Cantor (1).

Georg Cantor

(1845-1918)

studied in Zurich, Berlin, Gottingen
Professor in Halle

# Work in analysis leads to the notion of cardinality
(1874): most real numbers are transcendental.

#® Correspondence with Dedekind (1831-1916): bijection
between the line and the plane.

#® Perfect sets and iterations of operations lead to a notion
of ordinal number (1880).

Core Logic — 2005/06-1ab — p. 3/2



-

9

°

Cantor (2).

Georg Cantor (1845-1918)

1877. Leopold Kronecker (1823-1891) tried to prevent
publication of Cantor’s work.

Cantor is supported by Dedekind and Felix Klein.
1884: Cantor suffers from a severe depression.

1888-1891: Cantor Is the leading force in the foundation
of the Deutsche Mathematiker-Vereinigung.

Development of the foundations of set theory:
1895-1899.
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The natural numbers

The even numbers

9o

°

Cardinality (1).

AN

There is a 1-1 correspondence (bijection) between N
and the even numbers.

T
T
T

nere Is a bijection between N x N and N.
nere Is a bijection between Q and N.

nere Is no bijection between the set of infinite 0-1

sequences and N.

There Is no bijection between R and N.
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Cardinality (2).
- o

Theorem (Cantor). There is no bijection between the set of
Infinite 0-1 sequences and N.

Theorem (Cantor). There Is a bijection between the real
line and the real plane.

Proof. Let’s just do it for the set of infi nite 0-1 sequences and the set of pairs of infi nite 0-1
sequences:

If = is an infi nite 0-1 sequence, then let
xo(n) := x(2n), and

z1(n) = x(2n 4+ 1).

Let F'(x) := (xo,x1). F is a bijection. g.e.d.

Cantor to Dedekind (1877): “Ich sehe es, aber ich glaube

Les nicht!”
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Transfiniteness (1).

-

If X C R is aset of reals, we call x € X isolated in X if no
sequence of elements of X converges to .

Cantor’s goal: Given any set X, give a construction of a
nonempty subset that doesn’t contain any isolated points.

Idea: Let X'*°! be the set of all points isolated in X, and
define X’ := X\ X',

Problem: It could happen that z € X’ was the limit of a
seqguence of points isolated in X. So it wasn't isolated in X,
but is now isolated in X',

Solution: lterate the procedure: X, := X and
Xn_|_1 = (Xn>/

.
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Transfiniteness (2).
fX’ = X\ Xl X := X and X, 11 := (X5)'.
Question: Is (), .y X a set without isolated points?
Answer: In general, no!

So, you could set X :=(),,cy X, and then X411 := (Xo)'s
In general, Xooint1 := (Xooan)'.

The indices used in transfinite iterations like this are called
ordinals.
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Sets (1).
- -

The notion of cardinality needs a general notion of function
as a special relation between sets. In order to make the

notion of an ordinal precise, we also need sets.

What Is a set?

Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge
unserer Anschauung oder unseres Denkens zu einem Ganzen. (Cantor 1895)
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Sets (2).

Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge
unserer Anschauung oder unseres Denkens zu einem Ganzen. (Cantor 1895)

Example. Call a linear ordering < on a set X a wellorder if
any nonempty set A C X has a <-least element.
Question. Can we define a wellorder on the set R of real
numbers?

Answer (Zermelo 1908). Yes! The proof uses the following
statement about sets: “Whenever I is an index set and for
each i € I, the set X, is nonempty, then the set C of
functions f : I — |J X; such that for all i, we have f(i) € X;
IS nonempty as well.”

LW Problems in the Foundations of Mathematics (next week)

Core Logic — 2005/06-1ab — p. 10/z



Syllogistics versus Propositional Logic.

fDeﬁciencies of Syllogistics:

Not expressible:
Every X isaY anda Z. Ergo... Every X isaY.

Deficiencies of Propositional Logic:

#® XaY can be representedas Y — X.
#® XeY can berepresentedas Y — —X.

Not expressible:
XiY and XoY.

.
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Frege.

Gottlob Frege
1848 - 1925

Studied in Jena and Gattingen.

Professor in Jena.

Begriffsschrift (1879).

Grundgesetze der Arithmetik (1893/1903).

© o o @

“Every good mathematician is at least half a philosopher, and every good philosopher is at
least half a mathematician. (G. Frege)”

.
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Frege’s logical framework.

- - - .
“Everything is M™ ~=2-M(z) vz M(z)
“Something Is M” 1= M=) 35 M (x) =
“Nothing is M™ ~—Mz) yr - M(z)

[

“Some Pisan M” P(z) dz (P(x) A M(x))
= WV (P(z) — ~M(x))

Second order logic allowing for quantification over
properties.

.
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Frege’s Importance.

-

# Notion of a formal system.
# Formal notion of proof in a formal system.

# Analysis of number-theoretic properties in terms of
second-order properties.
~ Russell's Paradox
(Grundlagekrise der Mathematik)

Core Logic — 2005/06-1ab — p. 14/



Hilbert (1).

David Hilbert (1862-1943)
Student of Lindemann
1886-1895 Konigsberg
1895-1930 Gattingen

1899: Grundlagen der Geometrie

“Man muss jederzeit an Stelle von ‘Punkten’, ‘Geraden’, ‘Ebenen’ ‘Tische’, ‘Stuhle’,
‘Bierseidel’ sagen kénnen.”

“It has to be possible to say ‘tables’, ‘chairs’ and ‘beer mugs’ instead of ‘points’, ‘lines’ and
‘planes’ at any time.”

. -
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Hilbert (2).
f GRUNDZUGE

DER THEORETISCHEN 1928: H_.Ilbert_ACkerma_nn :
LOGIK Grundzuge der Theoretischen Logik

= Wilhelm Ackermann (1896-1962)

WACKERMANN
s

BERLIN
VERLAG VOX JULIVS SPRINGER

. -
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First order logic (1).

A first-order language Lis aset {f;; i € [} U{R;; j € J} of
function symbols and relation symbols together with a
signature o : I UJ — N.

® o(f;) = nis interpreted as “f; represents an n-ary
function”.

® o(R;) = nis interpreted as “R; represents an n-ary
relation”.

In addition to the symbols from £, we shall be using the
logical symbols Vv, 3, A, vV, —, =, <, equality =, and a set of
variables Var.

.
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First order logic (2).
fWe fix a first-order language £ = §;; i € I} U{R;; j € J} and a signature o : TU J — N.
Definition of an £-term.
# Every variable is an £-term.

® Ifo(f;) =n, and t1, ..., t, are L-terms, then f;(¢1, ..., t,) iS
an L-term.

# Nothing else is an £-term.

Example. Let £ = {x} be a first order language with a
binary function symbol.

® x(z,z)isan L-term (normally written as x x x, or x?).

® x(x(z,z),x)is an L-term (normally written as (zxx)xx, or z3).

. -
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First order logic (3).

fDefinition of an £-formula.
® Iftand t* are L-terms, then t = t* IS an L-formula.
® Ifo(R;) =n, and ty, ..., t, are L£-terms, then R;(¢1, ..., )
IS an L-formula.

® |If p and ¢ are L-formulae and x Is a variable, then -y,

o AN, oV b, 0 — P, o b, Vo (p) and Jz (p) are
L-formulae.

# Nothing else is an £-formula.
An L-formula without free variables is called an £-sentence.

.
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Semantics (1).

-

We fi x a fi rst-order language £ = §;; i € I} U {R;; j € J} and a signature o : TU J — N.

Atuple X = (X (f;;ie€I),(R;; j € J))is called an

L-structure If f; Is an o(f;)-ary function on X and R; Is an

o(R;)-ary relation on X.
An X-interpretation is a function ¢ : Var — X.

If . Is an X-interpretation and X is an £ then . extends to a
function 7 on the set of all £-terms.

If X Is an L-structure and ¢ is an X-interpretation, we define
a semantics for all £-formulae by recursion.

.
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Semantics (2).

If X is an L-structure and ¢ is an X-interpretation, we defi ne a semantics for all £-formulae
by recursion.

o X =t=t"Ifandonly if 7(t) = i(t*).

® X,1 | Rj(ty,....ty) if and only if R(i(t1), ..., i(t,)).

® X oAy ifandonlyif X, . =y and X, ¢ = .

® X, . —pifandonlyifitis not the case that X, = .

® X, 1 =V (p) If and only if for all X-interpretations *
with . ~, /", we have X, /* = .

® X = pif and only if for all X-interpretations «, we have

X, = .
L Object Language «— Metalanguage.
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Semantics (3).

-

Let X be an L-structure. The theory of X, Th(X), Is the set
of all £L-sentences ¢ such that X |= .

Object Language «— Metalanguage.

Under the assumption that the tertium non datur holds for
the metalanguage, the theory of X is always complete:

For every sentence ¢, we either have ¢ € Th(X) or
- € Th(X).
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Deduction (1).

Let ® be a set of £-sentences. A ¢-proof is a finite

sequence (1, ..., p,) of L-formulae such that for all z, one of
the following holds:

9

9o
9

w; =t =t for some L-term
t,

w; € P, Or

there are j,k < 4 such
that ¢; and ¢}, are the pre-
misses and ¢; Is the con-
clusion in one of the rows
of the following table.

Premisses Conclusion
NP ©
e NP (0
© ( WA
© —p (o
=Y =Y (0
vz (¢) o2
oY vz (¢))
t=t* oL ot
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Deduction (2).
-

If ® Is a set of £L-sentences and ¢ Is an £-formula, we write
¢ - ¢ If there Is a ®-proof in which ¢ occurs.

We call a set & of sentences a theory if whenever ¢ I o,
then ¢ € ® (“® Is deductively closed”).

Example. Let £ = {<} be the language of partial orders.
Let ®,,. be the axioms of partial orders, and let ¢ be the
deductive closure of ¢,,. ® Iis not a complete theory, as the
sentence VaVy(z < y Vy < x) IS not an element of ¢, but
neither is its negation.

.
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Completeness.

Kurt Godel (1906-1978)

Semantic entailment. We write & = ¢ for “whenever X = ¢,
then X |= ¢”.

GOdel Completeness Theorem (1929).

ON el If and only If o = .

“there is a ®-proof of ¢” “for all X = @, we have X = ¢”
S p If and only If O = .

“no ®-proof contains ” “there is some X = & A —p”

.
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Applications (1).
-

The Model Existence Theorem.
If & Is consistent (i.e., ® I¥ 1), then there is a model X = .

The Compactness Theorem.

Let ® be a set of sentences. If every finite subset of ® has a
model, then ® has a model.

Proof. If & doesn’t have a model, then it is inconsistent by the Model Existence Theorem.
So, &+ 1, i.e., thereis a ®-proof P of L.

But P is a fi nite object, so it contains only fi nitely many elements of ®. Let ¢ be the set of
elements occurring in P. Clearly, P is a ®g-proof of L, so ®¢ is inconsistent. Therefore &
cannot have a model. g.e.d.

. -
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Applications (2).

The Compactness Theorem. Let & be a set of sentences. If every fi nite subset of & has a
model, then ® has a model.

Corollary 1. Let ® be a set of sentences that has arbitrary
large finite models. Then ® has an infinite model.

Proof. Let ¢>,, be the formula stating “there are at least n different objects”. Let
U := {¢>,; n € N}. The premiss of the theorem says that every fi nite subset of ® U ¥ has
a model. By compactness, & U ¥ has a model. But this must be infi nite. g.e.d.

Let £ := {<} be the first order language with one binary
relation symbol. Let &, be the axioms of partial orders.

Corollary 2. There is no sentence ¢ such that for all partial
orders P, we have

P is finite if and only if P = o.

[If o is like this, then Corollary 1 can be applied to ®,.,. U {o}.]

Core Logic — 2005/06-1ab — p. 27/



	Cantor (1).
	Cantor (2).
	Cardinality (1).
	Cardinality (2).
	Transfiniteness (1).
	Transfiniteness (2).
	Sets (1).
	Sets (2).
	Syllogistics versus Propositional Logic.
	Frege.
	Frege's logical framework.
	Frege's importance.
	Hilbert (1).
	Hilbert (2).
	First order logic (1).
	First order logic (2).
	First order logic (3).
	Semantics (1).
	Semantics (2).
	Semantics (3).
	Deduction (1).
	Deduction (2).
	Completeness.
	Applications (1).
	Applications (2).

