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Abstract. In 1983, Chvátal, Trotter and the two senior authors proved that

for any ∆ there exists a constant B such that, for any n, any 2-colouring of the

edges of the complete graph KN with N ≥ Bn vertices yields a monochromatic
copy of any graph H that has n vertices and maximum degree ∆. We prove

that the complete graph may be replaced by a sparser graph G that has N ver-

tices and O(N2−1/∆ log1/∆ N) edges, with N = dB′ne for some constant B′

that depends only on ∆. Consequently, the so called size-Ramsey number of

any H with n vertices and maximum degree ∆ is O(n2−1/∆ log1/∆ n). Our
approach is based on random graphs; in fact, we show that the classical Erdős–

Rényi random graph with the numerical parameters above satisfies a stronger

partition property with high probability, namely, that any 2-colouring of its
edges contains a monochromatic universal graph for the class of graphs on n

vertices and maximum degree ∆.

The main tool in our proof is the regularity method, adapted to a suitable
sparse setting. The novel ingredient developed here is an embedding strategy

that allows one to embed bounded degree graphs of linear order in certain pseu-

dorandom graphs. Crucial to our proof is the fact that regularity is typically
inherited at a scale that is much finer than the scale at which it is assumed.

1. Introduction and results

The regularity method has proved to be a powerful tool in asymptotic combi-
natorics. Regular decompositions of graphs and hypergraphs reveal much of the
structure of such objects, and have been fundamental in approaching diverse prob-
lems in the area (see [26, 29]). The regularity method for dense graphs is the
best developed direction in this line of research, with a long history of applica-
tions and such surprising tools as the blow-up lemma [27, 28]. Thanks to recent
advances [18, 30, 34], one is now able to apply the regularity method to hyper-
graphs; for instance, one may now give a fully combinatorial proof of theorems such
as the Furstenberg–Katznelson theorem [15] on the existence of homothetic copies
of finite configurations in dense subsets of the integer lattice, generalizing [35] to
arbitrary dimensions (see, e.g., [31]). The regularity method for sparse graphs is,
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however, still under development: it appears that even the embedding lemma for
graphs of constant size has not been proved in its full generality or strength (see,
e.g., [17, 23, 25]). In this paper, we contribute to the development of the regu-
larity method for sparse graphs, providing an embedding strategy for large graphs
of bounded degree in the sparse setting. As an application, we prove a numerical
result in Ramsey theory: we prove an upper bound for a variant of the Ramsey
number for graphs of bounded degree (for numbers in Ramsey theory, see [19]).

For graphs G and H, write G −→ H if every 2-colouring of the edges of G
contains a monochromatic copy of H. Erdős, Faudree, Rousseau and Schelp [13]
considered the question of how few edges G may have if G −→ H. Following [13] we
denote the size-Ramsey number r̂(H) = min{e(G) : G −→ H}, where e(G) denotes
the cardinality of the edge set of G.

For example r̂(K1,n) = 2n − 1 for the star K1,n on n + 1 vertices. In [6] Beck
disproved a conjecture of Erdős [12] and showed that r̂(Pn) ≤ 900n. More generally,
it follows from the result of Friedman and Pippenger [14] that the size-Ramsey
number of bounded degree trees grows linearly with the size of the tree (for further
results in this direction, see [7, 20]). Moreover, it was proved in [21] that cycles also
have linear size-Ramsey numbers. Beck asked in [7] if r̂(H) is always linear in the
number of vertices of H for graphs H of bounded degree. This was disproved by
Rödl and Szemerédi [33], who proved that there is a constant c > 0 such that there
are graphs H of order n with maximum degree three for which r̂(H) ≥ n logc n.
These authors also conjectured that, for every ∆ ≥ 3, there exists ε = ε(∆) > 0
such that

n1+ε ≤ r̂∆,n := max{r̂(H) : H ∈ H∆,n} ≤ n2−ε , (1)

where H∆,n is the class of all n-vertex graphs with maximum degree at most ∆, up
to isomorphism. In this paper, we prove the upper bound conjectured in (1).

In fact, our proof method yields a stronger result. Let us say that a graph is
H∆,n-universal if it contains every member of H∆,n as a subgraph. Furthermore,
let us say that a graph is partition universal for the class of graphs H∆,n if any
2-colouring of its edges contains a monochromatic H∆,n-universal graph. We shall

establish for every ∆ the existence of a graph G with O(n2−1/∆ log1/∆ n) edges
that is partition universal for H∆,n.

Theorem 1. For every ∆ ≥ 2 there exist constants B and C such that for ev-
ery n and N satisfying N ≥ Bn there exists a graph G on N vertices and at

most CN2−1/∆ log1/∆N edges that is is partition universal for H∆,n. In particu-
lar, G −→ H for every H ∈ H∆,n.

Remark 2. (i ) As observed in [2], one can show that the number of edges in
any H∆,n-universal graph is Ω(n2−2/∆) and, hence, the exponent 2− 1/∆
of N in Theorem 1 cannot be reduced to 2− 2/∆− ε for any given ε > 0.
For completeness, let us quickly see how to obtain this lower bound on the
number of edges M in an H∆,n-universal graph G. Let us suppose first
that n∆ is even. Note that we must have(

M

n∆/2

)
≥ 1

n!
L∆,n, (2)

where L∆,n denotes the number of labeled graphs on n vertices that are
∆-regular. Bender and Canfield [8] showed that, for any fixed ∆, as n→∞
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with n∆ even, we have

L∆,n = (1 + o(1))
√

2e−(∆2−1)/4

(
∆∆/2

e∆/2∆!

)n
nn∆/2.

Therefore, for n∆ even, L∆,n = Ω(cnnn∆/2) for a constant c = c(∆).

Combining this with (2), we see that (2eM/n∆)n∆/2 ≥
(
M

n∆/2

)
≥ L∆,n/n! =

Ω(cnnn∆/2/nn), whence M = Ω(n2−2/∆), as required. If n∆ is odd, simply
observe that an H∆,n-universal graph is also H∆,n−1-universal.

We mention that a recent, remarkable result of Alon and Capalbo [4]
confirms the existence of H∆,n-universal graphs with O(n2−2/∆) edges (see
also [2, 1, 3].

(ii ) A weaker version of Theorem 1, with |E(G)| = N2−1/2∆+o(1), was proved
earlier by Kohayakawa, Rödl, and Szemerédi (unpublished).

Let G(N, p) be the standard random graph on N vertices, with all the edges
present with probability p, independently of one another (see [9, 22] for the theory
of random graphs). To prove Theorem 1, we shall show that G(N, p) with an
appropriate choice of p = p(N) has the required properties with high probability.

Theorem 3. For every ∆ ≥ 2 there exist constants B and C for which the following
holds. Let N = dBne and p = p(N) = C(logN/N)1/∆. Then

lim
n→∞

P (G(N, p) is partition universal for H∆,n) = 1. (3)

Remark. (i ) In Theorem 1, we have restricted ourselves to the 2-colour case for
simplicity. One may easily prove the same result for more than two colours
(the constants B and C would then depend on both ∆ and on the number
of colours). Similarly, Theorem 3 holds as stated for any fixed number of
colours, that is, we may generalize the notion of partition universality to
any fixed number of colours r and prove the same result (the constant C
would then depend on both ∆ and r).

(ii ) Theorem 1 follows from Theorem 3. In the remainder of this paper, we
focus our attention on the proof of Theorem 3.

The main tool in our proof of Theorem 3 is the regularity method, adapted to the
appropriate sparse and random setting. The key novel ingredient in our approach
is an embedding strategy that allows one to embed bounded degree graphs of linear
order in suitably pseudorandom graphs (see the proof of Lemma 19). Crucial in the
proof is a rather surprising phenomenon, namely, the fact that regularity is typically
inherited at a scale that is much finer than the scale at which it is assumed. This
phenomenon was first spelt out in full in [24], but we use an improved version
proved in [16].

Organization. This paper is organized as follows. In Section 2 we recall some
basic facts about regularity, including the results on inheritance of regularity proved
in [16] (see Section 2.1). In Section 3.3, the results on the hereditary nature of
regularity, in the form that is required here, are derived from the results quoted
in Section 2.1. Other relevant results on random graphs are given in Sections 3.1
and 3.2. The proof of Theorem 3 is given in Section 4. We conclude with some
remarks and open problems in Section 5.
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2. The sparse regularity lemma

Let G = (V,E) be a graph. Suppose 0 < p ≤ 1, η > 0 and K > 1. For two
disjoint subsets X, Y of V , we let eG(X,Y ) be the number of edges of G with one
endpoint in X and the other endpoint in Y . Furthermore, we let

dG,p(X,Y ) =
eG(X,Y )

p|X||Y |
,

which we refer to as the p-density of the pair (X,Y ). We say that G is an (η,K)-
bounded graph with respect to density p if for all pairwise disjoint sets X, Y ⊆ V
with |X|, |Y | ≥ η|V |, we have

eG(X,Y ) ≤ Kp|X||Y | .
For ε > 0 fixed and X, Y ⊆ V , X ∩ Y = ∅, we say that the pair (X,Y ) is

(ε, p)-regular if for all X ′ ⊆ X and Y ′ ⊆ Y with

|X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |,
we have

|dG,p(X,Y )− dG,p(X ′, Y ′)| ≤ ε.
Note that for p = 1 we get the well-known definition of ε-regularity [36].

Let
⋃̇t
j=0Vj be a partition of V . We call V0 the exceptional class. This partition

is called (ε, t)-equitable if |V0| ≤ ε|V | and |V1| = · · · = |Vt|.
We say that an (ε, t)-equitable partition

⋃̇t
j=0Vj of V is (ε, p)-regular if all but

at most ε
(
t
2

)
pairs (Vi, Vj), 1 ≤ i < j ≤ k, are (ε, p)-regular. Now we state a variant

of the Szemerédi’s regularity lemma [36] for sparse graphs, which was observed
independently by Kohayakawa and Rödl (see, e.g., [23, 25]).

Theorem 4 (Sparse regularity lemma). For any ε > 0, K > 1, and t0 ≥ 1,
there exist constants T0, η, and N0 such that any graph G with at least N0 vertices
that is (η,K)-bounded with respect to density 0 < p ≤ 1 admits an (ε, t)-equitable
(ε, p)-regular partition of its vertex set with t0 ≤ t ≤ T0. �

2.1. The hereditary nature of sparse regularity. We shall also use the fact
that ε-regularity is typically inherited on “small” (sublinear) subsets. This was
essentially observed for the classical notion of (dense) regular pairs by Duke and
Rödl [11] and for sparse regular pairs in [16, 24]. Here we shall use a result from [16]
regarding the hereditary nature of (ε, α, p)-denseness (or “one sided-regularity”).

Definition 5. Let α, ε > 0, and 0 < p ≤ 1 be given and let G = (V,E) be a graph.
For sets X, Y ⊆ V , X ∩ Y = ∅, we say that the pair (X,Y ) is (ε, α, p)-dense if for
all X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |, we have

dG,p(X
′, Y ′) ≥ α− ε.

It follows immediately from the definition that (ε, α, p)-denseness is inherited
on large sets, i.e., that for a (ε, α, p)-dense pair (X,Y ) and any sets X ′ ⊆ X and
Y ′ ⊆ Y with |X ′| ≥ µ|X| and |Y ′| ≥ µ|Y | the pair (X ′, Y ′) is (ε/µ, α, p)-dense. The
following result from [16] states that this “denseness-property” is even inherited on
randomly chosen subsets of much smaller size with overwhelming probability.

Theorem 6 ([16, Theorem 3.6]). For every α, β > 0 and ε′ > 0, there exist
ε0 = ε0(α, β, ε′) > 0 and L = L(α, ε′) such that, for any 0 < ε ≤ ε0 and 0 <
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p < 1, if (X,Y ) is an (ε, α, p)-dense pair in a graph G, then the number of sets
X ′ ⊆ X with |X ′| = w ≥ L/p such that (X ′, Y ) is an (ε′, α, p)-dense pair is at least

(1− βw)
(|X|
w

)
. �

The following is a direct consequence of Theorem 6, which we obtain by applying
it first to X and then to Y .

Corollary 7 ([16, Corollary 3.8]). For every α, β > 0 and ε′ > 0, there exist
ε0 = ε0(α, β, ε′) > 0 and L = L(α, ε′) such that, for any 0 < ε ≤ ε0 and 0 < p <
1, every (ε, α, p)-dense pair (X,Y ) in a graph G has the following property: the
number of pairs (X ′, Y ′) of sets with X ′ ⊆ X and Y ′ ⊆ Y with |X ′| = w1 ≥ L/p
and |Y ′| = w2 ≥ L/p and such that (X ′, Y ′) is an (ε′, α, p)-dense pair is at least

(1− βmin{w1,w2})
(|X|
w1

)(|Y |
w2

)
. �

3. Properties of random graphs

In this section we shall verify a few properties of random graphs that will be
useful for the proof of Theorem 3.

3.1. Uniform edge distribution. We start with a well known fact, which fol-
lows easily from the properties of the binomial distribution, concerning the edge
distribution of G(N, p).

Definition 8. For an integer N and 0 < p ≤ 1 we define the family of graphs UN,p

on [N ] = {1, . . . , N} with uniform edge distribution by

UN,p :=
{
G : V (G) = [N ] and ∀U,W ⊆ V (G) with U ∩W = ∅, |U | ≥ N

logN ,

and |W | ≥ N
logN we have eG(U,W ) = (1± 1

logN )p|U ||W |
}
.

The following proposition follows directly from the Chernoff bound for binomially
distributed random variables.

In Proposition 9 below and in the remainder of this paper, o(1) denotes a func-
tion that tends to 0 as N → ∞. We also use the symbols � and �; e.g., we
write f(N)� g(N) to mean that f(N)/g(N)→ 0 as N →∞.

Proposition 9. If p = p(N) � (logN)4/N , then P(G(N, p) ∈ UN,p) = 1 −
o(1). �

3.2. Congestion property of neighbourhoods. For a graph G = (V,E) and an

integer k ≥ 1, we define the auxiliary, bipartite graph Γ(k,G) = (
(
V
k

)
∪̇V,EΓ(k,G))

by

(K, v) ∈ EΓ(k,G) ⇐⇒ {w, v} ∈ E(G) for all w ∈ K . (4)

Proposition 11, given below, states that if G is the random graph G(N, p), then the
graph Γ(k,G) has no “dense patches”. More precisely, we consider the following
property.

Definition 10. Let integers N and k ≥ 1 and reals ξ > 0 and 0 < p ≤ 1 be given.
We say that a graph G = (V,E) with V = [N ] has the congestion property C k

N,p(ξ)

if for every U ⊆ V and every family Fk ⊆
(
V \U
k

)
of pairwise disjoint k-sets with

(i ) |Fk| ≤ ξN and
(ii ) |U | ≤ |Fk|
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we have

eΓ(k,G)(Fk, U) ≤ pk|Fk||U |+ 6ξNpk|Fk| . (5)

We show that for appropriate p the random graph G(N, p) asymptotically almost
surely has property C k

N,p(ξ).

Proposition 11. For every integer k ≥ 1 and real ξ > 0, there exists C > 1 such
that if p > C(logN/N)1/k, then P(G(N, p) ∈ C k

N,p(ξ)) = 1− o(1).

Since (logN/N)1/∆ ≥ (logN/N)1/k for 1 ≤ k ≤ ∆ we obtain the following
corollary.

Corollary 12. For every integer ∆ ≥ 1 and real ξ > 0, there exists C > 1 such

that if p > C(logN/N)1/∆, then P(G(N, p) ∈
⋂∆
k=1 C k

N,p(ξ)) = 1− o(1). �

Proof of Proposition 11. For given k and ξ we let C be a constant satisfying

Ck > k/ξ .

Let Fk and U satisfy (i ) and (ii ) of Definition 10. We consider two cases depending
on the size of Fk.

Case 1 (|Fk| ≥ N/ logN). Observe that for fixed Fk and U the edges of Γ[Fk, U ] =
Γ(k,G(N, p))[Fk, U ] appear independently with probability pk. Thus eΓ(Fk, U)
is a binomial random variable with distribution Bi(|Fk||U |, pk). From Chernoff’s
inequality

P(X ≥ EX + t) ≤ exp(−t)
for a binomial random variable X and t ≥ 6EX (see e.g. [22, Corollary 2.4]), we
infer

P
(
eΓ(Fk, U) > pk|Fk||U |+ 6ξNpk|Fk|

)
≤ exp

(
− 6ξNpk|Fk|

)
,

since we have |U | ≤ |Fk| ≤ ξN from (i ) and (ii ) of Definition 10.
Moreover, the number of choices for Fk (satisfying the assumptions of this case)

is at most
∑ξN
f=N/ logN N

kf and the number of choices for the set U is at most 2N .

Since
ξN∑

f=N/ logN

Nkf2N exp(−6ξNpkf)→ 0

as N → ∞ follows from the choice of Ck > k/ξ and p > C(logN/N)1/k, the
proposition is established in this case.

Case 2 (|Fk| < N/ logN). The analysis in this case is very similar to the first.
Instead of Chernoff’s inequality we use that if X is a binomial random variable
X ∼ Bi(M, q) then

P(X ≥ t) ≤ qt
(
M

t

)
≤
(

eqM

t

)t
.

Consequently,

P
(
eΓ(Fk, U) ≥ pk|Fk||U |+ 6ξNpk|Fk|

)
≤ P

(
eΓ(Fk, U) ≥ 6ξNpk|Fk|

)
≤
(

e|U |
6ξN

)6ξNpk|Fk|

≤ exp
(
− 6ξNpk|Fk| log(2ξN/|U |)

)
.
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In this case, the number of choices for the pair (Fk, U) is at most

N/ logN∑
f=1

f∑
u=1

Nkf

(
N

u

)
.

Consequently, from the union bound we infer that the probability that there exists
a family Fk and a set U with |U | ≤ |Fk| < N/ logN such that eΓ(Fk, U) ≥
pk|Fk||U |+ 6ξNpk|Fk| is at most

N/ logN∑
f=1

f∑
u=1

exp
(
kf logN + u log(eN/u)− 6ξNpkf log(2ξN/u)

)
→ 0 ,

as N →∞ since pkN � logN/ log logN .

This concludes the proof of Proposition 11. �

3.3. Hereditary nature of (ε, α, p)-denseness. In this section we shall show that
in the random graph G(N, p) all sufficiently large (not necessarily induced) 3-partite
subgraphs, say with vertex set X∪̇Y ∪̇Z, in which all the three pairs (X,Y ), (X,Z)
and (Y,Z) are (ε, α, p)-dense, have the following property: The (ε, α, p)-denseness of
the pair (Y,Z) is “typically” inherited on the one-sided neighbourhood (N(x)∩Y, Z)
as well as on the two-sided neighbourhood (N(x) ∩ Y,N(x) ∩Z) for x ∈ X. Below
we introduce classes BI

p and BII
p of “bad” tripartite graphs, which fail to have the

above one-sided and two-sided property (for similar concepts see [24]).

Definition 13. Let integers m1, m2, and m3 and reals α, ε′, ε, µ > 0, and 0 < p ≤ 1
be given.

(I) Let BI
p(m1,m2,m3, α, ε

′, ε, µ) be the family of tripartite graphs with vertex

set X∪̇Y ∪̇Z, where |X| = m1, |Y | = m2, and |Z| = m3, satisfying
(a ) (X,Y ) and (Y,Z) are (ε, α, p)-dense pairs and
(b ) there exists X ′ ⊆ X with |X ′| ≥ µ|X| such that for every x ∈ X ′ the

pair (N(x) ∩ Y, Z) is not (ε′, α, p)-dense.
(II) Let BII

p (m1,m2,m3, α, ε
′, ε, µ) be the family of tripartite graphs with vertex

set X∪̇Y ∪̇Z, where |X| = m1, |Y | = m2, and |Z| = m3, satisfying
(a ) (X,Y ), (X,Z), and (Y,Z) are (ε, α, p)-dense pairs and
(b ) there exists X ′ ⊆ X with |X ′| ≥ µ|X| such that for every x ∈ X ′ the

pair (N(x) ∩ Y,N(x) ∩ Z) is not (ε′, α, p)-dense.

Next we define the family of graph D∆
N,p. This family consist of those graphs G

with vertex set [N ] which contain no graph from and BI
p no graph BII

p as a not
necessarily induced subgraph.

Definition 14. For integers N and ∆ ≥ 2 and reals α, γ, ε′, ε, µ > 0 and
0 < p ≤ 1 we say that a graph G = (V,E) with V = [N ] has the denseness
property D∆

N,p(γ, α, ε
′, ε, µ), if G contains no member from

BI
p(m

I
1,m

I
2,m

I
3, α, ε

′, ε, µ) ∪ BII
p (mII

1 ,m
II
2 ,m

II
3 , α, ε

′, ε, µ)

with mI
1,m

I
3 ≥ γp∆−1N and mI

2,m
II
1 ,m

II
2 ,m

II
3 ≥ γp∆−2N as a (not necessarily

induced) subgraph.

The following proposition is the main result of this section. It asserts that
with high probability the random graph G(N, p) enjoys the property D∆

N,p when

p� (logN/N)1/∆.
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Proposition 15. For every integer ∆ ≥ 2 and positive reals α, ε′, and µ there
exists

ε = ε(∆, α, ε′, µ) > 0 (6)

such that for every γ > 0 there exists C(∆, α, ε′, µ, γ) > 1 such that if p >
C(logN/N)1/∆, then

P(G(N, p) ∈ D∆
N,p(γ, α, ε

′, ε, µ)) = 1− o(1).

Before we turn to the proof of Proposition 15, we deduce the following corollary.

Corollary 16. For all integers ∆, ∆̃ ≥ 2 and all reals α, µ, γ, and ε∗ > 0,
there exist C > 1 and ε0, . . . , ε∆̃ satisfying 0 < ε0 ≤ · · · ≤ ε∆̃ ≤ ε∗ such that if

p > C(logN/N)1/∆, then P
(
G(N, p) ∈

⋂∆̃
k=1 D∆

N,p(γ, α, ε
′, ε, µ)

)
= 1− o(1).

Proof. Let ∆, ∆̃ ≥ 2 and α, µ, γ, and ε∗ > 0 be given. We appeal ∆̃-times to

Proposition 15 to define ε0, . . . , ε∆̃. In fact, we set ε∆̃ = ε∗ and for ∆̃ > k ≥ 1 let
εk−1 be recursively defined, by

εk−1 = min
{
ε(∆, α, εk, µ), εk

}
,

where ε(∆, α, εk, µ) is the given by Proposition 15. Finally, let C be the maximum

of all C(∆, α, εk, µ, γ) for k = 1, . . . , ∆̃. Owing to the choice of C and εk−1 for

k ∈ [∆̃], Proposition 15 yields that a.a.s. G(N, p) ∈ D∆
N,p(γ, α, εk, εk−1, µ) for every

k ∈ [∆̃] for p > C(logN/N)1/∆. �

We first verify Proposition 15 for the special case in which mI
1 = pmI

2 = mI
3 and

mII
1 = mII

2 = mII
3 . (Strictly speaking, we should write, say, bpmI

2c, because mI
1 is an

integer. However, throughout this paper we omit floor and ceiling signs, whenever
they have no significant effect on the arguments.)

To deal with the special case specified above, we consider the families of graphs
BI
p(m,α, ε

′, ε, µ) and BII
p (m,α, ε′, ε, µ) for m ∈ N and α, ε′, ε, µ > 0 defined as

BI
p(m,α, ε

′, ε, µ) = BI
p(pm,m, pm,α, ε

′, ε, µ)

and

BII
p (m,α, ε′, ε, µ) = BII

p (m,m,m,α, ε′, ε, µ) .

Similarly, for integers N and ∆ and positive reals α, γ, ε′, ε, µ > 0 and 0 < p ≤ 1,

we say that a graph G = (V,E) with V = [N ] has property D̂∆
N,p(γ, α, ε

′, ε, µ) if G

contains no member from BI
p(m,α, ε

′, ε, µ) ∪ BII
p (m,α, ε′, ε, µ) with m = γp∆−2N

as a (not necessarily induced) subgraph. Next we prove that G(N, p) has property

D̂∆
N,p(γ, α, ε

′, ε, µ) with high probability.

Proposition 17. For an integer ∆ ≥ 2 and α, ε′, µ ∈ (0, 1] there exists ε > 0 such
that for every γ ∈ (0, 1] there exists C ≥ 1 such that if p > C(logN/N)1/∆, then

P(G(N, p) ∈ D̂∆
N,p(γ, α, ε

′, ε, µ)) = 1− o(1).

Next we verify Proposition 17. This will be followed by a reduction of Proposi-
tion 15 to Proposition 17 (see Claim 18 below).

Proof of Proposition 17. Let ∆, α, ε′, and µ be given. We set

β =

(
1

4e

)4/(αµ)
α2

4e2
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and let ε1 and L1 be given by Theorem 6 and let ε2 and L2 be given by Corollary 7
applied with α, β, and ε′. We fix

ε = min{α/2 , µ/4 , ε1, ε2} ,

and for every γ > 0 we set

C =

(
4

γ

)1/∆

(7)

and let N be sufficiently large.
First we show that a.a.s. G(N, p) contains no graph from

BI
p(m,α, ε

′, ε, µ) = BI
p(m, pm,m,α, ε

′, ε, µ) .

Suppose T = (X∪̇Y ∪̇Z,ET ) is a tripartite graph from BI
p(m,α, ε

′, ε, µ). We will
show that such a graph T is unlikely to appear in G(N, p). Because of the as-
sumption on T , the bipartite subgraphs T [X,Y ] and T [Y,Z] of T contain at least
(α− ε)p2m2 edges each. Furthermore, there is a set X ′ ⊆ X with |X ′| ≥ µ|X| such
that for every x ∈ X ′ the pair (NT (x) ∩ Y,Z) is not (ε′, α, p)-dense. Set

X ′′ = {x ∈ X ′ : |NT (x) ∩ Y | ≥ αp2m/2} .

From the (ε, α, p)-denseness of T [X,Y ] we infer that

|X ′′| ≥ (1− ε/µ)|X ′| ≥ |X ′|/2 ≥ µpm/2 .

Without loss of generality we may assume that

|X ′′| = 1

2
µpm . (8)

Fix x ∈ X ′′. An easy averaging argument shows that there is a set Y ′x ⊆ NT (x)∩Y
of size precisely ε′αpm/2 such that dT,p(Y

′
x, Z) < α − ε′. Now let Yx be such

that Y ′x ⊆ Yx ⊆ NT (x) ∩ Y with |Yx| = αpm/2. Then, clearly, T [Yx, Z] is not
(ε′, α, p)-dense. We may thus find a family of sets {Yx : x ∈ X ′′} such that (Yx, Z)
is not (ε′, α, p)-dense. We shall show that such a configuration is unlikely to occur
in G(N, p).

Indeed we can fix the sets X ′′, Y , Z and the edges of the bipartite graph T [Y, Z]
in at most ∑

t≥(α−ε)pm2

(
N

m

)(
N

pm

)2(
pm2

t

)
ways. Note that for sufficiently large N we have

p∆N > C∆ logN ≥ 2 max{L1, L2}
αγ

. (9)

Moreover, owing to the definition of D̂∆
N,p(γ, α, ε

′, ε, µ) we have m = γp∆−2N .

Consequently, we have w := αpm/2 ≥ L1/p and, hence, we can apply Theorem 6
to T [Y,Z] and infer that there are at most(

βαpm/2
(

m

αpm/2

))µpm/2
possibilities for choosing the sets Yx for x ∈ X ′′. Combining the two estimates
above, in view of 8 we infer that the probability that T [X ′′, Y, Z] appears in G(N, p)
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is bounded from above by

∑
t≥(α−ε)p2m2

(
N

m

)(
N

pm

)2(
pm2

t

)
pt ×

(
βαpm/2

(
m

αpm/2

))µpm/2
pµαp

2m2/4

≤
∑

t≥(α−ε)p2m2

N3m

(
p2m2e

t

)t
×
(
β

2e

α

)µαp2m2/4

≤ m2N3m

(
e

(
2e

α

)µα/4
βµα/4

)p2m2

,

where, for the last inequality, we used the fact that the function f(t) = (p2m2e/t)t

is maximized for t = p2m2.
Finally, we note that the right-hand side of the last inequality tends to 0 as

N →∞. In fact, it follows from the choice of β that e(2e/α)µα/4βµα/4 ≤ 1/4 and,
moreover, p2m2 ≥ 4m logN since p > C(logN/N)1/∆, m = γp∆−2N and C is cho-
sen as in (10). Consequently, a.a.s. G(N, p) contains no graph from BI

p(m,α, ε
′, ε, µ)

as a subgraph.
It is left to show that a.a.s. G(N, p) also contains no graph from

BII
p (m,α, ε′, ε, µ) = BII

p (m,m,m,α, ε′, ε, µ)

as a subgraph. The proof of this is almost identical to the BI
p. However, owing to

the different size of the vertex class Y (now |Y | = m and not pm) some calculations
will change. (In fact, for this case we could weaken the assumption on p and only
p > CN−1/∆ is required.)

Suppose T = (X∪̇Y ∪̇Z,ET ) is a tripartite graph from BII
p (m,α, ε′, ε, µ). We

shall again find a subgraph of T that is unlikely to appear in G(N, p). Because of
the assumption on T , the bipartite subgraphs T [X,Y ], T [X,Z], and T [Y,Z] of T
contain at least (α − ε)pm2 edges each. Furthermore, there is a set X ′ ⊆ X with
|X ′| ≥ µ|X| such that for every x ∈ X ′ the pair (NT (x) ∩ Y,NT (x) ∩ Z) is not
(ε′, α, p)-dense. Set

X ′′ = {x ∈ X ′ : |NT (x) ∩ Y | ≥ αpm/2 and |NT (x) ∩ Z| ≥ αpm/2} .

From the (ε, α, p)-denseness of T [X,Y ] and T [X,Z] we infer that

|X ′′| ≥ (1− 2ε/µ)|X ′| ≥ |X ′|/2 ≥ µm/2 .

Without loss of generality we may assume that µm/2 is an integer and that we
have |X ′′| = µm/2.

Fix x ∈ X ′′. An easy averaging argument shows that there are sets Y ′x ⊆ NT (x)∩
Y and Z ′x ⊆ NT (x)∩Z of size precisely ε′αpm/2 each such that dT,p(Y

′
x, Z

′
x) < α−ε′.

Now let Yx and Zx be such that Y ′x ⊆ Yx ⊆ NT (x) ∩ Y and Z ′x ⊆ Zx ⊆ NT (x) ∩ Z
and |Yx| = |Zx| = αpm/2. Then, clearly, T [Yx, Zx] is not (ε′, α, p)-dense. We may
thus find a family of pairs {(Yx, Zx) : x ∈ X ′′} that are not (ε′, α, p)-dense. We
shall show that such a configuration is unlikely to occur in G(N, p).

Indeed we can fix the sets X ′′, Y , Z and the edges of the bipartite graph T [Y,Z]
in at most ∑

t≥(α−ε)pm2

(
N

m

)3(
m2

t

)
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ways. Since m = γp∆−2N (see the definition of D̂∆
N,p(γ, α, ε

′, ε, µ)) we again infer

from (9) that αpm/2 ≥ L2/p. Hence, we can apply Corollary 7 to T [Y, Z] and infer
that there are at most (

βαpm/2
(

m

αpm/2

)2
)µm/2

possibilities for choosing all pairs (Yx, Zx) for x ∈ X ′′. Combining the two estimates
above we infer that the probability that such a configuration appears in G(N, p) is
bounded from above by

∑
t≥(α−ε)pm2

(
N

m

)3(
m2

t

)
pt ×

(
βαpm/2

(
m

αpm/2

)2
)µm/2

pµαpm
2/2

≤
∑

t≥(α−ε)pm2

N3m

(
pm2e

t

)t
×
(√

β
2e

α

)µαpm2/2

≤ m2N3m

(
e

(
2e

α

)µα/2
βµα/4

)pm2

,

where, for the last inequality, we used the fact that the function f(t) = (pm2e/t)t

is maximized for t = pm2.
Finally, we observe that the right-hand side of the last inequality tends to 0 as

N → ∞, since e(2e/α)µα/2βµα/4 = 1/4 (owing to the choice of β) and pm2 �
m logN (owing to the choice of p > C(logN/N)1/∆ and m = γp∆−2N). �

We now deduce Proposition 15 from Proposition 17.

Proof of Proposition 15. In order to prove Proposition 15 we need to strengthen
Proposition 17 and consider the families BI

p and BII
p with more general parame-

ters m1, m2, and m3. We shall show that, perhaps surprisingly, this more general
statement follows from the “weaker” Proposition 17. Indeed, roughly speaking, we
show that each “bad” tripartite graph T ∈ BII

p (m1,m2,m3, α, ε
′, ε, µ) with arbi-

trary m1, m2, m3 ≥ m contains a subgraph T̂ ∈ BII
p (m,α, ε′/2, ε̂, µ/4) for some

appropriate ε̂. The following deterministic statement makes this precise.

Claim 18. For an integer ∆ ≥ 2 and positive reals α, ε′, µ, and ε̂ there ex-
ists ε > 0 such that for every γ > 0 there exists C > 1 and N0 such that if
N ≥ N0 and p > C(logN/N)1/∆, then every tripartite graph T = (X∪̇Y ∪̇Z,ET ) ∈
BII
p (m1,m2,m3, α, ε

′, ε, µ) with min{m1,m2,m3} ≥ m = γp∆−2N contains a sub-

graph T̂ ∈ BII
p (m,α, ε′/2, ε̂, µ/4).

The same claim holds for BI
p (and, in fact, the proof is a little simpler), but

we only focus on BII
p here. Before we prove Claim 18, we note that that claim,

combined with Proposition 17, yields Proposition 15, as Proposition 17 guarantees

that with probability 1− o(1) the random graph G(N, p) contains no such T̂ from
BI
p(m,α, ε

′/2, ε̂, µ/4) ∪ BII
p (m,α, ε′/2, ε̂, µ/4). �

Proof of Claim 18. Let ∆ ≥ 2 and α, ε′, µ, and ε̂ be given. Next we appeal
to Corollary 7. Let the functions ε0(·, ·, ·) and L(·, ·) be given by Corollary 7.
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Set β = 1/2, δ = ε′/8 and

ε = min{ε0(α, β, ε̂), α/2, µ/4} .
Now for any given γ let

L′ = max

{
L(α, ε̂),

640e

(δε′)2α

}
and C ≥ L′

γ
. (10)

Let N be sufficiently large and T = (X∪̇Y ∪̇Z,ET ) ∈ BII
p (m1,m2,m3, α, ε

′, ε, µ)
be given. Hence, there exists a set X ′ ⊆ X with |X ′| ≥ µ|X| such that for every
vertex x ∈ X ′ the pair (NT (x) ∩ Y,NT (x) ∩ Z) is not (ε′, α, p)-dense. We consider
the set

X ′′ = {x ∈ X ′ : |NT (x) ∩ Y | ≥ αpm2/2 and |NT (x) ∩ Z| ≥ αpm3/2} .
Owing to the choice of ε ≤ µ/4, we infer from the (ε, α, p)-denseness of T [X,Y ] and
T [X,Z] that

|X ′′| ≥ µm1/2 .

Let each of X̂ ∈
(
X
m

)
, Ŷ ∈

(
Y
m

)
, and Ẑ ∈

(
Z
m

)
be chosen uniformly at random

and let T̂ = T [X̂, Ŷ , Ẑ]. We shall show that with positive probability T̂ is from
BII
p (m,α, ε′/2, ε̂, µ/4).

By Corollary 7, with probability at least 1−βm each of the pairs (X̂, Ŷ ), (X̂, Ẑ),

and (Ŷ , Ẑ) is (ε̂, α, p)-dense. Consequently, with probability at least 1 − 3βm we
have

(X̂, Ŷ ), (X̂, Ẑ), and (Ŷ , Ẑ) are (ε̂, α, p)-dense, (11)

which is property (a ) of part (II) in Definition 13. Below we shall verify that
property (b ) also holds with high probability.

For the set X̂ ′′ = X̂ ∩X ′′, the concentration of the hypergeometric distribution
tells us that, with probability at least 1− 2 exp(−µm/24),

|X̂ ′′| ≥ 1

4
µm . (12)

Similarly, with probability at least 1 − 4|X̂ ′′| exp(−δ2αpm/6), we have, for every

x ∈ X̂ ′′, that

|NT̂ (x) ∩ Ŷ | = (1± δ) |NT (x) ∩ Y |
m2

m ≥ 1

2
(1− δ)αpm (13)

and

|NT̂ (x) ∩ Ẑ| = (1± δ) |NT (x) ∩ Z|
m3

m ≥ 1

2
(1− δ)αpm. (14)

Recall that for every vertex x ∈ X̂ ′′ ⊆ X ′ there exist a set Yx ⊆ NT (x) ∩ Y and a
set Zx ⊆ NT (x) ∩ Z such that

Yx ≥ ε′|NT (x) ∩ Y | ≥ ε′αpm2/2 and Zx ≥ ε′|NT (x) ∩ Z| ≥ ε′αpm3/2 , (15)

and
dT,p(Yx, Zx) < α− ε′. (16)

As before, applying the concentration of the hypergeometric distribution, we obtain

that, with probability at least 1−4|X̂ ′′| exp(−δ2ε′αpm/6), we have, for every vertex

x ∈ X̂ ′′, that

|Yx ∩ Ŷ | = (1± δ) |Yx|
m2

m ≥ 1

2
(1− δ)ε′αpm (17)
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and

|Zx ∩ Ẑ| = (1± δ) |Zx|
m3

m ≥ 1

2
(1− δ)ε′αpm. (18)

Below we shall show that given (13), (14), (17), and (18) hold, with probability

at least 1 − 2/N2, for any given x ∈ X̂ ′′, the pair (NT̂ (x) ∩ Ŷ , NT̂ (x) ∩ Ẑ) is not

(ε′/2, α, p)-dense. Summing the failure probabilities 2/N2 over all choices of x ∈ X̂ ′′
and adding the failure probabilities for (11), (12), (13), (14), (17), and (18) it follows

that with positive probability T̂ = T [X̂, Ŷ , Ẑ] ∈ BII
p (m,α, ε′/2, ε̂, µ/4).

Fix x ∈ X̂ ′′. Below, we may and shall assume that (13), (14), (17), and (18)
hold. For any integer ζ with

(1− δ)|Zx|
m

m3
≤ ζ ≤ (1 + δ)|Zx|

m

m3
,

we shall consider the conditional space in which |Zx ∩ Ẑ| = ζ. To remind ourselves
of this conditioning, we shall write Pζ and Eζ to denote the probability and the
expectation in this space.

For all y ∈ Yx, let Zx(y) = NT (y) ∩ Zx. We have

Eζ(|Zx(y) ∩ Ẑ|) = |Zx(y)| |Zx ∩ Ẑ|
|Zx|

=
|Zx(y)|
|Zx|

ζ .

Suppose now that |Zx(y)| ≥ (ε′/20e)p|Zx|. Then, owing to the concentration of the
hypergeometric distribution (see, e.g., [22, Theorem 2.10]), we have

Pζ
(
|Zx(y) ∩ Ẑ| ≥ (1 + δ)

|Zx(y)|
|Zx|

ζ

)
≤ 2 exp

(
−1

3
δ2 |Zx(y)|
|Zx|

ζ

)
≤ 2 exp

(
−1

3
δ2 ε′

20e
pζ

)
. (19)

Consider now the case in which |Zx(y)| < (ε′/20e)p|Zx|. Then, owing to standard
estimates for the hypergeometric distribution (see, e.g., [24, Lemma 10]), we have

Pζ
(
|Zx(y) ∩ Ẑ| ≥ |Zx(y)|

|Zx|
ζ +

ε′

10
pζ

)
≤ Pζ

(
|Zx(y) ∩ Ẑ| ≥ ε′

10
pζ

)
≤
(

e

(ε′/10)pζ

|Zx(y)|
|Zx|

ζ

)(ε′/10)pζ

≤
(

e

(ε′/10)p
(ε′/20e)p

)(ε′/10)pζ

=

(
1

2

)(ε′/10)pζ

. (20)

Let us note that, if |Zx(y)| < (ε′/20e)p|Zx|, then

|Zx(y)|
|Zx|

ζ +
ε′

10
pζ ≤ ε′

20e
pζ +

ε′

10
pζ ≤ 1

8
ε′pζ. (21)

Moreover, since

ζ ≥ (1− δ)|Zx|
m

m3

(15)

≥ (1− δ)1

2
ε′αpm ≥ 1

4
ε′αpm .

and since
p2m ≥ γp∆N > γC logN ≥ L′ logN , (22)
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we can further bound the probabilities in (19) and (20) by

max
{

(2−ε
′pζ/10, 2 exp

(
−δ2ε′pζ/(60e)

)} (10)

≤ 1

N2
. (23)

Consequently we have, with probability at least 1− 1/N2, that

e(Yx, Zx ∩ Ẑ)
(21)

≤
∑
y∈Yx

(1 + δ)
|Zx(y)|
|Zx|

ζ +
∑
y∈Yx

1

8
ε′pζ

= (1 + δ)
ζ

|Zx|
∑
y∈Yx

|Zx(y)|+ 1

8
ε′pζ|Yx|

(16)

≤ (1 + δ)
ζ

|Zx|
(α− ε′)p|Yx||Zx|+

1

8
ε′pζ|Yx|,

whence, recalling that |Zx ∩ Ẑ| = ζ and δ = ε′/8,

dT,p(Yx, Zx ∩ Ẑ) ≤ (1 + δ)(α− ε′) +
1

8
ε′ ≤ α− 3

4
ε′. (24)

Note that the size of Yx played no rôle in the argument above. Hence, we can repeat

the same argument with Yx replaced with Zx∩ Ẑ and with Zx replaced with Yx and
with (16) replaced by (24). This way we obtain that, with probability 1− 2/N2,

dT,p(Yx ∩ Ŷ , Zx ∩ Ẑ) ≤ α− 1

2
ε′.

This concludes the proof of Claim 18. �

4. Ramsey universal graphs

4.1. Proof of the main result. In this section we prove Theorem 3, namely, we
show that for p = p(N) ≥ C(logN/N)1/∆ the random graph G(N, p) is partition
universal for H∆,n for n of the form bcNc for some c > 0. In view of the results
from Section 3 this follows directly from the following deterministic statement.

Lemma 19. For every ∆ ≥ 2 there exist ∆̃ ≥ 2 and positive constants µ, α,
ε∗, ξ, and γ > 0 and B > 1 and n0 such that for every ε0, . . . , ε∆̃ satisfying
0 < ε0 ≤ · · · ≤ ε∆̃ ≤ ε∗ and for every n ≥ n0 the following holds. If G = (V,E) is
a graph on V = [N ], where N ≥ Bn, such that for some 0 < p ≤ 1 we have

(i ) G ∈ UN,p,
(ii ) G ∈ C k

N,p(ξ) for every k = 1, . . . ,∆, and

(iii ) G ∈ D∆
N,p(γ, α, εk, εk−1, µ) for every k = 1, . . . , ∆̃,

then G is partition universal for H∆,n.

Before we prove Lemma 19, we deduce Theorem 3 from it.

Proof of Theorem 3. Let ∆ ≥ 2 be given by Theorem 3. For this ∆ Lemma 19

yields constants ∆̃ ≥ 2 and µ, α, ε∗, ξ, γ > 0 and B > 1 and n0.
Next we will show that there exists a C such that for p > C(logN/N)1/∆ the

random graph G(N, p) satisfies a.a.s. the assumptions (i )–(iii ) of Lemma 19. This,
however, is guaranteed by Proposition 9 for property (i ), by Corollary 12 for prop-
erty (ii ), and by Corollary 16 for property (iii ).

Consequently, Lemma 19 asserts that a.a.s.G(N, p) is partition universal forH∆,n

as long as N ≥ Bn, which is the conclusion of Theorem 3. �



SPARSE PARTITION UNIVERSAL GRAPHS 15

4.2. Proof of the main technical lemma. In this section we prove the main
technical lemma, Lemma 19. The proof follows the strategy in the proof of Chvátal
et al. in [10], but includes ideas from [5] and [32], and is based on the sparse
regularity lemma.

Proof of Lemma 19. The proof consists of four parts. In the first part we fix all
constants needed in the proof. In the second part we consider the given graph G
along with a fixed 2-colouring of its edges. We have to show that G contains a
monochromatic H∆,n-universal graph. In other words, we have to embed every
graph H ∈ H∆,n into one of the two monochromatic subgraphs of G. To that end,
we first prepare the graph G and here the sparse regularity lemma will be the key
tool. In the third part we shall prepare a given graph H ∈ H∆,n for the embedding.
In the last part we then embed H into a monochromatic subgraph of G.

Constants. Let ∆ ≥ 2 be an integer. We first fix

∆̃ = ∆4 + 2∆ + 1

and we set
r = R(∆̃, ∆̃) ,

where R(∆̃, ∆̃) is the Ramsey number that guarantees that every 2-colouring of
the edges of the complete graph Kr yields a monochromatic copy of K∆̃. Next we
define the constants µ, α, ε∗, ξ, γ, B, and n0 of Lemma 19. First we set

µ =
1

4∆2
and α =

1

3
, (25)

and

ε∗ =
1

12∆̃
. (26)

Next we set

ε = min

{
ε0

2
,

1

2(r − 1)

}
, K = 2 , and t0 = 2r (27)

and let T0, η, and N0 be the constants guaranteed by the sparse regularity lemma,
Theorem 4, for ε, K, and t0 given above. Finally, we set

ξ =
1

7 · 4∆+1 · T0
, γ =

1− ε
4∆−1T0

, B =
1

ξ
, (28)

and

n0 = max

{
N0

B
,

1

η2
,
T 2

0

ε
, 24/ε0 , e1/η

}
. (29)

This concludes the definition of the constants involved in the proof of Lemma 19.

Preparing G. Now let ε0, . . . , ε∆̃ satisfy

0 < ε0 ≤ · · · ≤ ε∆̃ ≤ ε
∗ (26)

=
1

12∆̃
(30)

and let n ≥ n0 be given. Let G = (V,E) be a graph on V = [N ], where N ≥ Bn ≥
N0, satisfies assumptions (i )–(iii ) of Lemma 19 for some 0 < p ≤ 1. We fix an
arbitrary colouring of the edges E = ER∪̇EB of G with two colours, say red and
blue, and let GR = (V,ER) and GB = (V,EB) be the corresponding monochromatic
subgraphs. We have to show that one of GR or GB will contain every H inH∆,n. To
that end, first use the sparse regularity lemma to “locate” an appropriate “regular”
subgraph in either GR or GB .
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More precisely, we apply the regularity lemma with ε = min{ε0/2, 1/(r − 1)},
K = 2, t0 = 2r, and p to GR. Note that, owing to property (i ) of Lemma 19
(see Definition 8), the graph G is (1/ logN, 1 + 1/ logN)-bounded. Since GR ⊆ G,
1/ logN ≤ 1, and N/ logN ≤ ηN (because of the choice of n0 in (29)) we infer
that indeed GR is (η,K)-bounded (see (27)). Consequently, Theorem 4 yields an
(ε, t)-equitable (ε, p)-regular partition V0∪̇V1∪̇ . . . Vt of V in GR with t0 ≤ t ≤ T0.

We consider an auxiliary graph A with vertex set [t] = {1, . . . , t} and {i, j} being
an edge if and only if the pair (Vi, Vj) is (ε, p)-regular for GR. Since the partition

V0∪̇V1∪̇ . . . Vt is (ε, p)-regular in GR, at most ε
(
t
2

)
≤ 1

2(r−1)

(
t
2

)
< (r − 1)

(
t/(r−1)

2

)
of the pairs of the auxiliary graph are missing and hence, by Turán’s theorem,
A contains a clique Kr with r vertices. In other words, there exists an index set
Ir = {i1, . . . , ir} ⊆ [t] such that (Vi, Vj) is (ε, p)-regular for GR for all {i, j} ∈

(
Ir
2

)
.

Moreover, since G ∈ UN,p and since 1/ logN ≤ εN/T0 (see (29)) it follows directly
from the definition of (ε, p)-regularity that (Vi, Vj) is (ε + 2/ logN, p)-regular for
the graph GB . Because of (27) and (29), we have ε+ 2/ logN ≤ ε0/2 + ε0/2 and,

hence, (Vi, Vj) is (ε0, p)-regular for GR and for GB for all {i, j} ∈
(
Ir
2

)
.

Next we colour the edges of the clique Kr ⊆ A red and blue. We colour an edge
{i, j} ∈

(
Ir
2

)
red if dGR,p(Vi, Vj) ≥ dGB ,p(Vi, Vj) and blue otherwise. Note that,

again from the fact thatG ∈ UN,p and 1/ logN ≤ N/T0 we infer that dGR,p(Vi, Vj)+
dGB ,p(Vi, Vj) ≥ 1− 1/ logN and, therefore,

max {dGR,p(Vi, Vj), dGB ,p(Vi, Vj)} ≥
1

2
− 1

2 logN
≥ 1

3

for every {i, j} ∈
(

[t]
2

)
.

Because of the choice of r ≥ R(∆̃, ∆̃) there exists a monochromatic clique

K∆̃ ⊆ Kr ⊆ A on ∆̃ vertices. Let J ⊆ Ir be the vertex set of the monochro-
matic clique K∆̃. Summarizing, the above ensures the existence of a set J ⊆ [t] of

cardinality ∆̃ such that either

(Vi, Vj) is (ε0, p)-regular for GR and dGR,p(Vi, Vj) ≥ 1/3 for all {i, j} ∈
(
J
2

)
(31)

or the same statement holds for GB . Without loss of generality we assume that (31)
holds and we shall show that GR induced on

⋃
i∈J Vi will contain any H from H∆,n.

Preparing H. Fix some H = (W,F ) ∈ H∆,n. We consider the third power
H3 = (W,F 3) of H, i.e., {w,w′} ∈ F 3 if and only if w 6= w′ and there exists a
w-w′-path with at most three edges in H. Since ∆(H) ≤ ∆ we have

∆(H3) ≤ ∆ + ∆(∆− 1) + ∆(∆− 1)2 = ∆3 −∆2 + ∆

and consequently χ(H3) ≤ ∆3 − ∆2 + ∆ + 1. Fix a (∆3 − ∆2 + ∆ + 1)-vertex
colouring f of H3 with colours 1, . . . ,∆3 − ∆2 + ∆ + 1. This way we obtain a
partition of W into ∆3 −∆2 + ∆ + 1 classes such that if two vertices w and w′ are
elements of the same class, then their distance in H is at least four; in particular,
there are no edges between NH(w) and NH(w′). We now refine the partition
induced by the colour classes of f according to the “left-degrees” of the vertices.
More precisely, we say two vertices w and w′ are equivalent if f(w) = f(w′) and∣∣NH(w) ∩ {x ∈W : f(x) < f(w)}

∣∣ =
∣∣NH(w′) ∩ {x ∈W : f(x) < f(w′)}

∣∣ ,
i.e., w and w′ are equivalent if they have the same colour in f and the same
number of neighbours with colours of smaller number. Clearly, this equivalence
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relation partitions W into at most (∆3 −∆2 + ∆ + 1)(∆ + 1) = ∆̃ classes. Denote
the partition classes by W1, . . . ,W∆̃ (allowing empty classes if necessary) and let

g : W → [∆̃] be the corresponding partition function, i.e.,

g(w) = j if and only if w ∈Wj .

Thus, if g(w) = g(w′), then
∣∣NH(w) ∩ {x ∈ W : g(x) < g(w)}

∣∣ =
∣∣NH(w′) ∩ {x ∈

W : g(x) < g(w′)}
∣∣. For an integer ` ≤ g(w) we denote by

ldeg`g(w) :=
∣∣NH(w) ∩ {x ∈W : g(x) ≤ `}

∣∣
the left-degree of w with respect to g and `.

Embedding of H into G. After the preparation of G and H we are able to
embed H into GR. We may relabel the vertex classes Vi of GR with i ∈ J and

assume J = [∆̃]. We proceed inductively and embed the vertex class W` into V`
one at a time, for ` = 1, . . . , ∆̃. To this end, we verify the following statement (S`)
for ` = 0, . . . , ∆̃.

(S`) There exists a partial embedding ϕ` of H[
⋃`
j=1Wj ] into GR[

⋃`
j=1 Vj ] such

that for every z ∈
⋃∆̃
j=`+1Wj there exists a candidate set C`(z) ⊆ V (G)

given by
(a ) C`(z) =

⋂
{NGR

(ϕ`(x)) : x ∈ NH(z) and g(x) ≤ `} ∩ Vg(z),
satisfying

(b ) |C`(z)| ≥ (p/4)ldeg`
g(z)m, where m = |Vg(z)| ≥ (1− ε)N/t, and

(c ) for every edge {z, z′} ∈ F = E(H) with g(z), g(z′) > ` the pair(
C`(z), C`(z

′)
)

is (ε`, 1/3, p)-dense in GR.

Remark. In what follows we shall use the following convention. Vertices from GR
will be denoted by v and vertices from H will be usually named w. However, since

the embedding of H into G will be divided into ∆̃ rounds, we shall find it convenient
to distinguish among the vertices of H. We shall use the letter x for vertices that
have already been embedded, the letter y for vertices that will be embedded in the
current round, while z will denote vertices that we shall embed at a later step.

Statement (S`) ensures the existence of a partial embedding of the first ` classes
W1, . . . ,W` of H such that for every unembedded vertex z there exists a candidate
set C`(z) that is not too small (see part (b )). Moreover, if we embed z into its
candidate set, then its image will be adjacent to all vertices ϕ`(x) with x ∈ (W1 ∪
· · ·∪W`)∩NH(z) (see part (a )). The last property, part (c ), concerns the edges of H
both endvertices of which have not yet been embedded: those edges are such that
the candidate sets of their endvertices induce (ε, α, p)-dense pairs. This property
will be crucial for the inductive proof.

Before we verify (S`) for ` = 0, . . . , ∆̃ by induction on ` we note that (S∆̃) implies
that H can be embedded into GR. Since H was an arbitrary graph from H∆,n and
we fixed an arbitrary colouring of the edges of G, this implies G −→ H for every
H ∈ H∆,n. Consequently, verifying (S`) yields the proof of Lemma 19.

Basis of the induction: ` = 0. We first verify (S0). In this case ϕ0 is the empty
mapping and for every z ∈W we have, according to (a ), C0(z) = Vg(z), as there is
no vertex x ∈ NH(z) with g(x) ≤ 0. Also, property (b ) holds by definition of C0(z)
for every z ∈ W . Finally, property (c ) follows from the property that (Vi, Vj) is



18 Y. KOHAYAKAWA, V. RÖDL, M. SCHACHT, AND E. SZEMERÉDI

(ε0, p)-regular for GR and, consequently,
(
C0(z), C0(z′)

)
is (ε0, 1/3, p)-dense in GR

for every edge {z, z′} of H (see (31)).

Induction step: ` → ` + 1. For the inductive step, we suppose that ` < ∆̃ and
assume that statement (S`) holds; we have to construct ϕ`+1 with the required
properties. Our strategy is as follows. In the first step, we find for every y ∈W`+1

an appropriate subset C(y) ⊆ C`(y) of the candidate set such that if ϕ`+1(y) is
chosen from C(y), then the new candidate set C`+1(z) := C`(z) ∩ NGR

(ϕ`+1(y))
of every “right-neighbour” z of y will not shrink too much and property (c ) will
continue to hold.

Note, however, that in general |C(y)| ≤ |C`(y)| = o(N)� |W`+1| (if ldeg`g ≥ 1)
and, hence, we cannot “blindly” select ϕ`+1(y) from C(y). Instead, in the second
step, we shall verify Hall’s condition to find a system of distinct representatives for
the family {C(y) : y ∈W`+1} and we let ϕ`+1(y) be the representative of C(y). (A
similar idea was used in [5, 32].) We now give the details of those two steps.

For the first step, fix y ∈W`+1 and set

N `+1
H (y) := {z ∈ NH(y) : g(z) > `+ 1} .

A vertex v ∈ C`(y) will be “bad” (i.e., we shall not select v for C(y)) if there exists

a vertex z ∈ N `+1
H (y) for which the set NGR

(v)∩C`(z) violates condition (b ) or (c )
of (S`+1) and, hence, it cannot play the rôle of C`+1(z).

We first prepare for (b ) of (S`+1). Fix a vertex z ∈ N `+1
H (y). Since (C`(y), C`(z))

is an (ε`, 1/3, p)-dense pair, there exist at most ε`|C`(y)| ≤ ε∆̃|C`(y)| vertices v in
C`(y) such that

|NGR
(v) ∩ C`(z)| <

(
dGR,p(C`(y), C`(z))− ε∆̃

)
p|C`(y)| .

Repeating the above for all z ∈ N `+1
H (y), we infer from (a ) and (b ) of (S`), that

there are at most ∆ε∆̃|C`(y)| vertices v ∈ C`(y) such that the following fails to be

true for some z ∈ N `+1
H (y):

|NGR
(v) ∩ C`(z)| ≥

(
dGR,p(C`(y), C`(z))− ε∆̃

)
p|C`(z)|

(b ), (c )

≥
(

1

3
− ε`

)
p
(p

4

)ldeg`
g(z)

|Vg(z)|
(30)

≥
(p

4

)ldeg`+1
g (z)

|Vg(z)| . (32)

For property (c ) of (S`+1), we fix an edge e = {z, z′} with g(z), g(z′) > `+1 and

with at least one end vertex in N `+1
H (y). There are at most ∆(∆ − 1) < ∆2 such

edges. Note that if both vertices z and z′ are neighbours of y, i.e., z, z′ ∈ N `+1
H (y),

then

max
{

ldeg`g(y), ldeg`g(z), ldeg`g(z
′)
}
≤ ∆− 2 ,

since all three vertices y, z, and z′ have at least two neighbours in W`+1∪· · ·∪W∆̃.
From property (b ) of (S`) we infer

min
{
|C`(y)| , |C`(z)| , |C`(z′)|

}
≥
(p

4

)max{ldeg`
g(y),ldeg`

g(z),ldeg`
g(z′)}

(1− ε)N
T0

(28)

≥ γp∆−2N.

Recall that α = 1/3 (see (25)). Hence GR ⊆ G and G ∈ D∆
N,p(γ, α, ε`+1, ε`, µ)

imply that there are at most µ|C`(y)| vertices v contained in C`(y) such that the
pair (NGR

(v) ∩ C`(z), NGR
(v) ∩ C`(z′)) fails to be (ε`+1, 1/3, p)-dense.



SPARSE PARTITION UNIVERSAL GRAPHS 19

If, on the other hand, say, only z ∈ N `+1
H (y) and z′ 6∈ N `+1

H (y), then

max{ldeg`g(y), ldeg`g(z
′)} ≤ ∆− 1 and ldeg`g(z) ≤ ∆− 2.

Consequently, (similarly as above)

min
{
|C`(y)| , |C`(z′)|

}
≥ γp∆−1N and |C`(z)| ≥ γp∆−2N

and we can appeal to the fact that G ∈ D∆
N,p(γ, α, ε`+1, ε`, µ) to infer that there

are at most µ|C`(y)| vertices v ∈ C`(y) such that (NGR
(v) ∩ C`(z), C`(z′)) fails

to be (ε`+1, 1/3, p)-dense. For a given v ∈ C`(y), let Ĉ`(z) = C`(z) ∩ NGR
(v) if

z ∈ N `+1
H (y) and Ĉ`(z) = C`(z) if z 6∈ N `+1

H (y), and define Ĉ`(z
′) analogously.

Summarizing the above we infer that there are at least

(1−∆ε∆̃ −∆2µ)|C`(y)| (33)

vertices v ∈ C`(y) such that

(b ′) |NGR
(v) ∩ C`(z)| ≥ (p/4)ldeg`+1

g (z)|Vg(z)| for every z ∈ N `+1
H (y) (see (32))

and
(c ′) (Ĉ`(z), Ĉ`(z

′)) is (ε`+1, 1/3, p)-dense for all edges {z, z′} of H with g(z),

g(z′) > `+ 1 and {z, z′} ∩N `+1
H (y) 6= ∅.

Let C(y) be the set of those vertices v from C`(y) satisfying properties (b ′) and (c ′)

above. Recall that ldeg`g(y) = ldeg`g(y
′) for all y, y′ ∈W`+1 and set

k = ldeg`g(y) for some y ∈W`+1.

Since y ∈W`+1 was arbitrary, we infer from (33), the choice of µ in (25) combined

with ε∆̃ ≤ ε
∗ = (12∆̃)−1 (see (30)) and property (b ) of (S`) that

|C(y)| ≥ (1−∆ε∆̃ −∆2µ)|C`(y)|

≥ (1−∆ε∆̃ −∆2µ)
(p

4

)k
(1− ε)N

T0
≥ 1

4k+1
pk
N

T0
. (34)

We now turn to the aforementioned second part of the inductive step. Here
we ensure the existence of a system of distinct representatives for the set system
(C(y))y∈W`+1

. We shall appeal to Hall’s condition and show that for every Y ⊆
W`+1 we have

|Y | ≤
∣∣∣∣ ⋃
y∈Y

C(y)

∣∣∣∣. (35)

Because of (34), assertion (35) holds for all sets Y with 1 ≤ |Y | ≤ 4−k−1pkN/T0.
Thus, consider a set Y ⊆ W`+1 with |Y | > 4−k−1pkN/T0. For every y ∈ W`+1

we have ldeg`g(y) = k. Hence, we have a k-tuple K(y) = {u1(y), . . . , uk(y)} of

already embedded vertices of H such that K(y) = NH(y) \ N `+1
H (y). Note that

for two distinct vertices y, y′ ∈ W`+1 the sets K(y) and K(y′) are disjoint. This
follows from the fact that the distance in H between y and y′ is at least four and
if K(y) ∩K(y′) 6= ∅, then this distance would be at most two. Consequently, the
sets of already embedded vertices ϕ`(K(y)) and ϕ`(K(y′)) are disjoint as well and,

therefore, Fk = {ϕ`(K(y)) : y ∈W`+1} ⊆
(
V
k

)
is a family of pairwise disjoint k-sets

in V . Moreover,

C(y) ⊆
⋂

v∈ϕ(K(y))

NGR
(v) ⊆

⋂
v∈ϕ(K(y))

NG(v) .
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Let
U =

⋃
y∈Y

C(y) ⊆ V`+1 .

Note that

Fk ⊆
(
V1∪̇ . . . ∪̇V`

k

)
⊆
(
V \ U
k

)
.

Suppose for a contradiction that

|U | < |Y | = |Fk|. (36)

We now use property (ii ) of Lemma 19, namely, G ∈ C k
N,p(ξ) applied for Fk and U .

We deduce that
eΓ(k,G)(Fk, U) ≤ pk|Fk||U |+ 6ξNpk|Fk| .

On the other hand, because of (34), we have

eΓ(k,G)(Fk, U) ≥ 1

4k+1
pk
N

T0
|Fk|.

Combining the last two inequalities we infer∣∣∣∣ ⋃
y∈Y

C(y)

∣∣∣∣ = |U | ≥
(

1

4k+1

1

T0
− 6ξ

)
N

(28)

≥ ξN ≥ ξBn (28)
= n ≥ |W`+1| ≥ |Y |,

which contradicts (36). This contradiction shows that (36) does not hold, that is,
Hall’s condition (35) does hold. Hence, there exists a system of representatives
for (C(y))y∈W`+1

, i.e., an injective mapping ψ : W`+1 →
⋃
y∈W`+1

C(y) such that

ψ(y) ∈ C(y) for every y ∈W`+1.

Finally, we extend ϕ` and define C`+1(z) for z ∈
⋃∆̃
j=`+2Wj . For that we set

ϕ`+1(w) =

{
ϕ`(w) , if w ∈

⋃`
j=1Wj ,

ψ(w) , if w ∈W`+1 .

Note that every z ∈
⋃∆̃
j=`+2Wj has at most one neighbour in W`+1, as otherwise

there would be two vertices y and y′ ∈ W`+1 with distance at most 2 in H, which
contradicts the fact that g and f are valid vertex colourings of H3. Consequently,

for every z ∈
⋃∆̃
j=`+2Wj we can set

C`+1(z) =

{
C`(z) , if NH(z) ∩W`+1 = ∅,
C`(z) ∩NGR

(ϕ`+1(y)) , if NH(z) ∩W`+1 = {y}.

In what follows we show that ϕ`+1 and C`+1(z) for every z ∈
⋃∆̃
j=`+2Wj have

the desired properties and validate (S`+1).
First of all, from (a ) of (S`), combined with ϕ`+1(y) ∈ C(y) ⊆ C`(y) for ev-

ery y ∈ W`+1 and the property that {ϕ`+1(y) : y ∈ W`+1} is a system of distinct

representatives, we infer that ϕ`+1 is indeed a partial embedding of H[
⋃`+1
j=1Wj ].

Next we shall verify properties (a ) and (b ) of (S`+1). So let z ∈
⋃∆̃
j=`+2Wj be

fixed. If NH(z) ∩W`+1 = ∅, then C`+1(z) = C`(z), ldeg`+1
g (z) = ldeg`g(z), which

yields (a ) and (b ) of (S`+1) for that case. If, on the other hand, NH(z)∩W`+1 6= ∅,
then there exists a unique neighbour y ∈ W`+1 of H (owing to the fact that g
is a refinement of a valid vertex colouring of H3). Because of the definition of
C`+1(z) = C`(z)∩NGR

(ϕ`+1(y)) part (a ) of (S`+1) follows in this case. Moreover,
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since ϕ`+1(y) ∈ C(y), we infer directly from (b ′) that (b ) of (S`+1) is satisfied in
this case.

Finally, we verify property (c ) of (S`+1). Let {z, z′} be an edge of H with

z, z′ ∈
⋃∆̃
j=`+2Wj . We consider three cases, depending on the size of NH(z)∩W`+1

and of NH(z′) ∩W`+1. If NH(z) ∩W`+1 = ∅ and NH(z′) ∩W`+1 = ∅, then part
(c ) of (S`+1) follows directly from part (c ) of (S`) and ε`+1 ≥ ε`, combined with
C`+1(z) = C`(z), C`+1(z′) = C`(z

′). IfNH(z)∩W`+1 = {y} andNH(z′)∩W`+1 = ∅,
then (c ) of (S`+1) follows from (c ′) and the definition of C`+1(z) and C`+1(z′). If
NH(z) ∩W`+1 = {y} and NH(z′) ∩W`+1 = {y′}, then y = y′, as otherwise there
would be a y-y′-path in H with three edges, i.e., {y, y′} would be an edge in H3,
which would imply that g(y) 6= g(y′). Consequently, (c ) of (S`+1) follows from (c ′)
and the definition of C`+1(z) and C`+1(z′).

We have therefore verified (a )–(c ) of (S`+1), thus concluding the induction step.
The proof of Lemma 19 follows by induction. �

5. Concluding remarks

Theorem 1 asserts the existence of a partition universal graph G for the class

of graphs H∆,n with G having O(n2−1/∆ log1/∆ n) edges. We believe it would be
rather interesting to decide whether one can substantially improve on this upper
bound. In particular, we believe that bringing this bound down to a bound of the
form O(n2−1/∆−ε) for some ε > 0 would require a completely new idea. The only
lower bound that we know is of the form Ω(n2−2/∆) (see Remark 2(i )).

Our proof of Theorem 1 is heavily based on random graphs, and we do not know
how to prove this result or anything numerically similar by constructive means. In
particular, for instance, we do not know whether (N, d, λ)-graphs with reasonable
parameters are partition universal for H∆,n.

Another interesting question is whether one can prove Theorem 1 without the
regularity method.

Acknowledgement. We thank Julia Böttcher, Jan Hladký, Diana Piguet and the
anonymous referee for their interest and very detailed comments.
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theory, Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), János Bolyai Math.

Soc., Budapest, 1996, pp. 295–352. 1
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[30] B. Nagle, V. Rödl, and M. Schacht, The counting lemma for regular k-uniform hypergraphs,

Random Structures Algorithms 28 (2006), no. 2, 113–179. 1
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Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris,

1978, pp. 399–401. 2

Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Rua do Matão

1010, 05508–090 São Paulo, Brazil
E-mail address: yoshi@ime.usp.br

Department of Mathematics and Computer Science, Emory University, Atlanta, GA
30322, USA

E-mail address: rodl@mathcs.emory.edu

Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, D-

10099 Berlin, Germany

Current address: Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, D-20146
Hamburg, Germany

E-mail address: schacht@math.uni-hamburg.de

Department of Computer Science, Rutgers, The State University of New Jersey, 110

Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

E-mail address: szemered@cs.rutgers.edu


	1. Introduction and results
	Organization

	2. The sparse regularity lemma
	2.1. The hereditary nature of sparse regularity

	3. Properties of random graphs
	3.1. Uniform edge distribution
	3.2. Congestion property of neighbourhoods
	3.3. Hereditary nature of (,,p)-denseness

	4. Ramsey universal graphs
	4.1. Proof of the main result
	4.2. Proof of the main technical lemma

	5. Concluding remarks
	Acknowledgement

	References

