Conwayzahlen

Philipp Rabe

Kurze Wiederholung

- Ziel: Verallgemeinerung der Dedekindschen Schnitte
- Problem: Wie sieht eine ≤-Beziehung zwischen Zahlen allgemein aus?
- Induktive Definition von Conwayspielen: sind x, y Conwayspiele, dann auch das geordnete Paar (x, y)
- Spiele sind Tupel aus einer Menge S von Stellungen, einer Anfangsstellung s_0 und den Relationen \rightarrow_L und \rightarrow_R
- Spiele bilden eine halbgeordnete abelsche Gruppe
- Es gibt eine eindeutige Zuordnung von Klassen von Spielen zu Conwayspielen
- Auch Conwayspielen bilden eine halbgeordnete abelsche Gruppe

Verallgemeinerung der Dedekinschen Postulate

Dedekindsche Postulate

- (D1) Jede Rationale Zahl liegt in genau einer der Klassen x_1 oder x_2 .
- (D2) x_1 und x_2 sind nicht leer.
- (D3') Kein Element der rechten Klasse ist kleiner oder gleich einem Element der linken Klasse.
- (D4) x₁ hat kein größtes Element.

Conwaysche Postulate

- (C1) wenn z = (x, y), wobei x und y Mengen sind, und wenn nie $z^R \leq z^L$, so ist z eine Zahl.
- (C2) Für Zahlen x, y ist $x \leqslant y$ genau dann, wenn nie $y^R \leqslant x$ und nie $y \leqslant x^L$

Induktionsprinzip für Zahlen

für eine Eigenschaft P

- Induktionsbehauptung: Px für jede Zahl x
- Induktionsvoraussetzung: Px' für jedes linke oder rechte Element x' einer beliebigen Zahl x.

für eine Relation R

- Induktionsbehauptung: $Rx_1, ..., x_n$ für Zahlen $x_1, ..., x_n$
- Induktionsvoraussetzung: $Rx'_1, ..., x'_n$ für alle n-Tupel $x'_1, ..., x'_n$ für die gilt: $x'_i = x_i$ oder x'_i ist linkes oder rechtes Element von x_i und $\exists i : x'_i$ ist linkes oder rechtes Element von x_i .

Wenn für jede Zahl x bzw. jeden Tupel $x_1, ..., x_n$ die Induktionsbehauptung aus der Induktionsvoraussetzung folgt, dann gilt sie für jede Zahl x bzw. jeden Tupel $x_1, ..., x_n$.

Für jede Zahl x gilt:

- (a) $x^R \nleq x$ für jedes x^R
- (b) $x \nleq x^L$ für jedes x^L
- (c) $x \leqslant x$ für jede Zahl x

 $\Rightarrow \leqslant \text{ist reflexiv}$

Beweis mit dem Induktionsprinzip:

- (a) Angenommen $\exists x^R$, sodass $x^R \leqslant x$, dann gilt $x' \nleq x^R$ für jedes rechte Element x' von x. Also auch $x^R \nleq x^R \nleq$ zur Induktionsvoraussetzung (c)
- (b) analog zu (a)
- (c) Wäre $x \nleq x$, dann gäbe es ein x^L mit $x \leqslant x^L$, oder ein x^R mit $x^R \leqslant x \nleq$

Für alle Zahlen x, y, z gilt:

- Wenn $x \leqslant y$ und $y \leqslant z$, dann $x \leqslant z$
- Es gibt also eine dreistellige Relation R mit

$$Rxyz \Leftrightarrow (((x \leqslant y \ und \ y \leqslant z) \Rightarrow x \leqslant z)$$

$$und \ ((y \leqslant z \ und \ z \leqslant x) \Rightarrow y \leqslant x)$$

$$und \ ((z \leqslant x \ und \ x \leqslant y) \Rightarrow z \leqslant y))$$

Beweis mit dem Induktionsprinzip:

Es reicht $(x \leqslant y \text{ und } y \leqslant z) \Rightarrow x \leqslant z \text{ zu zeigen.}$ Angenommen $x \leqslant y$, $y \leqslant z \text{ und } x \nleq z$. Dann gibt es z^R mit $z^R \leqslant x$ oder x^L mit $z \leqslant x^L$. Aus $z^R \leqslant x$ und $x \leqslant y$ folgt nach Induktionsvoraussetzung $z^R \leqslant y$ und aus $z^R \leqslant y$ und $y \leqslant z$ folgt $z^R \leqslant z \nleq$ (Der zweite Fall ist analog)

 $\Rightarrow \leq \text{ist transitiv}$

Definition: x = y genau dann, wenn $x \leqslant y$ und $y \leqslant x$. Analog zur Gleichheit von Conwayspielen ist = eine Äquivalenzrelation.

Wegen der Reflexivität von \leq folgt direkt, dass x = x für alle Zahlen x.

$\Rightarrow \leqslant \text{ist antisymmetrisch}$

Definition: x < y genau dann, wenn $x \leqslant y$ und $y \nleq x$.

Per Induktion lässt sich zeigen, dass für jede Zahl x gilt, dass $x^L < x$ und $x < x^R$: wir haben schon gezeigt, dass $x \not \leqslant x^L$. Angenommen $x^L \not \leqslant x$, dann gibt es ein x^R mit $x^R \leqslant x^L$ ($\not \leqslant$ zu (C1)), oder ein x^{LL} mit $x \leqslant x^{LL}$. Nach Induktionsvoraussetzung ist $x^{LL} \leqslant x^L$. Wäre $x \leqslant x^{LL}$, dann wäre mit der Transitivität von \leqslant auch $x \leqslant x^L$. $\not \leqslant$ Der Beweis für $x < x^R$ ist analog.

Behauptung: Für beliebige Zahlen x, y ist $x \leq y$ oder $y \leq x$.

Beweis: Angenommen $y \nleq x$, dann gibt es ein x^R mit $x^R \leqslant y$, oder ein y^L mit $x \leqslant y^L$.

Allgemein gilt $x \leqslant x^R$ und $y^L \leqslant y$. Mit der Transitivität von \leqslant folgt:

$$(x \leqslant x^R \text{ und } x^R \leqslant y) \Rightarrow (x \leqslant y) \text{ bzw.}$$

 $(x \leqslant y^L \text{ und } y^L \leqslant y) \Rightarrow (x \leqslant y)$

$$(x \leqslant y \text{ und } y \leqslant y) \Rightarrow (x \leqslant y)$$

 $\Rightarrow \leqslant$ ordnet die Zahlen total

Beispiel

Für Conwayspiele wurden $0 = (\emptyset, \emptyset)$, $1 = (\{0\}, \emptyset)$ und $n+1 = (\{0,...,n\}, \emptyset)$ für $n \in \mathbb{N}$ definiert. Hierbei handelt es sich offensichtlich auch um Zahlen.

Behauptung: Für jedes $n \in \mathbb{N}$ gilt n < n + 1.

Beweis:

- $n \le n+1$: Es gibt kein $(n+1)^R$, darum ist zu zeigen, dass es kein n^L gibt mit $n+1 \le n^L$. Jedes n^L ist auch ein $(n+1)^L$ und es gibt kein $(n+1)^L$ mit $n+1 \le (n+1)^L$. Also ist $n \le n+1$.
- $n+1 \nleq n$: n ist ein $(n+1)^L$. Wegen $n \leqslant n$ gibt es also ein $(n+1)^L$ mit $n \leqslant (n+1)^L$. Also ist $n+1 \nleq n$.

Rechenoperationen für Zahlen

Die Operationen für + und - wurden für Conwayspiele bereits induktiv definiert. Diese Definitionen können für Zahlen übernommen werden:

(C-) Für jede Zahl x sei

$$-x \equiv (Menge \ aller - x^R, Menge \ aller - x^L).$$

(C+) Für je zwei Zahlen x, y sei

$$x + y \equiv (Menge \ aller \ (x^L + y) \cup Menge \ aller \ (x + y^L),$$

Menge $\ aller \ (x^R + y) \cup Menge \ aller \ (x + y^R)).$

Rechenoperationen für Zahlen

Für Multiplikation gibt es keine Definition aus dem Bereich der Spiele. Conway gibt folgende Formulierung analog zu (C-) und (C+):

(C*) Für je zwei Zahlen
$$x, y$$
 sei
$$x * y \equiv (Menge \ aller \ (x^L y + xy^L - x^L y^L) \\ \cup Menge \ aller \ (x^R y + xy^R - x^R y^R), \\ Menge \ aller \ (x^L y + xy^R - x^L y^R) \\ \cup Menge \ aller \ (x^R y + xy^L - x^R y^L))$$

Die Zahlen modulo Gleichheit bildet mit \leqslant , +, -, * einen geordneten Körper \mathcal{K}_0 .

Beispielhaft lassen sich einzelne Eigenschaften nachrechnen. Das "Menge aller..." aus den Definitionen werden dabei durch "M(...)" abgekürzt.

Behauptung: Für jede Zahl x und $0 = (\emptyset, \emptyset)$ gilt $x + 0 \equiv x$.

Beweis: per Induktion

$$\begin{array}{l} x+0 \equiv (M(x^L+0) \cup M(x+0^L), \ M(x^R+0) \cup M(x+0^R)) \\ \equiv (M(x^L+0), \ M(x^R+0)) \\ \equiv (M(x^L), \ M(x^R)) \end{array}$$
 (Induktionsvoraussetzung)
$$\equiv x$$

Behauptung: Für zwei Zahlen x, y gilt $x + y \equiv y + x$.

Beweis: per Induktion

$$\begin{aligned}
 x + y &\equiv (M(x^{L} + y) \cup M(x + y^{L}), \ M(x^{R} + y) \cup M(x + y^{R})) \\
 &\equiv (M(x + y^{L}) \cup M(x^{L} + y), \ M(x + y^{R}) \cup M(x^{R} + y)) \\
 &\equiv (M(y^{L} + x) \cup M(y + x^{L}), \ M(y^{R} + x) \cup M(y + x^{R})) \ (IV) \\
 &\equiv y + x
 \end{aligned}$$

Behauptung: Für jede Zahl x gilt x + -x = 0.

Beweis: per Induktion

- wir zeigen $x + -x \le 0$
- $0^R = \emptyset$ also gibt es kein $0^R \leqslant x + -x$
- jedes $z = (x + -x)^L$ ist von der Form $x^L + -x$, oder $x + -x^R$.
- Fall $z = x^L + -x$, dann ist $x^L + -x^L$ ein z^R und nach Induktionsvoraussetzung $x^L + -x^L \le 0$ also $0 \nleq z$
- Fall $z = x + -x^R$, dann ist $x^R + -x^R$ ein z^R und nach Induktionsvoraussetzung $x^R + -x^R \le 0$ also $0 \nleq z$
- Es gibt also kein $0 \le (x + -x)^L$, also ist $x + -x \le 0$.
- $0 \leqslant x + -x$ gilt analog.

Behauptung: Für jede Zahl x gilt $x * 0 \equiv 0$.

Beweis:

$$x*0 \equiv (M(x^{L}*0 + x*0^{L} - x^{L}*0^{L}) \cup M(x^{R}*0 + x*0^{R} - x^{R}*0^{R}), M(x^{L}*0 + x*0^{R} - x^{L}*0^{R}) \cup M(x^{R}*0 + x*0^{L} - x^{R}*0^{L})) \equiv (\emptyset \cup \emptyset, \emptyset \cup \emptyset) \equiv (\emptyset, \emptyset) = 0$$

 $0 * x \equiv 0$ folgt analog.

Behauptung: Für $1 = (\{0\}, \emptyset)$ und jede Zahl x gilt x * 1 = x.

Beweis:

```
 \begin{array}{l} x*1 \equiv (M(x^L*1 + x*1^L - x^L*1^L) \cup M(x^R*1 + x*1^R - x^R*1^R), \\ M(x^L*1 + x*1^R - x^L*1^R) \cup M(x^R*1 + x*1^L - x^R*1^L)) \\ \equiv (M(x^L*1 + x*0 - x^L*0) \cup \emptyset, \ \emptyset \cup M(x^R*1 + x*0 - x^R*0)) \\ \equiv (M(x^L*1 + 0 - 0), M(x^R*1 + 0 - 0)) \\ \equiv (M(x^L), M(x^R)) \qquad \text{(Induktions voraus setzung)} \\ \equiv x \end{array}
```

Was ist der Körper der Conwayzahlen?

Wie lassen sich bekannte Zahlenmengen mit den Conwayzahlen verbinden?

- Für Conwayspiele wurde $\mathbb N$ über $0 = (\emptyset, \emptyset)$, $1 = (\{0\}, \emptyset)$ und $n+1 = (\{0,...,n\}, \emptyset)$ für $n \in \mathbb N$ definiert.
- Mit der Definition von (C-) erhalten wir auch eine Einbettung der negativen Zahlen in K_0 .
- \mathbb{Z} lässt sich in K_0 einbetten und K_0 ist ein Körper, also lässt sich auch \mathbb{Q} in K_0 einbetten.
- Über die Dedekindschen Schnitte erhält man dann auch eine Einbettung von \mathbb{R} in \mathcal{K}_0 .

Was ist der Körper der Conwayzahlen?

- Schränkt man die Konstruktion von Zahlen so ein, dass nur endliche Mengen zugelassen werden, erhält man die dyadischen Zahlen (alle Zahlen der Form $\frac{m}{2^n}$, $m \in \mathbb{Z}$, $n \in \mathbb{N}$).
- Ordinalzahlen sind Conwayspiele und auch Zahlen.
- mit $\omega = (\{0,...\},\emptyset)$ und $\frac{1}{\omega}$ gibt es unendlich große und unendlich kleine Zahlen
- K_0 ist der bis auf Isomorphie eindeutig bestimmte universell einbettende geordnete Körper. D.h. jeder geordnete Körper lässt sich in K_0 einbetten.