consists of those ends η in ω´ Y tωu for which pUiqiPN is an
exhausting sequence and such that the (finite) set of all those vertices that lies in all but
finitely many Ui does not separate η from ω. By Lemma 5.4 (ii), there exists a finite vertex
set Sdom that separates dompωq from ω and that lies in all but finitely many Ui. Since
pUiqiPN is an exhausting sequence for every element η P B, there exists by Lemma 5.4 (i),
for every µ P A X η´, a finite vertex set Sµ,η that separates µ from η and lies in all but
finitely many Ui. We claim that for every µ P A ∖ η´ the set Sµ,ω separates µ from η and
lies in all but finitely many Ui. If Sµ,ω does not separate µ from η, then Sµ,ω does not
separate µ from ω, as Sµ,ω is not separating η from ω by definition of B, a contradiction.
As Kpωq is finite, there exists a finite vertex set S that separates A from B and that lies
in all but finitely many Ui.

If B is infinite or has an element of infinite in-degree, then there exist more than Kpωq

pairwise disjoint rays in elements of B. Since pUiqiPN is η-exhausting for every η P B, there
exists an N P N such that for all i ě N the set Ui contains vertices from more than Kpωq

many of these rays. This contradicts the definition of Kpωq. Hence, B is finite and every
element of B has finite in-degree. Thus, the maximum number of pairwise disjoint rays
in elements of B is finite and is the same as

ř

ηPB d´pηq. Since S Y Sdom is finite, by
considering tails if necessary, we may assume that there are

ř

ηPB d´pηq many pairwise
disjoint rays in elements of B each of which contains no vertex from S Y Sdom. Since all but
finitely many Ui must contain a vertex from each of those rays and S Y Sdom is contained
in all but finitely many Ui, this completes the proof of Kpωq ě δ´pωq.

In order to prove Kpωq ď δ´pωq, let us now assume that δ´pωq is finite, i. e. there are a
partition pA, Bq of ω´ Y tωu with ω P B and some vertex set S separating A Y dompωq

from B such that |S| `
ř

ηPB d´pηq is finite. In particular, δ´pωq being finite implies that B

and S are finite. Note that no end η in B is separated from ω by S, as moving η together
with all ends in B from which η is not separated from B to A would make the value
of δ´pωq smaller. Let η1, . . . , η|B| be an enumeration of B such that i ď j if ηi ď ηj. Note
that η|B| “ ω. Next we claim that, for every i P t1, . . . , |B|u, there is a finite vertex set Si

that contains S and separates all ends µ ă ηi from ηi. Since B is finite, we can separate all
ends µ ă ηi with µ P B with a finite vertex set S 1

i from ηi. Hence, we can separate all ends
µ ă ηi with µ P ω´ from ηi by S Y S 1

i. Suppose there were a µ ă ηi outside of ω´ which
is not separated by S Y S 1

i from ηi. Then, we have µ P η´
i Ď ω´, a contradiction. Note
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that every vertex dominating an end ηj ă ω also dominates ω. Therefore, every vertex
dominating ηi is separated from ηi by Si because ηi P B and S Ď Si. Thus, Lemma 5.3
implies that there are sequences pU j

i qiPN, for every j P t1, . . . , |B|u, with |U j
i | “ d´pηjq for

all i P N such that every ray in ηj meets some U j
i and if it meets U j

i and avoids Sj then it
also meets U j

i`1. Let R P ω be a ray. Since S does not separate any ηj from ω, we may
assume that there is a dipath from R to every vertex in U j

i for every 1 ď j ď |B| and
every i P N. For every 1 ď j ď |B|, let Rj be a maximal set of pairwise disjoint rays in ηj

starting at U j
1 .

Claim 1. We may choose the pU j
i qiPN such that there is a dipath from every tail of R to

every vertex in U j
i that avoids S for every 1 ď j ď |B| and every i P N and such that the

elements of all Rj for 1 ď j ď |B| are disjoint from S.

Proof. Since S does not separate ηj from ω, there exists a ray Q P ηj starting at a vertex
on an arbitrary tail of R so that Q is disjoint from S. Hence, Q intersects all but finitely
many U j

i . Let us now fix i P N such that Q intersects U j
i , and let x P V pQq X U j

i . Then
there exists N ě i such that for every i1 ě N and every y P U j

i1 there exists an x–y dipath
avoiding S. Since S is finite, the claim follows by taking a suitable subsequence of pU j

i qiPN

and thus taking the elements of Rj as suitable tails of the original ones. ♢

Claim 2. We may choose the sequences pU j
i qiPN such that every ray in ηj that starts at U ℓ

1

with ℓ ą j and avoids S, and hence also every ray in ηj that starts at some U ℓ
i with ℓ ą j

and avoids S, must have a vertex from
Ť

kďj Uk
1 .

Proof. Let us suppose that the claim is false and that j is smallest such that the claim fails
for j. In particular, the sets Uk

1 with k ă j are defined such that they have the desired
property. Then there exists for infinitely many i ě 2 a ray Qi P ηj starting in some U ℓ

1 with
ℓ ą j that avoids

Ť

kăj Uk
1 Y U j

i Y S, as otherwise we could replace the sequence pU j
i qiPN

by a suitable final subsequence. Since Qi P ηj, there exists a first vertex xi on Qi that lies
on some Q P Rj such that xiQ does not meet

Ť

kăj Uk
1 Y U j

i . Note that txi | i P Nu must
be infinite. As U ℓ

1 is finite, infinitely many of the Qi start at the same vertex of U ℓ
1 . Hence,

in the subdigraph induced by the starting dipaths Qixi, there exists by Lemma 2.1 either
a subdivided infinite out-star with leaves in elements of Rj or an out-comb with teeth on
elements of Rj. See Figure 5.3 for a picture of the two cases.

Let us first suppose that there exists a subdivided infinite out-star with centre x and
leaves in elements of Rj. Clearly, there exists an x–R1 fan for every ray R1 P ηj. And
since ηj ď ω, there is also an x–R2 fan for every ray R2 P ω. By Claim 1, each U j

i can be
reached from every tail of R via a dipath avoiding S. Since all rays Qi avoid S, we know
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U ℓ
1U j

1

U j
i

U j
k

Qixi

Qkxk

x

xi

xk

R P ωQ P Rj

S

(a) The case when we obtain a blue out-star
with centre x.

U ℓ
1U j

1

U j
i

U j
k

Qixi

Qkxk

T

xi

xk

Q P Rj

S

(b) The case when we obtain a blue out-comb
with spine T .

Figure 5.3. Two cases from the proof of Claim 2.

that x is reached from every tail of R via a dipath avoiding S. So x is dominating ω, but
not separated from it by S, a contradiction to the choice of S.

Thus, we find an out-comb with spine T and teeth in txi | i ě 2u in that subdigraph.
We may assume that T has its first vertex in some U ℓ

1 with ℓ ą j. As Rj is finite, one of
its elements contains infinitely many teeth of the out-comb. So T must lie in an element of
ω´ Y tωu, but as all rays Qi avoid S, it cannot lie in A, so it lies in some ηk ď ηj. By the
minimal choice of j, if k ă j, then T meets

Ť

iăk U i
1, which is impossible as all the dipaths

Qixi avoid that set. Hence, we have k “ j. By the choice of pU j
i qiPN, T must contain

a vertex from some U j
m, and thus from every U j

i for i ě m as the sequence was chosen
according to Lemma 5.3. This shows that infinitely many Qi contain a vertex from all U j

i

for i ě m, which contradicts their choices. Thus, there exists n P N such that all rays in ηj

starting at some U ℓ
1 with ℓ ą j that avoid

Ť

kăj Uk
1 YS contain a vertex from U j

n. Removing
all elements before U j

n from the sequence pU j
i qiPN yields a sequence for j as desired. ♢

Note that Claim 2 implies that SY
Ť

jă|B|
U j

1 separates ω´Ydompωq from ω. Furthermore,
Claim 2 implies that we may have chosen Si “ S Y

Ť

jăi U j
1 , which we assume for the rest

of the proof.
We will define a sequence pViqiPN that is ω-exhausting. We set

V1 :“ S Y
ď

1ďjď|B|

U j
1

and

Vi :“ S Y
ď

1ďjă|B|

U j
1 Y U

|B|

i .
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Note that
Vi “ V1 ∖ U

|B|

1 Y U
|B|

i “ S|B| Y U
|B|

i .

Let Q be a ray in ω. By definition of pU
|B|

i qiPN, the ray Q contains a vertex from some U
|B|

i .
If it also contains a vertex of S|B|, then the ray contains a vertex from all Vj for j ě i

by their definition. If Q contains no vertex from S|B|, then the definition of the pU
|B|

k qkPN

implies that Q contains a vertex from U
|B|

i`1 and inductively from all U
|B|

j for j ě i. Thus,
the sequence pViqiPN is ω-exhausting. This implies Kpωq ď δ´pωq.

Since δ´pωq ď Kpωq and since the sequence pViqiPN that we constructed in the proof of
Kpωq ď δ´pωq is ω-exhausting and has the property |Vi| ď δ´pωq for all i P N, we have
|Vi| ď Kpωq. Since all Vi have the same size, we have |Vi| “ Kpωq for all i P N. As S|B|

separates ω´ Y dompωq from ω, this implies

∆´
pωq ď |S|B|| ` d´

pωq “ |V1| “ Kpωq.

Thus, we have proved

δ´
pωq ď ∆´

pωq ď Kpωq ď δ´
pωq,

which completes the proof. □

§6. Edge-degrees of ends

In this section, we will consider edge-disjoint rays in ends of digraphs and discuss the
corresponding structural results for ends containing an arbitrary or an infinite number of
pairwise edge-disjoint rays. The proofs of the results are essentially the same as those given
in Section 3 and Section 4, which is why we omit them here. The first result corresponds
to Corollary 3.2 for edge-disjoint rays.

Theorem 6.1. Let D be a digraph, let ω be an end of D and let R (resp. A) be the set of
all sets of edge-disjoint rays (resp. anti-rays) in ω. Then supMPR |M | “ maxMPR |M | and
supMPA |M | “ maxMPA |M |. □

Theorem 6.1 enables us to define the edge-in-degree (the edge-out-degree) of an end of a
digraph as the maximum number of pairwise edge-disjoint rays (anti-rays) in that end.

Similarly as for vertex-disjoint rays and anti-rays as in Theorem 4.1, we obtain a
digraph that has infinitely many pairwise edge-disjoint rays and infinitely many pairwise
edge-disjoint anti-rays such that every ray and every anti-ray share an edge.

Theorem 6.2. There exists a digraph D with the following properties:

(i) D contains infinitely many pairwise edge-disjoint rays.
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(ii) D contains infinitely many pairwise edge-disjoint anti-rays.
(iii) Every ray and every anti-ray of D share an edge.

Proof. Let D1 be the digraph constructed in the proof of Theorem 4.1. We replace every
vertex u by two vertices u´ and u` and every edge uv by the edge u`v´. We add also
all edges of the form u´u` for u P V pD1q in order to obtain the digraph D. Obviously,
D satisfies (i) and (ii). Since every vertex of D has either a unique out-neighbour or a
unique in-neighbour, edge-disjoint dipaths in D induce disjoint dipaths in D1. Thus, D

must satisfy (iii). □
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