4. Stetigkeit und Differenzierbarkeit

4.1 Grenzwerte von Funktionen. $(V, \|\cdot\|), (W, \|\cdot\|)$ seien normierte Vektorräume über $\mathbb{R}/\mathbb{C}, D \subset V, f: D \to W$

Definition (4.1.1)

- a) $x_0 \in V$ heißt **Häufungspunkt** von D : \iff $\exists (x_k) \in V^{\mathbb{N}} : x_k \in D \land x_k \neq x_0 \land x_k \rightarrow x_0 \ (k \rightarrow \infty).$
 - D': Menge der Häufungspunkte von D, $\overline{D} := D \cup D'$ heißt abgeschlossene Hülle von D, D heißt abgeschlossen : $\iff D = \overline{D}$.
- b) $K_{\varepsilon}(x_0) := \{x \in V : ||x x_0|| < \varepsilon\}$

heißt (offene) Kugel um x_0 mit Radius $\varepsilon > 0$.

- c) x_0 heißt innerer Punkt von $D:\iff \exists \varepsilon>0: K_\varepsilon(x_0)\subset D.$ $D^0:$ Menge der inneren Punkte von D, D heißt offen $:\iff D=D^0.$
- d) D heißt beschränkt : $\iff \exists x_0 \in V, \ \varepsilon > 0 : D \subset K_{\varepsilon}(x_0).$

Beispiele (4.1.2)

- $D =]0,1[; D \text{ ist offen}, D' = \overline{D} = [0,1].$
- D =]0,1]; D weder offen noch abgeschlossen, $D^0 =]0,1[$, $D' = \overline{D} = [0,1]$.
- $D = \{1\} \cup]2,3]; D^0 =]2,3[, D' = [2,3], \overline{D} = \{1\} \cup [2,3].$
- Kugeln $K_r(x_0)$ sind stets offen und beschränkt, $K_r(x_0)' = \overline{K}_r(x_0) := \{x : ||x x_0|| \le r\}.$
- Innere Punkte sind stets auch Häufungspunkte.

Definition (4.1.3) Grenzwerte von Funktionen

Sei $f: D \to W, D \subset V, x_0 \in D'$.

- a) $\lim_{x \to x_0} f(x) = y_0 : \iff$ $\forall (x_k) \in D^{\mathbb{N}} : x_k \neq x_0 \land x_k \to x_0 \Rightarrow f(x_k) \to y_0 (k \to \infty).$
- b) Für $D \subset \mathbb{R}$ werden **einseitige Grenzwerte** definiert:

$$f(x_0^-) := \lim_{x \to x_0^-} f(x) = y_0 : \iff$$

$$\forall (x_k) \in D^{\mathbb{N}} : x_k < x_0 \land x_k \to x_0 \Rightarrow f(x_k) \to y_0 \ (k \to \infty).$$

$$f(x_0^+) := \lim_{x \to x_0^+} f(x) = y_0 : \iff$$

$$\forall (x_k) \in D^{\mathbb{N}} : x_k > x_0 \land x_k \to x_0 \Rightarrow f(x_k) \to y_0 \ (k \to \infty).$$

Hierbei muss jeweils wenigstens eine Folge (x_k) mit den verlangten Eigenschaften existieren!

Beispiele (4.1.4)

- $\lim_{x\to 0-}\sin\frac{1}{x}$ und $\lim_{x\to 0+}\sin\frac{1}{x}$ existieren nicht; $\lim_{x\to 0}x\sin\frac{1}{x}=0$.
- $\lim_{x \to 0^-} \frac{1}{x} = -\infty$, $\lim_{x \to 0^+} \frac{1}{x} = \infty$, $\lim_{x \to \infty} \frac{1}{x} = 0$.
- Die Grenzwertsätze gelten analog für Funktionsgrenzwerte!

•
$$\lim_{x \to -1} \frac{(x+3)(2x-1)}{x^2+3x-2} = \frac{\lim(x+3)\cdot\lim(2x-1)}{\lim(x^2+3x-2)} = \frac{3}{2}$$

•
$$\lim_{x \to \infty} \frac{2x^4 - 3x^2 + 1}{6x^4 + x^3 - 3x} = \lim_{x \to \infty} \frac{2 - \frac{3}{x^2} + \frac{1}{x^4}}{6 + \frac{1}{x} - \frac{3}{x^3}} = \frac{1}{3}.$$

•
$$\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} = \frac{1}{2\sqrt{x}}, \quad x > 0.$$

- $\lim_{(x,y)\to(1,2)} \frac{3-x+y}{4+x-2y} = \frac{3-\lim x+\lim y}{4+\lim x-2\lim y} = 4.$
- $\lim_{(x,y,z)\to(0,0,0)} \frac{4x+y-3z}{2x-5y+2z}$ existiert nicht!

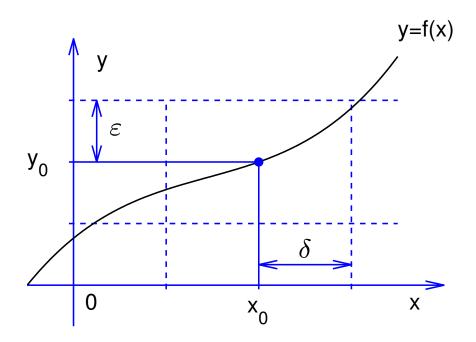
Definition (4.1.5) (Stetigkeit) Sei $F: D \rightarrow W, D \subset V$.

- a) f heißt stetig ergänzbar in $x_0 \in D'$, falls $\lim_{x \to x_0} f(x)$ existiert.
- b) f heißt stetig in $x_0 \in D' \cap D$, falls $\lim_{x \to x_0} f(x) = f(x_0)$.
- c) f heißt **stetig**, falls f in allen Punkten $x_0 \in D' \cap D$ stetig ist.

Satz (4.1.6)

Für $x_0 \in D' \cap D$ gilt: f ist genau dann in x_0 stetig, falls

 $\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in D : ||x - x_0|| < \delta \Rightarrow ||f(x) - f(x_0)|| < \varepsilon.$



Bemerkungen (4.1.7)

- a) Sind $f, g: D \to W$ stetig in $x_0 \in D \cap D'$, so sind auch f+g und αf stetig in x_0 . Für $W = \mathbb{R}/\mathbb{C}$ sind auch $f \cdot g$ und f/g stetig in x_0 , letzteres falls $g(x_0) \neq 0$.
- b) Die Komposition stetiger Funktionen ist stetig!

Beispiele (4.1.8)

- a) Konstante Funktionen sind stetig.
- b) Die Identität id: $V \to V$, f(x) := x ist stetig.
- c) Polynomfunktionen $f: \mathbb{R} \to \mathbb{R}$ oder $f: \mathbb{C} \to \mathbb{C}$, $f(x) = \sum_{k=0}^{n} a_k x^k \text{ sind stetig!}$
- d) Polynomfunktionen in mehreren Variablen

$$f(x_1,...,x_n) = \sum_{k_1...k_n=0}^{m} a_{k_1...k_n} x_1^{k_1} ... x_n^{k_n}$$
 sind stetig!

- e) Lineare Abbildungen f(x) = Ax, $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{(m,n)}$ sind stetig.
- f) Quadratische Formen $g(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{y}, \quad \mathbf{x} \in \mathbb{R}^m, \quad \mathbf{y} \in \mathbb{R}^n$ sind stetig.
- **g)** Wurzeln $\sqrt[m]{x}$: $[0,\infty[\to\mathbb{R}]$ sind stetig.
- h) Durch Potenzreihen $f(z)=\sum\limits_{k=0}^{\infty}a_k\,z^k$ definierte Funktionen sind stetig. Damit sind auch die elementaren Funktionen exp, sin, cos, tan ... auf ihrem jeweiligen Definitionsbereich stetig.
- h) $f(x,y) = \sqrt{x^2 + y^2}$ ist als Komposition stetiger Funktionen stetig.
- i) $f(x) = \frac{x^3 + 2x^2 3}{x 1}$ ist auf $\mathbb{R} \setminus \{1\}$ stetig und in x = 1 stetig ergänzbar.

Satz (4.1.9) Sei $f:[a,b] \to \mathbb{R}$ stetig.

a) Existenz einer Nullstelle:

$$f(a) \cdot f(b) < 0 \implies \exists x_0 \in]a, b[: f(x_0) = 0.$$

b) Zwischenwertsatz:

$$f(a) < c < f(b) \Rightarrow \exists x_0 \in]a, b[: f(x_0) = c]$$

- c) Stetigkeit der Umkehrfunktion: Ist f stetig und streng monoton wachsend, so ist auch f^{-1} stetig und streng monoton wachsend.
- d) Min-Max-Eigenschaft:

$$\exists x_1, x_2 \in [a, b] : f(x_1) = \min_{x \in [a, b]} f(x) \land f(x_2) = \max_{x \in [a, b]} f(x).$$

Verallgemeinerung auf mehrere Variable.

Definition (4.1.10) $D \subset \mathbb{R}^n$ heißt **kompakt**, falls jede Folge $(x_k) \in D^{\mathbb{N}}$ eine in D konvergente Teilfolge besitzt.

Satz (4.1.11) (Min-Max Eigenschaft)

Ist $D \subset \mathbb{R}^n$ kompakt und $f: D \to \mathbb{R}$ stetig, so existieren $\mathbf{x}_1, \mathbf{x}_2 \in D$ mit

$$f(\mathbf{x}_1) = \min_{\mathbf{x} \in D} f(\mathbf{x})$$
 und $f(\mathbf{x}_2) = \max_{\mathbf{x} \in D} f(\mathbf{x})$.

Kriterien für Kompaktheit (4.1.12) Es sind äquivalent:

- a) D ist kompakt,
- b) D ist beschränkt und abgeschlossen,
- c) Jede offene Überdeckung von D besitzt eine endliche Teil- überdeckung (Heine, Borel).

Beispiele (4.1.13)

a) Normen sind stetig! Denn

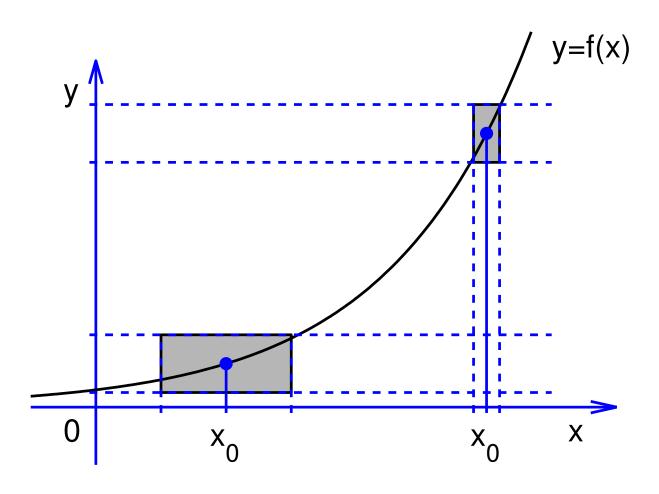
$$|\|\mathbf{x}_k\| - \|\mathbf{x}_0\|| \le \|\mathbf{x}_k - \mathbf{x}_0\| \to 0 \quad (k \to \infty).$$

- b) Abbildungen der Form $x \mapsto ||Ax||$ sind stetig!
- c) Sphären $S^{n-1}:=\{\mathbf{x}\in\mathbb{R}^n: \|\mathbf{x}\|=1\}$ sind kompakt (beschränkt und abgeschlossen). Daher $\exists \ \mathbf{x}_1, \ \mathbf{x}_2\in S^{n-1}$ mit

$$\|\mathbf{A} \mathbf{x}_1\| = \min_{\|\mathbf{x}\|=1} \|\mathbf{A} \mathbf{x}\|, \quad \|\mathbf{A} \mathbf{x}_2\| = \max_{\|\mathbf{x}\|=1} \|\mathbf{A} \mathbf{x}\|.$$

- **d)** Bilineare Abbildungen $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ sind stetig!
- e) Die Determinante $(x_1, ..., x_n) \mapsto det(x_1, ..., x_n)$ ist stetig!

Gleichmäßige Stetigkeit: Wie hängt δ von ε und x_0 ab?



Definition (4.1.14) $f: D \to \mathbb{R}^m$ gleichmäßig stetig, falls

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall \mathbf{x}, \mathbf{x}_0 \in D : \|\mathbf{x} - \mathbf{x}_0\| < \delta \Rightarrow \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\| < \varepsilon.$$

Satz (4.1.15)

Jede stetige Funktion $f:D\to\mathbb{R}^m$ auf einem kompaktem Definitionsbereich $D\subset\mathbb{R}^n$ ist gleichmäßig stetig.

Beispiel (4.1.16) Die Funktion f(x) := 1/x ist nach obigem auf jedem kompaktem Intervall [a,b], a>0, gleichmäßig stetig – auf einem halboffenen Intervall [0,b] jedoch nicht!

Denn für $x_1, x_2 > 0$ gilt

$$|f(x_1) - f(x_2)| = |\frac{1}{x_1} - \frac{1}{x_2}| = \frac{|x_1 - x_2|}{x_1 x_2} < \varepsilon,$$

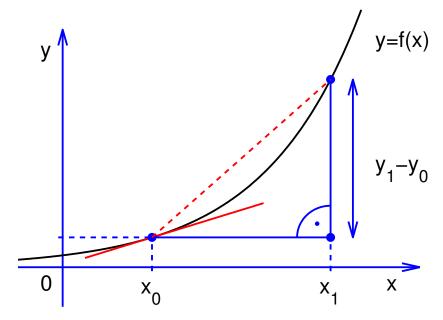
falls $|x_1 - x_2| < \delta := x_1 x_2 \varepsilon \rightarrow 0$ für $x_1, x_2 \rightarrow 0$.

qed

4.2 Differentialrechnung einer Variablen

Definition (4.2.1) Sei $f: D \to \mathbb{R}^m$, $D \subset \mathbb{R}$, $x_0 \in D \cap D'$.

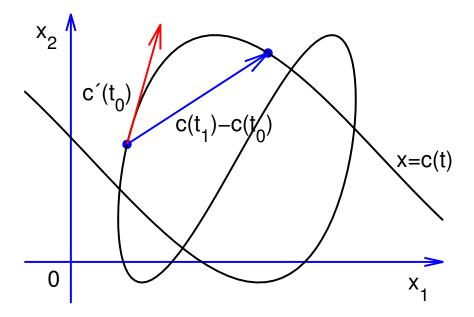
- a) f differenzierbar in $x_0 :\Leftrightarrow \exists f'(x_0) := \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$.
- b) Einseitige Ableitungen: $\mathbf{f}'(x_0^{\pm}) := \lim_{x \to x_0 \pm} \frac{\mathbf{f}(x) \mathbf{f}(x_0)}{x x_0}$.



c) Der Differentialquotient

$$\dot{\mathbf{c}}(t_0) := \mathbf{c}'(t_0) := \lim_{t \to t_0} \frac{\mathbf{c}(t) - \mathbf{c}(t_0)}{t - t_0}$$

beschreibt auch die lokale Geschwindigkeit einer Kurve $c(t) \in \mathbb{R}^m$.



d) Die Tangente: Durch $y = f(x_0) + f'(x_0)(x - x_0)$ wird die bestapproximierende Gerade (Tangente) an den Funktionsgraphen im Punkt $(x_0, f(x_0))$ beschrieben.

Für den Fehler $\mathbf{r}(x;x_0):=\mathbf{f}(x)-\left[\mathbf{f}(x_0)+\mathbf{f}'(x_0)(x-x_0)\right]$ gilt: \mathbf{f} ist genau dann in x_0 differenzierbar, wenn es einen Vektor $\mathbf{f}'(x_0)$ gibt mit

$$\mathbf{r}(x,x_0) = o(x-x_0) :\Leftrightarrow \lim_{x \to x_0} \frac{\mathbf{r}(x;x_0)}{x-x_0} = 0.$$

o(h) heißt Landau-Symbol.

Beispiele (4.2.2)

a) Konstante Funktionen f(x) = c sind auf \mathbb{R} differenzierbar mit f'(x) = 0.

b) Für $n \in \mathbb{N}$ ist $f(x) = x^n$ auf \mathbb{R} differenzierbar; $f'(x) = n x^{n-1}$. Denn

$$\lim_{x \to x_0} \frac{x^n - x_0^n}{x - x_0} = \lim_{x \to x_0} \sum_{k=0}^{n-1} x^k x_0^{n-1-k} = n x_0^{n-1}.$$

c) Grenzwertsätze \Rightarrow Polynome sind differenzierbar mit

$$\frac{d}{dx} \left(\sum_{k=0}^{n} a_k x^k \right) = \sum_{k=1}^{n} a_k k x^{k-1}.$$

 $\sin' x = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \sin x \cdot \lim_{h \to 0} \left(\frac{\cos h - 1}{h}\right) + \cos x \cdot \lim_{h \to 0} \left(\frac{\sin h}{h}\right)$ $= 0 \cdot \sin x + 1 \cdot \cos x$

Analog: $\cos' x = -\sin x$.

Differentiationsregeln (4.2.3)

- a) f differenzierbar $\Rightarrow f$ stetig
- **b)** $(\alpha f + \beta g)'(x) = \alpha f'(x) + \beta g'(x)$
- c) $(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$ (Produktregel)
- d) $\left(\frac{f}{g}\right)'(x) = \frac{f'(x) g(x) f(x) g'(x)}{g(x)^2}$ (Quotientenregel)
- e) $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$ (Kettenregel)
- f) Umkehrsatz: Ist f auf [a,b] dffb. mit $f'(x) \neq 0 \ (\forall x)$, so ist f auf [a,b] injektiv, die Umkehrabbildung f^{-1} ist auf f([a,b]) diffb. und es gilt $\left(f^{-1}\right)'(y) = \frac{1}{f'(x)}, \quad y = f(x)$.

g) Verallgemeinerte Produktregel: Ist $\langle \cdot, \cdot \rangle$: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ eine Bilinearform und sind $f,g:[a,b]\to \mathbb{R}^n$ diffb, so ist auch das Produkt $\langle f,g \rangle$ dffb. und es gilt

$$\frac{d}{dx} \langle f(x), g(x) \rangle = \left\langle f'(x), g(x) \right\rangle + \left\langle f(x), g'(x) \right\rangle$$

Beispiele (4.2.4)

- $\frac{d}{dx}\tan x = \frac{d}{dx}\left(\frac{\sin x}{\cos x}\right) = \frac{\cos x \cos x \sin x (-\sin x)}{\cos^2 x}$ $= \frac{1}{\cos^2 x}, \quad x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}.$
- $\frac{d}{dy} \arctan y = \frac{1}{\frac{d}{dx} \tan x} = \cos^2 x$ $= \frac{1}{1 + \tan^2 x} = \frac{1}{1 + y^2}.$

$$\frac{d}{dy} \ln y = \frac{1}{\frac{d}{dx} e^x} = \frac{1}{e^x} = \frac{1}{y}.$$

$$\frac{d}{dy} \sqrt[m]{y} = \frac{1}{\frac{d}{dx} x^m} = \frac{1}{m x^{m-1}} = \frac{1}{m} y^{\frac{1}{m}-1}.$$

$$\frac{d}{dx} \left[\cos(e^x) \right] = -\sin(e^x) \cdot e^x.$$

$$\frac{d}{dx} [a^x] = \frac{d}{dx} [e^{(\ln a)x}] = (\ln a) \cdot a^x.$$

$$\frac{d}{dx} [x^x] = \frac{d}{dx} \left[e^{x \cdot \ln x} \right] = e^{x \ln x} \left(1 \cdot \ln x + x \cdot \frac{1}{x} \right)$$
$$= x^x \cdot (1 + \ln x).$$

Definition (4.2.5)

 $f:[a,b]\to\mathbb{R}^m$ heißt eine \mathbf{C}^k -Funktion, falls f k-fach stetig differenzierbar ist, $k\in\mathbb{N}$.

Die Menge aller C^k -Funktionen wird mit $C^k([a,b],\mathbb{R}^m)$ bezeichnet; sie bildet einen reellen Vektorraum.

Mit $C([a,b],\mathbb{R}^m)$ wird der Vektorraum der stetigen Funktionen bezeichnet, mit $C^{\infty}([a,b],\mathbb{R}^m)$ der Vektorraum der beliebig oft stetig differenzierbaren Funktionen. Natürlich gilt

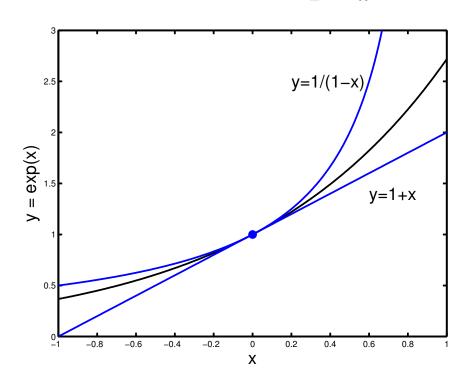
$$\mathsf{C}^\infty([a,b],\mathbb{R}^m) \subset \mathsf{C}^2([a,b],\mathbb{R}^m) \subset \mathsf{C}^1([a,b],\mathbb{R}^m) \subset \mathsf{C}([a,b],\mathbb{R}^m)$$

Die Exponentialfunktion (4.2.6)

(1) Für $x \in \mathbb{R}$ definiert man $\exp(x) := \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$. Konvergenz wird im Lehrbuch (8.2.13)-(8.2.16) gezeigt.

(2)
$$\forall x : -n < x < 1 \implies 1 + x \le \left(1 + \frac{x}{n}\right)^n \le \frac{1}{1 - x}$$
.

(3)
$$\forall x < 1 : 1 + x \le \exp(x) \le \frac{1}{1 - x}$$
.



(4) $\forall x, y \in \mathbb{R}$: $\exp(x+y) = \exp(x) \cdot \exp(y)$.

(5) $\forall x \in \mathbb{R} : \frac{d}{dx} \exp(x) = \exp(x)$.

