

Axiomatische Verzamelingentheorie

2005/2006; 2nd Semester dr Benedikt Löwe

Homework Set # 10 Deadline: April 27th, 2006

Exercise 26 (total of ten points).

If α is an ordinal, then sequences $\langle \varepsilon_0, ..., \varepsilon_n \rangle$ and $\langle k_0, ..., k_n \rangle$ with

$$\begin{split} \varepsilon_n > \varepsilon_{n-1} > \dots > \varepsilon_1 > \varepsilon_0, \\ 0 < k_i < \omega, \text{ and} \\ \alpha = \omega^{\varepsilon_n} \cdot k_n + \omega^{\varepsilon_{n-1}} \cdot k_{n-1} + \dots + \omega^{\varepsilon_0} \cdot k_0 \end{split}$$

is its **Cantor Normal Form to the base** ω (CNF). Prove that the Cantor Normal Form is unique, *i.e.*, if both $\langle \varepsilon_0, ..., \varepsilon_n \rangle$, $\langle k_0, ..., k_n \rangle$ and $\langle \varepsilon_0^*, ..., \varepsilon_n^* \rangle$, $\langle k_0^*, ..., k_n^* \rangle$ have the above properties, then $\varepsilon_i = \varepsilon_i^*$ and $k_i = k_i^*$ for all i (6 points).

Compute the CNF to the base ω of $\omega^{\omega} \cdot \omega^{\omega^{\omega+1}}$ (2 points) and $\omega \cdot 7 + (\omega+1)^{\omega}$ (2 points).

Exercise 27 (total of nine points).

Let α , β and γ be ordinals. Prove that

- (1) $\alpha^{\gamma} \cdot \alpha^{\beta} = \alpha^{\gamma+\beta}$ (3 points),
- (2) $\alpha^{\gamma} \cdot \beta^{\gamma} = (\alpha \cdot \beta)^{\gamma}$ (3 points),
- (3) $(\alpha^{\gamma})^{\beta} = \alpha^{\gamma \cdot \beta}$ (3 points).

Exercise 28 (total of seven points).

As defined in the lecture, an ordinal number α is called an ε -number if for all ξ , $\eta < \alpha$, we have $\xi^{\eta} < \alpha$. Clearly, ω is an ε -number.

Define the following two numbers α and β : $\alpha_0 := \omega$, $\alpha_{n+1} := \omega^{\alpha_n}$, $\alpha := \bigcup \{\alpha_n ; n \in \omega\}$ and $\beta_0 := \omega$, $\beta_{n+1} := \beta_n^{\omega}$, $\beta := \bigcup \{\beta_n ; n \in \omega\}$. Show that $\beta < \alpha$ (3 points). Show that α is the least ε -number that is bigger than ω (4 points). (Clearly, this implies that β is not an ε -number.)