
EXTREMAL RESULTS FOR RANDOM DISCRETE STRUCTURES
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Abstract. We study thresholds for extremal properties of random discrete structures.
We determine the threshold for Szemerédi’s theorem on arithmetic progressions in random
subsets of the integers and its multidimensional extensions and we determine the threshold
for Turán-type problems for random graphs and hypergraphs. In particular, we verify a
conjecture of Kohayakawa, Łuczak, and Rödl for Turán-type problems in random graphs.
Similar results were obtained independently by Conlon and Gowers.

§1. Introduction

Extremal problems are widely studied in discrete mathematics. Given a finite set Γ and
a family F of subsets of Γ an extremal result asserts that any sufficiently large (or dense)
subset G Ď Γ must contain an element from F . Often all elements of F have the same size,
i.e., F Ď

`Γ
k

˘

for some integer k, where
`Γ
k

˘

denotes the family of all k-element subsets of Γ.
For example, if Γn “ rns “ t1, . . . , nu and Fn consists of all k-element subsets of rns

which form an arithmetic progression, then Szemerédi’s celebrated theorem [40] asserts
that every subset Y Ď rns with |Y | “ Ωpnq contains an arithmetic progression of length k.

A well known result from graph theory, which fits this framework, is Turán’s theorem [41]
and its generalization due to Erdős and Stone [12] (see also [10]). Here Γn “ EpKnq is the
edge set of the complete graph with n vertices and Fn consists of the edge sets of copies of
some fixed graph F (say with k edges) in Kn. Here the Erdős-Stone theorem implies that
every subgraph H Ď Kn which contains at least

ˆ

1` 1
χpF q ´ 1 ´ op1q

˙ˆ

n

2

˙

edges must contain a copy of F , where χpF q denotes the chromatic number of F (see,
e.g., [2, 3, 5, 7]). The connection with the chromatic number was explicitly stated in the
work of Erdős and Simonovits [10].

We are interested in “random versions” of such extremal results. We study the binomial
model of random substructures. For a finite set Γn and a probability p P r0, 1s we denote
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by Γn,p the random subset where every x P Γn is included in Γn,p independently with
probability p. In other words, Γn,p is the finite probability space on the power set of Γn in
which every elementary event tGu for G Ď Γn occurs with probability

P pG “ Γn,pq “ p|G|p1´ pq|Γn|´|G| .

For example, if Γn is the edge set of the complete graph on n vertices, then Γn,p denotes
the usual binomial random graph Gpn, pq (see, e.g., [4, 25]).

The deterministic extremal results mentioned earlier can be viewed as statements which
hold with probability 1 for p “ 1 and it is natural to investigate the asymptotic of the
smallest probabilities for which those results hold. In the context of Szemerédi’s theorem
for every k ě 3 and ε ą 0 we are interested in the smallest sequence p “ ppnqnPN of
probabilities such that the binomial random subset rnspn has asymptotically almost surely
(a.a.s., i.e. with probability tending to 1 as nÑ 8) the following property: Every subset
Y Ď rnspn with |Y | ě ε|rnspn | contains an arithmetic progression of length k. Similarly, in
the context of the Erdős-Stone theorem, for every graph F and ε ą 0 we are interested in
the asymptotic of the smallest sequence p “ ppnqnPN such that the random graph Gpn, pnq
a.a.s. satisfies: every H Ď Gpn, pq with

epHq ě

ˆ

1´ 1
χpF q ´ 1 ` ε

˙

epGpn, pnqq ,

contains a copy of F .
We determine the asymptotic growth of the smallest such sequence p of probabilities

for those and some related extremal properties including multidimensional versions of
Szemerédi’s theorem (Theorem 2.3), solutions of density regular systems of equations
(Theorem 2.4), an extremal version for solutions of the Schur equation (Theorem 2.5),
and extremal problems for hypergraphs (Theorem 2.7). In other words, we determine the
threshold for those properties. Similar results were obtained by Conlon and Gowers [6].

The new results will follow from a general result (see Theorem 3.3), which allows us to
transfer certain extremal results from the classical deterministic setting to the probabilistic
setting. In Section 4 we deduce the results stated in the next section from Theorem 3.3.

§2. New results

2.1. Szemerédi’s theorem and its multidimensional extension. We study extremal
properties of random subsets of the first n positive integers. One of the best known
extremal-type results for the integers is Szemerédi’s theorem. In 1975 Szemerédi solved
a longstanding conjecture of Erdős and Turán [13] by showing that every subset of the
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integers of upper positive density contains an arithmetic progression of any finite length.
For a set X Ď rns we write

X Ñε rks (1)

for the statement that every subsets Y Ď X with |Y | ě ε|X| contains an arithmetic
progression of length k. With this notation at hand, we can state (the finite version of)
Szemerédi’s theorem as follows: for every integer k ě 3 and ε ą 0 there exists n0 such that
for every n ě n0 we have rns Ñε rks.

For fixed k ě 3 and ε ą 0 we are interested in the asymptotic behavior of the threshold
sequence of probabilities p “ ppnq such that there exist constants 0 ă c ă C for which

lim
nÑ8

P prnsqn Ñε rksq “

$

&

%

0, if qn ď cpn for all n P N,

1, if qn ě Cpn for all n P N.
(2)

Remark 2.1. We note that the family tX Ď rns : X Ñε rksu is not closed under supersets.
In other words, the property is “X Ñε rks” is not a monotone property. However, similar
arguments as presented in [25, Proposition 8.6] show that the property “X Ñε rks” and
the other properties considered in this section have a threshold as displayed in (2).

It is easy to see that if the expected number of arithmetic progressions of length k

in rnsqn is asymptotically smaller than the expected number of elements in rnsqn , then
there exists a subset of size p1´ op1qq|rnsqn |, which contains no arithmetic progressions of
length k at all. In other word, if

qknn
2
! qnn ðñ qn ! n´1{pk´1q (3)

then P prnsqn Ñε rksq Ñ 0 for every ε ă 1. Consequently, n´1{pk´1q is a lower bound on
the threshold for Szemerédi’s theorem for arithmetic progressions of length k. For k “ 3
Kohayakawa, Łuczak, and Rödl [28] established a matching upper bound. Our first result
generalizes this for arbitrary k ě 3.

Theorem 2.2. For every integer k ě 3 and every ε P p0, 1q there exist constants C ą c ą 0
such that for any sequence of probabilities q “ pqnqnPN we have

lim
nÑ8

P prnsqn Ñε rksq “

$

&

%

0, if qn ď cn´1{pk´1q for all n P N,

1, if qn ě Cn´1{pk´1q for all n P N.

We remark that the 0-statement in Theorem 2.2 (and, similarly, the 0-statements of
the other results of this section) follows from standard probabilistic arguments. The
1-statement of Theorem 2.2 follows from our main result, Theorem 3.3.
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A multidimensional version of Szeméredi’s theorem was obtained by Furstenberg and
Katznelson [18]. Those authors showed that for every integer `, every finite subset F Ă N`

and every ε ą 0 there exists some integer n0 such that for n ě n0 every Y Ď rns` with
|Y | ě εn` contains a homothetic copy of F , i.e., there exist some y0 P N

` and λ ą 0 such
that y0 ` λF “ ty0 ` λf : f P F u Ď Y . Clearly, the case ` “ 1 and F “ rks resembles
Szemerédi’s theorem. Generalizing the notation introduced in (1), for sets X, F Ď N` and
for ε ą 0 we write X Ñε F , if every subset Y Ď X with |Y | ě ε|X| contains a homothetic
copy of F .

A simple heuristic, similar to the one in the context of Szeméredi’s theorem, suggests
that n´1{p|F |´1q is a lower bound on the threshold for the Furstenberg-Katznelson theorem
for a configuration F Ď N` in the binomial random subset rns`p where elements of rns` are
included with probability p. Our next result shows that, in fact, this gives the correct
asymptotic for the threshold.

Theorem 2.3. For every integer ` ě 1, every finite set F Ď N` with |F | ě 3, and
every constant ε P p0, 1q there exist C ą c ą 0 such that for any sequence of probabilities
q “ pqnqnPN we have

lim
nÑ8

P
`

rns`qn
Ñε F

˘

“

$

&

%

0, if qn ď cn´1{p|F |´1q for all n P N,

1, if qn ě Cn´1{p|F |´1q for all n P N.

2.2. Density regular matrices. Another extension of Szemerédi’s theorem leads to the
notion of density regular matrices. Arithmetic progressions of length k can be viewed as
the set of distinct-valued solutions of the following homogeneous system of k ´ 2 linear
equations

x1 ´ 2x2 ` x3 “ 0 ,
x2 ´ 2x3 ` x4 “ 0 ,
... ... ... ...

xk´2 ´ 2xk´1 ` xk “ 0 .

More generally, for an `ˆ k integer matrix A let SpAq Ď Rk be the set of solutions of the
homogeneous system of linear equations given by A. Let S0pAq Ď SpAq be those solutions
px1, . . . , xkq with all xi being distinct. We say A is irredundant if S0pAq ‰ ∅. Moreover,
an irredundant ` ˆ k integer matrix A is density regular, if for every ε ą 0 there exists
an n0 such that for all n ě n0 and every Y Ď rns with |Y | ě εn we have Y k X S0pAq ‰ ∅.
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Szemerédi’s theorem, for example, implies that the following pk ´ 2q ˆ k matrix
¨

˚

˚

˚

˚

˝

1 ´2 1 0 0 ¨ ¨ ¨ 0 0 0
0 1 ´2 1 0 ¨ ¨ ¨ 0 0 0

. . .
0 0 0 0 0 ¨ ¨ ¨ 1 ´2 1

˛

‹

‹

‹

‹

‚

(4)

is density regular for any k ě 3.
Density regular matrices are a subclass of so-called partition regular matrices. This

class was studied and characterized by Rado [34] and, for example, it follows from this
characterization that k ě ` ` 2 (see [22] for details). In [14] Frankl, Graham, and Rödl
characterized irredundant, density regular matrices, being those partition regular matrices A
for which p1, 1, . . . , 1q P SpAq.

Similar as in the context of Theorem 2.2 and Theorem 2.3 the following notation will be
useful. For an irredundant, density regular, `ˆ k integer matrix A, ε ą 0, and X Ď rns we
write X Ñε A if for every Y Ď X with |Y | ě ε|X| we have Y kXS0pAq ‰ ∅. The following
parameter in connection with Ramsey properties of random subsets of the integers with
respect to irredundant, partition regular matrices was introduced by Rödl and Ruciński [36].

Let A be an `ˆ k integer matrix and let the columns be indexed by rks. For a partition
W ŸW Ď rks of the columns of A, we denote by AW the matrix obtained from A by
restricting to the columns indexed by W . Let rankpAW q be the rank of AW , where
rankpAW q “ 0 for W “ ∅. We set

mpAq “ max
W ŸW“rks
|W |ě2

|W | ´ 1
|W | ´ 1` rankpAW q ´ rankpAq . (5)

It was shown in [36, Proposition 2.2 (ii )] that for irredundant, partition regular matrices A
the denominator of (5) is always at least 1. For example, for A given in (4) we have
mpAq “ k ´ 1.

It follows from the 0-statement of Theorem 1.1 in [36] that for any irredundant, density
regular, `ˆ k integer matrix A of rank ` and every 1{2 ą ε ą 0 there exist a c ą 0 such
that for every sequence of probabilities q “ pqnq with qn ď cn´1{mpAq we have

lim
nÑ8

P prnsqn Ñε Aq “ 0 . (6)

We shall deduce a corresponding upper bound from Theorem 3.3 and obtain the following
result.
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Theorem 2.4. For every irredundant, density regular, `ˆ k integer matrix A with rank `,
and every ε P p0, 1{2q there exist constants C ą c ą 0 such that for any sequence of
probabilities q “ pqnqnPN we have

lim
nÑ8

P prnsqn Ñε Aq “

$

&

%

0, if qn ď cn´1{mpAq for all n P N,

1, if qn ě Cn´1{mpAq for all n P N.

Note that we restrict ε ă 1{2 here. With this restriction the 0-statement will follow
from a result of Rödl and Ruciński from [36]. The proof of the 1-statement presented in
Section 4.2 actually works for all ε P p0, 1q.

2.3. An extremal problem related to Schur’s equation. In 1916 Schur [38] showed
that every partition of the positive integers into finitely many classes contains a class which
contains a solution of the single, homogeneous equation x1 ` x2 ´ x3 “ 0. Clearly, the
corresponding matrix

´

1 1 ´1
¯

is not density regular, since the set of all odd integers
contains no solution. However, it is not hard to show that every subset Y Ď rns with
|Y | ě p1{2` op1qqn contains such a solution. Similarly, as above for ε ą 0 and X Ď rns we
write

X Ñ1{2`ε

´

1 1 ´1
¯

if every subset Y Ď X with |Y | ě p1{2` εq|X| contains a distinct-valued solution, i.e.,

Y 3
X S0

´´

1 1 ´1
¯¯

‰ ∅ .

We are interested in the threshold for the extremal problem of Schur’s equation, i.e.,
for the property X Ñ1{2`ε

´

1 1 ´1
¯

. In this context the simple heuristic based on the
expected number of solutions of the Schur equation in random subsets of the integers
suggests that n´1{2 is the threshold for this property. Moreover, for Schur’s theorem in
random subsets of the integers the threshold turned out to be n´1{2 as shown in [16,21].
We show that the threshold of the extremal version of Schur’s equation is the same.

Theorem 2.5. For every ε P p0, 1{2q there exist constants C ą c ą 0 such that for any
sequence of probabilities q “ pqnqnPN we have

lim
nÑ8

P
´

rnsqn Ñ1{2`ε

´

1 1 ´1
¯¯

“

$

&

%

0, if qn ď cn´1{2 for all n P N,

1, if qn ě Cn´1{2 for all n P N.

2.4. Extremal problems for hypergraphs. The last result we present here deals with
extremal problems for hypergraphs. An `-uniform hypergraph H is a pair pV,Eq, where
the vertex set V is some finite set and the edge set E Ď

`

V
`

˘

is a subfamily of the `-
element subsets of V . As usual we call 2-uniform hypergraphs simply graphs. For some
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hypergraph H we denote by V pHq and EpHq its vertex set and its edge set and we denote
by vpHq and epHq the cardinalities of those sets. For an integer n we denote by Kp`q

n the
complete `-uniform hypergraph on n vertices, i.e., vpKp`q

n q “ n and epKp`q
n q “

`

n
`

˘

. An
`-uniform hypergraph H 1 is a sub-hypergraph of H, if V pH 1q Ď V pHq and EpH 1q Ď EpHq

and we write H 1 Ď H to denote that. For a subset U Ď V pHq we denote by EpUq the
edges of H contained in U and we set epUq “ |EpUq|. Moreover, we write HrU s for the
sub-hypergraph induced on U , i.e., HrU s “ pU,EpUqq.

For two `-uniform hypergraphs F and H we say H contains a copy of F , if there exists an
injective map ϕ : V pF q Ñ V pHq such that ϕpeq P EpHq for every e P EpF q. If H contains
no copy of F , then we say H is F -free. We denote by expH,F q the maximum number of
edges of an F -free sub-hypergraph of H, i.e.,

expH,F q “ maxtepH 1
q : H 1

Ď H and H 1 is F -freeu .

Mantel [33], Erdős [8], and Turán [41] were the first to study this function for graphs.
In particular, Turán determined expKn, Kkq for all integers n and k. This line of research
was continued by Erdős and Stone [12] and Erdős and Simonovits [10] and those authors
showed that for every graph F with chromatic number χpF q ě 3 we have

expKn, F q “

ˆ

1´ 1
χpF q ´ 1q ` op1q

˙ˆ

n

2

˙

, (7)

where χpF q is minimum number r such that there exists a partition V1 Ÿ . . . Ÿ Vr “ V pF q

such that EpViq “ ∅ for every i P rrs. Moreover, it follows from the result of Kövari, Sós,
and Turán [31] (see also [12]) that

expKn, F q “ opn2
q (8)

for graphs F with χpF q ď 2.
For an `-uniform hypergraph F we define the Turán density

πpF q “ lim
nÑ8

expKp`q
n , F q
`

n
`

˘ .

For a graph F the Turán density πpF q is determined due to (7) and (8). For hypergraphs (8)
was extended by Erdős [9] to `-partite, `-uniform hypergraphs. Here an `-uniform hy-
pergraph F is `-partite if its vertex set can be partitioned into ` classes, such that every
edge intersects every partition class in precisely one vertex. Erdős showed that πpF q “ 0
for every `-partite, `-uniform hypergraph F . For other `-uniform hypergraphs only a
few results are known and, for example, determining πpKp3q

4 q is one of the best known
open problems in the area. However, one can show that πpF q indeed exists for every
hypergraph F (see, e.g. [26]).
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We study the random variable expGp`qpn, qq, F q for fixed `-uniform hypergraphs F ,
where Gp`qpn, qq denotes the binomial random `-uniform sub-hypergraph of Kp`q

n with edges
of Kp`q

n included independently with probability q. It is easy to show that

expH,F q ě πpF qepHq

for all `-uniform hypergraphs H and F (see, e.g. [25, Proposition 8.4] for a proof for graphs).
We are interested in the threshold for the property that a.a.s.

expGp`qpn, qq, F q ď pπpF q ` op1qqepGp`qpn, qqq . (9)

Results of that sort appeared in the work of Babai, Simonovits, and Spencer [1] who
showed that (9) holds random graphs when F is a clique and q “ 1{2. Moreover, it follows
from an earlier result of Frankl and Rödl [15] that the same holds for F “ K3 as long as
q " n´1{2. The systematic study for graphs was initiated by Kohayakawa and his coauthors.
In particular, Kohayakawa, Łuczak, and Rödl formulated a conjecture for the threshold of
Turán properties for random graphs (see Conjecture 2.6 below).

For an `-uniform hypergraph F with epF q ě 1 we set

mpF q “ max
F 1ĎF
epF 1qě1

dpF 1q with dpF 1q “

$

&

%

epF 1q´1
vpF 1q´`

, if vpF 1q ą `

1{` , if vpF 1q “ ` .
(10)

It follows from the definition of mpF q, that if q “ Ωpn´1{mpF qq then a.a.s. the number of
copies of every sub-hypergraph F 1 Ď F in the random hypergraph Gp`qpn, qq has at least
the same order of magnitude, as the number of edges of Gp`qpn, qq. Recall that a similar
heuristic gave rise to the thresholds in the theorem above.

Conjecture 2.6 ([29, Conjecture 1 (i )]). For every graph F with at least one edge and
every ε ą 0 there exists C ą 0 such that for every sequence of probabilities q “ pqnqnPN

with qn ě Cn´1{mpF q we have

lim
nÑ8

P pexpGpn, qnq, F q ď pπpF q ` εqepGpn, qnqqq “ 1 .

Conjecture 2.6 was verified for a few special cases. As already mentioned for F “ K3

the conjecture follow from a result in [15]. For F being a clique with 4, 5, or 6 vertices the
conjecture was verified by Kohayakawa, Łuczak, and Rödl [29], Gerke, Schickinger, and
Steger [20] and Gerke [19]. Moreover, the conjecture is known to be true when F is a cycle
due to the work of Füredi [17] (for the cycle of length four) and Haxell, Kohayakawa, and
Łuczak [23, 24] (see also [27, 32]) and the conjecture is known to be true for trees. The
best current bounds on q for which (9) holds for F being a clique and for arbitrary F were
obtained by Szabó and Vu [39] and Kohayakawa, Rödl, and Schacht [30].
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We verify this conjecture for all graphs F and the natural analogue of this conjecture
for hypergraphs. (For `-partite, `-uniform hypergraphs such a conjecture was made
in [37, Conjecture 15].)

Theorem 2.7. For every `-uniform hypergraph F with at least one vertex contained in at
least two edges and every ε P p0, 1´ πpF qq there exist constants C ą c ą 0 such that for
any sequence of probabilities q “ pqnqnPN we have

lim
nÑ8

P
`

ex
`

Gp`qpn, qnq, F
˘

ď pπpF q ` εqe
`

Gp`qpn, qnq
˘˘

“

$

&

%

0, if qn ď cn´1{mpF q for all n P N,

1, if qn ě Cn´1{mpF q for all n P N.

In Section 4 we will deduce the 1-statements of Theorems 2.3, 2.4, 2.5, and 2.7 from
the main result, Theorem 3.3, which we present in the next section. The proofs of the
0-statements will be more elementary and will be also given in Section 4.

§3. Main technical result

The main result will be phrased in the language of hypergraphs. We will study sequences
of hypergraphs H “ pHn “ pVn, EnqqnPN. In the context of Theorem 2.2 one may think
of Vn “ rns and En being the arithmetic progressions of length k. In the context of
Theorems 2.3, 2.4, and 2.5 the corresponding hypergraphs the reader should have in mind
are defined in a very similar way. For Theorem 2.7 one should think of Vn “ EpKp`q

n q being
the edge set of the complete hypergraph Kp`q

n and edges of En correspond to copies of F
in Kp`q

n .
In order to transfer an extremal result from the classical, deterministic setting to the

probabilistic setting we will require that a stronger quantitative version of the extremal
result holds (see Definition 3.1 below). Roughly speaking, we will require that a sufficiently
dense sub-structure not only contains one copy of the special configuration (not only
one arithmetic progression or not only one copy of F ), but instead the number of those
configurations should be of the same order as the total number of those configurations in
the given underlying ground set.

Definition 3.1. Let H “ pHnqnPN be a sequence of k-uniform hypergraphs and α ě 0.
We say H is α-dense if the following is true.

For every ε ą 0 there exist ζ ą 0 and n0 such that for every n ě n0 and every U Ď V pHnq

with |U | ě pα ` εq|V pHnq| we have

|EpHnrU sq| ě ζ|EpHnq|.
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The second condition in Theorem 3.3 imposes a lower bound on the smallest probability
for which we can transfer the extremal result to the probabilistic setting (see Definition 3.2).
For a k-uniform hypergraph H “ pV,Eq, i P rk ´ 1s, v P V , and U Ď V we denote by
degipv, Uq the number of edges of H containing v and having at least i vertices in U r tvu.
More precisely,

degipv, Uq “ |te P E : |eX pU r tvuq| ě i and v P eu| . (11)

For q P p0, 1q we let µipH, qq denote the expected value of the sum over all such degrees
squared with U “ Vq being the binomial random subset of V

µipH, qq “ E

«

ÿ

vPV

deg2
i pv, Vqq

ff

.

Definition 3.2. Let K ě 1, let H “ pHnqnPN be a sequence of k-uniform hypergraphs,
and let p “ ppnqnPN P p0, 1qN be a sequence of probabilities. We say H is pK,pq-bounded
if the following is true.

For every i P rk ´ 1s there exists n0 such that for every n ě n0 and q ě pn we have

µipHn, qq ď Kq2i |EpHnq|
2

|V pHnq|
. (12)

With those definitions at hand, we can state the main result.

Theorem 3.3. Let H “ pHn “ pVn, EnqqnPN be a sequence of k-uniform hypergraphs, let
p “ ppnqnPN P p0, 1qN be a sequence of probabilities satisfying pkn|En| Ñ 8 as nÑ 8, and
let α ě 0 and K ě 1. If H is α-dense and pK,pq-bounded, then the following holds.

For every δ ą 0 and pωnqnPN with ωn Ñ 8 as nÑ 8 there exists C ě 1 such that for
every 1{ωn ą qn ě Cpn the following holds a.a.s. for Vn,qn. For every subset W Ď Vn,qn

with |W | ě pα ` δq|Vn,qn | we have EpHnrW sq ‰ ∅.

The proof of Theorem 3.3 is based on induction on k and for the induction we will
strengthen the statement (see Lemma 3.4 below).

For a k-uniform hypergraph H “ pV,Eq subsets W Ď U Ď V , and i P t0, 1, . . . , ku we
consider those edges of HrU s which have at least i vertices in W and we denote this family
by

Ei
UpW q “ te P EpHrU sq : |eXW | ě iu .

Note that

E0
UpW q “ EpHrU sq and Ek

UpW q “ EpHrW sq (13)

for every W Ď U .



EXTREMAL RESULTS FOR RANDOM DISCRETE STRUCTURES 11

Lemma 3.4. Let H “ pHn “ pVn, EnqqnPN be a sequence of k-uniform hypergraphs, let
p “ ppnqnPN P p0, 1qN be a sequence of probabilities satisfying pkn|En| Ñ 8 as nÑ 8, and
let α ě 0 and K ě 1. If H is α-dense and pK,pq-bounded, then the following holds.

For every i P rks, δ ą 0, and pωnqnPN with ωn Ñ 8 as nÑ 8 there exist ξ ą 0, b ą 0,
C ě 1, and n0 such that for all β, γ P p0, 1s with βγ ě α` δ, every n ě n0, every q with
1{ωn ě q ě Cpn the following holds.

If U Ď Vn with |U | ě β|Vn|, then the binomial random subset Uq satisfies with probability
at least

1´ 2´bq|Vn|

the following property: For every subset W Ď Uq with |W | ě γ|Uq| we have
ˇ

ˇEi
UpW q

ˇ

ˇ ě ξqi|En| .

Theorem 3.3 follows from Lemma 3.4 applied with i “ k, β “ 1, γ “ α` δ, and U “ Vn.

3.1. Probabilistic tools. We will use Chernoff’s inequality in the following form (see,
e.g., [25, Corollary 2.3]).

Theorem 3.5 (Chernoff’s inequality). Let X Ď Y be finite sets and p P p0, 1s. For every
0 ă % ď 3{2 we have

P
`
ˇ

ˇ|X X Yp| ´ p|X|
ˇ

ˇ ě %p|X|
˘

ď 2 expp´%2p|X|{3q . �

We also use an approximate concentration result for pK,pq-bounded hypergraphs. The
pK,pq-boundedness only bounds the expected value of the quantity

ř

v deg2
i pv, Vpq. In the

proof of Lemma 3.4 we need an exponential upper tail bound and, unfortunately, it is
known that such bounds usually not exist. However, it was shown by Rödl and Ruciński
in [35] that at the cost of deleting a few elements such bound can be obtained. We will
again apply this idea in the proof of Lemma 3.4.

Proposition 3.6 (Upper tail [35, Lemma 4]). Let H “ pHn “ pVn, EnqqnPN be a sequence
of k-uniform hypergraphs, let p “ ppnqnPN P p0, 1qN be a sequence of probabilities, and let
K ě 1. If H is pK,pq-bounded, then the following holds.

For every i P rk´ 1s and every η ą 0 there exist b ą 0 and n0 such that for every n ě n0

and every q ě pn the binomial random subset Vn,q has the following property with probability
at least 1´ 2´bq|Vn|`1`log2 k. There exists a set X Ď Vn,q with |X| ď ηq|Vn| such that

ÿ

vPVn

deg2
i pv, Vn,q rXq ď 4kk2Kq2i |En|

2

|Vn|
.

The proof follows the lines of [35, Lemma 4] and we include it for completeness.
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Proof. Suppose H is pK,pq-bounded and i P rk ´ 1s and η ą 0 are given. We set

b “
η

4pk ´ 1q2

and n0 be sufficiently large, so that (12) holds for every n ě n0 and q ě pn.
For every j “ i, . . . , 2pk ´ 1q we consider the family Sj defined as follows

Sj “

!

pS, v, e, e1q : S Ď Vn, v P Vn, e, e
1
P En such that |S| “ j,

v P eX e1, S Ď peY e1qr tvu, |eX S| ě i and |e1 X S| ě i
)

.

Let Sj be the random variable denoting the number of elements pS, v, e, e1q from Sj

with S P
`

Vn,q

j

˘

. By definition we have
ř2k´2
j“i E rSjs ď 4k´1µipHn, qq and due to the

pK,pq-boundedness of H we have

max
j“i,...,2pk´1q

E rSjs ď
2k´2
ÿ

j“i

E rSjs ď 4k´1µipHn, qq ď 4k´1Kq2i |En|
2

|Vn|
.

Let Zj be the random variable denoting the number of sequences

ppSr, vr, er, e
1
rqqrPrzs P S z

j

of length

z “

R

ηq|Vn|

4pk ´ 1q2

V

ď

R

ηq|Vn|

2pk ´ 1qj

V

which satisfy

(i ) the sets Sr are contained in Vn,q and
(ii ) the sets Sr are mutually disjoint, i.e., Sr1 X Sr2 “ ∅ for all 1 ď r1 ă r2 ď z.

Clearly, we have

E rZjs ď |Sj|
zqjz “ pE rSjsqz ď

ˆ

4k´1Kq2i |En|
2

|Vn|

˙z

.

On the other hand, if

ÿ

vPVn

deg2
i pv, Vn,q rXq ě 4kk2Kq2i |En|

2

|Vn|
ě

2k´2
ÿ

j“i

j ¨ 2 ¨ 4k´1Kq2i |En|
2

|Vn|

for any X Ď Vn,q with |X| ď ηq|Vn|, then there exists some j0 P ti, . . . , 2k ´ 2u such that

Zj0 ě

ˆ

2 ¨ 4k´1Kq2i |En|
2

|Vn|

˙z

.
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Markov’s inequality bounds the probability of this event by

P

ˆ

Dj0 P ti, . . . , 2k ´ 2u : Zj0 ě 2z
ˆ

4k´1Kq2i |En|
2

|Vn|

˙z˙

ď

2k´2
ÿ

j“i

P

ˆ

Zj ě 2z
ˆ

4k´1Kq2i |En|
2

|Vn|

˙z˙

ď 2k ¨ 2´z ď 2´bq|Vn|`1`log2 k ,

which concludes the proof of Proposition 3.6. �

3.2. Proof of Lemma 3.4. Let H “ pHn “ pVn, EnqqnPN be a sequence of k-uniform
hypergraphs, let p “ ppnqnPN P p0, 1qN be a sequence of probabilities, and let α ě 0 and
K ě 1 such that H is α-dense and pK,pq-bounded. We prove Lemma 3.4 by induction
on i.

Induction start (i “ 1). For δ ą 0 and pωnqnPN (which plays no role for the induction
start) we appeal to the α-denseness of H and let ζ and n1 be the constants given by this
property for ε “ δ{8. We set

ξ “
δζ

8k , b “
δ3

193 , C “ 1 , and n0 “ n1 .

Let β, γ P p0, 1s satisfy βγ ě α` δ, let n ě n0 be sufficiently large, q ě pn, and let U Ď Vn

with |U | ě β|Vn| be given. We consider the set Y Ď U defined by

Y “

"

u P U : |te P EpHnrU sq : u P eu| ď
ζ|En|

2|Vn|

*

.

In other words, Y is the set of vertices in U with low degree in HnrU s. Due to the
α-denseness of H we have

|Y | ď

ˆ

α `
δ

8

˙

|Vn| .

It follows from Chernoff’s inequality that with probability at least

1´ 2 expp´δ2q|U |{48q ´ 2 expp´δ2q|Vn|{192q ě 1´ 2´bq|Vn|

we have
|Uq| ě

ˆ

1´ δ

4

˙

q|U | and |Uq X Y | ď

ˆ

α `
δ

4

˙

q|Vn| .

Consequently, for every W Ď Uq satisfying |W | ě γ|Uq| we have

|W | ě γ|Uq| ě

ˆ

1´ δ

4

˙

γq|U | ě

ˆ

1´ δ

4

˙

βγq|Vn|

ě

ˆ

1´ δ

4

˙

pα ` δq q|Vn| ě

ˆ

α `
δ

2

˙

q|Vn| ě |Uq X Y | `
δ

4q|Vn|

and the definition of Y yields
ˇ

ˇE1
UpW q

ˇ

ˇ ě |W r Y | ¨
1
k

ζ|En|

2|Vn|
ě
δ

4q|Vn| ¨
1
k

ζ|En|

2|Vn|
“ ξq|En| .
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This concludes the proof of the induction start.

Induction step (i ÝÑ i ` 1). Let i ě 1, δ ą 0, and pωnqnPN with ωn Ñ 8 as n Ñ 8

be given. We will expose the random set Uq in several rounds. The number of “main”
rounds R will depend on the constant ξpi, δ{8q, which is given by the induction assumption.
More precisely, let

ξ1 “ ξpi, δ{8q , b1 “ bpi, δ{8q , C 1 “ Cpi, δ{8q , and n1 “ n0pi, δ{8q

be given by the induction assumption applied with δ1 “ δ{8. We set

R “

R

4k`2k2K

δpξ1q2
` 1

V

. (14)

Overview. Roughly, speaking our argument is as follows. We will expose Uq in R main
rounds of the same weight, i.e., we will chose qR in such a way that p1´ qq “ p1´ qRq

R

and we let Uq “ U1
qR
Y ¨ ¨ ¨ Y UR

qR
. Since, every subset W , which we have to consider,

contains at least γ ě α ` δ proportion of the elements of Uq there must be at least δR{4
rounds such that |U s

qR
XW | ě pα ` δ{2q|UqR

|. For those rounds we will appeal to the
induction assumption, which combined with Proposition 3.6, implies that U contains at least
Ωppξ1q2|Vn|q elements u P U with the property that every such u completes “many” elements
in Ei

UpW X U s
qR
q to elements in Ei`1

U pW X U s
qR
q. Moreover, in each of these “substantial”

rounds pξ1q2|Vn|{p4k`1k2Kq new “rich” elements u will be created. Consequently, after
at most δR{4 ´ 1 of these substantial rounds all but, say, at most pα ` δ{8q|Vn| ă γ|Vn|

elements of U are rich and in the final substantial round W X UqR
must contain many rich

u P Uand therefore create many elements from Ei`1
U pW q.

However, the error probabilities in the later rounds will have to beat the number of
choices for the elements of W in the earlier rounds. For that we will split the earlier main
rounds into several subrounds. This does not affect the argument indicated above, since
our bound on the number of “rich” elements will be independent of qR. We now continue
with the details of this proof.

Constants. Set

η “
δ2

16 (15)

and let b̂ and n̂ be given by Proposition 3.6 applied with i and η. We set

b˚ “ min
#

δ4

106 ,
b1

3 ,
b̂

3

+

and B “

R

1` 1.012

b˚

V

. (16)
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Finally, let

ξ “
ξ1δ2

18kpRBR´1qi`1 , (17)

b “ min
"

δ3

60001RBR´1 ,
b˚

2RBR´1

*

, (18)

C “ RBR´1C 1 , (19)

and let n0 ě maxtn1, n̂u be sufficiently large.
Suppose β and γ P p0, 1s satisfy

βγ ě α ` δ .

Let n ě n0 and let q satisfy 1{ωn ě q ě Cpn. Moreover, let U Ď Vn be such that
|U | ě β|Vn|. Note that

mintβ, γu ě α ` δ ě δ ą 0 and |U | ě pα ` δq|Vn| .

For a simpler notation from now on we suppress the subscript n in pn, Hn, Vn and En.

Details of the induction step. As discussed above we generate the random set Uq in
several rounds. We will have R main rounds and for that we choose qR such that

1´ q “ p1´ qRqR .

For s P rRs we will further split the sth main round into BR´s subrounds. For s P rRs we
set

rs “ BR´s

and let qs satisfy

p1´ qRq “ p1´ qsqrs .

Note that for sufficiently large n, due to qn ď 1{ωn and ωn Ñ 8 we have
ˆ

1` δ

100

˙

q

R
ě qR ě

q

R
and

ˆ

1` δ

100

˙

qR
BR´s

ě qs ě
qR
BR´s

, (20)

and due to the choice of B we have
s´1
ÿ

t“1
qt ď 1.01 qR

BR

s´1
ÿ

t“1
Bt

(16)
ď

b˚

1.01
qR
BR

Bs
ď

b˚

1.01qs . (21)

We proceed as follows we first consider r1 rounds with probability q1, which all together
establish the first main round and we denote the random subsets obtained by

U1
qR
“ U1,1

q1 Y ¨ ¨ ¨ Y U
1,r1
q1 .
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This is followed by r2 rounds with probability q2 establishing the second main round. This
way we have

Uq “ U1
qR
Y ¨ ¨ ¨ Y UR

qR

and for all s P rRs
U s
qR
“ U s,1

qs
Y ¨ ¨ ¨ Y U s,rs

qs
.

Furthermore, let W Ď Uq with |W | ě γ|Uq| and let

W s
“ W X U s

qR
and W s,j

“ W X U s,j
qs

for all s P rRs and j P rrss.
In our analysis we focus on “substantial” rounds. For that let S Ď rRs be the set defined

by s P S if and only if

|W s
| ě

ˆ

γ ´
δ

2

˙

|U s
qR
| .

By definition of S, for every s P S exists some js P rrss such that

|W s,js | ě

ˆ

γ ´
δ

2

˙

|U s,js
qs
|

and for the rest of the proof we fix such an js for every s P S. The following claim is a
direct consequence of Chernoff’s inequality.

Claim 1. Let A denote the event that |S| ě δR{4. Then P pAq ě 1´ 2´2bq|V |.

Proof. Due to Chernoff’s inequality we have

|U s,j
qs
| “ p1˘ 0.01δqqs|U | . (22)

for all s P rRs and every j P rrss with probability at least

1´ 2
R
ÿ

s“1
rs expp´δ2qs|U |{30000q ě 1´ 2´2bq|V | ,

where we used q1 ď qs, (20), the choice of b in (18) and the fact that n is sufficiently large
for the last inequality. Since |W | ě γ|Uq| we have

|S| ě
|W | ´R ¨ p1` δ{100qpγ ´ δ{2qqR|U |

p1` δ{100qqR|U |
ě
p1´ δ{100qγq
p1` δ{100qqR

´

ˆ

γ ´
δ

2

˙

R
(20)
ě

δ

4R

with probability at least 1´ 2´2bq|V |. �

For the rest of the proof we analyze the rounds indexed by ps, jsq for s P S. For s P S
we set

W psq “
ď

tPS
tďs

W t,jt and Upsq “
ď

tPS
tďs

U t,jt
qt

.
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Note that W ptq “ Uptq “ ∅ for all t ă minsPS s. Roughly speaking, we will show for every
s P S that either Ei`1

U pW psqq is sufficiently large or Ωp|V |q new “rich” elements in U will be
created. More precisely, for s P S we consider the following subset Zs Ď U of rich elements

Zs :“
"

u P U : degipu,W s,js , Uq ě
ξ1

2 q
i
s

|E|

|V |

*

,

where

degipu,W s,js , Uq :“
ˇ

ˇ

 

e P E : |e X pW s,js r tuuq| ě i, u P e, and e Ď U
(ˇ

ˇ . (23)

Note that degipu,W s,js , V q “ degipu,W s,jsq and, hence, for every set U Ď V and every
u P V we have

degipu,W s,js , Uq ď degipu,W s,jsq . (24)

Similarly, as above we set
Zpsq “

ď

tPS
tďs

Zs

Claim 2. For every s P S and any choice of W ps´ 1q Ď Ups´ 1q let BW ps´1q denote the
event that U s,js

qs
satisfies the following properties:

(i ) |U s,js
qs
| ď 1.01qs|U | and

(ii ) for every W s,js with |W s,js | ě pγ ´ δ{2q|U s,js
qs
| either

|Ei`1
U pW psqq| ě ξqi`1

|E| (25)

or
|Zpsqr Zps´ 1q| ě pξ1q2

4k`1k2K
|V | . (26)

Then
P
`

BW ps´1q | Ups´ 1q
˘

ě 1´ 2´2b˚qs|V | ,

where P
`

BW ps0´1q | Ups0 ´ 1q
˘

“ P
`

BW ps0´1q
˘

for s0 “ minsPS s.

Before we verify Claim 2 we deduce Lemma 3.4 from it. Let C denote the event that the
conclusion of Lemma 3.4 holds. If event A holds and BW ps´1q holds for every s P S, then C
must hold, since (26) in Claim 2 can occur at most

4k`1k2K

pξ1q2
(14)
ă

δ

4R ď |S|

times and, therefore, (25) in Claim 2 must occur. Below we will verify that this happens
with a sufficiently large probability. Setting P pUps0 ´ 1qq “ 1 for s0 “ minsPS s, we have

P p Cq ď P p Aq `
ÿ

SĎrRs

ÿ

sPS

ÿ

Ups´1q

ÿ

W ps´1q
P
`

 BW ps´1q | Ups´ 1q
˘

P pUps´ 1qq ,
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where the first sum runs over all subsets S Ď rRs with |S| ě δR{4, the third sum runs over
all choices of Ups´ 1q “

Ť

tPS,tăs U
t,jt
qt

with |U t,jt
qt
| ď 1.01qt|U |, and the inner sum runs over

all 21.01|V |
ř

tPS,tăs qt choices of W ps´ 1q Ď Ups´ 1q. Therefore, Claims 1 and 2 yield

P p Cq ď 2´2bq|V |
` 2R

R
ÿ

s“1
21.01|V |

řs´1
t“1 qt ¨ 2´2b˚qs|V |

(21)
ď 2´2bq|V |

` 2RR2´b˚q1|V |
(20)
ď 2´2bq|V |

` 2RR2´b˚q|V |{pRBR´1q
(18)
ď 2´bq|V | ,

where the last inequality holds for sufficiently large n. This concludes the proof of Lemma 3.4
and it is left to verify Claim 2. �

Proof of Claim 2. Let s P S, W ps ´ 1q Ď Ups ´ 1q be given. Note that this also defines
Zps ´ 1q. We first observe that property (i ) of Claim 2 holds with high probability. In
fact, due to Chernoff’s inequality, with probability at least

1´ 2 expp´δ2qs|U |{30000q
(16)
ě 1´ 2´3b˚qs|V |

we even have

|U s,js
qs
| “ p1˘ 0.01δqqs|U | (27)

and below we assume that (27) holds. We distinguish two cases for property (ii ).

Case 1 (|U r Zps´ 1q| ă pγ ´ 3δ{4q|U |). Due to Chernoff’s inequality with probability
at least

1´ 2 expp´δ2
pα ` δ{4qqs|U |{192q

(16)
ě 1´ 2´3b˚qs|V |

we have

|U s,js
qs

r Zps´ 1q| ď
`

γ ´ 5
8δ
˘

|U s,js
qs
| .

Since s P S it follows that

|W s,js X Zps´ 1q| ě δ

8 |U
s,js
qs
|

(27)
ě 0.99δ8qs|U | ě

δβ

9 qs|V | ě
δ2

9 qs|V | .

Hence the definition of Zps´ 1q Ď
Ť

tPS,tăs Z
s and q1 ď qt for all t P S yields

|Ei`1
U pW psqq| ě

δ2

9 qs|V | ¨
1
k

ξ1

2 q
i
1
|E|

|V |

ě
ξ1δ2

18k q
i`1
1 |E|

(20)
ě

ξ1δ2

18kpRBR´1qi`1 q
i`1
|E|

(17)
ě ξqi`1

|E| .

In other words, for this case we showed that alternative (25) happens with probability at
least 1´ 2 ¨ 2´3b˚qs|V | ě 1´ 2´2b˚qs|V |.
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Case 2 (|U r Zps´ 1q| ě pγ ´ 3δ{4q|U |). In this case we consider

U 1 “ U r Zps´ 1q .

We set
β1 “

|U 1|

|V |
and γ1 “

ˆ

γ ´
7δ
8

˙

|U |

|U 1|
.

Clearly, β1 P p0, 1s,

0 ă γ1 ď
γ ´ 7δ{8
γ ´ 3δ{4 ď 1 ,

and
β1γ1 “

ˆ

γ ´
7δ
8

˙

|U |

|V |
ě

ˆ

γ ´
7δ
8

˙

β ě γβ ´
7δ
8 ě α `

δ

8 .

Hence, we can apply the induction assumption to U 1. More precisely, the induction
assumption asserts that with probability at least

1´ 2b1qs|V |

every subset Ŵ 1 Ď U 1qs
with Ŵ 1 ě γ1|U 1qs

| satisfies
ˇ

ˇ

ˇ
Ei
U 1pŴ

1
q

ˇ

ˇ

ˇ
ě ξ1qis|E| . (28)

Note that, in fact,

qs
(20)
ě

q

RBR´1 ě
Cp

RBR´1

(19)
ě C 1p .

We split the random subset U s,js
qs

“ U 1qs
Ÿ U2qs

, where

U 1qs
“ U s,js

qs
r Zps´ 1q and U2qs

“ U s,js
qs

r U 1qs
.

Similarly, we split W s,js “ W 1 ŸW 2 where W 1 “ W s,js X U 1qs
and W 2 “ W s,js X U2qs

.
It follows again from Chernoff’s inequality that

|U 1qs
| “

ˆ

1˘ δ

16

˙

qs|U
1
| (29)

holds with probability at least

1´ 2 expp´δ2qs|U
1
|{768q

(16)
ě 1´ 2´3b˚qs|V | .

We distinguish two sub-cases depending on the size of W 2.

Case 2.1 (|W 2| ą δ|U s,js
qs
|{8). In this case, it follows from the W 2 Ď Zps´ 1q

|Ei`1
U pW psqq| ě |W 2

| ¨
1
k

ξ1

2 q
i
1
|E|

|V |
ě
δ

8 |U
s,js
qs
| ¨
ξ1

2kq
i
1
|E|

|V |

(27)
ě
δ

9qs|U | ¨
ξ1

2kq
i
1
|E|

|V |
ě
δβ

9 qs ¨
ξ1

2kq
i
1|E| ě

δ2ξ1

18k q
i`1
1 |E|

(17)
ě ξqi`1

|E| .
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In other words, for this case we showed that alternative (25) happens with probability at
least 1´ 2 ¨ 2´3b˚qs|V | ě 1´ 2´2b˚qs|V |.

Case 2.2 (|W 2| ď δ|U s,js
qs
|{8). In this case we appeal to the pK,pq-boundedness of H . It

follows from Proposition 3.6 and the choice of η in (15) that with probability at least

1´ 2´b̂qs|V |`1`log2 k

there exists a set X Ď U 1qs
such that

|X| ď ηqs|V |
(15)
ď

δ2

16qs|V | ď
δ

16pα ` δqqs|V | ď
δ

16βqs|V | ď
δ

16qs|U |
(27)
ď

δ

8 |U
s,js
qs
| (30)

and
ÿ

uPU 1

deg2
i pu,W

1 rX,U 1q
(24)
ď

ÿ

uPU 1

deg2
i pu,W

1 rXq

ď
ÿ

uPU 1

deg2
i pu, U

1
qs
rXq ď 4kk2Kq2i

s

|E|2

|V |
. (31)

Consider the set
Ŵ 1

“ W 1 rX .

Since s P S, it follows from (30) and the assumption of this case that

|Ŵ 1
| ě |W s,js | ´ |W 2

| ´ |X| ě

ˆ

γ ´
δ

2

˙

|U s,js
qs
| ´ 2δ8 |U

s,js
qs
| ě

ˆ

γ ´
3δ
4

˙

|U s,js
qs
| .

Furthermore assertions (27) and (29) yield

|Ŵ 1|

|U 1qs
|
ě

ˆ

γ ´
3δ
4

˙

|U s,js
qs
|

|U 1qs
|
ě
pγ ´ 3δ{4qp1´ δ{100q

1` δ{16
|U |

|U 1|
ě

ˆ

γ ´
7δ
8

˙

|U |

|U 1|
“ γ1

In other words, Ŵ 1 satisfies |Ŵ 1| ě γ1|U 1qs
| and from the induction assumption we infer

that (28) holds with probability at least 1´ 2´b1qs|V | and then
ÿ

uPU 1

degipu, Ŵ 1, U 1q ě |Ei
U 1pŴ

1
q| ě ξ1qis|E| . (32)

For
Ẑ “

"

u P U 1 : degipu, Ŵ 1, U 1q ě
ξ1

2 q
i
s

|E|

|V |

*

it follows from the Cauchy-Schwarz inequality

4kk2Kq2i
s

|E|2

|V |

(31)
ě

ÿ

uPU 1

deg2
i pu, Ŵ

1, U 1q ě
ÿ

uPẐ

deg2
i pu, Ŵ

1, U 1q

ě
1
|Ẑ|

˜

ÿ

uPẐ

degipu, Ŵ 1, U 1q

¸2
(32)
ě

1
|Ẑ|

ˆ

ξ1qis|E|

2

˙2

.
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Consequently,

|Ẑ| ě
pξ1q2

4k`1k2K
|V | .

Since Ẑ Ď U 1 “ U r Zps ´ 1q we have Ẑ is disjoint from Zps ´ 1q. Furthermore, by
definition of Ẑ we have Ẑ Ď Zs. Therefore, (26) of Claim 2 holds with probability at least

1´ 2 ¨ 2´3b˚qs|V | ´ 2´b̂qs|V |`1`log2 k ´ 2´b1qs|V |
(16)
ě 1´ 2´2b˚qs|V | ,

which concludes the proof of Claim 2. �

§4. Proof of the new results

In this section we prove Theorems 2.2, 2.3, 2.4, 2.5, and 2.7. While the involved 0-
statements will follow from standard probabilistic arguments, the 1-statement of those
results will follow from Theorem 3.3.

4.1. Proof of Theorems 2.2 and 2.3. Clearly Theorem 2.2 follows from Theorem 2.3
applied with ` “ 1 and F “ rks and it suffices to verify Theorem 2.3.

The 0-statement of Theorem 2.3. We start with the 0-statement of the theorem. Let
F Ď N` be a finite subset with |F | ě 3 and ε ą 0 be given and set

c “

ˆ

1´ 2ε
2

˙1{p|F |´1q

.

We distinguish different cases depending on the sequence q “ pqnq.

Case 1 (qn ! n´p``1q{|F |). In this case the expected number of homothetic copies of F
in rns`qn

tends to 0. Hence, we infer from Markov’s inequality that a.a.s. rns`qn
contains no

homothetic copy of F , which yields the claim in that range.

Case 2 (n´` ! qn ! n´1{p|F |´1q). In this range the expected number of homothetic
copies of F in rns`qn

is asymptotically smaller than the expected number of elements in
rns`qn

. Moreover, it follows from Chernoff’s inequality that a.a.s. |rns`qn
| is very close to its

expectation. Consequently, it follows from Markov’s inequality that a.a.s. the number of
homothetic copies of F in rns`qn

is op|rns`qn
|q. Therefore, by removing one element from

every homothetic copy of F in |rns`qn
| a.a.s. we obtain a subset Y of size |Y | ě ε|rns`qn

|,
which contains no homothetic copy of F at all, which yields the 0-statement in this case.

Note that due to |F | ě 3 the ranges considered in Cases 1 and 2 overlap. Similarly, the
range considered in the case below overlaps with the one from Case 2.

Case 3 (n´p``1q{|F | ! qn ď cn´1{p|F |´1q). Again appealing to Chernoff’s inequality applied
to the size of rns`qn

we infer that it suffices to show that a.a.s. the number of homothetic
copies of F in rns`qn

is at most p1´ 2εqqnn`.
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Let ZF be the random variable denoting the number of homothetic copies of F . Clearly,
E rZF s ď q|F |n n``1 and standard calculations show that the variance of ZF satisfies

Var rZF s “ O
`

q2|F |´1
n n``2

` q|F |n n``1˘ .

Consequently, Chebyshev’s inequality yields

P
`

ZF ě 2q|F |n n``1˘
ď

Var rZF s
q

2|F |
n n2``2

“ O

ˆ

1
qnn`

`
1

q
|F |
n n``1

˙

“ op1q ,

due to the range of qn we consider in this case. Hence, the claim follows from the choice of
c, which yields

2q|F |n n``1
ď p1´ 2εqqnn` . �

The 1-statement of Theorem 2.3. We now turn to the 1-statement of Theorem 2.3. We
first note that if qn “ Ωp1q, then the theorem follows directly from Chernoff’s inequality
combined with the original result of Furstenberg and Katznelson. Hence we can assume
w.l.o.g. qn “ op1q.

Let F Ď N` with k “ |F | ě 3 and ε P p0, 1q. We shall apply Theorem 3.3. For that
we consider the following sequence of k-uniform hypergraphs H “ pHn “ pVn, EnqqnPN.
Let Vn “ rns` and let every homothetic copy of F form an edge in En. In particular,
|En| “ Θpn``1q. We set pn “ n´1{pk´1q, p “ ppnqnPN and α “ 0. Clearly, for those
definitions the conclusion of Theorem 3.3 yields the 1-statement of Theorem 2.3. In order
to apply Theorem 3.3 we have to verify the following three conditions

(a ) pkn|En| Ñ 8 as nÑ 8,
(b ) H is α-dense, and
(c ) H is pK,pq-bounded for some K ě 1.

By definition of pn and Hn we have

pkn|En| “ Ω
`

n´k{pk´1qn``1˘
“ Ω

`

n`´1{pk´1q˘ ,

which yields (a ), as ` ě 1 and k ě 3.
Condition (b ) holds, due to work of Furstenberg and Katznelson [18]. In fact, it follows

from the result in [18], that for every configuration F Ď N` and every ε ą 0 there exist
ζ ą 0 and n0 such that for every n ě n0 every subset U Ď rns` with |U | ě εn` contains at
least ζn``1 homothetic copies of F . In other words, H is 0-dense.

Hence, it is only left to verify condition (c ). We have to show that for every i P rk ´ 1s
and q ě pn “ n´1{pk´1q we have

µipHn, qq “ E

«

ÿ

vPVn

deg2
i pv, Vqq

ff

“ O
`

q2in``2˘
“ O

ˆ

q2i |En|
2

|Vn|

˙

. (33)
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It follows from the definition of degi in (11) that µipHn, qq is the expected number of
pairs pF1, F2q of homothetic copies of F which share at least one point v and at least i
points different from v of each copy are contained in rns`q. The expected number of such
pairs pF1, F2q which share exactly one point can be bounded by O

`

q2in``2˘. Since for
every fixed homothetic copy F1 there exist only constantly many (independent of n) other
copies F2, which share two points with F1, the expected number of such pairs pF1, F2q with
|F1 X F2| ě 2 is bounded by

O
`

qin``1˘
“ O

`

q2in``2˘ ,

since q ě Cpn ě Cn´1{pk´1q ě Cn´1{i. Consequently, (33) holds, which concludes the proof
of Theorem 2.3. �

4.2. Proof of Theorem 2.4. The proof of the 0-statement follows directly from the
0-statement of Theorem 1.1 in [36]. Those authors showed that for every irredundant,
density regular ` ˆ k matrix with rank ` there exists a constant c ą 0 such that for
qn ď cn´mpAq a.a.s. rnsqn can be partitioned into two classes such that none of them
contains a distinct-valued solution of the homogeneous system given by A. Clearly, this
implies the 0-statement of Theorems 2.4 for every ε P p0, 1{2q.

The 1-statement of Theorem 2.4. First we note that if qn “ Ωp1q, then the statement
follows directly from Chernoff’s inequality combined with the definition of irredundant,
density regular matrix.

Let A be an irredundant, density regular `ˆk integer matrix of rank ` and ε ą 0 For the
application of Theorem 3.3 we consider the following sequence of k-uniform hypergraphs
H “ pHn “ pVn, EnqqnPN. Let Vn “ rns and for every distinct-valued solution px1, . . . , xkq

let tx1, . . . , xku be an edge of En. Moreover we set pn “ n´1{mpAq, p “ ppnqnPN and α “ 0.
The 1-statement of Theorem 2.4 then follows from the conclusion of Theorem 3.3 and
we have to verify the same three conditions (a )-(c ) as in the proof of the 1-statement of
Theorem 2.3.

It was shown in [36, Proposition 2.2 (ii )] that mpAq ě k ´ 1 and due to Rado’s
characterization of partition regular matrices (which contains the class of all density regular
matrices) we have k ´ ` ě 2, which yields |En| “ Ωpn2q. Therefore, we have

pk|En| “ Ωpn´k{pk´1q
¨ n2
q “ Ω

`

n
k´2
k´1

˘

and, hence, condition (a ) is satisfied.
Moreover, based on the Furstenberg-Katznelson theorem from [18] it was shown by

Frankl, Graham, and Rödl in [14, Theorem 2], that the sequence of hypergraphs H defined
above is 0-dense, i.e., condition (b ) is fulfilled.
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Consequently, it suffices to verify that H is pK,pq-bounded for some K ě 1. For
i P rk ´ 1s and q ě pn “ n´1{mpAq we have to show that

µipHn, qq “ O

ˆ

q2i |En|
2

n

˙

.

Recalling the definitions of µipHn, qq and Hn “ prns, Enq we have

µipHn, qq “ E

«

ÿ

xPrns

deg2
i px, Vn,qq

ff

“
ÿ

xPrns

E
“

deg2
i px, Vn,qq

‰

. (34)

Note that E
“

deg2
i px, Vn,qq

‰

is the expected number of pairs pX, Y q P rnsk ˆ rnsk such that
(i ) x P X X Y ,
(ii ) X “ tx1, . . . , xku and Y “ ty1, . . . , yku are solutions of LpAq, where

Ax “ Ay “ 0

for x “ px1, . . . , xkq
t and y “ py1, . . . , ykq

t, and
(iii ) |X X prnsq r txuq| ě i and |Y X prnsq r txuq| ě i.

For fixed x and pX, Y q let w ě 1 be the largest integer such that there exist indices
i1, . . . , iw and j1, . . . , jw for which

xi1 “ yj1 , . . . , xiw “ yjw . (35)

Consequently,
x P txi1 , . . . , xiwu “ tyj1 , . . . , yjwu (36)

Set W1 “ ti1, . . . , iwu and W2 “ tj1, . . . , jwu.
For fixed sets W1, W2 Ď rks we are going to describe all p2k ´ wq-tuples X Y Y

satisfying (ii ) and (35). To this end consider the 2` ˆ p2k ´ wq matrix B, which arises
from two copies A1 and A2 of A with permuted columns. We set A1 “ pAW 1

| AW1q and
A2 “ pAW2 | AW 2

q where for every α “ 1, . . . , w the column of AW1 which is indexed by iα
aligns with that column of AW2 which is indexed by jα. Then let

B “

¨

˝

AW 1
AW1 0

0 AW2 AW 2

˛

‚ .

Without loss of generality we may assume that rankpAW 1
q ě rankpAW 2

q and, therefore,

rankpBq ě rankpAq ` rankpAW 1
q .

Clearly, the number of p2k ´ wq-tuples X Y Y satisfying (ii ) and (35) equals the number
of solutions of the homogeneous system given by B, which is Opn2k´w´rankpBqq. Since A
is an irredundant, partition regular matrix, it follows from [36, Proposition 2.2 (i )]
that rankpA1q “ rankpAq for every matrix A1 obtained from A by removing one column.
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Consequently, any matrix B1 obtained from B by removing one of the middle columns (i.e.,
one of the w columns of B which consist of a column of AW1 and a column of AW2) satisfies

rankpB1q ě rankpAq ` rankpAW 1
q “ `` rankpAW 1

q .

Therefore, it follows from (36) that the number of such p2k ´ wq-tuples that also satisfy
condition (i ) for some fixed x P rns is at most

Opn
2k´w´1´`´rankpA

W 1
q
q . (37)

Finally, we estimate the probability that a p2k ´ wq-tuple X Y Y satisfying (i ), (ii ),
and (35) also satisfies (iii ). Since |X X Y X prnsq r txuq| “ j ď w ´ 1 and q ď 1 this
probability is bounded by

w´1
ÿ

j“0
q2i´j

“ Opq2i´w`1
q .

In view of (37) we obtain
ÿ

xPrns

E
“

deg2
i px, Vn,qq

‰

“
ÿ

xPrns

k
ÿ

w“1

ÿ

W1,W2Ďrks
|W1|“|W2|“w

Opn
2k´w´1´`´rankpA

W 1
q
q2i´w`1

q . (38)

Note that if w “ 1, then again due to [36, Proposition 2.2 (i )] we have rankpAW 1
q “ ` and,

therefore, the contribution of those terms satisfies
ÿ

xPrns

ÿ

W1,W2Ďrks
|W1|“|W2|“1

Opn2k´2`´2q2i
q “ Opn2k´2`´1q2i

q “ O

ˆ

q2i |En|
2

n

˙

. (39)

For w ě 2 and W1 Ď rks with |W1| “ w we obtain from the definition of mpAq and
q ě n´1{mpAq that

qw´1
ě n

´w`1´rankpA
W 1
q``

.

Consequently,

ÿ

xPrns

k
ÿ

w“2

ÿ

W1,W2Ďrks
|W1|“|W2|“w

Opn
2k´w´1´`´rankpA

W 1
q
q2i´w`1

q

“
ÿ

xPrns

k
ÿ

w“2

ÿ

W1,W2Ďrks
|W1|“|W2|“w

Opn2k´2´2`q2i
q

“ Opn2k´2`´1q2i
q “ O

ˆ

q2i |En|
2

n

˙

. (40)

Finally, combining (34), (38), (39), and (40) we obtain

µipHn, qq “ O

ˆ

q2i |En|
2

n

˙

,
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which concludes the proof of the 1-statement of Theorem 2.4. �

4.3. Proof of Theorem 2.5. The proof is similar to the proof of Theorem 2.3 and we
only sketch the main ideas.

The 0-statement of Theorem 2.5. We recall that for the statement X Ñ1{2`ε

´

1 1 ´1
¯

we only consider distinct-valued of the Schur equation and we call such a solutions Schur-
triples. The expected number of Schur-triples contained in rnsqn is bounded by q3

nn
2.

Consequently, the 0-statement follows from Markov’s inequality if qn ! n´2{3. In the
middle range n´1 ! qn ! n´1{2 it follows, on the one hand, from Chernoff’s inequality that
a.a.s. |rnsqn | ě qnn{2. On the other hand, due to Markov’s inequality a.a.s. the number of
Schur-triples in rnsqn is opqnnq and, hence, the statement holds in this range of qn. Finally,
if n´2{3 ! qn ď cn´1{2 for sufficiently small c ą 0, then using Chebyshev’s inequality one
obtains the upper bound of

p1´ p1{2` εqqqnn{2

on the number of Schur-triples in rnsqn , which holds a.a.s. Consequently, in view of
Chernoff’s inequality, a.a.s. the random set rnsqn contains a subset of size p1{2` εq|rnsqn |,
which contains no Schur-triple. �

The 1-statement of Theorem 2.5. Here the we consider a sequence of 3-uniform hypergraphs,
where Vn “ rns and En corresponds to all Schur-triples in rns and we set pn “ n´1{2 and
α “ 1{2. For given ε P p0, 1{2q we want to appeal to Theorem 3.3 and for that we assume
qn “ op1q. Again the 1-statement of Theorem 2.5 follows from Theorem 3.3 and we have
to verify the three conditions (a )-(c ) as in the proof of the 1-statement of Theorem 2.3.

Condition (a ) follows from the definition of pn and condition (c ) follows from similar
considerations as in the proof of Theorem 2.3 for ` “ 1 and k “ 3.

In order to verify condition (b ) we have to show that for every ε ą 0 there exist ζ ą 0
and n0 such that for n ě n0 every subset A Ď rns with |A| ě p1{2 ` εqn contains at
least ζn2 Schur-triples.

So let A Ď rns satisfy |A| ě p1{2 ` εqn and set A1 “ A X t1, . . . , p1 ´ εqnu (ignoring
floors and ceilings). It follows that for every z P Ar A1 there are at least

ˆ

1
2 ` ε

˙

n´ εn´
p1´ εqn

2 “
ε

2n

pairs x ď y with x, y P A such that x ` y “ z. Hence, if |A r A1| ě 3ε2n{2, then A

contains at least 3ε3n2{4´ n Schur-triples and the claim follows.
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On the other hand, if |Ar A1| ă 3ε2n{2, then we have

|A1| ě

ˆ

1
2 ` ε

˙

n´
3ε2

2 n “

ˆ

1
2 `

3ε
2

˙

p1´ εqn .

In other words, we obtained a density increment of ε{2 on the interval p1´ εqn and the
conclusion follows from iterating the above argument.

This concludes the proof of condition (b ) and, therefore, Theorem 3.3 yields the proof of
the 1-statement of Theorem 2.5 for sequences q satisfying qn “ op1q. The remaining case,
when qn “ Ωp1q then follows by similar arguments as given in [25, Proposition 8.6] and we
omit the details. �

4.4. Proof of Theorem 2.7.

The 0-statement of Theorem 2.7. Let F be an `-uniform hypergraph with at least one
vertex of degree 2 and ε P p0, 1´ πpF qq. We set

c “
1´ πpF q ´ ε

4 .

For the proof of the 0-statement we consider different ranges of q “ pqnqnPN depending
on the density of the densest sub-hypergraph of F and depending on mpF q. Let F 1 be the
densest sub-hypergraph of F with epF 1q ě 1, i.e., F 1 maximizes epF 1q{vpF 1q. Moreover, let
F 2 be one of those sub-hypergraphs for which

dpF 2q “ mpF q

(see (10) for the definition of those parameters). Note that epF 2q ě 2, since F contains a
vertex of degree at least two. We consider the following three ranges for q.

Case 1 (qn ! n´vpF
1q{epF 1q). In this range the expected number of copies of F 1 in Gp`qpn, qnq

tends to 0 and, therefore, the statement follows from Markov’s inequality.

Case 2 (n´` ! qn ! n´1{mpF q). It follows from the definition of mpF q, that in this range
the expected number of copies of F 2 in Gp`qpn, qnq is asymptotically smaller than the
expected number of of edges of Gp`qpn, qnq. Therefore, applying Markov’s inequality to
the number of copies of F 2 and Chernoff’s inequality to the number of edges Gp`qpn, qnq
we obtain that a.a.s. the number of copies of F 2 satisfies opepGp`qpn, qnqqq. Hence, a.a.s.
we can obtain an F 2-free, and consequently, an F 2-free sub-hypergraph of Gp`qpn, qnq by
removing only opepGp`qpn, qnqqq edges, which yields the statement for this range of qn.

We note that n´` ! n´vpF
1q{epF 1q since F contains a vertex of degree 2. In other words,

the interval considered in Case 2 overlaps with the interval from Case 1. Similarly, the
range considered in the case below overlaps with the one from Case 2.
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Case 3 (n´vpF 1q{epF 1q ! qn ď cn´1{mpF q). Applying again Chernoff’s inequality to the
random variable epGp`qpn, qnqq we see that it suffices to show that a.a.s. the number of
copies of F 2 is at most p1´ pπpF q ` εqqqnn`{2.

Let ZF 2 be the random variable denoting the number of copies of F 2 in Gp`qpn, qnq.
Clearly, E rZF 2s ď qepF

2q
n nvpF

2q and standard calculations show that the variance of ZF 2
satisfies

Var rZF 2s “ O

˜

q2epF 2q
n n2vpF 2q

minF˚ĎF,epF˚qě1 q
epF˚q
n nvpF˚q

¸

“ O

ˆ

q2epF 2q
n n2vpF 2q

q
epF 1q
n nvpF 1q

˙

,

due to the choice of F 1 being the densest sub-hypergraph of F . Since qn " n´vpF
1q{epF 1q we

have qepF 1qn nvpF
1q Ñ 8 and, therefore,

Var rZF 2s “ o
´

q2epF 2q
n n2vpF 2q

¯

Consequently, Chebyshev’s inequality yields

P
´

ZF 2 ě 2qepF 2qn nvpF
2q
¯

ď
Var rZF 2s

q
2epF 2q
n n2vpF 2q

“ op1q .

Moreover, since qn ď cn´1{mpF q and epF 2q ě 2 it follows from the choice of c that

2qepF 2qn nvpF
2q
ď

1´ pπpF q ` εq
2 qnn

` ,

which yields the 0-statement in this case. �

The 1-statement of Theorem 2.7. Let F be an `-uniform hypergraph with at least one vertex.
For an application of Theorem 3.3 we consider the sequence of k-uniform hypergraphs
H “ pHn “ pVn, EnqqnPN where Vn “ EpKp`q

n q and edges of En correspond to copies
of F in Kn. Moreover, we set pn “ n´1{mpF q and α “ πpF q. Clearly, for this set up the
conclusion of Theorem 3.3 yields the 1-statement of Theorem 2.7 for sequences q with
qn “ op1q. In order to apply Theorem 3.3 we have to verify the three conditions (a )-(c )
stated in the proof of the 1-statement of Theorem 2.3.

Condition (a ) follows from the definitions of pn and En combined. In fact, since F
contains a vertex of degree at least 2 we have mpF q ě 1{p`´ 1q and pn|En| “ Ωpnq. Such
a result was obtained by Erdős and Simonovits [11, Theorem 1] and, hence, it is left to
verify condition (c ) only.

To this end observe that Hn is a regular hypergraph with
`

n
`

˘

vertices and every vertex is
contained in ΘpnvpF q´`q edges and that |En| “ ΘpnvpF qq. We will show that for q ě n´1{mpF q

and i P rk ´ 1s we have

µipHn, qq “ E

«

ÿ

vPVn

deg2
i pv, Vn,qq

ff

“
ÿ

vPV

E
“

deg2
i pv, Vn,qq

‰

“ O

ˆ

q2i |En|
2

|Vn|

˙

.
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Due to the definition of H every v P Vn corresponds to an edge epvq in Kp`q
n . Therefore,

the number E
“

deg2
i pv, Vn,qq

‰

is the expected number of pairs pF1, F2q of copies F1 and F2

of F in Kp`q
n satisfying epvq P EpF1q X EpF2q and both copies F1 and F2 have at least i

edges in EpGp`qpn, qqqr tepvqu. Summing over all such pairs F1 and F2 we obtain

E
“

deg2
i pv, Vn,qq

‰

ď
ÿ

F1,F2 : epvqPEpF1qXEpF2q

|EpF1qXEpF2q|´1
ÿ

j“0
q2i´j

“ O

˜

ÿ

F1,F2 : epvqPEpF1qXEpF2q

q2i´p|EpF1qXEpF2q|´1q

¸
(41)

since q ď 1. Furthermore,

ÿ

F1,F2 : epvqPEpF1qXEpF2q

q2i´p|EpF1qXEpF2q|´1q
“ O

˜

ÿ

J : epvqPEpJq
n2vpF q´2vpJqq2i´pepJq´1q

¸

, (42)

where the sum on the right-hand side is indexed all hypergraphs J Ď Kp`q
n which contain epvq

and which are isomorphic to a sub-hypergraph of F . It follows from the definition of mpF q
and q ě n´1{mpF q that nvpJqqepJq “ Ωpqn`q. Combining this with (41) and (42) we obtain

E
“

deg2
i pv, Vn,qq

‰

“ O

˜

ÿ

J : epvqPEpJq
n2vpF q´2vpJqq2i´pepJq´1q

¸

“ O

˜

ÿ

J : epvqPEpJq
n2vpF q´vpJq´`q2i

¸

.

Moreover, since vpJq ě ` we have

E
“

deg2
i pv, Vn,qq

‰

“ O

˜

ÿ

J : epvqPEpJq
n2vpF q´2`q2i

¸

,

and, consequently,

µipHn, qq “
ÿ

vPVn

Opn2vpF q´2`q2i
q “ Opn2vpF q´`q2i

q “ O

ˆ

q2i |En|
2

|Vn|

˙

.

This concludes the proof of condition (c ) and, therefore, Theorem 3.3 yields the proof of
the 1-statement of Theorem 2.7 for sequences q satisfying qn “ op1q. The remaining case,
when qn “ Ωp1q then follows by similar arguments as given in [25, Proposition 8.6] and we
omit the details. �
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