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Abstract. In this paper we prove the following conjecture by Bollobás and
Komlós: For every γ > 0 and integers r ≥ 1 and ∆, there exists β > 0 with

the following property. If G is a sufficiently large graph with n vertices and

minimum degree at least ((r − 1)/r + γ)n and H is an r-chromatic graph with

n vertices, bandwidth at most βn and maximum degree at most ∆, then G
contains a copy of H.
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1. Introduction and results

One of the fundamental results in extremal graph theory is the theorem by Erdős
and Stone [17] which implies that any fixed graph H of chromatic number r is forced
to appear as a subgraph in any sufficiently large graph G if the average degree of
G is at least ( r−2

r−1 + γ)n, for an arbitrarily small but positive constant γ. In this
paper we prove an analogue of this result for spanning subgraphs H which was
conjectured by Bollobás and Komlós.

When trying to translate the Erdős–Stone theorem into a setting where the
graphs H and G have the same number of vertices, then two changes are obviously
necessary. First of all, the average degree condition must be replaced by one in-
volving the minimum degree δ(G) of G, since we need (to be able to control) every
single vertex of G. Also, for some graphs H it is clear that in this regime the lower
bound has to be raised at least to δ(G) ≥ r−1

r
n: simply consider the example where
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G is the complete r-partite graph with partition classes almost, but not exactly, of
the same size (thus G has minimum degree almost r−1

r
n) and let H be the spanning

union of vertex disjoint r-cliques.
There are a number of results where a minimum degree of r−1

r
n is indeed suffi-

cient to guarantee the existence of a certain spanning subgraph H . A well known
example is Dirac’s theorem [15]. It asserts that any graph G on n vertices with
minimum degree δ(G) ≥ n/2 contains a Hamiltonian cycle. Another classical result
of that type by Corrádi and Hajnal [11] states that every graph G with n vertices
and δ(G) ≥ 2n/3 contains ⌊n/3⌋ vertex disjoint triangles. This was generalised by
Hajnal and Szemerédi [18], who proved that every graph G with δ(G) ≥ r−1

r
n must

contain a family of ⌊n/r⌋ vertex disjoint cliques, each of size r.
A further extension of this theorem was suggested by Pósa (see, e.g., [16]) and

Seymour [32], who conjectured that, at the same threshold δ(G) ≥ r−1
r

n, such a
graph G must in fact contain a copy of the (r − 1)-st power of a Hamiltonian cycle
(where the (r − 1)-st power of an arbitrary graph is obtained by inserting an edge
between every two vertices of distance at most r − 1 in the original graph). This
was proven in 1998 by Komlós, Sárközy, and Szemerédi [23] for sufficiently large n.

Recently, several other results of a similar flavour have been obtained which
deal with a variety of spanning subgraphs H , such as, e.g., trees, F -factors, and
planar graphs [3, 4, 5, 6, 12, 13, 21, 24, 25, 28, 29, 30, 33]. Thus, in an attempt to
move away from results that concern only graphs H with a special, rigid structure,
a näıve conjecture could be that δ(G) ≥ ( r−1

r
+ γ)n suffices to guarantee that G

contains a spanning copy of any r-chromatic graph H of bounded maximum degree.
However, the following simple example shows that this fails in general. Let H be
a random bipartite graph with bounded maximum degree and partition classes of
size n/2 each, and let G be the graph formed by two cliques of size (1/2+γ)n each,
which share exactly 2γn vertices. It is then easy to see that G cannot contain a
copy of H , since in H every vertex set X of size (1/2 − γ)n has more than 2γn
neighbours outside X .

One way to rule out such expansion properties for H is to restrict the bandwidth
of H . A graph is said to have bandwidth at most b, if there exists a labelling of
the vertices by numbers 1, . . . , n, such that for every edge {i, j} of the graph we
have |i − j| ≤ b. Bollobás and Komlós [20, Conjecture 16] conjectured that every
r-chromatic graph on n vertices of bounded degree and bandwidth limited by o(n),
can be embedded into any graph G on n vertices with δ(G) ≥ ( r−1

r
+ γ)n. In this

paper we give a proof of this conjecture.

Theorem 1. For all r, ∆ ∈ N and γ > 0, there exist constants β > 0 and n0 ∈ N

such that for every n ≥ n0 the following holds.
If H is an r-chromatic graph on n vertices with ∆(H) ≤ ∆, and bandwidth at

most βn and if G is a graph on n vertices with minimum degree δ(G) ≥ ( r−1
r

+γ)n,
then G contains a copy of H.

The analogue of Theorem 1 for bipartite H was announced by Abbasi [1] in 1998,
and a short proof based on our methods can be found in [19]. In [8], we proved the
3-chromatic case of this theorem.

Obviously, Hamiltonian cycles and their powers have constant bandwidth. In
addition, Chung [9] proved that trees with constant maximum degree have band-
width at most O(n/ log n). Recently this result was extended to planar graphs, and
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more generally, to any hereditary class of bounded degree graphs with small separa-
tors. In fact, it can be shown that a hereditary class of bounded degree graphs has
sublinear bandwidth if and only if it does not contain expanders of linear order [7].

These observations indicate that Theorem 1 can be regarded as a common gen-
eralisation of some of the results obtained earlier concerning the minimum degree
threshold for containing certain spanning subgraphs. For (r−1)-st powers of Hamil-
tonian cycles H this is only true if r divides n, since otherwise χ(H) = r +1. How-
ever, Theorem 2 below also includes those cases. Furthermore, note that for some
of the earlier results, the additional term γn in the minimum degree condition is
not needed (or can be replaced by a smaller term). In the general setting, however,
this is not possible: Abbasi [2] showed that if γ → 0 and ∆ → ∞ then β must tend
to 0 in Theorem 1. However, the bound on β coming from our proof is rather poor,
having a tower-type dependence on 1/γ.

Another question is what happens when we allow the maximum degree of H to
grow with n. In [25], Komlós, Sárközy, and Szemerédi showed that every graph
G with minimum degree at least (1

2 + γ)n must contain a copy of an arbitrary
spanning tree H with maximum degree at most cn/ log n, and it may be worth
while to try to extend Theorem 1 in a similar direction. The part in our proof
which partitions H in such a way that it can be embedded into G does in fact
not need an upper bound on ∆(H), see Lemma 8 below. However for the blow-up
lemma, which we then apply to find the required embedding, ∆(H) needs to be
bounded by a constant.

Finally we would like to address the rôle of the chromatic number in Theorem 1
again. In the same way that the Hamiltonian cycle on an odd number of vertices
is forced as a spanning subgraph in any graph of minimum degree 1

2n (although it
is 3- and not 2-chromatic), other (r + 1)-chromatic graphs are forced already when
δ(G) ≥ ( r−1

r
+ γ)n. It seems that one important question here is whether all r + 1

colours are needed by many vertices. For example, the critical chromatic number
χcr(H) of a graph H is defined as (χ(H)−1)|V (H)|/(|V (H)|−σ), where σ denotes
the minimum size of the smallest colour class in a colouring of H with χ(H) colours.
Obviously, χ(H)−1 < χcr(H) ≤ χ(H), with (approximate) equality for σ tending to
0 or |V (H)|/χ(H), respectively. This concept was introduced by Komlós [21], who
proved that a minimum degree condition of δ(G) ≥ (χcr(H) − 1)n/χcr(H) suffices
to find a family of disjoint copies of H covering all but εn vertices of G. Kühn and
Osthus [27] further investigated this question and managed to determine for every
H the corresponding minimum degree condition (up to an additive constant) for
the containment of a spanning H-factor.

Our methods allow an extension of Theorem 1 that goes into a somewhat similar
direction. Assume that the vertices of H are labelled 1, . . . , n. For two positive
integers x, y, an (r + 1)-colouring σ : V (H) → {0, . . . , r} of H is said to be (x, y)-
zero free with respect to such a labelling, if for each t ∈ [n] there exists a t′ with
t ≤ t′ ≤ t+x such that σ(u) 6= 0 for all u ∈ [t′, t′ + y]. We also say that the interval
[t′, t′ + y] is zero free.

Theorem 2. For all r, ∆ ∈ N and γ > 0, there exist constants β > 0 and n0 ∈ N

such that for every n ≥ n0 the following holds.
Let H be a graph with ∆(H) ≤ ∆ whose vertices are labelled 1, . . . , n such that,

with respect to this labelling, H has bandwidth at most βn, an (r+1)-colouring that
is (8rβn, 4rβn)-zero free, and uses colour 0 for at most βn vertices in total.
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If G is a graph on n vertices with minimum degree δ(G) ≥ ( r−1
r

+ γ)n, then G
contains a copy of H.

Obviously Theorem 2 implies Theorem 1, and the remaining part of this paper
is devoted to the proof of Theorem 2.

2. Main lemmas and outline of the proof

In this section we introduce the central lemmas that are needed for the proof
of our main theorem. Our emphasis in this section is to explain how they work
together to give the proof of Theorem 2, which itself is then presented in full detail
in the subsequent section, Section 3.

2.1. The blow-up lemma. One of the main ingredients to our proof is the so-
called blow-up lemma [22], which is a powerful tool for embedding spanning graphs.
For stating this lemma we first need to introduce the concept of an ε-regular pair.
Let G = (V, E) be a graph. For a vertex v ∈ V we write dG(v) := |NG(V )|
for the degree of v in G. Let A, B ⊆ V be disjoint vertex sets. We denote the
number of edges with one end in A and the other end in B by e(A, B). The ratio
d(A, B) := e(A, B)/(|A||B|) is called the density of (A, B).

Definition 3. The pair (A, B) is ε-regular, if for all A′ ⊆ A and B′ ⊆ B with
|A′| ≥ ε|A| and |B′| ≥ ε|B| it is true that |d(A, B) − d(A′, B′)| < ε. An ε-regular
pair (A, B) is called (ε, d)-regular, if it has density at least d.

For a graph G = (V, E) and a graph Rk on the vertex set [k] we say that V =
V1∪̇ · · · ∪̇Vk is (ε, d)-regular on Rk if (Vi, Vj) is (ε, d)-regular for every {i, j} ∈
E(Rk). In this case Rk is also called a reduced graph for G.

In addition we need the concept of a super-regular pair. Roughly speaking a
regular pair is super-regular if every vertex has a sufficiently large degree.

Definition 4 (super-regular pair). Let ε, d > 0 and let (A, B) be an (ε, d)-regular
pair. We say (A, B) is (ε, d)-super-regular if, in addition, every v ∈ A has at least
d|B| neighbours in B and every v ∈ B has at least d|A| neighbours in A.

Moreover, for a graph G = (V, E) and a graph Rk on vertex set [k] we say
V = V1∪̇ · · · ∪̇Vk is (ε, d)-super-regular on Rk if (Vi, Vj) is (ε, d)-super-regular for
every {i, j} ∈ E(Rk).

With this we are ready to state the blow-up lemma of Komlós, Sárközy, and
Szemerédi [22] (see also [31] for an alternative proof). The simplest version of
this lemma guarantees that bipartite spanning graphs of bounded degree can be
embedded into sufficiently super-regular pairs.

Theorem 5 (Blow-up lemma [22]). For every d, ∆, c > 0 and k ∈ N there exist
constants εBL = εBL(d, ∆, c, k) and αBL = αBL(d, ∆, c, k) such that the following
holds.

Let n1, n2, . . . , nk be arbitrary positive integers, 0 < ε < εBL, and G =
(V1∪̇V2∪̇ . . . ∪̇Vk, E) be a k-partite graph with |Vi| = ni for i ∈ [k]. Moreover,
let S be a graph on vertex set [k] such that V1∪̇ . . . ∪̇Vk is (ε, d)-super-regular on S.

Suppose H = (W1∪̇W2∪̇ . . . ∪̇Wk, F ) is a k-partite graph with ∆(H) ≤ ∆ such
that there exists a graph homomorphism φ : V (H) → V (S) such that |φ−1(i)| ≤ ni

for every i ∈ [k]. Moreover, suppose that in each class Wi there is a set of at most
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αBL · minj∈[k] nj special vertices y, each of which is equipped with a set Cy ⊆ Vi

with |Cy| ≥ cni.
Then there is an embedding of H into G such that every special vertex y is

mapped to a vertex in Cy.

We say that the special vertices y in Theorem 5 are image restricted to Cy.

2.2. Preparing G and H for the blow-up lemma. It remains to introduce the
main lemmas that ‘prepare’ the graphs G and H for an application of the blow-up
lemma. Before we can state these lemmas we will need a few more definitions.

Suppose that m and r are integers. Let Cr
m be the mr-vertex graph obtained from

a path on m vertices by replacing every vertex by a clique of size r and replacing
every edge by a complete bipartite graph minus a perfect matching. More precisely,

V (Cr
m) = [m] × [r] (1)

and

{(i, j), (i′, j′)} ∈ E(Cr
m) iff i = i′ or |i − i′| = 1 ∧ j 6= j′. (2)

Let Kr
m be the graph on vertex set [m]× [r] that is formed by the disjoint union

of m complete graphs on r vertices. Then Kr
m ⊆ Cr

m and we call the complete graph
on vertices (i, 1), . . . , (i, r) the i-th component of Kr

m for i ∈ [m]. Note moreover,
that σ : [m] × [r] → [r] with

σ(i, j) := j for i ∈ [m] and j ∈ [r]

is a valid r-colouring of Cr
m. We will later consider vertex partitions (Vi,j)i∈[m],j∈[r]

that are (ε, d)-regular on Cr
m for some ε and d. Then we will also say, that Vi,j has

colour j.
For all n, k, r ∈ N, we call an integer partition (ni,j)i∈[k],j∈[r] of n (with ni,j ∈ N

for all i ∈ [k] and j ∈ [r]) r-equitable, if |ni,j −ni,j′ | ≤ 1 for all i ∈ [k] and j, j′ ∈ [r].
We can now state (and then explain) our first main lemma which asserts a

regular partition of the graph G with structural properties that will be suitable for
embedding H into G.

Lemma 6 (Lemma for G). For all r ∈ N and γ > 0 there exist d > 0 and ε0 > 0
such that for every positive ε ≤ ε0 there exist K0 and ξ0 > 0 such that for all
n ≥ K0 and for every graph G on vertex set [n] with δ(G) ≥ ((r − 1)/r + γ)n there
exist k ∈ N \ {0} and a graph Rr

k on vertex set [k] × [r] with

(R1 ) k ≤ K0,
(R2 ) δ(Rr

k) ≥ ((r − 1)/r + γ/2)kr,
(R3 ) Kr

k ⊆ Cr
k ⊆ Rr

k, and
(R4 ) there is an r-equitable integer partition (mi,j)i∈[k],j∈[r] of n with mi,j ≥

(1 − ε)n/(kr) such that the following holds.

For every partition (ni,j)i∈[k],j∈[r] of n with mi,j − ξ0n ≤ ni,j ≤ mi,j + ξ0n there

exists a partition (Vi,j)i∈[k],j∈[r] of V with

(V1 ) |Vi,j | = ni,j,
(V2 ) (Vi,j)i∈[k],j∈[r] is (ε, d)-regular on Rr

k, and

(V3 ) (Vi,j)i∈[k],j∈[r] is (ε, d)-super-regular on Kr
k.
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We give the proof of Lemma 6, which borrows ideas from [25], in Section 6.
For simplicity let us first assume ni,j = mi,j . In this case, Lemma 6 would

guarantee a partition of the vertex set of G in such a way that the partition classes
form many (super-)regular pairs, and that these pairs are organised in a sort of
backbone, namely in the form of a Cr

k for the regular pairs, and, contained therein,
a spanning family Kr

k of disjoint complete graphs for the super-regular pairs.
However, the lemma says more. When we come to the point (R4 ), the lemma

‘has in mind’ the partition we just described, but doesn’t exhibit it. Instead, it
only discloses the sizes mi,j and allows us to wish for small amendments: for every
i ∈ [k] and j ∈ [r], we can now look at the value mi,j and ask for the size of the
corresponding partition class to be adjusted to a new value ni,j , differing from mi,j

by at most ξ0n.
When proving Lemma 6, one thus needs to alter the partition by shifting a

few vertices. Note that while (ε, d)-regularity is very robust towards such small
alterations, (ε, d)-super -regularity is not, so this is where the main difficulty lies
(cf. Proposition 14).

In [8] we proved the 3-chromatic case of Lemma 6. One central ingredient to
the proof was the existence of the square of a Hamiltonian cycle in graphs of high
minimum degree as asserted by the affirmative solution of the conjecture of Pósa
(see, e.g. [23]) mentioned in the introduction. It was this square of a Hamiltonian
cycle that allowed us to perform the alteration just described.

However, it turned out that the (r−1)-st power of a Hamiltonian cycle is not well
connected enough to carry over these methods to the r-chromatic case. In order to
deal with this problem we will first solve the following special case of Theorem 1,
which asserts the copy of Cr

m in a graph of high minimum degree. Notice that Cr
m

contains the (r − 1)-st power of a Hamiltonian path on mr vertices and thus we
now obtain a graph of a richer structure that will allow us to move vertices between
partition classes.

Lemma 7 (backbone lemma). For all integers r ≥ 1 and positive constants γ and
ε there exists n0 = n0(r, γ, ε) such that for every n ≥ n0 the following holds. If G is
an n-vertex graph with minimum degree δ(G) ≥ ((r − 1)/r + γ)n, then G contains
a copy of Cr

m with rm ≥ (1 − ε)n.

Now we come to the second main lemma. It prepares the graph H so that it can
be embedded into G. This is exactly the place where, given the values mi,j , the
new values ni,j in the setting described above are specified.

Lemma 8 (Lemma for H). Let r, k ≥ 1 be integers and let β, ξ > 0 satisfy
β ≤ ξ2/(3026r3).

Let H be a graph on n vertices with ∆(H) ≤ ∆, and assume that H has a
labelling of bandwidth at most βn and an (r + 1)-colouring that is (8rβn, 4rβn)-
zero free with respect to this labelling, and uses colour 0 for at most βn vertices
in total. Let Rr

k be a graph with V (Rr
k) = [k] × [r] such that δ(Rr

k) > (r − 1)k
and Kr

k ⊆ Cr
k ⊆ Rr

k. Furthermore, suppose (mi,j)i∈[k],j∈[r] is an r-equitable integer

partition of n with mi,j ≥ 35βn for every i ∈ [k] and j ∈ [r].
Then there exists a mapping f : V (H) → [k] × [r] and a set of special vertices

X ⊆ V (H) with the following properties

(a ) |X | ≤ krξn,
(b ) mi,j − ξn ≤ |Wi,j | := |f−1(i, j)| ≤ mi,j + ξn for every i ∈ [k] and j ∈ [r],
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(c ) for every edge {u, v} ∈ E(H) we have {f(u), f(v)} ∈ E(Rr
k), and

(d ) if {u, v} ∈ E(H) and, moreover, u and v are both in V (H) \ X, then
{f(u), f(v)} ∈ E(Kr

k).

In other words, Lemma 8 receives a graph H as input and, from Lemma 6, a
reduced graph Rr

k (with Kr
k ⊆ Cr

k ⊆ Rr
k), an r-equitable partition (mi,j)i∈[k],j∈[r]

of n, and a parameter ξ. Again we emphasise that this is all what Lemma 8 needs
to know about G. It then provides us with a function f which maps the vertices
of H onto the vertex set [k] × [r] of Rr

k in such a way that (i, j) with i ∈ [k],
j ∈ [r] receives ni,j := |Wi,j | vertices from H , with |ni,j − mi,j | ≤ ξn. Although
the vertex partition of G is not known exactly at this point, we already have its
reduced graph Rr

k. Lemma 8 guarantees that the endpoints of an edge {u, v} of H
get mapped into vertices f(u) and f(v) of Rr

k, representing future partition classes
Vf(u) and Vf(v) in G which will form a super-regular pair (see (d )) – except for
those few edges with one or both endpoints in some small special set X . But even
these edges will be mapped into pairs of classes in G that will form at least regular
pairs (see (c )). Lemma 8 will then return the values ni,j to Lemma 6, which will
finally produce a corresponding partition of the vertices of G.

If we consider the i-th component of Kr
k, then the blow-up lemma, Theorem 5,

would immediately give us an embedding of

H [Wi,1, . . . , Wi,r] into G[Vi,1, . . . , Vi,r ]

that takes care of all edges of H [V (H) \ X ].
Edges of H with one or both vertices in the special set X will need some special

treatment. However, due to part (a ) of Lemma 8 the size of X is quite small.
In particular we will be able to ensure that |X | ≪ n/(kr). Our strategy will be
first to find an embedding g of the vertices of X into V (G) such that for every
y ∈ NH(X) := {y ∈ V (H) \ X : ∃ xy ∈ E(H) with x ∈ X} the set Cy :=
Vf(y) ∩

⋂

x∈NH(y)∩X NG(g(x)) is sufficiently large. The following partial embedding

lemma guarantees the existence of such an embedding g of X . Once we have applied
it, we can complete the partial embedding g with the blow-up lemma, which will
‘respect’ the image restriction to Cy for every y ∈ NH(X).

Lemma 9 (Partial embedding lemma). For every integer ∆ ≥ 2 and every d ∈ (0, 1]
there exist constants c = c(∆, d) and εPEL = εPEL(∆, d) such that for every positive
ε ≤ εPEL the following is true.

Let Rr
k be a graph with V (Rk) = [k] × [r] and G be a graph on n vertices with

V (G) = (Vi,j)i∈[k],j∈[r], such that |Vi,j | ≥ (1 − εPEL)n/(kr) for all i ∈ [k], j ∈ [r]

and (Vi,j)i∈[k],j∈[r] is (ε, d)-regular on Rr
k. Let, furthermore, B be a graph with

V (B) = X∪̇Y and f : V (B) → V (Rr
k) = [k]× [r] be a mapping with {f(b), f(b′)} ∈

E(Rr
k) for all {b, b′} ∈ E(B).

If |V (B)| ≤ εPELn/(kr) and ∆(B) ≤ ∆, then there exists an injective mapping
g : X → V (G) with g(x) ∈ Vf(x) for all x ∈ X such that for all y ∈ Y there exist
sets Cy ⊆ Vf(y) \ g(X) such that

(i ) if x, x′ ∈ X and {x, x′} ∈ E(B) then {g(x), g(x′)} ∈ E(G),
(ii ) for all y ∈ Y we have Cy ⊆ NG(g(x)) for all x ∈ NB(y) ∩ X, and
(iii ) |Cy | ≥ c|Vf(y)| for every y ∈ Y .

Such a lemma, in a slightly different context, was first obtained by Chvátal,
Rödl, Szemerédi, and Trotter [10] (see also [14, Lemma 7.5.2]). The only difference
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between Lemma 9 and their embedding lemma is that we only embed some of the
vertices of a given graph B into G and reserve sufficiently many places in G for a
future embedding of the remaining vertices of B. For a proof of Lemma 9 we refer
the reader to [8].

In the next section we give the precise details how Theorem 2 can be deduced
from Lemma 6 and Lemma 8 following the outline discussed above.

3. Proof of Theorem 2

In this section we give the proof of Theorem 2 based on Theorem 5, Lemma 9,
Lemma 6, and Lemma 8 from Section 2. In particular, we will use Lemma 6 for
partitioning G, and Lemma 8 for assigning the vertices of H to the parts of G.
For this, it will be necessary to split the application of Lemma 6 into two phases.
The first phase is used to set up the parameters for Lemma 8. With this input,
Lemma 8 then defines the sizes of the parts of G that are constructed during the
execution of the second phase of Lemma 6.

Finally, H is embedded into G by using the blow-up lemma, Theorem 5, on the
partition of G and by treating the special vertices X ⊆ V (H) from Lemma 8 with
the help of the partial embedding lemma, Lemma 9.

Proof of Theorem 2. Given r, ∆, and γ, let d and ε0 be as asserted by Lemma 6
for input r and γ. Let c = c(∆, d) and εPEL = εPEL(∆, d) be as given by Lemma 9,
and εBL = εBL(d, ∆, c, r) and αBL = αBL(d, ∆, c, r) as given by Theorem 5. Set

ε := min{ε0, εPEL/4, εBL/2, d/4} . (3)

Then, Lemma 6 provides constants K0 and ξ0 for this ε. We define

ξ := min{ξ0, 1/(4K0), ε/(2K2
0r2(∆ + 1)), αBL/(2K2

0r2(∆ + 1))} (4)

as well as β := min{ξ2/(3026r3), (1 − ε)/(35K0r)} and n0 := K0, and consider
arbitrary graphs H and G on n ≥ n0 vertices that meet the conditions of Theorem 2.

Applying Lemma 6 to G we get an integer k with 0 < k ≤ K0, graphs Kr
k ⊆

Cr
k ⊆ Rr

k on vertex set [k] × [r], and an r-equitable partition (mi,j)i∈[k],j∈[r] of n

such that (R1 )–(R4 ) are satisfied. Now all constants that appear in the proof are
fixed. To summarize, this is how they are related:

1

∆
, γ ≫ d ≫ ε ≫ 1

K0
≫ ξ ≫ β, as well as c ≫ ε ≫ αBL .

Before continuing with Lemma 6, we would like to apply the Lemma 8. Note that
due to (R4 ) and the choice of β above, we have mi,j ≥ (1 − ε)n/(kr) ≥ 35βn
for every i ∈ [k], j ∈ [r]. Consequently, for constants k, β, and ξ, graphs H
and Kr

k ⊆ Cr
k ⊆ Rr

k, and the partition (mi,j)i∈[k],j∈[r] of n we can indeed apply

Lemma 8. This yields a mapping f : V (H) → [k] × [r] and a set of special vertices
X ⊆ V (H). These will be needed later. For the moment we are only interested
in the sizes ni,j := |Wi,j | = |f−1(i, j)| for i ∈ [k] and j ∈ [r]. Condition (b ) of
Lemma 8 and the choice of ξ ≤ ξ0 in (4) imply that

mi,j − ξ0n ≤ mi,j − ξn ≤ ni,j ≤ mi,j + ξn ≤ mi,j + ξ0n

for every i ∈ [k], j ∈ [r]. Accordingly, we can continue with Lemma 6 to obtain a
partition V = (Vi,j)i∈[k],j∈[r] with |Vi,j | = ni,j that satisfies conditions (V1 )–(V3 )
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of Lemma 6. Note that

|Vi,j | = ni,j ≥ mi,j − ξn
(R4 )

≥ (1 − ε)
n

kr
− ξn = (1 − (ε + ξkr))

n

kr
(3),(4)

≥
(

1 − εPEL

2

) n

kr
≥ 1

2

n

kr
.

(5)

Now, we have partitions V (H) = (Wi,j)i∈[k],j∈[r] of H and V (G) = (Vi,j)i∈[k],j∈[r]

of G with |Wi,j | = |Vi,j | = ni,j for all i ∈ [k], j ∈ [r]. We will build the embedding
of H into G such that each vertex v ∈ Wi,j ⊆ V (H) will be embedded into the
corresponding set Vi,j ⊆ V (G).

In order to embed the special vertices X of H in G, we use the partial embedding
lemma (Lemma 9). We provide Lemma 9 with constants ∆ and d, the graph Rr

k,
the graph G with vertex partition V (G) = (Vi,j)i∈[k],j∈[r], the graph B := H [X∪̇Y ]

where Y := NH(X) consists of the neighbours of vertices of X outside X , and the
mapping f restricted to X∪̇Y . By (V2 ) of Lemma 6 and (c ) of Lemma 8, G and
f fulfil the requirements of Lemma 9. Moreover, since ∆(B) ≤ ∆(H) ≤ ∆

|V (B)| = |X |+ |Y | ≤ (∆ + 1)|X | ≤ (∆ + 1)krξn
(4)

≤ ε
n

kr
(6)

by (a ) of Lemma 8. Accordingly, since ε ≤ εPEL we can apply Lemma 9 to obtain
an embedding g of the vertices in X together with sets Cy for every y ∈ Y such
that

Cy ⊆ Vf(y) \ g(X) and |Cy| ≥ c|Vf(y)| ≥ c|Vf(y) \ g(X)| .

The sets Cy will be used in the blow-up lemma for the image restriction of the
vertices in Y = NH(X). We first check that there are not too many of these
restrictions. Let W ′

i,j := Wi,j \ X , V ′
i,j := Vi,j \ g(X) and n′

i,j := |W ′
i,j | = |V ′

i,j | for
each i ∈ [k], j ∈ [r]. Observe that for any i ∈ [k] and j ∈ [r]

|X | + |Y |
(6)

≤ (∆ + 1)krξn
(4)

≤ αBL

2kr
n

(5)

≤ αBLni,j ,

and hence

|NH(X)| = |Y | ≤ αBLni,j − |X | ≤ αBL(ni,j − |X |) ≤ αBLn′
i,j

holds for any i ∈ [k] and j ∈ [r]. Consequently, we have

|NH(X)| = |Y | ≤ αBL min
i∈[k],j∈[r]

n′
i,j .

For any i ∈ [k] we would like to apply the blow-up lemma, Theorem 5, and
find an embedding of H [W ′

i,1∪̇ · · · ∪̇W ′
i,r ] into G[V ′

i,1∪̇ · · · ∪̇V ′
i,r] in such a way that

every y ∈ NH(X) will be embedded into Cy . It is easy to check that the respective
necessary conditions are satisfied. Indeed, recall that by (V3 ) the pair (Vi,j , Vi,j′ )
is (ε, d)-super-regular for every i ∈ [k], j 6= j′ ∈ [r] and that, by definition, V ′

i,j =
Vi,j \ g(X). Hence it follows directly from the definition of a super-regular pair
and (5), (6), and ε ≤ d/4, that (V ′

i,j , V
′
i,j′ ) is (2ε, d/2)-super-regular with ε ≤ εBL/2

(see (3)).
Having applied the blow-up lemma for every i ∈ [k], we have obtained a bijection

h : W ′
1,1∪̇ · · · ∪̇W ′

k,r → V ′
1,1∪̇ · · · ∪̇V ′

k,r with h(W ′
i,j) = V ′

i,j for every i ∈ [k], j ∈ [r]
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such that

h(y) ∈ Cy for every y ∈ NH(X) (7)

and H [W ′
1,1∪̇ · · · ∪̇W ′

k,r] ⊆ G[h(W ′
1,1)∪̇ · · · ∪̇h(W ′

k,r)].

Now we finish the proof by checking that the united embedding h̄ : V (H) → V (G)
defined by

v 7→ h̄(v) :=

{

h(v) if v ∈ V (H) \ X

g(v) if v ∈ X

is indeed an embedding of H into G. Let e = {u, v} be an edge of H . We distinguish
three cases.

If u, v ∈ X , then {h̄(u), h̄(v)} = {g(u), g(v)}, which is an edge in G since g is an
embedding of H [X ] into G by the partial embedding lemma.

If u ∈ X and v ∈ V (H) \X , then v ∈ NH(u) ⊆ NH(X), so we have h(v) ∈ Cv ⊆
NG(g(u)) by (7) and part (ii ) of Lemma 9, thus {h̄(u), h̄(v)} = {g(u), h(v)} ∈
E(G).

If, finally, u, v ∈ V (H)\X , then by part (d ) of Lemma 8, {f(u), f(v)} ∈ E(Kr
k).

In other words, there exists an i ∈ [k] such that

{u, v} is contained in H [W ′
i,1∪̇ · · · ∪̇W ′

i,r ]

and hence {h̄(u), h̄(v)} = {h(u), h(v)} ∈ E(G) by (7). �

4. The regularity lemma

The proofs of the backbone lemma and the lemma for G, that will be presented
in the subsequent sections, rely on the regularity lemma of Szemerédi [34].

The following is the so-called degree form of Szemerédi’s regularity lemma (see,
e.g., [26, Theorem 1.10]).

Theorem 10 (Regularity lemma). For every ε > 0 and every integer k0 there is a
K0 = K0(ε, k0) such that for every d ∈ [0, 1] and for every graph G on at least K0

vertices there exists a partition of V (G) into V0, V1, . . . , Vk and a spanning subgraph
G′ of G such that the following holds:

(i ) k0 ≤ k ≤ K0,
(ii ) dG′(x) > dG(x) − (d + ε)|V (G)| for all vertices x ∈ V (G),
(iii ) for all i ≥ 1 the induced subgraph G′[Vi] is empty,
(iv ) |V0| ≤ ε|V (G)|,
(v ) |V1| = |V2| = · · · = |Vk|,
(vi ) for all 1 ≤ i < j ≤ k one of the following holds: either (Vi, Vj) is (ε, d)-

regular or G′[Vi, Vj ] is empty.

The sets Vi in Theorem 10 are called clusters and the set V0 is the exceptional
set. Notice that the partition V0∪̇V1∪̇ · · · ∪̇Vk provided by Theorem 10, induces the
following reduced graph R for V1∪̇ · · · ∪̇Vk. The vertex set of R is [k] and R has
edges {i, j} for 1 ≤ i, j ≤ k for exactly those pairs (Vi, Vj) that are (ε, d)-regular
in G′. Thus, {i, j} is an edge of R if and only if G′ has an edge between Vi and
Vj . We will also use the following simple corollary of Theorem 10 that states that
a high minimum degree of G is inherited by the reduced graph R (see, e.g., [30,
Proposition 9]).
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Corollary 11. For every γ > 0 there exist d > 0 and ε0 > 0 such that for every
0 < ε ≤ ε0 and every integer k0 there exists K0 so that the following holds.

For every ν ≥ 0, an application of Theorem 10 to a graph G of minimum degree
at least (ν + γ)|V (G)| yields a partition V0, V1, . . . , Vk of V (G) and a subgraph G′

of G so that additionally to properties (i )–(vi ) the following holds:

(vii ) the reduced graph R has minimum degree at least (ν + γ/2)k.

Theorem 10 asserts a regular partition of G. However, for proving Lemma 6
we need to construct a partition that is also super-regular for certain cluster pairs.
The following propositions indicate how to find such super-regular pairs in a regular
partition. The first proposition implies that every (ε, d)-regular pair (A, B) contains
a “large” super-regular sub-pair (A′, B′).

Proposition 12. Let (A, B) be an (ε, d)-regular pair and B′ be a subset of B of
size at least ε|B|. Then there are at most ε|A| vertices v in A with |N(v) ∩ B′| <
(d − ε)|B′|.

Proof. Let A′ = {v ∈ A : |N(v) ∩ B′| < (d − ε)|B′|} and assume to the contrary
that |A′| > ε|A|. But then d(A′, B′) < ((d − ε)|A′||B′|)/(|A′||B′|) = d − ε which is
a contradiction since (A, B) is (ε, d)-regular. �

Repeating the last observation a fixed number of times, we obtain the following
proposition, which we will later combine with Corollary 11.

Proposition 13. With the notation of Corollary 11, let S be a subgraph of the
reduced graph R with ∆(S) ≤ ∆. Then for each vertex i of S, the corresponding set
Vi contains a subset V ′

i of size (1−ε∆)|Vi| such that for every edge {i, j} ∈ E(S) the
pair (V ′

i , V ′
j ) is (ε/(1 − ε∆), d − ε∆)-super-regular. Moreover, for every edge {i, j}

of the original reduced graph R, the pair (V ′
i , V ′

j ) is still (ε/(1−ε∆), d−ε∆)-regular.

For the simple proof of Proposition 13 we refer to [30, Proposition 8]. We close
this section with the following useful observation. It states that the notion of
regularity is “robust” in view of small alterations of the respective vertex sets. A
proof can be found in [8].

Proposition 14. Let (A, B) be an (ε, d)-regular pair and let (Â, B̂) be a pair such
that |Â△A| ≤ α̂|Â| and |B̂△B| ≤ β̂|B̂| for some 0 ≤ α̂, β̂ ≤ 1. Then, (Â, B̂) is an
(ε̂, d̂)-regular pair with

ε̂ := ε + 3
(√

α̂ +

√

β̂
)

and d̂ := d − 2(α̂ + β̂) .

If, moreover, (A, B) is (ε, d)-super-regular and each vertex v in Â has at least d|B̂|
neighbours in B̂ and each vertex v in B̂ has at least d|Â| neighbours in Â, then
(Â, B̂) is (ε̂, d̂)-super-regular with ε̂ and d̂ as above.

5. The backbone lemma

In this section we prove Lemma 7. The proof is a simple consequence of the
aforementioned result of Komlós, Sárközy, and Szemerédi concerning the Pósa–
Seymour conjecture [23]. Recall that we obtain the (r − 1)-st power of a graph by
inserting edges between every two vertices of distance at most r − 1 in the original
graph. For convenience we only consider the (r− 1)-st power of paths on ℓ vertices
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where ℓ is divisible by r. In what follows we denote by P r−1
k the (r − 1)-st power

of a path on kr vertices, where

V (P r−1
k ) = [k] × [r] (8)

and

{(s, t), (s′, t′)} ∈ E(P r−1
k ) iff s = s′ or s′ = s + 1 ∧ t′ < t. (9)

Theorem 15 (Komlós, Sárközy, and Szemerédi). For every r ≥ 2 there exists k0

such that every graph R on kr ≥ k0 vertices with minimum degree δ(R) ≥ (r−1)
r

kr =

(r − 1)k contains a copy of P r−1
k .

In fact in [23] the result was obtained for powers of Hamiltonian cycles (instead
of paths) with no divisibility condition on the number of vertices of R. However,
for our purposes the stated weaker version will suffice.

Note that P r−1
m is a subgraph of the graph Cr

m defined in (1) and (2). On the
other hand, there is an “equipartite” homomorphism from Cr

m to the (r − 1)-st
power of a Hamiltonian path.

Proposition 16. Let k ≥ 1 and ℓ ≥ r ≥ 1. Let Cr
kℓ be the graph defined in (1)

and (2) and let P r−1
k be the graph defined in (8) and (9). Then there exists a graph

homomorphism φ : V (Cr
kℓ) → V (P r−1

k ) such that

ℓ − r <
∣
∣
∣φ−1

(
(s, t)

)
∣
∣
∣ < ℓ + r

for all (s, t) ∈ [k] × [r] = V (P r−1
k ).

Proof. It is straight-forward to check that the following map

φ
(
(i, j)

)
=

(⌈
max{i − j, 0} + 1

ℓ

⌉

, j

)

is a graph homomorphism from Cr
kℓ to P r−1

k with the desired property. �

Now Lemma 7 follows from a joint application of the regularity lemma (in form of
Corollary 11), Theorem 15, Proposition 13, Proposition 16, Lemma 9, and the blow-
up lemma (Theorem 5). More precisely, we first apply Corollary 11 to the graph
G with δ(G) ≥ ((r − 1)/r + γ)n and infer that the corresponding reduced graph
R satisfies δ(R) ≥ ((r − 1)/r)|V (R)|. Consequently, Theorem 15 implies that R ⊇
P r−1

k . Since ∆(P r−1
k ) ≤ 3(r − 1) we can, due to Proposition 13 applied with S =

P r−1
k , remove about ε|V (G)| vertices from G such that edges of P r−1

k correspond to
super-regular pairs in the adjusted partition. Finally, due to Proposition 16 we can
apply Lemma 9 and Theorem 5 and conclude that G contains an almost spanning
copy of Cr

m. Below we give the technical details of this proof.

Proof of Lemma 7. For r = 1 the lemma is trivial, as C1
m is simply an independent

set. Hence, let r ≥ 2 and γ, ε > 0 be given. We apply Corollary 11 with γ and
obtain constants d, ε0 > 0. We set dPEL = d/2 and ∆PEL = 3(r − 1) and get εPEL

and c from Lemma 9. Then we set dBL = d/4 and ∆BL = r − 1, kBL = r and
cBL = c/2 and get εBL and αBL from Theorem 5. We then set

εRL :=
min{ε, ε0, εPEL, εBL, d}

14(r − 1)
.
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Moreover, let k0 be given by Theorem 15 for r − 1 and set

k1 := max{rk0 + r, 4r/γ, 6r/ε} .

Next, we apply Corollary 11 again with εRL and k1 and obtain K0. Finally, we let
n0 = ⌈6K2

0r2(r +1)/(εRLαBL)⌉. After we fixed all constants, we consider the input
graph G on n ≥ n0 vertices from Lemma 7. We have δ(G) ≥ ((r − 1)/r + γ)n.
Consequently, Corollary 11, applied with γ, εRL and k1 fixed above, yields an
integer k′, k1 ≤ k′ ≤ K0, a partition V0∪̇V1∪̇ . . . ∪̇Vk′ = V (G) and a reduced graph
R with vertex set [k′] such that properties (i )–(vi ) of Theorem 10 and property
(vii ) of Corollary 11 hold. Without loss of generality, we may assume that k′ = kr
for some integer k ≥ k0 (from Theorem 15), since otherwise, we simply unite V0

with up to at most r− 1 vertex classes Vi (i > 0) and obtain an exceptional set V ′
0 ,

which obeys

|V ′
0 | ≤ |V0| + (r − 1) n

k′
≤

(
εRL + r−1

k1

)
n .

Note that, since k′ ≥ k1 ≥ 4r/γ the resulting reduced graph R still satisfies

δ(R) ≥ ((r − 1)/r + γ/2)k′ − (r − 1) ≥ ((r − 1)/r + γ/4)kr.

Moreover, as k = ⌊k′/r⌋ ≥ ⌊k1/r⌋ ≥ k0 (where k0 came from Theorem 15), we infer
by Theorem 15 that P r−1

k ⊆ R.

We now apply Proposition 13 with S = P r−1
k ⊆ R. This way we get an altered

partition

V ′′
0 ∪̇V ′

1 ∪̇ . . . ∪̇V ′
kr, where V ′′

0 = V ′
0 ∪ ˙⋃

i∈[kr]

Vi \ V ′
i .

Our choice of constants yields

εRL/(1 − 3(r − 1)εRL) ≤ εPEL and d − 3(r − 1)εRL > d/2

and hence, in view of Proposition 16 we can apply Lemma 9 (to G = [V ′
1 , . . . , V ′

kr]
with B = Cr

kℓ[X ∪ N(X)] and X containing the 2(r + 1)r(k − 1) vertices with

neighbours in two Kr’s of the P r−1
k under the homomorphism φ) followed by k ap-

plications of the blow-up lemma (with S = Kr), similar as in the proof of Theorem 2
in Section 3, where

ℓ = min
i∈[kr]

|V ′
i | − r .

Consequently, G contains a copy of Cr
m (with m = kℓ) on rm = rkℓ vertices.

Moreover, we have

rm ≥ n − |V ′
0 | −

kr∑

i=1

(
|Vi| − ( min

j∈[kr]
|V ′

j | − r)
)

≥ n −
(
εRL + r−1

k1

)
n − 3(r − 1)εRLn − kr2

and recalling that due the choice of the constants we have εRL < ε/(6(r − 1)),
k1 ≥ 6r/ε, and n ≥ n0 ≥ 6K0r/ε ≥ 6k′r/ε ≥ 6kr2/ε we infer

rm ≥ (1 − ε)n.

�
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6. The lemma for G

The main ingredients for the proof of Lemma 6 are Szemerédi’s regularity lemma,
which provides a reduced graph R for G, and the backbone lemma which guarantees
the copy of a Cr

k in R. This subgraph is sparse enough, so that we can transform
the corresponding regular pairs into super-regular pairs. On the other hand, its
structure is rich enough so that we can use it to develop a strategy for moving
vertices between the clusters of R in order to adjust the sizes of these clusters.

We will first consider the special case of Lemma 6 that ni,j = mi,j for all i ∈ [k],
j ∈ [r]. This is captured by the following proposition.

Proposition 17. For all r ∈ N and γ > 0 there exist d > 0 and ε0 > 0 such that
for all 0 < ε ≤ ε0 there exists K0 such that for all n ≥ K0r and for every graph G
on vertex set [n] with δ(G) ≥ ((r − 1)/r + γ)n there exists k ∈ N \ {0}, and a graph
Rr

k on vertex set [k] × [r] with

(R1 ) k ≤ K0,
(R2 ) δ(Rr

k) ≥ ((r − 1)/r + γ/2)kr,
(R3 ) Kr

k ⊆ Cr
k ⊆ Rr

k, and
(R4 ) there is an r-equitable partition (mi,j)i∈[k],j∈[r] of n with the property mi,j ≥

(1 − ε)n/(kr) such that the following holds.

There is a partition (Ui,j)i∈[k],j∈[r] of V with

(U1 ) |Ui,j | = mi,j,
(U2 ) (Ui,j)i∈[k],j∈[r] is (ε, d)-regular on Rr

k, and

(U3 ) (Ui,j)i∈[k],j∈[r] is (ε, d)-super-regular on Kr
k.

Notice that once we have Proposition 17, the only thing that is left to be done
when proving Lemma 6 is to show that the sizes of the classes Ui,j can be slightly
changed from mi,j to ni,j without “destroying” properties (U2 ) and (U3 ).

For the proof of Proposition 17 we proceed in three steps. From the regularity
lemma we first obtain a partition U ′

0∪̇U ′
1∪̇ · · · ∪̇U ′

k′ of V (G) with reduced graph R
such that Kr

k ⊆ Cr
k ⊆ R. According to this occurrence, we will then rename the

vertices of R from [k′] to [k] × [r] and thus obtain Rr
k. In a similar manner we

rename the clusters in the partition. We then use Proposition 13 to get a new
partition U ′′

0 ∪̇(U ′′
i,j)i∈[r],j∈[k] that is super-regular on Kr

k (and still regular on Rr
k).

In a last step we distribute the vertices in U ′′
0 to the clusters U ′′

i,j with i ∈ [k] and

j ∈ [r], while maintaining the super-regularity. The partition obtained in this way
will be the desired r-equitable partition (Ui,j)i∈[r],j∈[k].

Proof of Proposition 17. We first fix all constants necessary for the proof. For r = 1
the Proposition holds trivially. Let r ≥ 2 and γ > 0 be given. The regularity lemma
in form of Corollary 11 applied with γ′ = γ yields positive constants d′ and ε′0. We
fix the promised constants d and ε0 for Proposition 17 by setting

d := min

{
d′

3
,
γ

4

}

and ε0 := ε′0 . (10)

Now let some positive ε ≤ ε0 be given, for which Proposition 17 asks us to define K0.
For that let k0 be sufficiently large so that we can apply the backbone lemma,
Lemma 7, with r, γ/4 and ε′ to graphs R on kr ≥ rk0 vertices with minimum
degree δ(R) ≥ ((r− 1)/r + γ/2)kr. We then define some auxiliary constants ε′ and



PROOF OF THE BANDWIDTH CONJECTURE OF BOLLOBÁS AND KOMLÓS 15

k′
0 by

ε′ := min

{

ε4

(10(r + 2))4
,

(
d′

24

)2

,
γ2

4r2(r + 2)2

}

and k′
0 := max

{
rk0

1 − ε′
,
8r

γ
,
2r

ε′
,

r(1 + 2ε′)

ε′(1 − 2ε′)

}

+
r

1 − ε′
.

(11)

Let K ′
0 be given by Corollary 11 applied with γ′, ε′, and k′

0. We finally set K0 :=
⌈K ′

0/r⌉ for Proposition 17. After we have defined K0, let G = (V, E) be a graph
satisfying the assumptions of Proposition 17.

Since ε′ ≤ ε ≤ ε0 = ε′0, by the choice of ε′0 and d′, Corollary 11 applied with
input γ′, ε′, k′

0 and ν′ := (r − 1)/r yields a partition U ′
0∪̇U ′

1∪̇ · · · ∪̇U ′
k′ = V and a

subgraph G′ so that properties (i )–(vi ) of Theorem 10 and (vii ) from Corollary 11
hold. In particular, k′

0 ≤ k′ ≤ K ′
0, the set U ′

0 is the exceptional set and there is a
reduced graph R′ on vertex set [k′] such that U ′

1∪̇ · · · ∪̇U ′
k′ is (ε′, d′)-regular on R′

and such that δ(R′) ≥ ((r − 1)/r + γ/2)k′. Set

k :=

⌊
(1 − ε′)k′

r

⌋

≥ (1 − ε′)k′

r
− 1

(11)

≥ k′

r(1 + 2ε′)
(12)

and let R be the graph induced by the vertices [kr] in R′. Observe, that kr ≤ k′ ≤
K ′

0 ≤ rK0. Therefore R satisfies property (R1 ) of Proposition 17. Moreover, R is
a reduced graph for G[U ′

1∪̇ · · · ∪̇U ′
kr] with

|V (R)| = kr ≥ (1 − ε′)k′ − r ≥ (1 − ε′)k′
0 − r

(11)

≥ rk0 (13)

and

δ(R) ≥ δ(R′) − r ≥ ((r − 1)/r + γ/2)k′ − r
(11)

≥ ((r − 1)/r + γ/4)kr.

Thus, we also have property (R2 ). By (13) and the choice of k0, Lemma 7 implies
that Cr

k ⊆ R. According to this occurrence of Cr
k we will now rename the vertex

set of R to [k]× [r] and call the resulting graph Rr
k. We clearly have Kr

k ⊆ Cr
k ⊆ Rr

k

and thus we get (R3 ). In addition, we will also rename the clusters accordingly
in order to obtain a vertex partition

(
U ′

i,j

)

i∈[k],j∈[r]
. Let L′ denote the size of the

partition classes U ′
i,j . Note that |U ′

0| ≤ ε′n and hence

(1 − ε′)n/k′ ≤ |L′| ≤ n/k′. (14)

Proposition 13 applied with S := Kr
k and accordingly ∆(S) = r− 1 implies that

for every i ∈ [k], j ∈ [r] there are subsets U ′′
i,j of U ′

i,j of size

L′′ := (1 − (r − 1)ε′)L′ ,

such that
(
U ′′

i,j

)

i∈[k],j∈[r]
is (ε′/(1 − (r − 1)ε′), d′ − (r − 1)ε′)-regular on Rr

k, and

(ε′/(1 − (r − 1)ε′), d′ − (r − 1)ε′)-super-regular on Kr
k.

By (11) we have ε′/(1 − (r − 1)ε′) ≤ 2ε′ and d′ − 2ε′ ≥ d′/2. This implies
that

(
U ′′

i,j

)

i∈[k],j∈[r]
is (2ε′, d′/2)-regular on Rr

k, and (2ε′, d′/2)-super-regular on

Kr
k. Moreover,

n

kr
≥ L′′ = (1 − (r − 1)ε′)L′

(14)

≥ (1 − (r − 1)ε′)(1 − ε′)
n

k′

(11)

≥ 1 − rε′

1 + 2ε′
n

kr
≥ (1 − (r + 2)ε′)

n

kr
. (15)
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Now we collect all vertices from V not contained in
(
U ′′

i,j

)

i∈[k],j∈[r]
in a set U ′′

0 , i.e.,

let

U ′′
0 := V \

⋃

(i,j)∈[k]×[r]

U ′′
i,j .

It follows that

|U ′′
0 | = n −

∑

(i,j)∈[k]×[r]

|U ′′
i,j |

(15)

≤ n − (1 − (r + 2)ε′)n = (r + 2)ε′n. (16)

In order to obtain the required partition of V with clusters Ui,j for i ∈ [k], j ∈ [r] we
will distribute the vertices in U ′′

0 to the clusters U ′′
i,j so that the resulting partition

is r-equitable and still (ε, d)-regular on Rr
k and (ε, d)-super-regular on Kr

k.
For this purpose, let u be a vertex in U ′′

0 . The i-th component of Kr
k is called

u-friendly, if u has at least dn/(kr) neighbours in each of the clusters U ′′
i,j with

j ∈ [r]. We claim that each u ∈ U ′′
0 has at least γk u-friendly components. Indeed,

assume for a contradiction that there were only x < γk u-friendly components for
some u. Then, since u has less than (r − 1)L′′ + dn/(kr) neighbours in clusters of
components that are not u-friendly, we can argue that

|NG(u)| < xrL′′ + (k − x)

(

(r − 1)L′′ +
dn

kr

)

+ |U ′′
0 |

= k(r − 1)L′′ + xL′′ + (k − x)
d

kr
n + |U ′′

0 |
(15)

< k(r − 1)
n

kr
+ γ

n

r
+

d

r
n + (r + 1)ε′n

(10),(11)

≤ r − 1

r
n +

γ

r
n +

γ

2r
n +

γ

4
n

r≥2
≤

(
r − 1

r
+ γ

)

n,

which is a contradiction.
In a first step we now assign the vertices u ∈ U ′′

0 as evenly as possible to u-
friendly components of Kr

k. Since each vertex u ∈ U ′′
0 has at least γk u-friendly

components, each component of Kr
k gets assigned at most |U ′′

0 |/(γk) vertices.
Then in the second step, in each component we distribute the vertices that have

been assigned to this component as evenly as possible among the r clusters of
this component. It follows immediately that the resulting partition is r-equitable.
Moreover, every cluster U ′′

i,j with i ∈ [k], j ∈ [r] gains at most

|U ′′
0 |

γk

(16)

≤ (r + 2)ε′n

γk

(15)

≤ (r + 2)ε′r

γ(1 − (r + 2)ε′)
L′′

(11)

≤ 2r(r + 2)
ε′

γ
|U ′′

i,j |
(11)

≤
√

ε′|U ′′
i,j | (17)

vertices from U ′′
0 during this process. The resulting partition (Ui,j)i∈[k],j∈[r] of V

satisfies properties (U1 )–(U3 ). Indeed, define

mi,j := |Ui,j | ≥ |U ′′
i,j| = L′′

(15)

≥ (1 − (r + 2)ε′)n/(kr) ≥ (1 − ε)n/(kr),

and note that for this choice (R4 ) and (U1 ) of Proposition 17 hold. Moreover,
recall that

(
U ′′

i,j

)

i∈[k],j∈[r]
is (2ε′, d′/2)-regular on Rr

k and (2ε′, d′/2)-super-regular

on Kr
k. By (17), Proposition 14 with α̂ = β̂ =

√
ε′ assures that (Ui,j)i∈[k],j∈[r] is

(ε̂, d̂)-regular on Rr
k and (ε̂, d̂)-super-regular on Kr

k , where

ε̂ := 2ε′ + 6
4
√

ε′ and d̂ :=
d′

2
− 4

√
ε′.
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Since 2ε′ + 6 4
√

ε′ ≤ ε and d′/2 − 4
√

ε′ ≥ d′/3 ≥ d by (10) and (11), this implies
(U2 ) and (U3 ) and concludes the proof of Proposition 17. �

It remains to show how to deduce the lemma for G (Lemma 6) from Proposi-
tion 17. As mentioned earlier, we need to show that the sizes of the clusters can be
slightly changed. In order to achieve this, we will develop a technique for adapting
the cluster sizes step by step by moving one vertex at a time from one cluster to
another cluster until each cluster has exactly the right number of vertices.

The problem that occurs here is the following. Although a pair remains almost as
regular as before when a few vertices leave or enter a cluster, the property of being
super-regular is not that robust: every vertex that is moved to a new cluster which
is part of a super-regular component of Kr

k must make sure that it has sufficiently
many neighbours inside the neighbouring clusters within the component.

For this, we will exploit the high minimum degree of Rr
k as well as the structure

of Cr
k . The following two facts will allow us to move vertices between different

clusters. The first observation will be useful to address imbalances within clusters
of one colour class of Cr

k .

Fact 18. Suppose that (Vi,j)i∈[k],j∈[r] is a vertex partition that is (ε, d)-regular on

Cr
k and satisfies |Vi,j | ≥ (1 − ε)n/(kr) for all i ∈ [k] and j ∈ [r]. Now, fix i ∈ [k]

and j ∈ [r]. Then, there are at least (1 − rε)n/(kr) “good” vertices v ∈ Vi,j that
have at least (d− 2ε)n/(kr) neighbours in each set Vi′,j′ with i′ ∈ {i− 1, i + 1} and
j′ ∈ [r] \ {j}.
Proof. Note that (i, j) is connected to each of the (i′, j′) in Cr

k . Since the partition
(Vi,j)i∈[k],j∈[r] is (ε, d)-regular on Cr

k we can apply Proposition 12 with input ε,

d, A = Vi,j , and B = B′ = Vi′,j′ for each j′ ∈ [r] \ {j}. It follows that at least
|Vi,j |− (r−1)ε|Vi,j | vertices of Vi,j have more than (d−ε)|Vi′,j′ | neighbours in each
Vi′,j′ . This implies the assertion of Fact 18, because

|Vi,j | − (r − 1)ε|Vi,j | ≥ (1 − (r − 1)ε)(1 − ε)
n

kr
≥ (1 − rε)

n

kr
(18)

and

(d − ε)|Vi′,j′ | ≥ (d − ε)(1 − ε)
n

kr
≥ (d − 2ε)

n

kr
�

Before we move on, let us quickly illustrate how Fact 18 is used in the proof of
Lemma 6. For this purpose assume further that (Vi,j)i∈[k],j∈[r] is also (ε, d)-super-

regular on Kr
k. Now suppose that for some i < i′ ∈ [k] and j ∈ [r] we would

like to decrease the size of Vi,j and increase the size of Vi′,j . Then by Fact 18
there is some vertex v (in fact (1 − rε)n/(kr) vertices) in Vi,j which has “many”
neighbours in each Vi+1,j′ with j′ ∈ [r] \ {j}. Hence, we can move v from Vi,j

to Vi+1,j without loosing the super-regularity on Kr
k. Repeating this process by

moving a vertex from Vi+1,j to Vi+2,j and so on, we will eventually reach Vi′,j (see
Figure 1). Observe that it is of course not necessarily the vertex v ∈ Vi,j we started
with, which is really moved all the way to Vi′,j during this process, but rather a
sequence of vertices each moving one cluster further. The crucial thing to note
is that whenever we move a vertex from one cluster to another, it still has many
neighbours in the new neighbouring clusters within Kr

k . Therefore, after such a
sequence of applications of Fact 18, we end up with a new partition (Vi,j)i∈[k],j∈[r]
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with the following properties. The cardinality of Vi,j decreased by one and |Vi′,j|
increased by one. All other clusters do not change their size. Therefore such a
sequence of moves, decreases the imbalances within clusters of colour j in Cr

k and
we say that we moved a vertex along colour class j of Cr

k from Vi,j to Vi′,j.

C4
k

V1,1

V1,2

V1,3

V1,4

V2,1

V2,2

V2,3

V2,4

V3,1

V3,2

V3,3

V3,4

Figure 1. Moving a vertex from V1,1 to V3,1 along colour class 1
of C4

k and thus decreasing the size of V1,1 and increasing the size
of V3,1.

The next simple fact allows to address imbalances across different colours. More
precisely, it will be used for moving a vertex v from cluster Vi,j to a cluster Vi∗,j′

with j 6= j′.

Fact 19. Let Rr
k be a graph on vertex set [k] × [r] with δ(Rr

k) > (r − 1)k, and
suppose that (Vi,j)i∈[k],j∈[r] is a vertex partition that is (ε, d)-regular on Rr

k and

satisfies |Vi,j | ≥ (1 − ε)n/(kr) for all i ∈ [k] and j ∈ [r]. Now, fix i ∈ [k] and
j ∈ [r]. Then there is an i∗ ∈ [k] such that for each j′ ∈ [r] the vertex (i∗, j′) is a
neighbour of (i, j) in Rr

k. Moreover, there are at least (1 − (r + 1)ε)n/(kr) “good”
vertices v ∈ Vi,j that have at least (d − 2ε)n/(kr) neighbours in Vi∗,j′ .

Proof of Fact 19. Since δ(Rr
k) > (r − 1)k, there must be at least one component in

Kr
k, say the i∗-th component, such that all r vertices of this component are adjacent

to (i, j) in Rr
k. The existence of the vertices v follows similarly as in the proof of

Fact 18. Indeed, by Proposition 12, there are at least

|Vi,j | − rε|Vi,j | ≥ (1 − rε)(1 − ε)n/(kr) ≥ (1 − (r + 1)ε)n/(kr)

such vertices (cf. (18)). �

The idea of the technique for adapting the cluster sizes now is as follows. We
pick one cluster A that has too many vertices compared to the desired partition
and one cluster B that has too few vertices at a time. If A and B have the same
colour then we can move a vertex along Cr

k from A to B by repeatedly applying
Fact 18. If A and B are of different colour on the other hand we can use Fact 19
in order to find a cluster C that has the same colour as B such that we can move
a vertex from A to C. Then we can proceed as before and move a vertex along Cr

k

from C to B. We repeat this process until every cluster has exactly the right size.

Proof of Lemma 6. We first fix the constants involved in the proof. Let r and γ > 0
be given by Lemma 6. For r and γ, Proposition 17 yields constants d′ > 0 and
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ε′0 > 0. For Lemma 6 we set

ε0 := min{ε′0, d′/8} and d := d′/2 . (19)

For given ε ≤ ε0, we fix

ε′ := min

{

1

2(r + 1)
,

ε

1 + 6
√

2
,

√

d

8

}

(20)

and note that 0 < ε′ ≤ ε ≤ ε0 ≤ ε′0. Therefore we can apply Proposition 17 with
r, γ, and ε′ to obtain K ′

0. Finally, we define the constants K0 and ξ0 promised by
Lemma 6 and set

K0 := K ′
0 and ξ0 :=

(
ε′√

2K0r

)2

. (21)

Having fixed all the constants, let G = (V, E) be a graph on n ≥ K0 vertices with
δ(G) ≥ ((r − 1)/r + γ)n. We now apply Proposition 17 with r, γ, and ε′ to the
input graph G and get a positive integer k ≤ K ′

0, a graph Rr
k, and a partition

(Ui,j)i∈[k],j∈[r] of V so that (R1 )–(R4 ) and (U1 )–(U3 ) of Proposition 17 hold with

ε replaced by ε′ and d replaced by d′. Since K0 = K ′
0 and ε ≥ ε′, this shows that k,

Rr
k, and mi,j = |Ui,j | for all i ∈ [k], j ∈ [r] also satisfy properties (R1 )–(R4 ) of

Lemma 6.
It remains to prove the ‘second part’ of Lemma 6. For that let (ni,j)i∈[k],j∈[r]

be an integer partition of n = |V | satisfying ni,j = mi,j ± ξ0n for every i ∈ [k],
j ∈ [r]. Our goal is to modify the partition (Ui,j)i∈[k],j∈[r] to obtain a partition

(Vi,j)i∈[k],j∈[r] of V that satisfies (V1 )–(V3 ) for ε and d.

We initially set Vi,j := Ui,j for all i ∈ [k], j ∈ [r]. In the following, we will perform
several steps to move vertices out of some clusters and into some other clusters.
For this purpose we will use Facts 18 and 19. During this balancing process we will
call a cluster Vi,j deficient, if |Vi,j | < ni,j , and excessive, if |Vi,j | > ni,j . In the end
we will neither have deficient clusters nor excessive clusters and thus obtain the
desired partition.

As indicated earlier, one iteration of the balancing process is as follows. Choose
an arbitrary excessive cluster Vi,j and a deficient cluster Vi′,j′ . Note that there
are deficient clusters as long as there are excessive clusters by definition, and vice
versa. We distinguish two cases. If j = j′ we use Fact 18 for moving a vertex along
colour class j of Cr

k from cluster Vi,j to cluster Vi′,j′ . (We will argue below why the
hypothesis of Fact 18 is satisfied.) Otherwise, we first apply Fact 19 to cluster Vi,j ,
which gives us an i∗ ∈ [k], so that we can move a vertex from cluster Vi,j to Vi∗,j′ .
Then, we can proceed as in the previous case and move a vertex along colour class
j′ of Cr

k from cluster Vi∗,j′ to Vi′,j′ with Fact 18.
In total at most

k∑

i=1

r∑

j=1

|ni,j − mi,j | ≤ krξ0n

iterations have to be performed in order to guarantee that |Vi,j | = ni,j for all i ∈ [k]
and j ∈ [r]. Moreover, in each iteration not more than one vertex gets moved out
of each Vi,j with i ∈ [k], j ∈ [r], and at most one vertex gets moved into each Vi,j .
So, throughout the process we have

|Ui,j△Vi,j | ≤ 2 · krξ0n
(21)

≤ (ε′)2
n

kr
, (22)
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for all i ∈ [k], j ∈ [r].
Note that since by (20) we have (1−(r+1)ε′)n/(kr) ≥ (ε′)2n/(kr), in every step

the “moving” vertex v can be chosen from the set of (1 − (r + 1)ε′)n/(kr) “good”
vertices guaranteed by Facts 18 and 19.

In addition it follows that

|Vi,j | ≥ |Ui,j | − |Ui,j△Vi,j |
(R4 ),(22)

≥
(
1 − ε′ − (ε′)2

) n

kr

(20)

≥ (1 − ε)
n

kr
(23)

after the balancing process for all i ∈ [k], j ∈ [r]. Recall that (Ui,j)i∈[k],j∈[r] is

(ε′, d′)-regular on Rr
k and (ε′, d′)-super-regular on Kr

k . Therefore, we can apply
Proposition 14 with input ε′, d′, A := Ui,j , Â := Vi,j , and B := Ui′,j′ , B̂ := Vi′,j′

for any neighbouring vertices (i, j) and (i′, j′) in Rr
k. For this, we set

α̂ := β̂ := 2(ε′)2 ≥ (ε′)2

1 − ε

(23),(22)

≥ |Up,q△Vp,q|
|Vp,q|

for all p ∈ [k] and q ∈ [r]. (24)

Since

ε̂ = ε′ + 3
(√

α̂ +

√

β̂
) (24)

= ε′ + 6
√

2ε′
(20)

≤ ε

and

d̂ = d′ − 2(α̂ + β̂)
(24)
= d′ − 8(ε′)2

(19),(20)

≥ d.

we deduce from Proposition 14 that (Vi,j)i∈[k],j∈[r] remains (ε, d)-regular on Rr
k and,

since we only moved “good” vertices, (Vi,j)i∈[k],j∈[r] remains (ε, d)-super-regular on

Kr
k throughout the entire process.
This, together with (23) and the assertions of Proposition 17, also justifies that

the hypotheses of Facts 18 and 19 are satisfied and we could therefore indeed
apply these facts throughout the entire balancing process. Therefore (Vi,j)i∈[k],j∈[r]

satisfies (V1 )–(V3 ) and this concludes the proof of Lemma 6. �

7. The lemma for H

In order to prove the lemma for H (Lemma 8), we need to exhibit a mapping
f : V (H) → [k] × [r] with properties (a )–(d ). Basically, we would like to use
the fact that H is almost r-colourable, visit the vertices of H in the order of the
bandwidth labelling and arrange that f maps the first vertices of colour 1 to (1, 1),
the first vertices of colour 2 to (1, 2), the first vertices of colour 3 to (1, 3), and so
on. Ignoring the vertices of colour 0, it would be ideal if in this way, at more or less
the same moment, we would have dealt with m1,1 vertices of colour 1, m1,2 vertices
of colour 2 and so on, since we could then move on and let f assign vertices to the
next component of Kr

k ⊆ Cr
k .

However, the problem is that although the mi,j are r-equitable, i.e., almost
identical, the colour classes of H may vary a lot in size. Therefore, the basic idea of
our proof of Lemma 8 will be to find a recolouring of H with more or less balanced
colour classes (besides colour 0).

We emphasise that everything in this section is completely elementary (i.e. it does
not use any advanced machinery from the regularity method) but at times a bit
technically cumbersome. Therefore we split it into a series of simple propositions.

Proposition 20. Let c1, . . . , cr ∈ R be such that c1 ≤ c2 ≤ · · · ≤ cr ≤ c1 + x and
c′1, . . . , c

′
r ∈ R such that c′r ≤ c′r−1 ≤ · · · ≤ c′1 ≤ c′r + x. If we set c′′i := ci + c′i for
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all i ∈ [r] then
max

i
{c′′i } ≤ min

i
{c′′i } + x.

Proof. It clearly suffices to show that ci + c′i ≤ cj + c′j +x for all i, j ∈ [r]. For i ≤ j
this follows from ci ≤ cj and c′i ≤ c′r + x ≤ c′j + x. Similarly, for i > j we have that

ci ≤ c1 + x ≤ cj + x and c′i ≤ c′j . �

Now assume that the vertices of H are labelled 1, . . . , n. Recall that for an (r+1)-
colouring σ : V (H) → {0, . . . , r} of H an interval [s, t] ⊆ [n] is called zero free, if
σ(u) 6= 0 for all u ∈ [s, t]. Moreover, the colouring σ is called (x, y)-zero free on the
interval [a, b] ⊆ [n], if for each t ∈ [n] there exists an interval [t′, t′+y] ⊆ [t, t+x+y]
such that [t′, t′ + y] ∩ [a, b] is zero free.

The following proposition investigates under what conditions a colouring remains
(x, y)-zero free when a few more vertices receive colour 0.

Proposition 21. Assume that the vertices of H are labelled 1, . . . , n. Let y be a
positive integer, a ∈ [n] and suppose that σ : V (H) → {0, . . . , r} is an (r + 1)-
colouring that is (8y, y)-zero free on [n] as well as (2y, y)-zero free on [a, n] with
respect to this labelling.

Let a + 3y ≤ b ≤ a + 5y and suppose that σ′ is another (r + 1)-colouring that
differs from σ in that some of the vertices in the interval (b, b+y) now have colour 0,
i.e., (σ′)−1(0) ⊆ σ−1(0) ∪ (b, b + y).

Then σ′ must still be (8y, y)-zero free on [n] and (2y, y)-zero free on [a + 6y, n].

Proof. By definition [b, b + y] ⊆ [a + 3y, a + 6y] and thus

(i) σ′
∣
∣
[1,a+3y] ≡ σ

∣
∣
[1,a+3y] and (ii) σ′

∣
∣
[b+y,n] ≡ σ

∣
∣
[b+y,n] . (25)

First note that the second claim of the proposition is trivial, because b+y ≤ a+6y
and part (ii) of (25) show that the fact that σ is (2y, y)-zero free on [a, n] implies
that σ′ is (2y, y)-zero free on [a + 6y, n].

As for the first claim, we need to show that for every t ∈ [n] there exists an
interval [t′, t′+y] ⊆ [t, t+9y] which is zero-free under σ′. Here we need to distinguish
several cases.

t < a − 6y: By part (i) of (25) the assertion follows from the fact that σ is
(8y, y)-zero free on [n].

a − 6y ≤ t < a: The fact that σ is (2y, y)-zero free on [a, n] implies (when ap-
plied to the vertex a) that there is a zero free interval [t′, t′+y] ⊆
[a, a + 3y] ⊆ [t, t + 9y] under σ. By part (i) of (25), [t′, t′ + y] is
also zero free under σ′.

a ≤ t < b + y: The fact that σ is (2y, y)-zero free on [a, n] implies (when ap-
plied to the vertex b + y) that there is a zero free interval
[t′, t′ + y] ⊆ [b + y, b + 4y] ⊆ [t, a + 9y] ⊆ [t, t + 9y] under
σ. By part (ii) of (25), [t′, t′ + y] is also zero free under σ′.

b + y ≤ t: Here the assertion follows because part (ii) of (25) shows that
the fact that σ is (8y, y)-zero free on [n] implies that σ′ is (8y, y)-
zero free on [b + y, n].

�

Now we introduce the notion of switching two colours l, l′ ∈ [r] at some given
vertex s, which will be essential to transform the given colouring of H into one that
uses the colours 1, . . . , r in a more or less balanced manner. Basically, all vertices
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of colour l after s are coloured by l′ and vice versa. In order to avoid adjacent
vertices of the same colour, we use the bandwidth condition and colour vertices in
the interval s − βn, s + βn that previously had colour l with colour 0.

Proposition 22. Assume that the vertices of H are labelled 1, . . . , n with bandwidth
at most βn with respect to this labelling. Let s ∈ [n] and suppose further that
σ : [n] → {0, . . . , r} is a proper (r+1)-colouring of V (H) such that [s−2βn, s+2βn]
is zero free.

Then for any two colours l, l′ ∈ [r] the mapping σ′ : [n] → {0, . . . , r} defined by

σ′(v) :=







l if σ(v) = l′, s < v

l′ if σ(v) = l, s + βn < v

0 if σ(v) = l, s − βn ≤ v ≤ s + βn

σ(v) otherwise

is a proper (r + 1)-colouring of H. (We will say that σ′ is obtained from σ by an
(l, l′, βn)-switch at vertex s.)

Note that we only introduced new vertices of colour 0 in the interval [s−βn, s+
βn] and that all these vertices are non-adjacent since they have colour l in σ.

Proof. Indeed, as σ′ is derived from the proper colouring σ by interchanging the
colours l and l′ after the vertex s and introducing some new vertices of colour
0 in [s − βn, s + βn], the only monochromatic edges that σ′ could possibly yield
are edges {u, v} with either u ≤ s and s < v and {σ(u), σ(v)} = {l, l′} or with
σ′(u) = σ′(v) = 0. The second case is clearly ruled out by the facts that H has
bandwidth at most βn, that [s−2βn, s+2βn] is zero free under σ and that there are
no edges between new vertices of colour 0. For the first case, since H has bandwidth
at most βn, we must have that u ∈ [s−βn, s] and v ∈ [s+1, s+βn]. But if σ(u) = l
and σ(v) = l′, then σ′(u) = 0 and σ′(v) = l. If σ(u) = l′ and σ(v) = l on the other
hand, then σ′(u) = l′ and σ′(v) = 0. Hence, σ′ is a proper (r + 1)-colouring. �

The next and final proposition is based on repeated applications of the three
preceding ones and sums up what we have achieved so far. For that we need one
more definition: For x ∈ N, a colouring σ : [n] → {0, . . . , r} is called x-balanced, if
for each interval [a, b] ⊆ [n] and each l ∈ [r], we have

b − a

r
− x ≤

∣
∣σ−1(l) ∩ [a, b]

∣
∣ ≤ b − a

r
+ x.

Proposition 23. Assume that the vertices of H are labelled 1, . . . , n with bandwidth
at most βn and that H has an (r + 1)-colouring that is (8rβn, 4rβn)-zero free with
respect to this labelling, which uses at most βn vertices of colour 0 in total. Let
ξ be a constant with β < ξ2/(48r) and assume that 1/ξ is an integer. Then there
exists a proper (r + 1)-colouring σ : V (H) → {0, . . . , r} that is (32rβn, 4rβn)-zero
free and 5ξn-balanced.

The idea of the proof is as follows. We cut H into pieces of length ξn and proceed
by induction. Suppose that we have found a colouring that is zero free and balanced
on the first p pieces. Then permute the colours on the remaining pieces such that
the largest colour class of the union of pieces 1 to p has the same colour as the
smallest colour class of the (p + 1)-st piece, and vice versa (again, ignoring colour
0). Now glueing the colourings together (as in Proposition 22), the new colouring
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will be roughly as balanced on the first p + 1 pieces (see Proposition 20) and as
zero free (see Proposition 21) as the old one.

Proof. Suppose that H , β and ξ are given with the required properties. In the first
part of the proof, we will prove the following statement by induction (on p): for all
integers p ∈ [1/ξ] there exists a proper (r +1)-colouring σp : [n] → {0, . . . , r} of the
vertices of H with the following properties:

σp is (32rβn, 4rβn)-zero free on [n], (26)

σp is (8rβn, 4rβn)-zero free on [pξn, n], (27)

and for all j ∈ [p]

max
l∈[r]

{
|σ−1

p (l) ∩ [jξn]|
}
≤ min

l∈[r]

{
|σ−1

p (l) ∩ [jξn]|
}

+ ξn + 24rjβn. (28)

For p = 1, we let σ1 be the original (8rβn, 4rβn)-zero free (r + 1)-colouring of
H . Hence (26), (27), and (28) hold trivially.

Next suppose that σp is given. For i ∈ [r−1], we will fix colours li, l
′
i and positions

si and then obtain σp+1 from σp by a series of r−1 appropriate (li, l
′
i, βn)-switches

at positions si. For this purpose recall that by induction (27) guarantees that
σp is (8rβn, 4rβn)-zero free on the interval [pξn, n]. When applied to the vertex
t := pξn + 12rβn, there exists a vertex t′ ∈ [pξn + 12rβn, pξn + 20rβn] such that
[t′, t′+4rβn] is zero free. Now choose positions s1, . . . , sr−1 by letting s1 := t′+4βn
and si := si−1 + 4βn for all 2 ≤ i ≤ r − 1. Thus

pξn + 12rβn ≤ t′ < s1 − 2βn ≤ s1 ≤ · · · ≤ sr−1 ≤ sr−1 + 2βn

= t′ + 4(r − 1)βn + 2βn < t′ + 4rβn. (29)

Now let ci be the number of vertices in [pξn] with colour i under σp for i ∈ [r]
and suppose w.l.o.g. that c1 ≤ · · · ≤ cr. For some (not yet specified) colours li, l

′
i we

will obtain σp+1 from σp by consecutive (li, l
′
i, βn)-switches at si for all i ∈ [r − 1]

and denote by c′i the number of vertices in the interval

I := [t′ + 4rβn, (p + 1)ξn].

which have colour i under σp+1 for i ∈ [r]. Observe that by (29), all switches occur
before the interval I, so since every permutation of the set [r] can be written as
the composition of at most r − 1 transpositions, it is clear that we can choose the
colours l1, l

′
1, . . . , lr−1, l

′
r−1 ∈ [r] such that c′r ≤ · · · ≤ c′1.

Again by (29) we have [s1−2βn, sr−1+2βn] ⊆ [t′, t′+4rβn], which, by the choice
of t′, is zero free under σp at the beginning of the switches. Moreover, the switch at
si−1 introduces new vertices of colour 0 only in the interval [si−1 − βn, si−1 + βn]
which (by definition of the si) is disjoint from [si − 2βn, sr−1 + 2βn].

Thus we can be sure that before we apply the switch at si, the interval [si −
2βn, si + 2βn] is zero free. Hence we can apply Proposition 22 for each of the r− 1
switches and obtain that σp+1 is again a proper (r + 1)-colouring of H .

It is now easy to check that σp+1 satisfies the requirements (26), (27), and
(28), with p replaced by p + 1. Indeed, properties (26) and (27) follow by evoking
Proposition 21 with y := 4rβn, a := pξn, and b := t′ ∈ [pξn+12rβn, pξn+20rβn].
To prove (28), observe that as σp+1(v) = σp(v) for all v ≤ pξn, we know by
induction that (28) with σp+1 in the place of σp still holds for all j ≤ p. Moreover,
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we have |σ−1
p+1(i) ∩ [pξn]| = ci. Using that c1 ≤ · · · ≤ cr together with, again, (28)

from the induction for j = p, we now have

|σ−1
p+1(1) ∩ [pξn]| ≤ |σ−1

p+1(2) ∩ [pξn]| ≤ · · · ≤ |σ−1
p+1(r) ∩ [pξn]|

≤ |σ−1
p+1(1) ∩ [pξn]| + ξn + 24rpβn.

On the other hand, we have |σ−1
p+1(i) ∩ I| = c′i. Using that c′r ≤ · · · ≤ c′1 and

|I| ≤ ξn ≤ ξn + 24rpβn, we obtain

|σ−1
p+1(r) ∩ I| ≤ |σ−1

p+1(r − 1) ∩ I| ≤ · · · ≤ |σ−1
p+1(1) ∩ I|

≤ |σ−1
p+1(r) ∩ I| + ξn + 24rpβn.

we can now apply Proposition 20 with x := ξn + 24rpβn to see that

max
l∈[r]

{
|σ−1

p+1(l) ∩ [(p + 1)ξn]|
}

≤ min
l∈[r]

{
|σ−1

p+1(l) ∩ [(p + 1)ξn]|
}

+ ξn + 24rpβn +
∣
∣[pξn, (p + 1)ξn] \ I

∣
∣

︸ ︷︷ ︸

≤t′+4rβn−pξn≤24rβn

,

≤ min
l∈[r]

{
|σ−1

p+1(l) ∩ [(p + 1)ξn]|
}

+ ξn + 24r(p + 1)βn

which implies equation (28) for j = p + 1 as well. This completes the inductive
proof of statements (26), (27), and (28). Recall moreover that the switch at si

introduces new vertices of colour 0 only in the interval [si − βn, si + βn] for all
i ∈ [r − 1]. Therefore each of these switches introduces at most 2βn new vertices
of colour 0. Since σ1 has at most βn vertices of colour 0 it follows that σj colours
at most j(r − 1)2βn + βn ≤ 2rjβn vertices with 0.

For the second part of the proof, set p := 1/ξ and consider the (r + 1)-colouring
σ := σp whose existence we have proven in the first part. Recall that by (26) and
(28) we know that

σ is (32rβn, 4rβn)-zero free on [n] (30)

and for all integers 1 ≤ j ≤ 1/ξ

max
l∈[r]

{
|σ−1(l) ∩ [jξn]|

}
≤ min

l∈[r]

{
|σ−1(l) ∩ [jξn]|

}
+ ξn + 24rjβn. (31)

It remains to prove that σ is 5ξn-balanced. Let i+ and i− be the colours in [r]
that are used most and least often in the interval [jξn] by σ, respectively; and denote
by ci+ and ci− the number of vertices of colour i+ and i− in [jξn], respectively. Set
Λ := ξn + 24rjβn and rewrite property (31) as ci+ ≤ ci− + Λ. Thus, since σ uses
at most 2rpβn vertices of colour 0 on [jξn], we obtain that for all l ∈ [r]

jξn − 2rpβn

r
− Λ ≤ ci+ − Λ ≤ ci− ≤ |σ−1(l) ∩ [jξn]| ≤ ci+ ≤ ci− + Λ ≤ jξn

r
+ Λ.

Since β < ξ2/(48r), we infer that for every j ∈ [1/ξ]

jξn

r
− 2ξn < |σ−1(l) ∩ [jξn]| <

jξn

r
+ 2ξn . (32)

Now for an arbitrary interval [a, b] ⊆ [n], we choose j, j′ ∈ [p] such that

a − ξn ≤ jξn ≤ a ≤ b ≤ j′ξn ≤ b + ξn .

This yields that

|σ−1(l) ∩ [(j + 1)ξn, (j′ − 1)ξn]| ≤
∣
∣σ−1(l) ∩ [a, b]

∣
∣ ≤ |σ−1(l) ∩ [jξn, j′ξn]|.
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The lower bound is equal to

|σ−1(l) ∩ [(j′ − 1)ξn]| − |σ−1(l) ∩ [(j + 1)ξn]|
(32)

≥
(

(j′ − 1)ξn

r
− 2ξn

)

−
(

(j + 1)ξn

r
+ 2ξn + 1

)

≥
(

b − ξn

r
− 2ξn

)

−
(

a + ξn

r
+ 2ξn

)

− 1 ≥ b − a

r
− 5ξn.

Similarly, the upper bound equals

|σ−1(l) ∩ [j′ξn]| − |σ−1(l) ∩ [jξn)|
(32)

≤
(

j′ξn

r
+ 2ξn

)

−
(

jξn

r
− 2ξn − 1

)

≤
(

b + ξn

r
+ 2ξn

)

−
(

a − ξn

r
− 2ξn

)

+ 1 ≤ b − a

r
+ 5ξn.

Thus, σ is 5ξn-balanced, which completes the proof of Proposition 23. �

After these preparations, the proof of the lemma for H (Lemma 8) will be
straightforward and the basic idea can be described as follows. We will take the
(r + 1)-colouring σ of H which is guaranteed by Proposition 23. Next we parti-
tion V (H) = [n] into k intervals, where the i-th interval will have length roughly
mi,1 + · · ·+mi,r. In order to prove the lemma, define f : V (H) → V (Rr

k) = [k]× [r]
in such a way that it maps all vertices in the i-th interval with colour j 6= 0 to
(i, j), i.e. the j-th vertex of the i-th component of Kr

k . Obviously the bandwidth
condition implies that two adjacent vertices u, v will either lie in the same or in
neighbouring intervals. If, for example, two adjacent vertices u, v both lie in the
i-th interval, then f(u) and f(v) are connected by an edge in E(Kr

k), as required
by (d) in the lemma. If, on the other hand, u and v lie in neighbouring intervals,
then f(u) and f(v) are vertices of different colours in neighbouring components of
Kr

k, and as such connected by an edge of E(Cr
k) ⊆ E(Rr

k) as needed by (c); and for
this case we will need to define the set X to make sure that (d) will not be required
here. Finally, a little more care is needed for the vertices that receive colour 0 by σ.

Proof of Lemma 8. Given r, k and β, let ξ, Rr
k and H be as required. Assume

w.l.o.g. that the vertices of H are labelled 1, . . . , n with bandwidth at most βn and
that H has an (8rβn, 4rβn)-zero free (r+1)-colouring with respect to this labelling.
Set ξ′ = ξ/(11r), and note that β ≤ ξ2/(3026r3) < (ξ′)2/(48r). Therefore, by
Proposition 23 with input β, ξ′, and H , there is a (32rβn, 4rβn)-zero free and
5ξ′n-balanced colouring σ : V (H) → {0, . . . , r} of H .

Observe that for each set of r vertices in Rr
k, the common neighbourhood of these

vertices is nonempty, because δ(Rr
k) > (r−1)k. It follows that for each i ∈ [k] there

exists a vertex ri ∈ V (Rr
k) = [k] × [r] that is adjacent in Rr

k to each vertex of the
i-th component of Kr

k:

{ri, (i, j)} ∈ E(Rr
k) ∀j ∈ [r]. (33)

The vertices ri will be needed to construct the mapping f .
Given an r-equitable partition (mi,j)i∈[k],j∈[r] of n, set

Mi :=
∑

j∈[r]

mi,j
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for i ∈ [k]. Now let t0 := 0 and tk := n, and for every i = 1, . . . , k − 1 choose a
vertex

ti ∈
[

i∑

i′=1

Mi′ ,

i∑

i′=1

Mi′ + 33rβn

]

such that σ is zero free on [ti − βn, ti + βn]. Indeed, such a ti exists since σ is
(32rβn, 4rβn)-zero free. We say that (ti−1, ti] is the i-th interval of H . Vertices
v ∈ V (H) with v ∈ [ti − βn, ti + βn] for some i ∈ [k] are called boundary vertices
of H . Observe that the choice of the ti implies that boundary vertices are never
assigned colour 0 by σ.

Using σ, we will now construct f : V (H) → [k] × [r] and X ⊆ V (H). For each
i ∈ [k], and each v ∈ (ti−1, ti] in the i-th interval of H we set

f(v) :=

{

ri if σ(v) = 0,

(i, σ(v)) otherwise,

and

X :=
{
v ∈ V (H) : σ(v) = 0

}
∪

{
v ∈ V (H) : v is a boundary vertex

}
.

It remains to show that f and X satisfy properties (a )–(d ) of Lemma 8.
Since σ is 5ξ′n-balanced, (n/r) − 5ξ′n ≤ |σ−1(l)| for all l ∈ [r]. Consequently

|{v ∈ [n] : σ(v) = 0}| ≤ r · 5ξ′n. (34)

Moreover, there are exactly k · 2βn boundary vertices and so we can bound

|X | ≤ 5rξ′n + 2kβn ≤ 6krξ′n ≤ krξn,

which yields (a ).
For (b ), we need to estimate |Wi,j |, the number of vertices in H that are mapped

by f to (i, j) for each i ∈ [k] and j ∈ [r]. First, the number of vertices of colour
0 that are mapped to (i, j) can obviously be bounded from above by the bound in
(34). Furthermore, the mapping f sends all vertices v in the i-th interval of H with
σ(v) = j 6= 0 to (i, j), which are at most (ti − ti−1)/r + 5ξ′n vertices, because σ is
5ξ′n-balanced. Thus, by the choice of ti−1 and ti, and making use of the fact that
|mi,j − Mi/r| ≤ 1 (because the mi,j are known to be r-equitable), we can bound

|Wi,j | ≤
ti − ti−1

r
+5ξ′n+5rξ′n ≤ Mi + 33rβn

r
+10rξ′n ≤ mi,j+11rξ′n = mi,j+ξn.

Similarly, |Wi,j | ≥ mi,j − ξn and this shows (b ).

Now, we turn to (c ) and (d ). For a vertex u ∈ V (H), let i(u) be the index in
[k] for which u ∈ (ti(u)−1, ti(u)]. Let {u, v} be an edge of H . Since σ is a proper
colouring, this implies that σ(u) 6= σ(v).

We will first consider the case that u and v are in the same interval of H and
not of colour 0, i.e. i := i(u) = i(v) and σ(u) 6= 0 6= σ(v). By the definition of f , we
have f(u) = (i, σ(u)) and f(v) = (i, σ(v)) and hence {f(u), f(v)} ∈ E(Kr

k), which
proves (c ) and (d ) for this case.

Next we consider the case where u and v are in the same interval i = i(u) = i(v)
of H and one of them, say u, has colour 0. Here, by definition of X , we do not
need to worry about (d ) and only need to verify (c ). Indeed, f(u) = ri and
f(v) = (i, σ(v)). Hence, by (33), {f(u), f(v)} ∈ E(Rr

k).
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It remains to consider the case where u and v are in different intervals of H . Then
both of them are boundary vertices, because the bandwidth of H is at most βn, so
again by definition of X , we only need to verify (c ). Moreover, σ(u) 6= 0 6= σ(v)
because by the choice of the ti boundary vertices are never coloured with 0. Assume
w.l.o.g. that u < v. It follows that i(v) = i(u) + 1 and so f(u) = (i(u), σ(u)) and
f(v) = (i(u) + 1, σ(v)). This implies that {f(u), f(v)} ∈ E(Cr

k) ⊆ E(Rr
k), which

yields (c ). �
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its applications, II (Proc. Colloq., Balatonfüred, 1969), North-Holland, Amsterdam, 1970,
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