Reele Zahlen, Dedekindsche Schnitte

Jonas Langhoff

Universität Hamburg Nach [Ebbingshaus(1988)]

Februar 18, 2025

Übersicht

1. Reele Zahlen

- 1.1 Hippasus und das Pentagon
- 1.2 Euxodos und die Proportionenlehre
- 1.3 Irrationalzahlen in der Neuzeitlichen Mathematik
- 1.4 Präzisierung des 19. Jahrhunderts

2. Dedekindsche Schnitte

- 2.1 Die Menge \mathbb{R} der Schnitte
- 2.2 Die Anordnung in \mathbb{R}
- 2.3 Die Addition in \mathbb{R}
- 2.4 Die Multiplikation in $\mathbb R$

- Ca. 5 Jahrhundert vor Christus Entdeckung inkommensurabler Verhältnisse durch Hippasus von Metapont
- Große Auswirkung in phytagoreischen Kreisen
- Phytagoreer wirkten unter anderem als einflussreiche mathematische Schule

- Damalige Messpraxis von Streckenverhältnissen war so gegeben:
- Für gegebene Strecke a wurde eine Maßeinheit e m-mal hintereinander angelegt.
- a = e + ... + e = m * e
- a_0 und a_1 sind genau dann kommensurabel, wenn sowohl a_0 als auch a_1 durch e gemessen werden können:
- Sprich $a_0 = m * e$ und $a_1 = n * e$, für natürliche Zahlen m und n

• Methode eines gemeinsamen Maßes für Strecken a_0 und a_1 nach Euklid:

$$a_0 = n_1 * a_1 + a_2 \text{ mit } a_2 < a_1$$

• Entsprechend wird dann das Verfahren fortgesetzt:

$$a_1 = n_2 * a_2 + a_3 \text{ mit } a_3 < a_2,$$

 $a_2 = n_3 * a_3 + a_4 \text{ mit } a_4 < a_3$

...

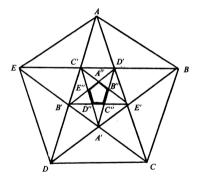
• Wenn a_0 und a_1 ein gemeinsames Maß besitzen bricht das Verfahren ab: Es gibt ein k mit $a_{k-1} = n_k a_k$ und a_k ist ein Maß von a_0 und a_1

- Zunächst Überzeugung, dass dieses Verfahren immer abbricht
- Modern gesprochen zeigt das Verfahren nur die Entwicklung in einen Kettenbruch:

$$a_0: a_1 = n_1 + a_2: a_1 = n_1 + \frac{1}{a_1:a_2} = n_1 + \frac{1}{n_2+a_3:a_2}$$

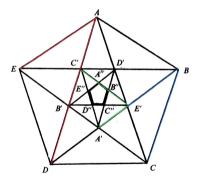
= $n_1 + \frac{1}{n_2 + \frac{1}{a_2:a_3}} = \cdots = n_1 + \frac{1}{n_2 + \frac{1}{n_3 + \cdots}}$

 Hippasus soll an einem Pentagon festgestellt haben, dass zwei Strecken nicht kommensurabel sind



Betrachte reguläres Pentagon ABCDE

- Je eine Seite und Diagonale parallel
- Es gilt also: AD : AE = BC : BE'sowie BE' = BD - BC
- denn BC = AE = DE'



- Sei die Diagonale a_0 , die Seite a_1 , sowie $a_2 = a_0 a_1$
- Es gilt also: $a_0 : a_1 = a_1 : a_2$ insbesondere $a_2 < a_1$
- Als Kettenbruch : $a_0: a_1 = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$

- Babylonier rechneten schon mit Annäherungen für irrationale (inkommensurable) Verhältnisse wie 1;25 und 1;24,51,10 für $\sqrt{2}$
- Die grundsätzliche Erkenntis, dass $\sqrt{2}$ inkommensurabel ist, ist der griechischen Mathematik zu verdanken.
- In Euklids "Elementen" X §115a findet sich folgender Beweis: Es sei a die Seite und d die Diagonale eines Quadrates. Offenbar gilt: $d^2 = 2a^2$ mit d: a = m: n m und n kleinstmöglich Dann ist mit $d^2: a^2 = m^2: n^2$ aber auch $d^2 = 2a^2$ also $m^2 = 2n^2$ also ist m gerade. Da m und n teilerfremd und kleinstmöglich muss n ungerade sein. Aber mit m = 2l wäre $m^2 = 4l^2$

womit $m^2 = 2n^2$ also $n^2 = 2l^2$ eine gerade Zahl womit n gerade und d und a nicht kommensurabel.

- Erkenntnis der Irrationalität älter als euklid Nach Platon zeigte Theodoros von Kyrene bereits die Irrationalität einzelner Quadratwurzeln wie $\sqrt{3}, \sqrt{5}, ..., \sqrt{17}$
- Eudoxos von Knidos schuf eine geometrische Proportionenlehre auch für inkommensurable Größenverhältnisse.
- Diese wurde im Buch V der "Elemente" überliefert:

- Ausgehende von Größen gleicher Art (Strecken a,b,.. Flächen A,B,..)
- Gleiche Größen können addiert werden (Assoziativ- und Kommutastivgesetz vorausgesetzt)
- Die Größen gleicher Art werden geordnet a < b wenn es ein c mit a + c = b
- Ausgehend davon wird angenommen, dass für $a \neq b$ entweder a < b oder a > b gilt.
- Ganzzahlige Vielfache werden durch wiederholte Adddition definiert : für m Summanden gilt $m \cdot a = a + ... + a$
- Es wird ein meist nach archimedes benanntes Axiom vorrausgesetzt: Zu jedem a und b gibt es eine natürliche Zahl n mit $a < n \cdot b$

- Es werden Verhältnisse gleichartiger Größen verglichen, diese müssen nicht unbedingt kommensurabel sein
- Es wird a:b=A:B definiert, wenn für alle natürlichen Zahlen n und m gilt:
 - $n \cdot a > m \cdot b$ genau dann, wenn $n \cdot A > m \cdot B$,
 - $n \cdot a = m \cdot b$ genau dann, wenn $n \cdot A = m \cdot B$
 - $n \cdot a < m \cdot b$ genau dann, wenn $n \cdot A < m \cdot B$
- Griechen sahen rationale, irrationale Zahlen nicht als Erweiterung sondern, Begriff eigener Art
- Erst im 19. Jahrhundert, gelang es erfolgreich Kalküle, die von Beginn der Neuzeit an entwickelt wurden, konkret zu begründen

Irrationalzahlen in der Neuzeitlichen Mathematik

- Nach der geometrischen Proportionenlehre der Griechen wurde der arithmetische Aspekt sehr wichtig
- Praktisches Berechnen von Näherungswerten:
 - Archimedes schließt π zwischen $3\frac{1}{7}$ und $3\frac{10}{71}$ ein
 - Ptolemaios wählt 3; 8, 30 als Mittelwert von $3\frac{1}{7}=3$; 8, 34 und $3\frac{10}{71}=3$; 8, 27
- Indisch-arabische Mathematiker haben einen Einfluss auf die Entwicklung des Zahlenbegriffs
- Abu Kamil (ca 850-930) rechnet mit Quadratwurzelausdrücken nach der regel $\sqrt{p}+\sqrt{q}=\sqrt{p+q+2\cdot\sqrt{pq}}$
- Es wird mit Ausdrücken gerechnet, ohne diese als neue Zahlen zu verstehen

Irrationalzahlen in der Neuzeitlichen Mathematik

- S.Stevin (1548-1620) präzisiert durch eine unendlich Folge von Dezimalbrüchen
- In R. Descartes "Geometrie" von 1638 werden Operationen so definiert, dass das Ergebnis zweier Strecken, wieder eine Strecke ergibt
- Die Infinitesimalrechnung treibt die Entwicklung des Zahlenbegriffs im 17. und 18. Jahrhundert weiter voran
- Theorien von Leibniz und Bernoulli bieten neue Möglichkeiten der Zahlendarstelllung
- In der "Arithmetica infinitorum" von J. Wallis (1616-1703) findet sich eine unendliche Produktentwicklung:

$$\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \cdots$$

Irrationalzahlen in der Neuzeitlichen Mathematik

- Darstellungen durch unendliche Summen bwz. Produkte werden allerdings nichts als konvergierende Folge mit Grenzwert definiert
- Vielmehr :

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$

unterscheidet sich von 1 um eine infinitesimal kleine Größe

 L.Euler formuliert 1734 Konvergenzkriterium für Reihen in der Sprache der infinitesimalen Größen

Präzisierung des 19. Jahrhunderts

- Cauchy formuliert das nach ihm bekannte Konvergenzkriterium und setzt es als Eigenschaft der reellen Zahlen voraus
- B.Bolzano beweist unter Vorraussetzung des Cauchy-Kriteriums den Zwischenwertsatz
- Unter Weierstrass werden die Überlegungen zu Begründung der reellen Zahlen in mathematische Grundvorlesungen aufgenommen
- Systematische Definition der reellen Zahlen durch Intervallschachtelung wird 1892 von P.Bachmann angegeben
- Cantors Theorie der Fundamentalfolgen bildet Grund für eine weitere Definition der reellen Zahlen

Präzisierung des 19. Jahrhunderts

- Die Proportionenlehre des Euxodos wird 1872 von Dedekind erneut aufgegriffen in "Stetigkeit und Irrationalzahlen"
- Frage ob die Proportionenlehre die Theorie der Irrationalzahlen "erledigt" hat, führt noch zu Kontroversen:
- G.Cantor, G.Frege G.Peano und Dedekind geht es um die präzise und explizite Formulierung der mathematischen Grundlagen
- Der Begriff der reellen Zahl wurde noch einmal in der Grundlagendiskussion der 20er Jahre problematisiert und weitere Überlegungen führen bis heute zu Diskussionen.

Dedekindsche Schnitte

- Nach Dedekind lassen sich rationale Zahlen so partitionieren das man die reellen Zahlen darstellen kann.
- Diese Schnitte werden vollständig und total geordnet, sowie eine Addition und Multiplikation für sie eingeführt.
- die Menge (K,+,·,≤) heißt die Menge der rellen Zahlen genau dann wenn (R1)(K,+,·) ist ein Körper (R2)≤ ist eine lineare Anordnung auf K (R3) Vollständigkeitsaxiom: Jede nicht leere, nach unten beschränkte Teilmenge M ⊂ K hat ein Infimum in K.

Die Menge $\mathbb R$ der Schnitte

- Ein Dedekindscher Schnitt ist dann ein Paar (α, β) von Mengen mit $\alpha, \beta \subset \mathbb{Q}$ die folgende forderungen erfüllen:
 - (D1) Jede rationale Zahl liegt genau in einer der Mengen α, β .
 - (D2) α und β sind nicht leer.
 - (D3) Jedes Element von α ist kleiner als jedes Element von β .
 - (D4) β hat kein kleinstes Element (=Minimum)
- Jeder Schnitt ist durch (α, β) eindeutig bestimmt und wird daher mit β , seiner Obermenge, identifiziert, die folgende Eigenschaften besitzt:
 - (D'1) β und die Komplementärmenge $\bar{\beta} = \mathbb{Q}/\beta$ sind nicht leer.
 - (D'2) Aus $r \in \beta$, $s \in \mathbb{Q}$ und r < s folgt $s \in \beta$.
 - (D'3) β hat kein kleinstes Element.

Die Menge \mathbb{R} der Schnitte

- Griechische Buchstaben $\alpha, \beta, ...$ bezeichnen im folgenden Obermengen.
- Die Menge aller Dedekindscher Schnitte wird mit \mathbb{R} bezeichnet.
- Jede rationale Zahl s bestimmt einen Schnitt $\underline{s} := \{r : r \in \mathbb{Q}, s < r\}$
- Ein Schnitt α heißt genau dann rational wenn $\bar{\alpha}$ ein größtes Element besitzt
- Nicht alle Schnitte sind rational wie zum Beispiel $\alpha := \{r : r \in \mathbb{Q}, r > 0, r^2 > 2\}$

Die Menge \mathbb{R} der Schnitte

- ullet Die ersten beiden Schnittaxiome für lpha einfach nachzuweisen
- Für das dritte Axiom: Sei für jedes $r \in \alpha$ ein $s \in \alpha$ mit $s := \frac{2r+2}{r+2} \geqslant 0$ Wegen r-s und $r^2 > 2$ mit $r \geqslant 0$ ist s < rWegen $s^2 - 2 = \frac{2(r^2-2)}{(r+2)^2}$ und $r^2 > 2$ ist $s^2 > 2$
- Der Schnitt α ist nicht rational, da $\bar{\alpha}$ kein Maximum besitzt: Für $r \in \bar{\alpha}$ mit $r \geqslant 0$ (also $r^2 < 2$) wähle man s wie oben. Dann folgt wegen $s^2 < 2$ auch $s \in \bar{\alpha}$ und r < s

Die Anordnung in $\mathbb R$

- Die Ordnungsrelation für zwei Schnitte $\alpha<\beta$ wird durch die mengentheoretische Inklusion definiert $\beta\subset\alpha$
- Die Ordnung ist total linear: Sei $\alpha \neq \beta$ und $r \in \alpha$ mit $r \notin \beta$ Dann ist $r \in \bar{\beta}$, und für jedes $s \in \beta$ folgt r < s also $s \in \alpha$, womit $\beta \subset \alpha$
- Die Ordnung ist nach R3 vollständig: Sei A eine nach unten beschränkte Menge von Schnitten. Dann ist $\beta = \bigcup_{\alpha \in A} \alpha$ ein Schnitt.
- ullet Führt man diese Schnittbildung erneut über ${\mathbb R}$ durch erhält man nichts Neues.
- Die Einbettung von $\mathbb Q$ in $\mathbb R$, verträgt sich mit der Anordnung.Die rationalen Zahlen liegen dicht in $\mathbb R$: Zu je zwei Schnitten (reellen Zahlen) $\alpha < \beta$ gibt es ein $r \in \mathbb Q$, so dass $\alpha < \underline{r} < \beta$ ist.

Die Addition in \mathbb{R}

- Für zwei Schnitte α und β aus $\mathbb R$ definiert man die Summe $\alpha+\beta$ als die Menge $\{r+s:r\in\alpha,s\in\beta\}$
- Die Schnitteigenschaften von $\alpha+\beta$ folgen aus den Eigenschaften von α und β also $\alpha+\beta\in\mathbb{R}$
- ullet Auf ${\mathbb Q}$ von ${\mathbb R}$ stimmt die Summe mit der üblichen Adddition rationaler Zahlen überein
- Bei der Ordnungsrelation folgt für zwei Schnitte $\alpha<\beta$ auch $\alpha+\gamma<\beta+\gamma$ für jedes γ aus $\mathbb R$

Satz

Die Menge $\mathbb R$ ist bezüglich der Addition + eine geordnete kommutative Gruppe mit dem Nullschnitt als neutralem Element.

Die Addition in \mathbb{R}

Beweis:

- Assoziativität, Kommutativität und $\alpha + \underline{0} = \alpha$ folgt aus der Definition der Addition
- Sei $-\alpha := \{-r : r \in \alpha, r \neq \max \alpha\}$ der inverse Schnitt $-\alpha$ zu α , für $\alpha + (-\alpha) = 0$ ist dann zu zeigen : $r \in \alpha + (-\alpha)$ für $r \in \underline{0}$, also r > 0
- Da α und $\bar{\alpha}$ sich beliebig nahe kommen, gibt es ein $s \in \bar{\alpha}$ und ein $t \in \alpha$ so, dass 0 < t s < r ist.
- O.B.d.A sei $s \neq \max \bar{\alpha}$

Die Multiplikation in \mathbb{R}

- Für $\alpha, \beta \ge 0$ ist das Produkt definiert durch $\alpha \cdot \beta = \{r \cdot s : r \in \alpha, s \in \beta\}$
- Die Schnittaxiome sind damit erfüllt, die Multiplikation ist assoziativ und kommutativ und $\underline{1}$ ist ein Einselement, sowie die Multiplikation ist ordnungsgetreu und das Distributivgesetztz gilt
- Sei für ein Schnitt $\alpha > 0$, $\alpha^{-1} := \{r^{-1} : r \in \bar{\alpha}, r > 0, r \neq \max \bar{\alpha}\}$
- Zu zeigen $\underline{1} \subset \alpha \cdot \alpha^{-1}$:

Die Multiplikation in \mathbb{R}

Beweis:

Es sei $r \in \mathbb{I}$, also r-1>0, sowie $q \in \alpha^{-1}$. Dann existiert eine natürliche Zahl n mit $q < n \cdot (r-1)$. Da sich α und $\bar{\alpha}$ beliebig nahe kommen, findet man ein $s \in \bar{\alpha}$ und ein $t \in \alpha$ mit $0 < t - s < n^{-1}$, wobei o.B.d.A. $s \neq \max \bar{\alpha}$ und $g^{-1} < s$. Dann ist $s^{-1} \in \alpha^{-1}$, also $t \cdot s^{-1} \in \alpha \cdot \alpha^{-1}$. Weiterhin ist $t \cdot s^{-1} < (s + n^{-1})s^{-1} = 1 + n^{-1}s^{-1} < 1 + n^{-1}q < r$, also $r \in \alpha \cdot \alpha^{-1}$.

- weitere Schwierigkeit liegt darin, das die Definition für $\alpha \cdot \beta$ nur sinnvoll, wenn $\alpha, \beta \geq 0$.
- Um auch mit negativen Schnitten zu multiplizieren wird wie folgt vorgegangen:

Die Multiplikation in \mathbb{R}

- Jeder Schnitt γ lässt sich als Differenz $\gamma=\alpha-\beta$ nicht negativer Schnitte $\alpha\geqslant 0$ und $\beta\geqslant 0$ schreiben.
- Das Produkt von $\gamma = \alpha \beta$ und $\gamma' = \alpha' \beta'$ ist dann gegeben durch : $\gamma \cdot \gamma' = (\alpha \beta) \cdot (\alpha' \beta') := \alpha \cdot \alpha' + \beta \cdot \beta' \alpha \cdot \beta' \beta \cdot \alpha'$
- Die Definition hängt nur von γ und γ' ab und nicht von der Differenzdarstellung $\gamma=\gamma-0,\ \gamma'=\gamma'-0$
- Weiterhin schwierig nun noch alle Körperaxiome nachzuweisen

References

H.-D. Ebbingshaus.

Zahlen.

Springer Verlag, pages 24-32, 1988.

Ende