Hamiltonische Quaternionen $\mathbb H$

Jonathan Enk

Universität Hamburg

21.02.2025

Gliederung

- 1. Historie der Quaternionen
- 2. Konstruktion der Quaternionen
- 3. Isomorphismus zwischen Quaternionen und Matrixalgebra
- 4. Imaginärraum der Quaternionen

• 1835: William Rowan Hamilton (1805-1865) rechtfertigt das Rechnen mit $\mathbb C$ über geometrische Deutungen von Addition und Multiplikation im $\mathbb R \times \mathbb R$.

- 1835: William Rowan Hamilton (1805-1865) rechtfertigt das Rechnen mit $\mathbb C$ über geometrische Deutungen von Addition und Multiplikation im $\mathbb R \times \mathbb R$.
- **bis 1843**: Arbeit an hyperkomplexen Zahlen zur geometrischen Deutung im \mathbb{R}^3 :

- 1835: William Rowan Hamilton (1805-1865) rechtfertigt das Rechnen mit $\mathbb C$ über geometrische Deutungen von Addition und Multiplikation im $\mathbb R \times \mathbb R$.
- bis 1843: Arbeit an hyperkomplexen Zahlen zur geometrischen Deutung im \mathbb{R}^3 :

"Every morning, on my coming down to breakfast, you used to ask me: 'Well, Papa, can you multiply triplets?'. [...] 'No, I can only add and subtract them'."

- 1835: William Rowan Hamilton (1805-1865) rechtfertigt das Rechnen mit $\mathbb C$ über geometrische Deutungen von Addition und Multiplikation im $\mathbb R \times \mathbb R$.
- bis 1843: Arbeit an hyperkomplexen Zahlen zur geometrischen Deutung im \mathbb{R}^3 :
 - "Every morning, on my coming down to breakfast, you used to ask me: 'Well, Papa, can you multiply triplets?'. [...] 'No, I can only add and subtract them'."
- 16.Oktober 1843: "Eingebung" auf der Brougham Bridge in Dublin.

- 1835: William Rowan Hamilton (1805-1865) rechtfertigt das Rechnen mit $\mathbb C$ über geometrische Deutungen von Addition und Multiplikation im $\mathbb R \times \mathbb R$.
- bis 1843: Arbeit an hyperkomplexen Zahlen zur geometrischen Deutung im \mathbb{R}^3 :
 - "Every morning, on my coming down to breakfast, you used to ask me: 'Well, Papa, can you multiply triplets?'. [...] 'No, I can only add and subtract them'."
- 16.Oktober 1843: "Eingebung" auf der Brougham Bridge in Dublin.

tripadvisor.de

Bemerkung

Hamilton hätte sich viel Zeit sparen können, denn:

Es existiert keine \mathbb{R} -lineare Erweiterung der Multiplikation von \mathbb{C} auf \mathbb{R}^3 .

Bemerkung

Hamilton hätte sich viel Zeit sparen können, denn:

Es existiert keine \mathbb{R} -lineare Erweiterung der Multiplikation von \mathbb{C} auf \mathbb{R}^3 .

Beweis:

Seien e:=(1,0,0), i:=(0,1,0), j:=(0,0,1) Standardbasis im \mathbb{R}^3 . Als Erweiterung der Multiplikation von \mathbb{C} , setze $i^2=-e$ und folglich i(ij)=(ii)j=-ej=-j.

Bemerkung

Hamilton hätte sich viel Zeit sparen können, denn:

Es existiert keine \mathbb{R} -lineare Erweiterung der Multiplikation von \mathbb{C} auf \mathbb{R}^3 .

Beweis:

Seien e:=(1,0,0), i:=(0,1,0), j:=(0,0,1) Standardbasis im \mathbb{R}^3 . Als Erweiterung der Multiplikation von \mathbb{C} , setze $i^2=-e$ und folglich i(ij)=(ii)j=-ej=-j. Weiter sei $ij:=\alpha e+\beta i+\gamma j$ mit $\alpha,\beta,\gamma\in\mathbb{R}$.

Bemerkung

Hamilton hätte sich viel Zeit sparen können, denn:

Es existiert keine \mathbb{R} -lineare Erweiterung der Multiplikation von \mathbb{C} auf \mathbb{R}^3 .

Beweis:

Seien e:=(1,0,0), i:=(0,1,0), j:=(0,0,1) Standardbasis im \mathbb{R}^3 . Als Erweiterung der Multiplikation von \mathbb{C} , setze $i^2=-e$ und folglich i(ij)=(ii)j=-ej=-j. Weiter sei $ij:=\alpha e+\beta i+\gamma j$ mit $\alpha,\beta,\gamma\in\mathbb{R}$. Damit gilt folgt: $-j=i(ij)=i(\alpha e+\beta i+\gamma j)=\alpha i-\beta e+\gamma (ij)\\ =\alpha i-\beta e+\gamma (\alpha e+\beta i+\gamma j)\\ =(\gamma\alpha-\beta)e+(\gamma\beta+\alpha)i+\gamma^2 j$

Bemerkung

Hamilton hätte sich viel Zeit sparen können, denn:

Es existiert keine \mathbb{R} -lineare Erweiterung der Multiplikation von \mathbb{C} auf \mathbb{R}^3 .

Beweis:

Seien e:=(1,0,0), i:=(0,1,0), j:=(0,0,1) Standardbasis im \mathbb{R}^3 . Als Erweiterung der Multiplikation von \mathbb{C} , setze $i^2=-e$ und folglich i(ij)=(ii)j=-ej=-j.

Weiter sei $ij := \alpha e + \beta i + \gamma j$ mit $\alpha, \beta, \gamma \in \mathbb{R}$. Damit gilt folgt:

$$-j = i(ij) = i(\alpha e + \beta i + \gamma j) = \alpha i - \beta e + \gamma (ij)$$
$$= \alpha i - \beta e + \gamma (\alpha e + \beta i + \gamma j)$$
$$= (\gamma \alpha - \beta) e + (\gamma \beta + \alpha) i + \gamma^2 j$$

Damit folgt durch Koeffizientenvergleich, dass $\alpha, \beta = 0$ und $\gamma^2 = -1$, also $\gamma \notin \mathbb{R}$.

Definition (\mathbb{R} -Algebra)

Sei \mathbb{R} -Vektorraum V mit einer Produktabbildung $V \times V \to V, (x, y) \mapsto xy$ heißt $\underline{\mathbb{R}}$ -Algebra, falls $\forall \alpha, \beta \in \mathbb{R}; \forall x, y, z \in V$ die *Distributivgesetze* gelten:

- 1. $(\alpha x + \beta y)z = \alpha \cdot xz + \beta \cdot yz$,
- 2. $x(\alpha y + \beta z) = \alpha \cdot xy + \beta \cdot xz$.

Definition (\mathbb{R} -Algebra)

Sei \mathbb{R} -Vektorraum V mit einer Produktabbildung $V \times V \to V, (x, y) \mapsto xy$ heißt $\underline{\mathbb{R}}$ -Algebra, falls $\forall \alpha, \beta \in \mathbb{R}; \forall x, y, z \in V$ die *Distributivgesetze* gelten:

- 1. $(\alpha x + \beta y)z = \alpha \cdot xz + \beta \cdot yz$,
- 2. $x(\alpha y + \beta z) = \alpha \cdot xy + \beta \cdot xz$.

Bemerkung

Sei $\mathcal{A} = (V, \cdot)$ eine \mathbb{R} -Algebra. Wir bezeichnen diese als:

- assoziativ, falls $\forall x, y, z \in V : x(yz) = (xy)z$,
 - kommutativ, falls $\forall x, y \in V : xy = yx$,
 - nullteilerfrei, falls $\forall x, y \in V : xy = 0 \implies (x = 0 \lor y = 0)$,
 - \mathbb{R} -Algebra mit Einselement, falls $\exists e \in V \ \forall x \in V : xe = ex = x$.

Die Dimension des \mathbb{R} -Vektorraums heißt Dimension der \mathbb{R} -Alegbra.

Definition (Unteralgebra)

Sei $U\leqslant V$ ein Untervektorraum der \mathbb{R} -Algebra $\mathcal{A}=(V,\cdot)$. Falls

$$\forall x, y \in U : xy \in U$$

gilt, nennt man U eine \mathbb{R} -Unteralgebra von \mathcal{A} .

Definition (Unteralgebra)

Sei $U\leqslant V$ ein Untervektorraum der \mathbb{R} -Algebra $\mathcal{A}=(V,\cdot)$. Falls

$$\forall x, y \in U : xy \in U$$

gilt, nennt man U eine \mathbb{R} -Unteralgebra von \mathcal{A} .

Beispiele

1. \mathbb{R} , \mathbb{C} sind als Körper assoziative, kommutative, nullteilerfreie Algebren mit Einselement mit $dim(\mathbb{R}) = 1$ und $dim(\mathbb{C}) = 2$.

Definition (Unteralgebra)

Sei $U\leqslant V$ ein Untervektorraum der \mathbb{R} -Algebra $\mathcal{A}=(V,\cdot)$. Falls

$$\forall x, y \in U : xy \in U$$

gilt, nennt man U eine \mathbb{R} -Unteralgebra von \mathcal{A} .

Beispiele

- 1. \mathbb{R} , \mathbb{C} sind als Körper assoziative, kommutative, nullteilerfreie Algebren mit Einselement mit $dim(\mathbb{R}) = 1$ und $dim(\mathbb{C}) = 2$.
- 2. Sei V ein \mathbb{R} -Vektorraum. Dann ist V mit der Nullabbilung als Produktabbildung eine assoziative, kommutative \mathbb{R} -Algebra.

Definition (Unteralgebra)

Sei $U\leqslant V$ ein Untervektorraum der \mathbb{R} -Algebra $\mathcal{A}=(V,\cdot)$. Falls

$$\forall x, y \in U : xy \in U$$

gilt, nennt man U eine \mathbb{R} -Unteralgebra von \mathcal{A} .

Beispiele

- 1. \mathbb{R} , \mathbb{C} sind als Körper assoziative, kommutative, nullteilerfreie Algebren mit Einselement mit $dim(\mathbb{R}) = 1$ und $dim(\mathbb{C}) = 2$.
- 2. Sei V ein \mathbb{R} -Vektorraum. Dann ist V mit der Nullabbilung als Produktabbildung eine assoziative, kommutative \mathbb{R} -Algebra.
- 3. $Mat(n,\mathbb{R})$, $Mat(n,\mathbb{C})$ bilden eine assoziative \mathbb{R} -Algebra mit Einselement.

Konstruktion einer Algebra

1. Betrachte eine Basis $\mathcal{B} := \{b_1, ..., b_n\}$ von V.

- 1. Betrachte eine Basis $\mathcal{B} := \{b_1, ..., b_n\}$ von V.
- 2. Definiere eine beliebige Abbildung $\mathcal{B} \times \mathcal{B} \to V$, $(b_i, b_j) \mapsto b_i b_j$.

- 1. Betrachte eine Basis $\mathcal{B} := \{b_1, ..., b_n\}$ von V.
- 2. Definiere eine beliebige Abbildung $\mathcal{B} \times \mathcal{B} \to V$, $(b_i, b_j) \mapsto b_i b_j$. Für eine Algebra mit Einselement setze $e := b_i$ für $i \in \{1, ..., n\}$ beliebig und $b_i b_k = b_k b_i = b_k, \forall k \in \{1, ..., i-1, i+1, ..., n\}$.

- 1. Betrachte eine Basis $\mathcal{B} := \{b_1, ..., b_n\}$ von V.
- 2. Definiere eine beliebige Abbildung $\mathcal{B} \times \mathcal{B} \to V$, $(b_i, b_j) \mapsto b_i b_j$. Für eine Algebra mit Einselement setze $e := b_i$ für $i \in \{1, ..., n\}$ beliebig und $b_i b_k = b_k b_i = b_k, \forall k \in \{1, ..., i-1, i+1, ..., n\}$.
- 3. Seien $x, y \in V$ beliebig mit $x = \sum_{i=1}^{n} \alpha_i b_i$ und $y = \sum_{j=1}^{n} \beta_j b_j$.

- 1. Betrachte eine Basis $\mathcal{B} := \{b_1, ..., b_n\}$ von V.
- 2. Definiere eine beliebige Abbildung $\mathcal{B} \times \mathcal{B} \to V$, $(b_i, b_j) \mapsto b_i b_j$. Für eine Algebra mit Einselement setze $e := b_i$ für $i \in \{1, ..., n\}$ beliebig und $b_i b_k = b_k b_i = b_k, \forall k \in \{1, ..., i-1, i+1, ..., n\}$.
- 3. Seien $x, y \in V$ beliebig mit $x = \sum_{i=1}^{n} \alpha_i b_i$ und $y = \sum_{j=1}^{n} \beta_j b_j$. Definiere damit

$$V \times V \to V, \quad (x,y) \mapsto (\sum_{i=1}^n \alpha b_i)(\sum_{j=1}^n \beta b_j) = \sum_{i,j=1}^n \alpha_i \beta_j (b_i b_j),$$

Lemma

Sei ${\mathcal A}$ eine wie oben konstruierte ${\mathbb R}$ -Algebra. Dann gelten:

- (a) \mathcal{A} ist assoziativ $\iff \forall i,j,k \in \{1,...,n\}: b_i(b_jb_k) = (b_ib_j)b_k$,
- (b) \mathcal{A} ist kommutativ $\iff \forall i,j \in \{1,...,n\}: b_ib_j = b_jb_i$.

Lemma

Sei \mathcal{A} eine wie oben konstruierte \mathbb{R} -Algebra. Dann gelten:

- (a) \mathcal{A} ist assoziativ $\iff \forall i,j,k \in \{1,...,n\}: b_i(b_jb_k) = (b_ib_j)b_k$,
- (b) A ist kommutativ $\iff \forall i, j \in \{1, ..., n\} : b_i b_j = b_j b_i$.

Beweis

Die Implikationen \Longrightarrow folgen direkt aus den Definitionen.

Lemma

Sei \mathcal{A} eine wie oben konstruierte \mathbb{R} -Algebra. Dann gelten:

- (a) \mathcal{A} ist assoziativ $\iff \forall i,j,k \in \{1,...,n\}: b_i(b_jb_k) = (b_ib_j)b_k$,
- (b) A ist kommutativ $\iff \forall i, j \in \{1, ..., n\} : b_i b_j = b_j b_i$.

Beweis

Die Implikationen \Longrightarrow folgen direkt aus den Definitionen.

Zu \longleftarrow : Seien $x, y \in \mathcal{A}$ beliebig, dann existieren eindeutige Koeffizienten $\alpha_i, \beta_i \in \mathbb{R}$, sodass

$$x = \sum_{k=1}^{n} \alpha_i b_i$$
 und $y = \sum_{j=1}^{n} \beta_j b_j$.

Lemma

Sei \mathcal{A} eine wie oben konstruierte \mathbb{R} -Algebra. Dann gelten:

- (a) \mathcal{A} ist assoziativ $\iff \forall i, j, k \in \{1, ..., n\} : b_i(b_i b_k) = (b_i b_i) b_k$,
- (b) \mathcal{A} ist kommutativ $\iff \forall i,j \in \{1,...,n\}: b_ib_j = b_jb_i$.

Beweis

Die Implikationen ⇒ folgen direkt aus den Definitionen.

Zu \longleftarrow : Seien $x, y \in \mathcal{A}$ beliebig, dann existieren eindeutige Koeffizienten $\alpha_i, \beta_j \in \mathbb{R}$, sodass

$$x = \sum_{k=1}^{n} \alpha_i b_i$$
 und $y = \sum_{j=1}^{n} \beta_j b_j$. Damit
$$xy = \sum_{k=1}^{n} \alpha_k \beta_j (b_i b_j) = \sum_{k=1}^{n} \beta_j \alpha_i (b_j b_i) = yx$$

Das zeigt die Kommutativität. Analog folgt die Implikation ← zur Assoziativität.

Betrachte den \mathbb{R} -Vektorraum \mathbb{R}^4 mit der Standardbasis $E := \{e_1, e_2, e_3, e_4\}$.

Betrachte den \mathbb{R} -Vektorraum \mathbb{R}^4 mit der Standardbasis $E := \{e_1, e_2, e_3, e_4\}$.

	e_1	e_2	e_3	e_4
e_1	e_1	e_2	<i>e</i> ₃	<i>e</i> ₄
e_2	e_2	$-e_1$	<i>e</i> ₄	$-e_3$
e_3	e_3	$-e_4$	$-e_1$	e_2
<i>e</i> ₄	<i>e</i> ₄	<i>e</i> ₃	$-e_2$	$-e_1$

Betrachte den \mathbb{R} -Vektorraum \mathbb{R}^4 mit der Standardbasis $E := \{e_1, e_2, e_3, e_4\}$.

	e_1	e_2	<i>e</i> ₃	e ₄
e_1	e_1	<i>e</i> ₂	<i>e</i> ₃	<i>e</i> ₄
e_2	e_2	$-e_1$	<i>e</i> ₄	$-e_3$
e_3	e_3	$-e_4$	$-e_1$	e_2
<i>e</i> ₄	<i>e</i> ₄	<i>e</i> ₃	$-e_2$	$-e_1$

Definiere $e := e_1, i := e_2, j := e_3$ und $k := e_4$.

Hamiltonischen Bedingungen:

$$i^2 = j^2 = k^2 = ijk = -e$$
 $ij = -jk = k$.

Betrachte den \mathbb{R} -Vektorraum \mathbb{R}^4 mit der Standardbasis $E:=\{e_1,e_2,e_3,e_4\}.$

	e_1	e_2	<i>e</i> ₃	<i>e</i> ₄
e_1	e_1	<i>e</i> ₂	<i>e</i> ₃	<i>e</i> ₄
e_2	e_2	$-e_1$	<i>e</i> ₄	$-e_3$
e_3	e_3	$-e_4$	$-e_1$	e_2
<i>e</i> ₄	<i>e</i> ₄	<i>e</i> ₃	$-e_2$	$-e_1$

Definiere $e := e_1, i := e_2, j := e_3$ und $k := e_4$.

Hamiltonischen Bedingungen:

$$i^2 = j^2 = k^2 = ijk = -e$$
 $ij = -jk = k$.

Definition (Quaternionen H)

Der \mathbb{R} -Vektorraum \mathbb{R}^4 mit der Produktabbildung, welche durch die Hamiltonischen Bedingungen definiert ist, wird als Quaternionen \mathbb{H} bezeichnet.

	e	i	j	k
е	e	i	j	k
i	i	<i>-е</i>	k	-j
j	j	-k	-e	i
k	k	j	-i	-e

also

$$i^2 = j^2 = k^2 = ijk = -e$$
 $ij = -jk = k$.

•	e	i	j	k
e	e	i	j	k
i	i	- <i>е</i>	k	-j
j	j	-k	-e	i
k	k	j	-i	-e

also

$$i^2 = j^2 = k^2 = ijk = -e$$
 $ij = -jk = k$.

Bemerkung

Es gelten folgende Eigenschaften für \mathbb{H} :

	e	i	j	k
е	e	i	j	k
i	i	- <i>е</i>	k	-j
j	j	-k	-e	i
k	k	j	-i	-e

also

$$i^2 = j^2 = k^2 = ijk = -e$$
 $ij = -jk = k$.

Bemerkung

Es gelten folgende Eigenschaften für \mathbb{H} :

- \mathbb{H} besitzt ein Einselement e,
- \mathbb{H} ist nicht kommutativ, denn $k = ij \neq ji = -k$,

Konstruktion der Quaternionen

	e	i	j	k
е	e	i	j	k
i	i	- <i>е</i>	k	-j
j	j	-k	-e	i
k	k	j	-i	-e

also

$$i^2 = j^2 = k^2 = ijk = -e$$
 $ij = -jk = k$.

Bemerkung

Es gelten folgende Eigenschaften für \mathbb{H} :

- \mathbb{H} besitzt ein Einselement e,
- \mathbb{H} ist nicht kommutativ, denn $k = ij \neq ji = -k$,
- III ist assoziativ und nullteilerfrei.

Isomorphismus zwischen Quaternionen und Matrixalgebra

\mathbb{R} -Algebren-Homomorphismen

Definition (\mathbb{R} -Algebra-Homomorphismus)

Seien $\mathcal{A}=(V,\cdot)$ und $\mathcal{B}=(W,\cdot)$ zwei \mathbb{R} -Algebren.

Eine \mathbb{R} -lineare Abbildung arphi:V o W heißt \mathbb{R} -Algebra-Homomorphismus, falls

$$\forall x, y \in V : \varphi(xy) = \varphi(x)\varphi(y)$$

gilt. Ist φ zudem bijektiv, so bezeichnet man diesen as \mathbb{R} -Algebra-Isomorphismus.

\mathbb{R} -Algebren-Homomorphismen

Definition (\mathbb{R} -Algebra-Homomorphismus)

Seien $\mathcal{A}=(V,\cdot)$ und $\mathcal{B}=(W,\cdot)$ zwei \mathbb{R} -Algebren.

Eine \mathbb{R} -lineare Abbildung arphi: V o W heißt \mathbb{R} -Algebra-Homomorphismus, falls

$$\forall x, y \in V : \varphi(xy) = \varphi(x)\varphi(y)$$

gilt. Ist φ zudem bijektiv, so bezeichnet man diesen as \mathbb{R} -Algebra-Isomorphismus.

Beispiele

Die Menge $\mathcal{C}=\{egin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a,b\in\mathbb{R}\}$ ist eine \mathbb{R} -Unteralgebra von $Mat(2,\mathbb{R})$ und die

Abbildung
$$\varphi:\mathbb{C} o\mathcal{C},\ a+ib\mapsto\begin{pmatrix}a&-b\\b&a\end{pmatrix}$$
 ist ein \mathbb{R} -Algebra-Isomorphismus.

Satz

Die Menge $\mathcal{H}=\{\begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \mid z,w\in\mathbb{C}\}$ ist eine assoziative, nullteilerfreie \mathbb{R} -Unteralgebra von $Mat(2,\mathbb{C})$ mit der Einheitsmatrix als Einselement.

Satz

Die Menge $\mathcal{H}=\{\begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \mid z,w\in\mathbb{C}\}$ ist eine assoziative, nullteilerfreie \mathbb{R} -Unteralgebra von $Mat(2,\mathbb{C})$ mit der Einheitsmatrix als Einselement.

<u>Beweis</u>

Es gilt $E \in \mathcal{H} \neq \emptyset$.

Satz

Die Menge $\mathcal{H}=\{\begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \mid z,w\in\mathbb{C}\}$ ist eine assoziative, nullteilerfreie \mathbb{R} -Unteralgebra von $Mat(2,\mathbb{C})$ mit der Einheitsmatrix als Einselement.

Beweis

Es gilt
$$E \in \mathcal{H} \neq \emptyset$$
. Seien $A := \begin{pmatrix} z_1 & -w_1 \\ \overline{w_1} & \overline{z_1} \end{pmatrix}, \ B := \begin{pmatrix} z_2 & -w_2 \\ \overline{w_2} & \overline{z_2} \end{pmatrix} \in \mathcal{H} \text{ und } \lambda \in \mathbb{R}, \text{ dann gilt}$

$$\lambda A + B = \lambda \begin{pmatrix} z_1 & -w_1 \\ \overline{w_1} & \overline{z_1} \end{pmatrix} + \begin{pmatrix} z_2 & -w_2 \\ \overline{w_2} & \overline{z_2} \end{pmatrix} = \begin{pmatrix} \lambda z_1 + z_2 & -(\lambda w_1 + w_2) \\ \overline{\lambda w_1 + w_2} & \overline{\lambda z_1 + z_2} \end{pmatrix} \in \mathcal{H}.$$

Satz

Die Menge $\mathcal{H}=\{\begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \mid z,w\in\mathbb{C}\}$ ist eine assoziative, nullteilerfreie \mathbb{R} -Unteralgebra von $Mat(2,\mathbb{C})$ mit der Einheitsmatrix als Einselement.

Beweis

Es gilt
$$E \in \mathcal{H} \neq \emptyset$$
. Seien $A := \begin{pmatrix} z_1 & -w_1 \\ \overline{w_1} & \overline{z_1} \end{pmatrix}$, $B := \begin{pmatrix} z_2 & -w_2 \\ \overline{w_2} & \overline{z_2} \end{pmatrix} \in \mathcal{H}$ und $\lambda \in \mathbb{R}$, dann gilt

$$\lambda A + B = \lambda \begin{pmatrix} z_1 & -w_1 \\ \overline{w_1} & \overline{z_1} \end{pmatrix} + \begin{pmatrix} z_2 & -w_2 \\ \overline{w_2} & \overline{z_2} \end{pmatrix} = \begin{pmatrix} \lambda z_1 + z_2 & -(\lambda w_1 + w_2) \\ \overline{\lambda w_1 + w_2} & \overline{\lambda z_1 + z_2} \end{pmatrix} \in \mathcal{H}.$$

Damit gilt $\mathcal{H} \leqslant Mat(2,\mathbb{C})$

Satz

Die Menge $\mathcal{H}=\{\begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \mid z,w\in\mathbb{C}\}$ ist eine assoziative, nullteilerfreie \mathbb{R} -Unteralgebra von $Mat(2,\mathbb{C})$ mit der Einheitsmatrix als Einselement.

Beweis

Es gilt $E \in \mathcal{H} \neq \emptyset$. Seien $A := \begin{pmatrix} \overline{z_1} & -w_1 \\ \overline{w_1} & \overline{z_1} \end{pmatrix}, \ B := \begin{pmatrix} \overline{z_2} & -w_2 \\ \overline{w_2} & \overline{z_2} \end{pmatrix} \in \mathcal{H} \text{ und } \lambda \in \mathbb{R}, \text{ dann gilt } \mathbb{R}$

$$\lambda A + B = \lambda \begin{pmatrix} z_1 & -w_1 \\ \overline{w_1} & \overline{z_1} \end{pmatrix} + \begin{pmatrix} z_2 & -w_2 \\ \overline{w_2} & \overline{z_2} \end{pmatrix} = \begin{pmatrix} \lambda z_1 + z_2 & -(\lambda w_1 + w_2) \\ \overline{\lambda w_1 + w_2} & \overline{\lambda z_1 + z_2} \end{pmatrix} \in \mathcal{H}.$$

Damit gilt $\mathcal{H} \leqslant \mathit{Mat}(2,\mathbb{C})$ und die Abgeschlossenheit der Multiplikation folgt mit

$$AB = \begin{pmatrix} \overline{z_1} & -w_1 \\ \overline{w_1} & \overline{z_1} \end{pmatrix} \begin{pmatrix} \overline{z_2} & -w_2 \\ \overline{w_2} & \overline{z_2} \end{pmatrix} = \begin{pmatrix} \overline{z_1}\overline{z_2} - w_1\overline{w_2} & -(\overline{z_1}w_2 + w_1\overline{z_2}) \\ \overline{z_1}\overline{w_2} + \overline{w_1}\overline{z_2} & \overline{z_1}\overline{z_2} - \overline{w_1}w_2 \end{pmatrix} \in \mathcal{H}.$$

Satz

Die Menge $\mathcal{H}=\{\begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \mid z,w\in\mathbb{C}\}$ ist eine assoziative, nullteilerfreie \mathbb{R} -Unteralgebra von $Mat(2,\mathbb{C})$ mit der Einheitsmatrix als Einselement.

<u>Beweis</u>

Es gilt $E \in \mathcal{H} \neq \emptyset$. Seien $A := \begin{pmatrix} \overline{z_1} & -w_1 \\ \overline{w_1} & \overline{z_1} \end{pmatrix}$, $B := \begin{pmatrix} \overline{z_2} & -w_2 \\ \overline{w_2} & \overline{z_2} \end{pmatrix} \in \mathcal{H}$ und $\lambda \in \mathbb{R}$, dann gilt

$$\lambda A + B = \lambda \begin{pmatrix} z_1 & -w_1 \\ \overline{w_1} & \overline{z_1} \end{pmatrix} + \begin{pmatrix} z_2 & -w_2 \\ \overline{w_2} & \overline{z_2} \end{pmatrix} = \begin{pmatrix} \lambda z_1 + z_2 & -(\lambda w_1 + w_2) \\ \overline{\lambda w_1 + w_2} & \overline{\lambda z_1 + z_2} \end{pmatrix} \in \mathcal{H}.$$

Damit gilt $\mathcal{H} \leqslant Mat(2,\mathbb{C})$ und die Abgeschlossenheit der Multiplikation folgt mit

$$AB = \begin{pmatrix} \overline{z_1} & -w_1 \\ \overline{w_1} & \overline{z_1} \end{pmatrix} \begin{pmatrix} \overline{z_2} & -w_2 \\ \overline{w_2} & \overline{z_2} \end{pmatrix} = \begin{pmatrix} \overline{z_1}\overline{z_2} - w_1\overline{w_2} & -(\overline{z_1}w_2 + w_1\overline{z_2}) \\ \overline{z_1}\overline{w_2} + \overline{w_1}\overline{z_2} & \overline{z_1}\overline{z_2} - \overline{w_1}w_2 \end{pmatrix} \in \mathcal{H}.$$

Die Assoziativität der Verknüpfung wird direkt von $Mat(2,\mathbb{C})$ vererbt.

Zunächst gilt für alle
$$\begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \in \mathcal{H}$$
:
$$det(\begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix}) = z\overline{z} - \overline{w}(-w) = |z|^2 + |w|^2.$$

Zunächst gilt für alle
$$\begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \in \mathcal{H}$$
:
$$det(\begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix}) = z\overline{z} - \overline{w}(-w) = |z|^2 + |w|^2.$$

Sei nun angenommen AB = 0, dann folgt:

$$0 = det(AB) = det(A) \cdot det(B) \implies det(A) = 0 \lor det(B) = 0 \implies A = 0 \lor B = 0.$$

Satz

Die Abbildung

$$\Phi: \mathbb{H} \to \mathcal{H}, \ (\alpha, \beta, \gamma, \delta) \mapsto \begin{pmatrix} \alpha + \beta i & -\gamma - \delta i \\ \gamma - \delta i & \alpha - \beta i \end{pmatrix}$$

ist ein \mathbb{R} -Algebra-Isomorphismus

Satz

Die Abbildung

$$\Phi: \mathbb{H} \to \mathcal{H}, \ (\alpha, \beta, \gamma, \delta) \mapsto \begin{pmatrix} \alpha + \beta i & -\gamma - \delta i \\ \gamma - \delta i & \alpha - \beta i \end{pmatrix}$$

ist ein \mathbb{R} -Algebra-Isomorphismus und es gilt:

$$\Phi(e) = E, \quad \Phi(i) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} =: I, \quad \Phi(j) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} =: J, \quad \Phi(k) = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} =: K.$$

Satz

Die Abbildung

$$\Phi: \mathbb{H} \to \mathcal{H}, \ (\alpha, \beta, \gamma, \delta) \mapsto \begin{pmatrix} \alpha + \beta i & -\gamma - \delta i \\ \gamma - \delta i & \alpha - \beta i \end{pmatrix}$$

ist ein \mathbb{R} -Algebra-Isomorphismus und es gilt:

$$\Phi(e) = E, \quad \Phi(i) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} =: I, \quad \Phi(j) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} =: J, \quad \Phi(k) = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} =: K.$$

Beweis

Die Abbildung Φ ist wohldefiniert und \mathbb{R} -linear.

Satz

Die Abbildung

$$\Phi: \mathbb{H} \to \mathcal{H}, \ (\alpha, \beta, \gamma, \delta) \mapsto \begin{pmatrix} \alpha + \beta i & -\gamma - \delta i \\ \gamma - \delta i & \alpha - \beta i \end{pmatrix}$$

ist ein \mathbb{R} -Algebra-Isomorphismus und es gilt:

$$\Phi(e) = E, \quad \Phi(i) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} =: I, \quad \Phi(j) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} =: J, \quad \Phi(k) = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} =: K.$$

Beweis

Die Abbildung Φ ist wohldefiniert und \mathbb{R} -linear. Da für die Bilder von e,i,j,k die Hamiltonischen Bedingungen $I^2=J^2=-E,\ IJ=-JI=K$

Satz

Die Abbildung

$$\Phi: \mathbb{H} \to \mathcal{H}, \ (\alpha, \beta, \gamma, \delta) \mapsto \begin{pmatrix} \alpha + \beta i & -\gamma - \delta i \\ \gamma - \delta i & \alpha - \beta i \end{pmatrix}$$

ist ein R-Algebra-Isomorphismus und es gilt:

$$\Phi(e) = E, \quad \Phi(i) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} =: I, \quad \Phi(j) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} =: J, \quad \Phi(k) = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} =: K.$$

Beweis

Die Abbildung Φ ist wohldefiniert und \mathbb{R} -linear. Da für die Bilder von e,i,j,k die Hamiltonischen Bedingungen $I^2=J^2=-E,\ IJ=-JI=K$ und folglich mit der Assoziativität in \mathcal{H} auch $K^2=(IJ)(-JI)=-I(JJ)I=-I(-E)I=I^2=-E$ gelten,

Satz

Die Abbildung

$$\Phi: \mathbb{H} \to \mathcal{H}, \ (\alpha, \beta, \gamma, \delta) \mapsto \begin{pmatrix} \alpha + \beta i & -\gamma - \delta i \\ \gamma - \delta i & \alpha - \beta i \end{pmatrix}$$

ist ein \mathbb{R} -Algebra-Isomorphismus und es gilt:

$$\Phi(e) = E, \quad \Phi(i) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} =: I, \quad \Phi(j) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} =: J, \quad \Phi(k) = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} =: K.$$

Beweis

Die Abbildung Φ ist wohldefiniert und \mathbb{R} -linear. Da für die Bilder von e,i,j,k die Hamiltonischen Bedingungen $I^2=J^2=-E,\ IJ=-JI=K$ und folglich mit der Assoziativität in \mathcal{H} auch $K^2=(IJ)(-JI)=-I(JJ)I=-I(-E)I=I^2=-E$ gelten, folgt

$$\forall q, p \in \mathbb{H}: \ \Phi(qp) = \Phi(q) \Phi(p).$$

Korollar

Die Quaternionen $\mathbb H$ sind eine assoziative, nullteilerfreie $\mathbb R$ -Algebra mit Einselement.

Imaginärraum der Quaternionen

$\overline{\mathsf{Imaginärraum}}\ \mathit{Im}\mathbb{H}$

Definition (Imaginärraum von H)

Der dreidimensionale Untervektorraum $Im\mathbb{H}:=\mathbb{R}i+\mathbb{R}j+\mathbb{R}k$ von \mathbb{H} heißt $\underline{\text{Imaginärraum}}$ von \mathbb{H} . Die Elemente von $Im\mathbb{H}$ heißen rein-imaginär.

Imaginärraum $\mathit{Im}\mathbb{H}^1$

Definition (Imaginärraum von H)

Der dreidimensionale Untervektorraum $Im\mathbb{H}:=\mathbb{R}i+\mathbb{R}j+\mathbb{R}k$ von \mathbb{H} heißt $\underline{\text{Imaginärraum}}$ von \mathbb{H} . Die Elemente von $Im\mathbb{H}$ heißen rein-imaginär.

Lemma

Die Untervektorräume $\mathbb{R}e$ und $\mathit{Im}\mathbb{H}$ von \mathbb{H} bilden eine direkte Summe von Vektorräumen, d.h.

$$\mathbb{H} = \mathbb{R}e \oplus \mathit{Im}\mathbb{H}.$$

Definition (Imaginärraum von H)

Der dreidimensionale Untervektorraum $Im\mathbb{H}:=\mathbb{R}i+\mathbb{R}j+\mathbb{R}k$ von \mathbb{H} heißt $\underline{\text{Imaginärraum}}$ von \mathbb{H} . Die Elemente von $Im\mathbb{H}$ heißen rein-imaginär.

Lemma

Die Untervektorräume $\mathbb{R}e$ und $\mathit{Im}\mathbb{H}$ von \mathbb{H} bilden eine direkte Summe von Vektorräumen, d.h.

$$\mathbb{H} = \mathbb{R}e \oplus \mathit{Im}\mathbb{H}.$$

Beweis

Da $\{e,i,j,k\}$ eine Basis von $\mathbb H$ ist, gilt $\langle \mathbb R e \cup \mathit{Im} \mathbb H \rangle = \mathbb H$ und folglich gilt für $q \in \mathbb R e \cap \mathit{Im} \mathbb H$ beliebig, existieren $\alpha,\beta,\gamma\,\delta\in\mathbb R$, sodass $q=\alpha e+\beta i+\gamma j+\delta k$. Mit $q\in\mathbb R e\cap \mathit{Im} \mathbb H$ folgt direkt $\alpha=\beta=\gamma=\delta=0$, also $\mathbb R e\cap \mathit{Im} \mathbb H=\{0\}$.

$\overline{\mathsf{Imag}}$ inärraum $\overline{\mathit{Im}}\mathbb{H}$

Bemerkung

1. Die Elemente des Imaginärraums heißen vektorielle Quaternionen.

Imaginärraum $\mathit{Im}\mathbb{H}$

Bemerkung

- 1. Die Elemente des Imaginärraums heißen vektorielle Quaternionen.
- 2. $Im\mathbb{H}$ ist ein \mathbb{R} -Untervektorraum, jedoch keine \mathbb{R} -Unteralgebra von \mathbb{H} , denn $i \in Im\mathbb{H}$, jedoch $i^2 = -e \in \mathbb{R}e$, also $i^2 \notin Im\mathbb{H}$.

Bemerkung

- 1. Die Elemente des Imaginärraums heißen vektorielle Quaternionen.
- 2. $Im\mathbb{H}$ ist ein \mathbb{R} -Untervektorraum, jedoch keine \mathbb{R} -Unteralgebra von \mathbb{H} , denn $i \in Im\mathbb{H}$, jedoch $i^2 = -e \in \mathbb{R}e$, also $i^2 \notin Im\mathbb{H}$.
- 3. Mit der Zerlegung $\mathbb{H} = \mathbb{R}e \oplus \mathit{Im}\mathbb{H}$ gilt

$$\forall q \in \mathbb{H} \ \exists \alpha \in \mathbb{R}, \ u \in Im\mathbb{H} : \ q = \alpha e + u.$$

Dann heißt αe der <u>skalare Anteil</u> (oder <u>Realteil</u>) und u der <u>vektorielle Anteil</u> (oder Imaginärteil) von q.

$\overline{\mathsf{Imag}}$ inärraum $\overline{\mathsf{Im}}\mathbb{H}$

Lemma

$$\forall A \in \mathcal{H}: A^2 - Spur(A)A + det(A)E = 0.$$

Lemma

$$\forall A \in \mathcal{H} : A^2 - Spur(A)A + det(A)E = 0.$$

Beweis: Sei
$$A:=\begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \in \mathcal{H}$$
 beliebig. Dann gilt

$$\bullet \ A^2 = \begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} = \begin{pmatrix} z^2 - w\overline{w} & -zw - \overline{z}w \\ z\overline{w} + \overline{z}w & \overline{z^2} - w\overline{w} \end{pmatrix} = \begin{pmatrix} z^2 - |w|^2 & -2Re(z)w \\ 2Re(z)\overline{w} & \overline{z^2} - |w|^2 \end{pmatrix}$$

Lemma

$$\forall A \in \mathcal{H} : A^2 - Spur(A)A + det(A)E = 0.$$

Beweis: Sei
$$A := \begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \in \mathcal{H}$$
 beliebig. Dann gilt

•
$$A^2 = \begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} = \begin{pmatrix} z^2 - w\overline{w} & -zw - \overline{z}w \\ z\overline{w} + \overline{z}w & \overline{z}^2 - w\overline{w} \end{pmatrix} = \begin{pmatrix} z^2 - |w|^2 & -2Re(z)w \\ 2Re(z)\overline{w} & \overline{z}^2 - |w|^2 \end{pmatrix}$$

•
$$Spur(A)A = (z + \overline{z})A = \begin{pmatrix} 2Re(z)z & -2Re(z)w \\ 2Re(z)\overline{w} & 2Re(z)\overline{z} \end{pmatrix}$$

Imaginärraum $\mathit{Im}\mathbb{H}$

Lemma

$$\forall A \in \mathcal{H} : A^2 - Spur(A)A + det(A)E = 0.$$

Beweis: Sei
$$A := \begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \in \mathcal{H}$$
 beliebig. Dann gilt

•
$$A^2 = \begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} \begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix} = \begin{pmatrix} z^2 - w\overline{w} & -zw - \overline{z}w \\ z\overline{w} + \overline{z}w & \overline{z}^2 - w\overline{w} \end{pmatrix} = \begin{pmatrix} z^2 - |w|^2 & -2Re(z)w \\ 2Re(z)\overline{w} & \overline{z}^2 - |w|^2 \end{pmatrix}$$

•
$$Spur(A)A = (z + \overline{z})A = \begin{pmatrix} 2Re(z)z & -2Re(z)w \\ 2Re(z)\overline{w} & 2Re(z)\overline{z} \end{pmatrix}$$

•
$$det(A)E = \begin{pmatrix} |z|^2 + |w|^2 & 0 \\ 0 & |z|^2 + |w|^2 \end{pmatrix}$$

Fortsetzung Beweises

Damit folgt

$$A^{2} - Spur(A)A = \begin{pmatrix} z^{2} - |w|^{2} & -2Re(z)w \\ 2Re(z)\overline{w} & \overline{z^{2}} - |w|^{2} \end{pmatrix} - \begin{pmatrix} 2Re(z)z & -2Re(z)w \\ 2Re(z)\overline{w} & 2Re(z)\overline{z} \end{pmatrix}$$
$$= \begin{pmatrix} -|z|^{2} - |w|^{2} & 0 \\ 0 & -|z|^{2} - |w|^{2} \end{pmatrix} = -det(A)E,$$

Imaginärraum $\mathit{Im}\mathbb{H}$

Fortsetzung Beweises

Damit folgt

$$A^{2} - Spur(A)A = \begin{pmatrix} z^{2} - |w|^{2} & -2Re(z)w \\ 2Re(z)\overline{w} & \overline{z^{2}} - |w|^{2} \end{pmatrix} - \begin{pmatrix} 2Re(z)z & -2Re(z)w \\ 2Re(z)\overline{w} & 2Re(z)\overline{z} \end{pmatrix}$$
$$= \begin{pmatrix} -|z|^{2} - |w|^{2} & 0 \\ 0 & -|z|^{2} - |w|^{2} \end{pmatrix} = -det(A)E,$$

denn für $z:=x+iy\in\mathbb{C}$ beliebig gilt

$$z^{2} - 2Re(z)z = x^{2} + 2ixy - y^{2} - 2x(x + iy) = -(x^{2} + y^{2}) = -|z|^{2}.$$

Fortsetzung Beweises

Damit folgt

$$A^{2} - Spur(A)A = \begin{pmatrix} z^{2} - |w|^{2} & -2Re(z)w \\ 2Re(z)\overline{w} & \overline{z^{2}} - |w|^{2} \end{pmatrix} - \begin{pmatrix} 2Re(z)z & -2Re(z)w \\ 2Re(z)\overline{w} & 2Re(z)\overline{z} \end{pmatrix}$$
$$= \begin{pmatrix} -|z|^{2} - |w|^{2} & 0 \\ 0 & -|z|^{2} - |w|^{2} \end{pmatrix} = -det(A)E,$$

denn für $z:=x+iy\in\mathbb{C}$ beliebig gilt

$$z^{2}-2Re(z)z=x^{2}+2ixy-y^{2}-2x(x+iy)=-(x^{2}+y^{2})=-|z|^{2}.$$

Damit ist

$$A^2 - Spur(A)A + det(A)E = 0.$$

23 / 26

Imaginärraum $\mathit{Im}\mathbb{H}$

$$\forall A \in \mathcal{H} : A^2 = Spur(A)A - det(A)E$$
.

Satz

Für den Imaginärraum gilt $Im\mathbb{H} = \{q \in \mathbb{H} \mid q^2 \in \mathbb{R}e \land q \notin \mathbb{R}e \setminus \{0\}\}.$

$$\forall A \in \mathcal{H} : A^2 = Spur(A)A - det(A)E$$
.

Satz

Für den Imaginärraum gilt $Im\mathbb{H} = \{q \in \mathbb{H} \mid q^2 \in \mathbb{R}e \land q \notin \mathbb{R}e \setminus \{0\}\}.$

Beweis

Sei $q:=\alpha e+\beta i+\gamma j+\delta k\in\mathbb{H}$. Dann gilt mit dem Isomorphismus $\Phi:\mathbb{H}\to\mathcal{H}$, dass

$$\Phi(q) = \begin{pmatrix} \alpha + \beta i & -\gamma - \delta i \\ \gamma - \delta i & \alpha - \beta i \end{pmatrix}.$$

$$\forall A \in \mathcal{H} : A^2 = Spur(A)A - det(A)E$$
.

Satz

Für den Imaginärraum gilt $Im\mathbb{H}=\{q\in\mathbb{H}\mid q^2\in\mathbb{R}e\ \land\ q\notin\mathbb{R}e\setminus\{0\}\}.$

Beweis

Sei
$$q:=\alpha e+\beta i+\gamma j+\delta k\in\mathbb{H}$$
. Dann gilt mit dem Isomorphismus $\Phi:\mathbb{H}\to\mathcal{H}$, dass $\Phi(q)=egin{pmatrix} \alpha+\beta i&-\gamma-\delta i\\ \gamma-\delta i&\alpha-\beta i \end{pmatrix}$. Damit folgt mit dem obigen Lemma

$$\Phi(q^2) = \Phi(q)^2 = Spur(\Phi(q))\Phi(q) - det(\Phi(q))E = 2\alpha\Phi(q) - (\alpha^2 + \beta^2 + \gamma^2 + \delta^2)E$$

$$\forall A \in \mathcal{H} : A^2 = Spur(A)A - det(A)E$$
.

Satz

Für den Imaginärraum gilt $Im\mathbb{H}=\{q\in\mathbb{H}\mid q^2\in\mathbb{R}e\ \land\ q\notin\mathbb{R}e\setminus\{0\}\}.$

Beweis

Sei $q := \alpha e + \beta i + \gamma j + \delta k \in \mathbb{H}$. Dann gilt mit dem Isomorphismus $\Phi : \mathbb{H} \to \mathcal{H}$, dass

$$\Phi(q) = \begin{pmatrix} \alpha + \beta i & -\gamma - \delta i \\ \gamma - \delta i & \alpha - \beta i \end{pmatrix}$$
. Damit folgt mit dem obigen Lemma

$$\Phi(q^2) = \Phi(q)^2 = Spur(\Phi(q))\Phi(q) - det(\Phi(q))E = 2\alpha\Phi(q) - (\alpha^2 + \beta^2 + \gamma^2 + \delta^2)E$$

Folglich ist

$$q^{2} = \Phi^{-1}(\Phi(q^{2})) = \Phi^{-1}(2\alpha\Phi(q) - (\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2})E) = 2\alpha q - (\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2})e.$$

$$\forall A \in \mathcal{H} : A^2 = Spur(A)A - det(A)E$$
.

Satz

Für den Imaginärraum gilt $\mathit{Im}\mathbb{H} = \{q \in \mathbb{H} \mid q^2 \in \mathbb{R}e \ \land \ q \notin \mathbb{R}e \setminus \{0\}\}.$

Beweis

Sei $q := \alpha e + \beta i + \gamma j + \delta k \in \mathbb{H}$. Dann gilt mit dem Isomorphismus $\Phi : \mathbb{H} \to \mathcal{H}$, dass

$$\Phi(q) = \begin{pmatrix} \alpha + \beta i & -\gamma - \delta i \\ \gamma - \delta i & \alpha - \beta i \end{pmatrix}$$
. Damit folgt mit dem obigen Lemma

$$\Phi(q^2) = \Phi(q)^2 = Spur(\Phi(q))\Phi(q) - det(\Phi(q))E = 2\alpha\Phi(q) - (\alpha^2 + \beta^2 + \gamma^2 + \delta^2)E$$

Folglich ist

$$q^{2} = \Phi^{-1}(\Phi(q^{2})) = \Phi^{-1}(2\alpha\Phi(q) - (\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2})E) = 2\alpha q - (\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2})e.$$

Also gilt $q \in Im\mathbb{H} \iff \alpha = 0$, womit $q^2 = -(\beta^2 + \gamma^2 + \delta^2)e = -\lambda e \in \mathbb{R}e$ mit $\lambda := \beta^2 + \gamma^2 + \delta^2$ folgt.

$\overline{\mathsf{Imaginärraum}}\ \overline{\mathsf{Im}}\mathbb{H}$

Bemerkung

Jeder Untervektorraum $U \leqslant \mathbb{H}$ mit dim(U) = 2 und $\mathbb{R}e \leqslant U$ ist eine \mathbb{R} -Unteralgebra von H und es gilt $U \cong \mathbb{C}$

lmaginärraum *lm*ℍ

Bemerkung

Jeder Untervektorraum $U \leqslant \mathbb{H}$ mit dim(U) = 2 und $\mathbb{R}e \leqslant U$ ist eine \mathbb{R} -Unteralgebra von H und es gilt $U \cong \mathbb{C}$

Beweis

Sei $U \leqslant \mathbb{H}$ mit dim(U) = 2 und $\mathcal{B} := \{e, v\}$ eine Basis von U.

Seien $x := \alpha_1 e + \beta_1 v$ und $y := \alpha_2 e + \beta_2 v$ in U.

Bemerkung

Jeder Untervektorraum $U \leqslant \mathbb{H}$ mit dim(U) = 2 und $\mathbb{R}e \leqslant U$ ist eine \mathbb{R} -Unteralgebra von H und es gilt $U \cong \mathbb{C}$

Beweis

Sei
$$U \leqslant \mathbb{H}$$
 mit $dim(U) = 2$ und $\mathcal{B} := \{e, v\}$ eine Basis von U .

Seien
$$x := \alpha_1 e + \beta_1 v$$
 und $y := \alpha_2 e + \beta_2 v$ in U . Dann gilt

$$xy = (\alpha_1 e + \beta_1 v)(\alpha_2 e + \beta_2 v) = \alpha_1 \alpha_2 e + (\alpha_1 \beta_2 + \beta_1 \alpha_2)v + \beta_1 \beta_2 v^2$$

$$=\alpha_1\alpha_2e+(\alpha_1\beta_2+\beta_1\alpha_2)v+\beta_1\beta_2(-\lambda e)=(\alpha_1\alpha_2-\lambda)e+(\alpha_1\beta_2+\beta_1\alpha_2)v\in U$$

Bemerkung

Jeder Untervektorraum $U \leqslant \mathbb{H}$ mit dim(U) = 2 und $\mathbb{R}e \leqslant U$ ist eine \mathbb{R} -Unteralgebra von H und es gilt $U \cong \mathbb{C}$

Beweis

Sei $U \leq \mathbb{H}$ mit dim(U) = 2 und $\mathcal{B} := \{e, v\}$ eine Basis von U.

Seien $x := \alpha_1 e + \beta_1 v$ und $y := \alpha_2 e + \beta_2 v$ in U. Dann gilt

$$xy = (\alpha_1 e + \beta_1 v)(\alpha_2 e + \beta_2 v) = \alpha_1 \alpha_2 e + (\alpha_1 \beta_2 + \beta_1 \alpha_2)v + \beta_1 \beta_2 v^2$$

$$=\alpha_1\alpha_2e+(\alpha_1\beta_2+\beta_1\alpha_2)v+\beta_1\beta_2(-\lambda e)=(\alpha_1\alpha_2-\lambda)e+(\alpha_1\beta_2+\beta_1\alpha_2)v\in U$$

Definiere nun $\phi: U \to \mathbb{C}$ durch die Basis \mathcal{B} . Mit dem vorherigen Satz existiert

$$\lambda \in \mathbb{R}_{>0}: \ v^2 = -\lambda e.$$

Bemerkung

Jeder Untervektorraum $U\leqslant \mathbb{H}$ mit dim(U)=2 und $\mathbb{R}e\leqslant U$ ist eine \mathbb{R} -Unteralgebra von H und es gilt $U\cong \mathbb{C}$

Beweis

Sei $U \leq \mathbb{H}$ mit dim(U) = 2 und $\mathcal{B} := \{e, v\}$ eine Basis von U.

Seien $x := \alpha_1 e + \beta_1 v$ und $y := \alpha_2 e + \beta_2 v$ in U. Dann gilt

$$xy = (\alpha_1 e + \beta_1 v)(\alpha_2 e + \beta_2 v) = \alpha_1 \alpha_2 e + (\alpha_1 \beta_2 + \beta_1 \alpha_2)v + \beta_1 \beta_2 v^2$$

$$=\alpha_1\alpha_2e+(\alpha_1\beta_2+\beta_1\alpha_2)v+\beta_1\beta_2(-\lambda e)=(\alpha_1\alpha_2-\lambda)e+(\alpha_1\beta_2+\beta_1\alpha_2)v\in U$$

Definiere nun $\phi: U \to \mathbb{C}$ durch die Basis \mathcal{B} . Mit dem vorherigen Satz existiert

$$\lambda \in \mathbb{R}_{>0}$$
: $v^2 = -\lambda e$. Setze $\phi(e) := 1$ und $\phi(v) := \sqrt{\lambda} i$, dann ist ϕ ein Isomorphismus, denn:

Bemerkung

Jeder Untervektorraum $U \leqslant \mathbb{H}$ mit dim(U) = 2 und $\mathbb{R}e \leqslant U$ ist eine \mathbb{R} -Unteralgebra von H und es gilt $U \cong \mathbb{C}$

Beweis

Sei $U \leq \mathbb{H}$ mit dim(U) = 2 und $\mathcal{B} := \{e, v\}$ eine Basis von U.

Seien $x := \alpha_1 e + \beta_1 v$ und $v := \alpha_2 e + \beta_2 v$ in U. Dann gilt

$$xy = (\alpha_1 e + \beta_1 v)(\alpha_2 e + \beta_2 v) = \alpha_1 \alpha_2 e + (\alpha_1 \beta_2 + \beta_1 \alpha_2)v + \beta_1 \beta_2 v^2$$
$$= \alpha_1 \alpha_2 e + (\alpha_1 \beta_2 + \beta_1 \alpha_2)v + \beta_1 \beta_2 (-\lambda e) = (\alpha_1 \alpha_2 - \lambda)e + (\alpha_1 \beta_2 + \beta_1 \alpha_2)v \in U$$

Definiere nun $\phi: U \to \mathbb{C}$ durch die Basis \mathcal{B} . Mit dem vorherigen Satz existiert $\lambda \in \mathbb{R}_{>0}: \ v^2 = -\lambda e$. Setze $\phi(e) := 1$ und $\phi(v) := \sqrt{\lambda} i$, dann ist ϕ ein Isomorphismus, denn:

Da $\{1, \sqrt{\lambda} i\}$ eine Basis von \mathbb{C} ist, ist ϕ bijektiv und mit

$$\phi(v^2) = \phi(-\lambda e) = -\lambda \phi(e) = -\lambda = \phi(v) \phi(v)$$

folgt die Behauptung.

Vielen Dank für die Aufmerksamkeit