Hörsaalübungsaufgaben und Lösungen zu Analysis I

für Studierende der Ingenieurwissenschaften

Aufgabe 1:

- a) Man gebe für folgende Aussage die Wahrheitswerttafel an:
 - (i) $B \Leftrightarrow \neg C$,
 - (ii) $\neg A \Rightarrow (A \lor B)$.
- b) Man zeige, dass folgende Aussage eine Tautologie ist:

$$((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$$
.

Aufgabe 2:

Man gebe die Zahlen \boldsymbol{x} an, für die die folgenden Aussageformen wahr sind:

a)
$$A(x) := x^2 - 9 < 0 \text{ mit } x \in \mathbb{Z},$$

b)
$$B(x) := \sqrt{4x + 20} \le 6 \text{ mit } x \in \mathbb{Z},$$

c)
$$C(x) := -3 \le \ln x < 3 \text{ mit } x \in \mathbb{N}.$$

Aufgabe 3:

Man beweise:

Für reelle Zahlen a, b mit 0 < a < b gilt die Ungleichung

$$\sqrt{b} - \sqrt{a} < \sqrt{b-a}$$
,

- a) direkt und
- b) indirekt.

Aufgabe 4:

- a) Man beweise indirekt, dass $\sqrt{14}$ irrational ist.
- b) Man entscheide und begründe ohne Verwendung eines Taschenrechners, welche der beiden Zahlen größer ist: $\sqrt{15} + \sqrt{18}$ oder $\sqrt{14} + \sqrt{19}$.

Aufgabe 5:

a) Gegeben seien die Mengen

$$A = [-2, 2] \times [0, 1], \quad B = \{(x, y) \in \mathbb{R}^2 \mid x^2 + 4y^2 \le 4\}.$$

Man stelle folgende Mengen graphisch dar: $A, B, A \cup B, A \cap B, A \setminus B$.

- b) Eine Funktion heißt gerade, wenn f(x) = f(-x) gilt, bzw. ungerade, wenn f(-x) = -f(x) gilt. Welche der folgenden Funktionen sind gerade bzw. ungerade (man zeichne die Funktionsgraphen):
 - (i) $f(x) = x^2 + \sin(\ln|x|)$,
 - (ii) $g(x) = x^3 + \sin(2x)$.

Aufgabe 6:

- a) Man entscheide, welche der folgenden Funktionen injektiv, surjektiv und bijektiv sind und zeichne die zugehörigen Funktionsgraphen:
 - (i) $f_1: [-5,5] \to [-2,2], \quad f_1(x) = 1 |2 |x||,$
 - (ii) $f_2: [0,1] \to [0,2], \quad f_2(x) = x^4,$
 - (iii) $f_3: [0, \pi/2] \to [0, 1/2], \quad f_3(x) = \sin x \cos x,$
 - (iv) $f_4: \mathbb{R} \to (0, \infty), \quad f_4(x) = e^x.$
- b) Für die Funktion f mit dem Definitionsbereich $D = (-\infty, -2]$ und der Funktionswertzuweisung $f(x) = -x^2 4x + 5$ gebe man den Wertebereich W an, berechne, falls dies möglich ist, die Umkehrfunktion f^{-1} und zeichne f und f^{-1} .

Aufgabe 7:

Man beweise durch vollständige Induktion

a) für
$$q \neq 1$$
 und alle $n \in \mathbb{N}_0$ gilt $\sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$,

b)
$$a_n := 11^{n+1} + 12^{2n-1}$$
 ist für alle $n \in \mathbb{N}$ durch 133 teilbar.

Aufgabe 8:

a) Man beweise, dass für alle $n \in \mathbb{N}$ folgende Ungleichung gilt

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} \ge \frac{1}{n+1}.$$

b) Zur Berechnung von $\prod_{k=1}^{n} \left(2 + \frac{2}{k+1}\right)$ finde man eine Formel (notfalls durch Probieren) und beweise diese (ggf. durch vollständige Induktion).

Aufgabe 9:

a) Für die Binomialkoeffizienten mit $n,m\in\mathbb{N}$ und $m\leq n$ weise man folgende Beziehungen nach:

$$\left(\begin{array}{c} n \\ m \end{array}\right) \cdot \frac{n+1}{m+1} = \left(\begin{array}{c} n+1 \\ m+1 \end{array}\right) \ .$$

- b) Man bestimme für die Zahlen 96135 und 84854 den ggT und das kgV
 - (i) unter Verwendung des Euklidischen Algorithmus,
 - (ii) mit Hilfe der Primfaktorzerlegung.

Aufgabe 10:

- a) Man überprüfe, ob folgende Mengen nach unten bzw. oben beschränkt sind und bestimme gegebenenfalls Infimum und Supremum
 - (i) $M_1 = [-2, 8] \cap]5, 15]$,

(ii)
$$M_2 =]-\infty, 2] \cup \left\{ x \in \mathbb{R} \mid x = \frac{5n}{2n+1}, n \in \mathbb{N} \right\}.$$

b) Man zeige, dass die rekursiv definierte Folge

$$x_0 = a$$
, $x_1 = b$, $x_{n+1} = x_n + 6x_{n-1}$

folgende explizite Darstellung besitzt:

$$x_n = \frac{(2 \cdot 3^n + 3 \cdot (-2)^n) a + (3^n - (-2)^n) b}{5}.$$

Hinweis: Für den Beweis eignet sich die vollständige Induktion.

Aufgabe 11:

Man untersuche die nachstehenden Folgen auf Konvergenz und bestimme gegebenenfalls die Grenzwerte

$$a_n = \sqrt{n^2 + 2n} - \sqrt{n^2 - 2n}$$
, $b_n = \left(\frac{3n^2 + 1}{2n^2 - n - 7}\right)^3$,

$$c_n = \frac{\sqrt{n^2 + 2} - \sqrt{4n^2 + 3}}{n}, \qquad d_n = \frac{2^{n+1} + 3^n}{3^{n+1} + 2^n},$$

Aufgabe 12:

Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = x(2-x) ,$$

sowie die Folge $(x_n)_{n\in\mathbb{N}}$, die sich aus dem Newton-Verfahren zur Nullstellenberechnung von f mittels Startwert $x_0 \leq 0$ ergibt.

- a) Man zeige, dass $(x_n)_{n\in\mathbb{N}}$ gegen eine Nullstelle x^* konvergiert und berechne diese.
- b) Man zeige, dass die Folge (lokal) quadratisch konvergiert, d.h. es gibt eine Konstante $c \in \mathbb{R}$ mit

$$|x_{n+1} - x^*| \le c|x_n - x^*|^2$$
.

Aufgabe 13:

Man untersuche die folgenden rekursiv definierten Folgen auf Konvergenz und bestimme ggf. den Grenzwert:

a)
$$a_1 = 0$$
, $a_{n+1} = 1 - \frac{a_n}{3}$,

b)
$$b_1 = \frac{1}{2}$$
, $b_{n+1} = \frac{b_n^2 + 3}{4}$,

c)
$$c_1 = 1$$
, $c_{n+1} = 2c_n + 1$,

d)
$$d_1 = 3$$
, $d_{n+1} = \sqrt{3d_n - 2}$.

Aufgabe 14:

Man untersuche die Konvergenz folgender Folgen

a)
$$\mathbf{a}_n = \begin{pmatrix} n^2/2^n \\ 1+1/n \end{pmatrix}$$
, $n \in \mathbb{N}$,

b)
$$\boldsymbol{a}_{n+1} := \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} (x_n - y_n)/\sqrt{3} \\ (x_n + y_n)/\sqrt{3} \end{pmatrix}$$
, $n \in \mathbb{N}$ und $\boldsymbol{a}_1 \in \mathbb{R}^2$

Tipp: Eine geeignete Norm erleichtert das Leben.

Aufgabe 15:

- a) Man stelle die reelle Zahl $x=3.1\overline{415}$ beispielsweise unter Verwendung der Summenformel der geometrischen Reihe als Bruch dar.
- b) Man berechne den Wert der folgenden Reihen, falls sie konvergieren:

(i)
$$\sum_{n=0}^{\infty} \frac{5}{3^{n+1}}$$
, (ii) $\sum_{n=0}^{\infty} \frac{7^n}{2^n}$, (iii) $\sum_{n=0}^{\infty} \left(\frac{2}{n-1} - \frac{2}{n}\right)$, (iv) $\sum_{n=1}^{\infty} \frac{5n+1}{2n-1}$.

Aufgabe 16:

a) Man zeige, dass die Reihe

$$\sum_{n=1}^{\infty} \left(\frac{2 \cdot (-1)^n}{n} - \frac{1}{n+1} \right)$$

alterniert und dass $\lim_{n\to\infty} b_n = 0$ für $b_n := \frac{2\cdot (-1)^n}{n} - \frac{1}{n+1}$ gilt.

Warum ist das Leibniz-Kriterium nicht anwendbar?

- b) Gegeben sei die Reihe $\sum_{n=0}^{\infty} \left(\frac{(-1)^n}{n+2} \cdot \frac{n+1}{n+3} \right) .$
 - (i) Man zeige, dass die Reihe konvergiert.
 - (ii) Ab welchem Index k unterscheiden sich die Partialsummen

$$S_k = \sum_{n=0}^{k} \left(\frac{(-1)^n}{n+2} \cdot \frac{n+1}{n+3} \right)$$

vom Grenzwert S der Reihe um weniger als 0.001?

(iii) Wie lauten die ersten drei Nachkommastellen des Grenzwertes S?

Aufgabe 17:

Man untersuche die folgenden Reihen auf Konvergenz:

a)
$$\sum_{n=1}^{\infty} \left(\sqrt{n^2 + n} - n \right)^n$$
, b) $\sum_{n=0}^{\infty} \frac{2^n}{n!}$,

c)
$$\frac{1}{16} + \frac{3}{32} + \frac{9}{64} + \frac{27}{128} + \frac{81}{256} + \dots$$
, d) $\sum_{k=1}^{\infty} \frac{k+1}{k^2+1}$.

Aufgabe 18:

a) Man bestimme für folgende Mengen die Menge aller Häufungspunkte M' und aller inneren Punkte M^0 , und kläre, ob die Menge abgeschlossen oder offen ist.

$$M_{1} = (] - 3, 5] \cap]2, 8]) \cup \left\{ a_{n} \in \mathbb{R} \mid a_{n} = \frac{1}{n}, n \in \mathbb{N} \right\},$$

$$M_{2} = \{0\} \cup [3, 4] \cup \left\{ a_{n} \in \mathbb{R} \mid a_{n} = 1 + \frac{1}{2n}, n \in \mathbb{N} \right\},$$

$$M_{3} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} \mid 0 < y < |x| < 1 \right\}.$$

- b) Man berechne die folgenden Grenzwerte, falls sie existieren
 - (i) $\lim_{x \to \pi/2} \cos x \tan x$,
 - (ii) $\lim_{x \to 1+} \frac{x+1}{\sqrt{x-1}}$.

Aufgabe 19:

a) Man zeichne die durch

$$f(x) = x\cos^2\left(\frac{1}{x}\right)$$

gegebene Funktion und untersuche mit Hilfe des ε - δ -Kriteriums, ob sie in $x_0 = 0$ durch f(0) = 0 stetig ergänzt werden kann.

b) Man zeichne die durch

$$g(x) = \begin{cases} x^2 & \text{für } x \ge 0 \\ e^x & \text{für } x < 0 \end{cases}$$

gegebene Funktion und überprüfe, ob sie in $x_0 = 0$ stetig ist.

Aufgabe 20:

a) Man berechne die für alle $x \in \mathbb{R}$ stetige Funktion, für die gilt

$$\begin{array}{rclcrcl} f(0) & = & 0 & , \\ f'(x) & = & -2 & \text{für} & -\infty < x < -1 \, , \\ f'(x) & = & 2x & \text{für} & -1 < x < 2 \, , \\ f'(x) & = & 1 & \text{für} & 2 < x < \infty \end{array}$$

und zeichne die Funktion. Ist f auch differenzierbar?

b) Für die Funktion f mit

$$f(x) = \begin{cases} ax + b, & x < 1\\ \ln x, & 1 \le x \end{cases}$$

bestimme man $a, b \in \mathbb{R}$, sodass f in $x_0 = 1$ stetig differenzierbar wird und zeichne f.

c) Man berechne die Tangentengleichung zu $f(x) = \cos x$ im Punkt $x_0 = \frac{\pi}{2}$ und fertige eine Zeichnung an.

Aufgabe 21:

a) Man berechne die erste Ableitung der folgenden Funktionen

i)
$$f(x) = (2x+1)^{\sin x}$$
, ii) $g(x) = \frac{x + \sin x \cos x}{2}$.

b) Man berechne die ersten beiden Ableitungen der folgenden Funktionen:

i)
$$h(x) = \frac{x+2}{x^3+8}$$
, ii) $k(x) = \ln(x^2-1)$.

c) Man berechne die ersten drei Ableitungen der folgenden Funktionen:

i)
$$u(x) = 2(1-3x)^2 + 4(5x-2) - 7$$
, ii) $v(x) = \sqrt[3]{(5x+1)^2}$.

Aufgabe 22:

Gegeben sei die durch $f(x) = \cos(x^2 - \pi^2)$ definierte Funktion.

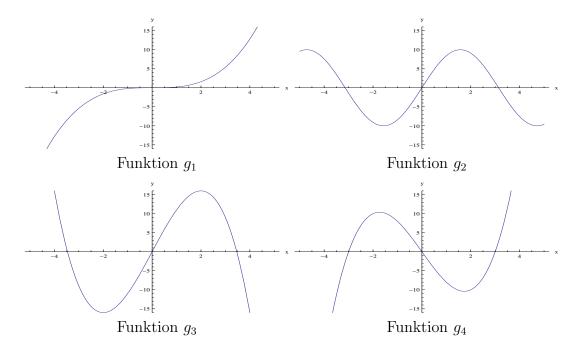
- a) Man berechne für f die Taylor-Polynome vom Grad 1 und 2 zum Entwicklungspunkt $x_0=\pi.$
- b) Man schätze die Approximationsfehler $|f(3) T_i(3; \pi)|$, i = 1, 2 mit Hilfe der Restgliedformel von Lagrange nach oben ab.

Aufgabe 23:

a) Man berechne die folgenden Grenzwerte

(i)
$$\lim_{x \to 0} \frac{e^{(x^2)} - 1}{1 - \cos x}$$
, (ii) $\lim_{x \to \infty} x \ln \left(\frac{2x + 3}{2x - 1} \right)$.

b) Nur die Ableitung $g'(x) = 3x^2 - 9$ ist von der reellwertigen Funktion g bekannt. Man gebe die Monotoniebereiche von g an und klassifiziere alle Extremwerte. Anschließend begründe man, welcher der unten angegebenen Funktionsgraphen g_i mit dem von g übereinstimmt.



Aufgabe 24:

Man diskutiere die reellwertige Funktion

$$f(x) = \frac{11x - x^3}{x^2 - 9} \,.$$

Dazu untersuche man im Einzelnen:

- a) Definitionsbereich,
- b) Symmetrien,
- c) Pole,
- d) Verhalten im Unendlichen und Asymptoten,
- e) Nullstellen,
- f) lokale Extrema und Monotonie,
- g) Wendepunkte und Konvexität.
- h) Abschließend skizziere man den Graphen von f(x).

Lösung 1:

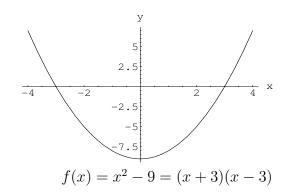
a)	(i)	B	C	$\neg C$	$B \Leftrightarrow \neg C$
		1	1	0	0
		1	0	1	1
		0	1	0	1
		0	0	1	0

(ii)	A	B	$\neg A$	$A \lor B$	$\neg A \Rightarrow (A \lor B)$
	1	1	0	1	1
	1	0	0	1	1
	0	1	1	1	1
	0	0	1	0	0

b)	A	В	C	$A \Rightarrow B$	$B \Rightarrow C$	$(A \Rightarrow B) \land (B \Rightarrow C)$	$A \Rightarrow C$	$ \begin{array}{c} \left(A \Rightarrow B) \land (B \Rightarrow C)\right) \\ \Rightarrow (A \Rightarrow C) \end{array} $
	1	1	1	1	1	1	1	1
	1	1	0	1	0	0	0	1
	1	0	1	0	1	0	1	1
	1	0	0	0	1	0	0	1
	0	1	1	1	1	1	1	1
	0	1	0	1	0	0	1	1
	0	0	1	1	1	1	1	1
	0	0	0	1	1	1	1	1

Lösung 2:

a) $x^2 - 9 = (x+3)(x-3) = 0$ $\Rightarrow \text{Nullstellen } x_1 = -3, x_2 = 3$ $\text{L\"osungsmenge} \quad \{-2, -1, 0, 1, 2\}$



b)

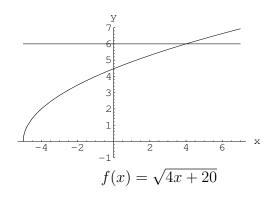
$$4x + 20 \ge 0 \Leftrightarrow x \ge -5$$
 und

$$\sqrt{4x+20} \le 6 \implies 4x+20 \le 36$$

$$\Rightarrow x \le 4 \Rightarrow$$

Lösungsmenge

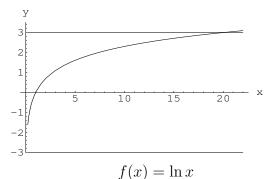
$$\{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4\}$$



c)Da der ln streng monoton wächst, erhält man

$$\ln 20 \approx 2.9958 < 3 < \ln 21 \approx 3.045 \implies$$

Lösungsmenge $\{1, 2, 3, 4, 5, 6, \dots 19, 20\}.$



Lösung 3:

Voraussetzung Aussage A: Gegeben seien a, b > 0 mit a < b.

Behauptung Aussage B:

$$\forall a, b, \text{ mit A, gilt } \sqrt{b} - \sqrt{a} < \sqrt{b-a}.$$

a) direkter Beweis:

$$\Rightarrow \sqrt{a} < \sqrt{b}$$

$$\Rightarrow \quad \sqrt{a}\sqrt{a} < \sqrt{a}\sqrt{b}$$

$$\Rightarrow 2a < 2\sqrt{ab}$$

$$\Rightarrow \quad b + a - 2\sqrt{ab} < b - a$$

$$\Rightarrow \underbrace{(\sqrt{b} - \sqrt{a})^2}_{>0} < \underbrace{b - a}_{>0}$$
$$\Rightarrow \sqrt{b} - \sqrt{a} < \sqrt{b - a} : B.$$

$$\Rightarrow \sqrt{b} - \sqrt{a} < \sqrt{b-a} : B$$

b) indirekter Beweis:

$$\neg B: \ \exists \ a, b \ \mathrm{mit} \ \mathrm{A} \ : \ \sqrt{b} - \sqrt{a} \geq \sqrt{b-a}$$

$$\Rightarrow$$
 $\exists a, b \text{ mit A} : b + a - 2\sqrt{ab} \ge b - a$

$$\Rightarrow$$
 $\exists a, b \text{ mit A} : a \geq \sqrt{ab}$

$$\Rightarrow$$
 $\exists a, b \text{ mit A} : a^2 \ge ab$

$$\Rightarrow$$
 $\exists a, b \text{ mit A} : a \ge b : \neg A$

Lösung 4:

a) Voraussetzung: A: Es gelten die Rechenregeln.

Behauptung: $B: \sqrt{14}$ ist irrational.

$$A \wedge \neg B : \sqrt{14}$$
 ist rational

$$\Rightarrow$$
 $\exists m, n \in \mathbb{N}$ teilerfremd (man beachte: $\sqrt{14} > 0$): $\sqrt{14} = \frac{m}{n}$

$$\Rightarrow$$
 $2 \cdot 7 = 14 = \frac{m^2}{n^2}$ (quadrieren)

$$\Rightarrow \qquad 2 \cdot 7 \cdot n^2 = m^2$$

 \Rightarrow m^2 ist gerade und damit auch m, also m = 2k

$$\Rightarrow$$
 $2 \cdot 7 \cdot n^2 = m^2 = (2k)^2 \Rightarrow 7 \cdot n^2 = 2k^2$

 \Rightarrow n^2 ist gerade und damit auch n

Widerspruch zur Teilerfremdheit von n,m

- \Rightarrow $\neg B$ ist falsch
- \Rightarrow B ist richtig
- b) Mit Hilfe eines indirekten Beweises zeigen wir,

dass aus der (wahren) Aussage

$$A: 133 < 135$$
 die Behauptung $B: \sqrt{14} + \sqrt{19} < \sqrt{15} + \sqrt{18}$ folgt:

$$\neg B: \quad \sqrt{14} + \sqrt{19} \ge \sqrt{15} + \sqrt{18}$$

$$\Rightarrow (\sqrt{14} + \sqrt{19})^2 \ge (\sqrt{15} + \sqrt{18})^2$$

$$\Rightarrow$$
 14 + 2 $\sqrt{14}\sqrt{19}$ + 19 \geq 15 + 2 $\sqrt{15}\sqrt{18}$ + 18

$$\Rightarrow \sqrt{14 \cdot 19} \ge \sqrt{15 \cdot 18}$$

$$\Rightarrow 14 \cdot 19 > 15 \cdot 18$$

$$\Rightarrow 7 \cdot 19 = 133 > 15 \cdot 9 = 135 : \neg A$$

Damit gilt
$$B: \sqrt{14} + \sqrt{19} < \sqrt{15} + \sqrt{18}$$
.

Lösung 5:

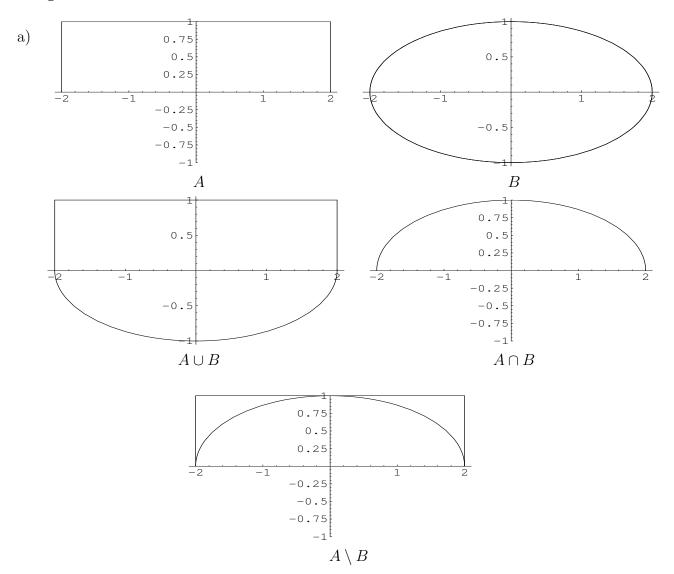


Bild 5.a

b) (i)
$$f$$
 ist gerade, denn es gilt
$$f(-x) = (-x)^2 + \sin(\ln|-x|) = x^2 + \sin(\ln|x|) = f(x)$$

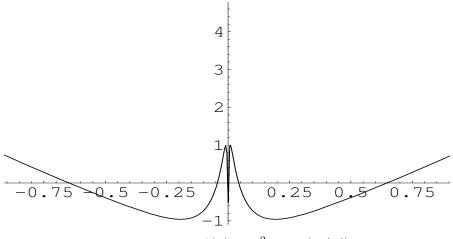


Bild 5.b.1 $f(x) = x^2 + \sin(\ln|x|)$

(ii) g ist ungerade, denn es gilt $g(-x) = (-x)^3 + \sin(2(-x)) = -x^3 - \sin(2x) = -g(x)$

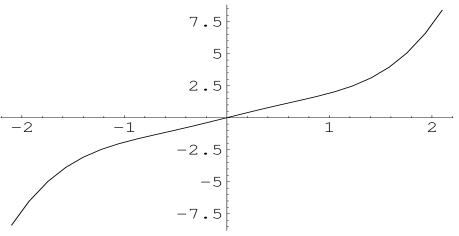


Bild 5.b.2: $g(x) = x^3 + \sin(2x)$

Lösung 6:

a) (i) f_1 ist weder injektiv noch surjektiv

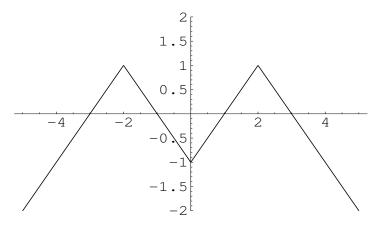


Bild 6.a.1
$$f_1(x) = 1 - |2 - |x||$$

(ii) f_2 ist injektiv aber nicht surjektiv

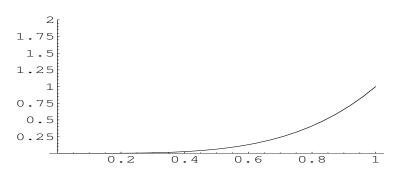


Bild 6.a.2 $f_2(x) = x^4$

(iii) f_3 ist surjektiv aber nicht injektiv

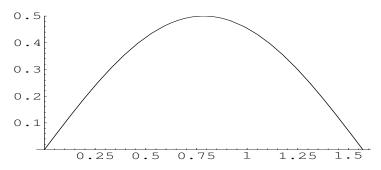


Bild 6.a.3 $f_3(x) = \sin x \cos x = \frac{1}{2} \sin 2x$

(iv) f_4 ist bijektiv

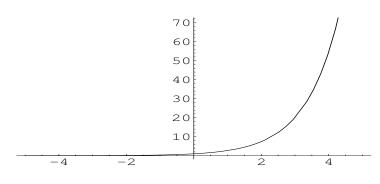


Bild 6.a.4 $f_4(x) = e^x$

b) Die Scheitelpunktform des quadratischen Polynoms:

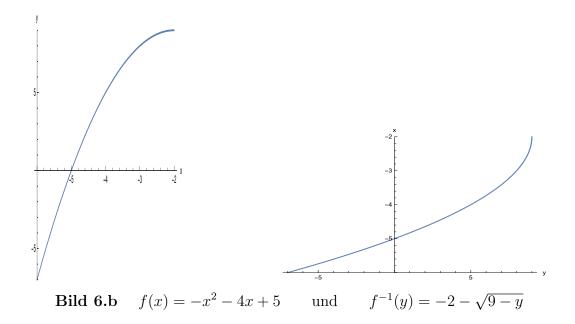
$$y = f(x) = -x^2 - 4x + 5 = -(x+2)^2 + 9 \implies y \in W = (-\infty, 9].$$

f ist in $(-\infty, -2]$ bijektiv und damit invertierbar.

Berechnung der Umkehrfunktion:

$$y = -(x+2)^2 + 9 \implies (x+2)^2 = 9 - y \implies x+2 = \pm \sqrt{9-y} \implies x = -2 \pm \sqrt{9-y}$$

Wegen $x \in (-\infty, -2]$ folgt $f^{-1}(y) = -2 - \sqrt{9-y}$.



Lösung 7:

a) Beweis über vollständige Induktion:

$$n = 0: \sum_{k=0}^{0} q^{k} = q^{0} = 1 = \frac{1-q}{1-q},$$

$$n \to n+1: \sum_{k=0}^{n+1} q^{k} = \left(\sum_{k=0}^{n} q^{k}\right) + q^{n+1}$$

$$= \frac{1-q^{n+1}}{1-q} + q^{n+1}$$

$$= \frac{1-q^{n+1}+(1-q)q^{n+1}}{1-q}$$

$$= \frac{1-q^{n+2}}{1-q},$$

b) Mit
$$a_n := 11^{n+1} + 12^{2n-1}$$
 gilt $11^{n+1} = a_n - 12^{2n-1}$.

Beweis über vollständige Induktion:

$$n=1:$$
 $a_1=11^2+12=133$ ist durch 133 teilbar,
$$n\to n+1: \ a_{n+1}=11^{n+2}+12^{2n+1}$$

$$=11\cdot 11^{n+1}+12^{2n+1}$$

$$=11(a_n-12^{2n-1})+12^2\cdot 12^{2n-1}$$

$$=11a_n+12^{2n-1}(12^2-11)$$

$$=11a_n+133\cdot 12^{2n-1}$$
 ist durch 133 teilbar.

Lösung 8:

a) Beweis über vollständige Induktion:

$$n = 1: \frac{1}{2} \ge \frac{1}{1+1}$$

$$n \to n+1: \qquad \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} \cdot \frac{2(n+1)-1}{2(n+1)}$$

$$\ge \frac{n+2}{n+2} \cdot \frac{1}{n+1} \cdot \frac{2n+1}{2n+2}$$

$$= \frac{1}{n+2} \cdot \frac{2n^2 + 5n + 2}{2n^2 + 4n + 2}$$

$$> \frac{1}{n+2}$$

b) direkter Beweis

$$\prod_{k=1}^{n} \left(2 + \frac{2}{k+1} \right) = \prod_{k=1}^{n} \frac{2(k+1)+2}{k+1} = \prod_{k=1}^{n} 2 \cdot \frac{k+2}{k+1}$$

$$= 2^{n} \cdot \frac{3 \cdot 4 \cdot 5 \cdots n \cdot (n+1) \cdot (n+2)}{2 \cdot 3 \cdots n(n+1)} = 2^{n-1}(n+2)$$

Alternativer Beweis von $\prod_{k=1}^{n} \left(2 + \frac{2}{k+1} \right) = 2^{n-1}(n+2)$ durch vollständige Induktion:

$$n = 1: \prod_{k=1}^{1} \left(2 + \frac{2}{k+1} \right) = 2 + \frac{2}{1+1} = 3 = 2^{1-1}(1+2)$$

$$n \to n+1: \prod_{k=1}^{n+1} \left(2 + \frac{2}{k+1} \right) = \left(\prod_{k=1}^{n} \left(2 + \frac{2}{k+1} \right) \right) \cdot \left(2 + \frac{2}{n+2} \right)$$

$$= 2^{n-1}(n+2) \cdot 2 \cdot \left(1 + \frac{1}{n+2} \right)$$

$$= 2^{n}(n+3)$$

Lösung 9:

a)
$$\binom{n}{m} \cdot \frac{n+1}{m+1} = \frac{n!}{m!(n-m)!} \cdot \frac{n+1}{m+1} = \frac{(n+1)!}{(m+1)!(n+1-(m+1))!} = \binom{n+1}{m+1}$$

b) (i) Euklidischer Algorithmus

$$96135 = 1 \cdot 84854 + 11281$$

$$84854 = 7 \cdot 11281 + 5887$$

$$11281 = 1.5887 + 5394$$

$$5887 = 1 \cdot 5394 + 493$$

$$5394 = 10 \cdot 493 + 464$$

$$493 = 1 \cdot 464 + 29$$

$$464 = 16 \cdot 29 + 0$$

$$\implies$$
 ggT(96135, 84854) = 29

Damit erhält man

$$kgV(96135,84854) = \frac{96135 \cdot 84854}{ggT(96135,84854)} = \frac{96135 \cdot 84854}{29} = 281291010.$$

(ii) Primfaktorzerlegung

$$\begin{array}{l} 96135 = 3 \cdot 5 \cdot 13 \cdot 17 \cdot 29, \quad 84854 = 2 \cdot 7 \cdot 11 \cdot 19 \cdot 29 \\ \\ ggT(96135, 84854) = 29 \ , \\ kgV(96135, 84854) = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 29 = 281291010 \ . \end{array}$$

Lösung 10:

a) (i) $M_1 = [-2, 8] \cap]5, 15] =]5, 8]$ ist nach unten beschränkt durch inf $M_1 = 5$ und nach oben beschränkt durch sup $M_1 = 8$.

(ii)
$$M_2 =]-\infty, 2] \cup \left\{ x \in \mathbb{R} \mid x = \frac{5n}{2n+1}, n \in \mathbb{N} \right\}$$
 ist nach unten unbeschränkt und nach oben beschränkt, denn $\frac{5n}{2n+1} = \frac{5}{2+1/n} < \frac{5}{2} = \sup M_2$.

b) Induktionsanfang:

$$n = 0: \quad \frac{(2 \cdot 3^0 + 3 \cdot (-2)^0) a + (3^0 - (-2)^0) b}{5} = \frac{(2+3)a}{5} = a = x_0$$

$$n = 1: \quad \frac{(2 \cdot 3^1 + 3 \cdot (-2)^1) a + (3^1 - (-2)^1) b}{5} = \frac{(3 - (-2))b}{5} = b = x_1$$

Induktionsschritt: $n-1, n \rightarrow n+1$

$$x_{n+1} = x_n + 6x_{n-1}$$

$$= \frac{(2 \cdot 3^n + 3 \cdot (-2)^n) a + (3^n - (-2)^n) b}{5}$$

$$+ 6 \cdot \frac{(2 \cdot 3^{n-1} + 3 \cdot (-2)^{n-1}) a + (3^{n-1} - (-2)^{n-1}) b}{5}$$

$$= \frac{(2 \cdot 3^n + 3 \cdot (-2)^n + 6 (2 \cdot 3^{n-1} + 3 \cdot (-2)^{n-1})) a}{5}$$

$$+ \frac{(3^n - (-2)^n + 6 (3^{n-1} - (-2)^{n-1})) b}{5}$$

$$= \frac{((2 + 2^2) \cdot 3^n + (3 - 3^2) \cdot (-2)^n) a + ((1 + 2)3^n - (1 - 3)(-2)^n) b}{5}$$

$$= \frac{(2 \cdot 3^{n+1} + 3 \cdot (-2)^{n+1}) a + (3^{n+1} - (-2)^{n+1}) b}{5}$$

Lösung 11:

a)
$$\lim_{n \to \infty} \sqrt{n^2 + 2n} - \sqrt{n^2 - 2n}$$

$$= \lim_{n \to \infty} \frac{n^2 + 2n - (n^2 - 2n)}{\sqrt{n^2 + 2n} + \sqrt{n^2 - 2n}}$$

$$= \lim_{n \to \infty} \frac{4}{\sqrt{1 + 2/n} + \sqrt{1 - 2/n}} = \frac{4}{2} = 2$$

b)
$$\lim_{n \to \infty} \left(\frac{3n^2 + 1}{2n^2 - n - 7} \right)^3 = \lim_{n \to \infty} \left(\frac{3 + 1/n^2}{2 - 1/n - 7/n^2} \right)^3 = \left(\frac{3}{2} \right)^3 = \frac{27}{8}$$

c)
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 2} - \sqrt{4n^2 + 3}}{n} = \lim_{n \to \infty} \sqrt{1 + 2/n^2} - \sqrt{4 + 3/n^2} = -1$$

d)
$$\lim_{n \to \infty} \frac{2^{n+1} + 3^n}{3^{n+1} + 2^n} = \lim_{n \to \infty} \frac{3^n}{3^n} \cdot \frac{2(2/3)^n + 1}{3 + (2/3)^n} = \lim_{n \to \infty} \frac{2(2/3)^n + 1}{3 + (2/3)^n} = \frac{1}{3}$$

Lösung 12:

Die Funktion f(x) = x(2-x) besitzt genau die Nullstellen $x^* = 0$ und $x^{**} = 2$.

Die durch f gegebene Newton-Folge lautet:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n(2 - x_n)}{2(1 - x_n)} = -\frac{x_n^2}{2(1 - x_n)}$$
.

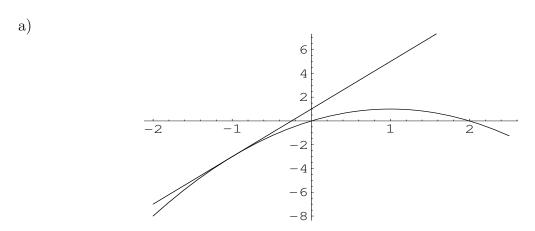


Bild 12: f(x) = x(2-x) mit Tangente für $x_0 < 0$

Da $x_0 \leq 0$ vorausgesetzt ist, liegt aufgrund der Anschauung die Vermutung nahe, dass die Newton-Folge $(x_n)_{n \in \mathbb{N}}$ monoton wachsend gegen die Nullstelle $x^* = 0$ konvergiert.

Die Newton-Folge $(x_n)_{n\in\mathbb{N}}$ ist nach oben beschränkt durch Null.

Beweis über Induktion:

$$n = 0: x_0 \le 0$$

$$n \to n+1: \quad x_{n+1} = -\frac{x_n^2}{2(1-x_n)} \le 0 \quad \text{wegen} \quad x_n \le 0$$

Die Newton-Folge $(x_n)_{n\in\mathbb{N}}$ wächst monoton.

Beweis direkt: für $x_n \leq 0$ gilt

$$x_{n+1} = x_n - \frac{x_n(2 - x_n)}{2(1 - x_n)} \quad \Rightarrow \quad x_{n+1} - x_n = -\frac{x_n(2 - x_n)}{2(1 - x_n)} \ge 0$$

Damit konvergiert die Newton-Folge $(x_n)_{n\in\mathbb{N}}$ gegen eine Nullstelle.

Wegen $x_n \leq 0$ gilt

$$\lim_{n\to\infty} x_n = x^* = 0.$$

b)
$$|x_{n+1} - x^*| = |x_{n+1}| = \left| -\frac{x_n^2}{2(1 - x_n)} \right| = \frac{|x_n - x^*|^2}{|2(1 - x_n)|} \le \frac{1}{2} |x_n - x^*|^2$$

Für den Startwert $x_0 = -1$ erhält man:

$$x_0 = -1$$

$$x_1 = -0.25$$

$$x_2 = -0.025$$

 $x_3 = -0.0003048...$

 $x_4 = -0.00000004646...$

 $x_5 = -0.00000000000001079...$

Lösung 13:

a) Die ersten Folgenglieder lauten

$$a_1 = 0, a_2 = 1, a_3 = \frac{2}{3} = 0.666..., a_4 = \frac{7}{9} = 0.777..., a_5 = \frac{20}{27} = 0.740..., a_6 = \frac{61}{81} = 0.753...$$

Falls $(a_n)_{n\in\mathbb{N}}$ konvergiert, so sei $a:=\lim_{n\to\infty}a_n$ der Grenzwert.

Aus der Rekursion erhält man:

$$a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \left(1 - \frac{a_n}{3} \right) = 1 - \frac{a}{3} \implies a = \frac{3}{4}$$

Zum Nachweis der Konvergenz von $(a_n)_{n\in\mathbb{N}}$ gegen $a=\frac{3}{4}$ wird auf die Definition der Konvergenz gegen a zurückgegriffen

$$\begin{vmatrix} a_{n+1} - \frac{3}{4} \end{vmatrix} = \begin{vmatrix} 1 - \frac{a_n}{3} - \frac{3}{4} \end{vmatrix} = \begin{vmatrix} -\frac{a_n}{3} + \frac{1}{4} \end{vmatrix} = \begin{vmatrix} -\frac{1}{3} \left(a_n - \frac{3}{4} \right) \end{vmatrix} = \frac{1}{3} \begin{vmatrix} a_n - \frac{3}{4} \end{vmatrix}$$
$$= \frac{1}{3} \cdot \frac{1}{3} \begin{vmatrix} a_{n-1} - \frac{3}{4} \end{vmatrix} = \cdots = \left(\frac{1}{3} \right)^n \begin{vmatrix} a_1 - \frac{3}{4} \end{vmatrix} = \left(\frac{1}{3} \right)^n \cdot \frac{3}{4} \xrightarrow{n \to \infty} 0.$$

b) Falls $(b_n)_{n\in\mathbb{N}}$ konvergiert, so sei $b:=\lim_{n\to\infty}b_n$ der Grenzwert.

Aus der Rekursion erhält man

$$b = \lim_{n \to \infty} b_{n+1} = \lim_{n \to \infty} \frac{b_n^2 + 3}{4} = \frac{b^2 + 3}{4}$$

$$\Rightarrow$$
 0 = $b^2 - 4b + 3 = (b - 1)(b - 3)$ \Rightarrow $b = 1 \lor b = 3$.

Es gilt $b_{n+1} = \frac{b_n^2 + 3}{4} \ge 0$. Die ersten Folgenglieder lauten

$$b_1 = \frac{1}{2}, \ b_2 = \frac{13}{16} = 0.8125, \ b_3 = \frac{937}{1024} = 0.9150..., \ b_4 = \frac{4023697}{4194304} = 0.9593...$$

Man zeigt durch vollständige Induktion die Beschränktheit der Folge nach oben, hier $b_n \leq 1$:

Induktionsanfang: $b_1 = \frac{1}{2} \le 1$

Induktionsschritt: $b_{n+1} = \frac{b_n^2 + 3}{4} \le \frac{1+3}{4} = 1$

Man zeigt durch vollständige Induktion, dass die Folge monoton wächst, d.h. $b_n \leq b_{n+1}$:

Induktionsanfang: $b_1 = \frac{1}{2} \le \frac{13}{16} = b_2$

Induktionsschritt: $b_n \le b_{n+1} \Rightarrow b_n^2 \le b_{n+1}^2 \Rightarrow b_{n+1} = \frac{b_n^2 + 3}{4} \le \frac{b_{n+1}^2 + 3}{4} = b_{n+2}$

Also wächst b_n monoton und ist beschränkt nach oben durch 1, konvergiert also nach dem Monotoniekriterium und zwar gegen b = 1.

c) Wenn c_n gegen c konvergiert, so erhält man aus der Rekursion

$$c = 2c + 1 \implies c = -1$$
.

Aus $c_1 = 1$ und $c_{n+1} = 2c_n + 1$ folgt jedoch durch Induktion $c_n \ge 0$. Damit kann c_n nicht konvergieren.

d) Falls $(d_n)_{n\in\mathbb{N}}$ konvergiert mit $d:=\lim_{n\to\infty}d_n$, so ergibt die Rekursion:

$$d = \sqrt{3d-2} \ \Rightarrow \ d^2 = 3d-2 \ \Rightarrow \ (d-1)(d-2) = 0 \ \Rightarrow \ d = 1 \lor \ d = 2.$$

 $(d_n)_{n\in\mathbb{N}}$ konvergiert (gegen d=2), denn es gilt $d_n \geq 2$ und $d_{n-1} \geq d_n$, mit vollständiger Induktion:

$$d_1 = 3 \ge 2 \text{ und } d_{n+1} = \sqrt{3d_n - 2} \ge \sqrt{3 \cdot 2 - 2} = 2$$

$$d_2 = \sqrt{3^2 - 2} = \sqrt{7} \le 3 = d_1$$
 und $d_{n+1} = \sqrt{3d_n - 2} \le \sqrt{3d_{n-1} - 2} = d_n$.

Lösung 14:

a) Eine Folge im \mathbb{R}^m konvergiert genau dann, wenn die Koordinatenfolgen konvergieren. Der Grenzwert lässt sich dann koordinatenweise berechnen.

Wir untersuchen daher die Konvergenz der Koordinatenfolgen von

$$a_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} n^2/2^n \\ 1+1/n \end{pmatrix}.$$

Zur Konvergenz der Koordinatenfolge $x_n = n^2/2^n$:

$$x_1 = \frac{1}{2}, \ x_2 = \frac{4}{4} = 1, \ x_3 = \frac{9}{8}, \ x_4 = \frac{16}{16} = 1, \ x_5 = \frac{25}{32}, \ x_6 = \frac{36}{64}, \dots$$

Zunächst halten wir fest, dass $x_n \ge 0$ gilt.

Aufgrund der Entwicklung der ersten Folgenglieder vermuten wir, dass die Folge ab n=3 monoton fällt, d.h. es gilt $x_n \geq x_{n+1}$, und beweisen dies direkt.

Für $n \ge 3$ gilt

$$2 < (n-1)^2 = n^2 - 2n + 1 \implies 2n + 1 < n^2$$
.

Damit ergibt sich

$$x_{n+1} = \frac{(n+1)^2}{2^{n+1}} = \frac{n^2 + 2n + 1}{2 \cdot 2^n} \le \frac{n^2 + n^2}{2 \cdot 2^n} = \frac{n^2}{2^n} = x_n$$
.

Also konvergiert $(x_n)_{n\in\mathbb{N}}$. Dass der Grenzwert Null ist, kann einfach über l'Hospital berechnet werden, soll hier jedoch nicht ausgeführt werden.

Für die zweite Koordinatenfolge gilt: $\lim_{n\to\infty} y_n = \lim_{n\to\infty} (1+1/n) = 1$.

Da beide Koordinatenfolgen konvergieren, konvergiert $(a_n)_{n \in \mathbb{N}}$.

b) Die Konvergenz einer Folge ist in endlichdimensionalen Vektorräumen (hier \mathbb{R}^n) unabhängig von der Norm (z.B. $||\cdot||_1$, $||\cdot||_2$ und $||\cdot||_{\infty}$). Es reicht daher aus, die Konvergenz in einer geeigneten Norm nachzuweisen.

Für die gegebene Folge vermuten wir, dass

$$\lim_{n\to\infty} \boldsymbol{a}_{n+1} := \lim_{n\to\infty} \left(\begin{array}{c} x_{n+1} \\ y_{n+1} \end{array} \right) = \lim_{n\to\infty} \left(\begin{array}{c} (x_n - y_n)/\sqrt{3} \\ (x_n + y_n)/\sqrt{3} \end{array} \right) = \boldsymbol{0} =: \boldsymbol{a}$$

gilt, dass also der Nullvektor der Grenzwert ist und versuchen die Konvergenz über die Definition, also

$$||\boldsymbol{a}_{n+1} - \boldsymbol{a}|| = ||\boldsymbol{a}_{n+1}|| \stackrel{n \to \infty}{\to} 0$$

nachzuweisen. Für die obigen Normen ergibt sich

$$||\boldsymbol{a}_{n+1}||_{1} = \frac{|x_{n} - y_{n}|}{\sqrt{3}} + \frac{|x_{n} + y_{n}|}{\sqrt{3}} \leq \frac{1}{\sqrt{3}}(|x_{n}| + |y_{n}| + |x_{n}| + |y_{n}|)$$

$$= \frac{2}{\sqrt{3}}||\boldsymbol{a}_{n}||_{1} = \left(\frac{2}{\sqrt{3}}\right)^{2}||\boldsymbol{a}_{n-1}||_{1} \cdots = \left(\frac{2}{\sqrt{3}}\right)^{n}||\boldsymbol{a}_{1}||_{1} \stackrel{n \to \infty}{\to} \infty$$

$$||\boldsymbol{a}_{n+1}||_{\infty} = \max\{\frac{|x_n - y_n|}{\sqrt{3}}, \frac{|x_n + y_n|}{\sqrt{3}}\} \le \max\{\frac{|x_n| + |y_n|}{\sqrt{3}}\}$$

 $\le \frac{2}{\sqrt{3}}\max\{|x_n|, |y_n|\} = \frac{2}{\sqrt{3}}||\boldsymbol{a}_n||_{\infty} \text{ (siehe oben)}$

$$||\boldsymbol{a}_{n+1}||_{2} = \sqrt{\left(\frac{x_{n} - y_{n}}{\sqrt{3}}\right)^{2} + \left(\frac{x_{n} + y_{n}}{\sqrt{3}}\right)^{2}} = \frac{1}{\sqrt{3}}\sqrt{2x_{n}^{2} + 2y_{n}^{2}}$$

$$= \frac{\sqrt{2}}{\sqrt{3}}||\boldsymbol{a}_{n}||_{2} = \left(\sqrt{\frac{2}{3}}\right)^{2}||\boldsymbol{a}_{n-1}||_{2}$$

$$\vdots$$

$$= \left(\sqrt{\frac{2}{3}}\right)^{n}||\boldsymbol{a}_{1}||_{2} \xrightarrow{n \to \infty} 0$$

Also konvergiert $(a_n)_{n\in\mathbb{N}}$ in der $||\cdot||_2$ Norm und damit in \mathbb{R}^2 .

Lösung 15:

a) Unter Verwendung der Summenformel der geometrischen Reihe ergibt sich

$$x = 3.1\overline{415} = \frac{31}{10} + \frac{415}{10^4} + \frac{415}{10^7} + \dots = \frac{31}{10} + \frac{415}{10^4} \sum_{j=0}^{\infty} \frac{1}{1000^j}$$
$$= \frac{31}{10} + \frac{415}{10^4} \cdot \frac{1}{1 - 1/1000} = \frac{31 \cdot 999 + 415}{9990} = \frac{31384}{9990} = \frac{15692}{4995}.$$

Einen alternativen kurzen, jedoch durch die Aufgabenstellung nicht verlangten Lösungsweg, erhält man durch Verschiebung des Dezimalpunktes:

$$1000x - x = 3141.5\overline{415} - 3.1\overline{415} = 3138.4 \quad \Rightarrow \quad x = \frac{3138.4}{999} = \frac{31384}{9990}$$
.

b) (i)
$$\sum_{n=0}^{\infty} \frac{5}{3^{n+1}} = \sum_{n=0}^{\infty} \frac{5}{3} \left(\frac{1}{3}\right)^n = \frac{5}{3} \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n = \frac{5}{3} \cdot \frac{1}{1 - 1/3} = \frac{5}{2}$$

(ii)
$$\sum_{n=0}^{\infty} \frac{7^n}{2^n} = \sum_{n=0}^{\infty} \left(\frac{7}{2}\right)^n$$
 divergiert, denn die notwendige Konvergenzbedingung

 $\lim_{n\to\infty} a_n = 0$ ist nicht erfüllt. Für die geometrische Folge mit $q = \frac{7}{2}$ gilt nämlich $\lim_{n\to\infty} \left(\frac{7}{2}\right)^n = \infty$.

(iii)
$$\sum_{n=2}^{\infty} \left(\frac{2}{n-1} - \frac{2}{n} \right) = \lim_{k \to \infty} \sum_{n=2}^{k} \left(\frac{2}{n-1} - \frac{2}{n} \right)$$
$$= \lim_{k \to \infty} \left(\frac{2}{1} + \frac{2}{2} + \frac{2}{3} + \dots + \frac{2}{k-1} - \frac{2}{2} - \frac{2}{3} - \dots - \frac{2}{k-1} - \frac{2}{k} \right)$$
$$= \lim_{k \to \infty} \left(2 - \frac{2}{k} \right) = 2$$

(iv)
$$\sum_{n=1}^{\infty} \frac{5n+1}{2n-1}$$
 divergiert, denn die notwendige Konvergenzbedingung ist nicht erfüllt:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{5n+1}{2n-1} = \lim_{n \to \infty} \frac{5+1/n}{2-1/n} = \frac{5}{2} \neq 0.$$

Lösung 16:

a) Es gilt

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \left(\frac{2 \cdot (-1)^n}{n} - \frac{1}{n+1} \right) = 2 \lim_{n \to \infty} \frac{(-1)^n}{n} - \lim_{n \to \infty} \frac{1}{n+1} = 0.$$

Die Reihe umgeschrieben lautet:

$$\sum_{n=1}^{\infty} \left(\frac{2 \cdot (-1)^n}{n} - \frac{1}{n+1} \right) = \sum_{n=1}^{\infty} (-1)^n \left(\frac{2}{n} - \frac{(-1)^n}{n+1} \right) .$$

Da
$$a_n = \frac{2}{n} - \frac{(-1)^n}{n+1} > 0$$
 für alle $n \in \mathbb{N}$ gilt, alterniert die Reihe.

Damit das Leibniz-Kriterium angewendet werden kann, muss a_n noch monoton fallen. Es müsste also $a_n \ge a_{n+1}$ für alle $n \in \mathbb{N}$ gelten. Man erhält jedoch mit

$$a_n = \frac{2}{n} - \frac{(-1)^n}{n+1} \ge \frac{2}{n+1} - \frac{(-1)^{n+1}}{n+2} = a_{n+1}$$

$$\Rightarrow 2(n+1)(n+2) - (-1)^n n(n+2) \ge 2n(n+2) - (-1)^{n+1} n(n+1)$$

$$\Rightarrow 2n+4 \ge (-1)^n (n(n+2) + n(n+1)) = (-1)^n (2n^2 + 3n)$$

einen Widerspruch für alle geraden n.

b) (i) Es handelt sich um eine alternierende Reihe, die nach dem Leibniz-Kriterium konvergiert, denn es gilt:

i.
$$a_n := \frac{n+1}{(n+2)(n+3)} \ge 0$$

ii.
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n+1}{(n+2)(n+3)} = \lim_{n \to \infty} \frac{1/n + 1/n^2}{1 + 5/n + 6/n^2} = 0$$

iii. a_n fällt monoton, denn

$$0 \leq n$$

$$\Rightarrow (n+2)^2 = n^2 + 4n + 4 \leq n^2 + 5n + 4 = (n+1)(n+4)$$

$$\Rightarrow \frac{n+2}{n+4} \leq \frac{n+1}{n+2}$$

$$\Rightarrow a_{n+1} = \frac{n+2}{(n+3)(n+4)} \leq \frac{n+1}{(n+2)(n+3)} = a_n.$$

(ii) Man verlangt für die Abschätzung des Wertes S der Reihe durch die Partialsummen S_k

$$|S - S_k| \le a_{k+1} = \frac{k+2}{(k+3)(k+4)} \stackrel{!}{<} 0.001.$$

Aus $a_{995}=0.001001$ und $a_{996}=0.0009999998$ erhält man $k\geq N=995$. Die Partialsummenwerte lauten $S_{995}=0.0789413$ und $S_{996}=0.0799413$.

(iii) Mit dem Mathematica-Befehl

$$NSum[(-1)^n*(n + 1)/(n^2 + 5 n + 6), \{n, 0, k\}]$$

berechnet man die Partialsummen und erhält

$$S_{1129} = 0.0790004 \le S \le S_{892} = 0.07999930$$

Für den Grenzwert bedeutet dies $S = 0.079 \cdots$.

Lösung 17:

a) $\sum_{n=1}^{\infty} \left(\sqrt{n^2 + n} - n\right)^n$ konvergiert absolut nach dem Wurzelkriterium, denn mit $a_n = \left(\sqrt{n^2 + n} - n\right)^n$ erhält man

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt{n^2 + n} - n = \lim_{n \to \infty} \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + 1/n} + 1} = \frac{1}{2} < 1$$

b) $\sum_{n=0}^{\infty} \frac{2^n}{n!}$ konvergiert absolut nach dem Quotientenkriterium, denn es gilt

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{2^{n+1} \cdot n!}{(n+1)! \cdot 2^n} = \lim_{n \to \infty} \frac{2}{n+1} = 0 < 1.$$

c) Die Reihe konvergiert nicht, denn mit der geometrischen Summenformel erhält man

$$\frac{1}{16} + \frac{3}{32} + \frac{9}{64} + \frac{27}{128} + \frac{81}{256} + \dots = \lim_{n \to \infty} \sum_{k=0}^{n} \underbrace{\frac{1}{16} \left(\frac{3}{2}\right)^{k}}_{=n} = \lim_{n \to \infty} \frac{1}{16} \sum_{k=0}^{n} \left(\frac{3}{2}\right)^{k}$$

$$= \lim_{n \to \infty} \frac{1}{16} \cdot \frac{1 - (3/2)^{n+1}}{1 - 3/2} = \lim_{n \to \infty} \frac{1}{8} \left((3/2)^{n+1} - 1 \right) = \infty$$

Alternative Begründung:

Die notwendige Konvergenzbedingung für Reihen ist nicht erfüllt

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} \frac{1}{16} \left(\frac{3}{2} \right)^k = \infty \neq 0.$$

d)
$$\sum_{k=1}^{\infty} \frac{k+1}{k^2+1}$$
 divergiert nach dem Minorantenkriterium, denn es gilt

$$a_k = \frac{k+1}{k^2+1} \ge \frac{k+1}{k^2+k} = \frac{k+1}{k(k+1)} = \frac{1}{k} \Rightarrow \sum_{k=1}^{\infty} \frac{k+1}{k^2+1} \ge \sum_{k=1}^{\infty} \frac{1}{k} = \infty.$$

Lösung 18:

a)
$$]-3,5] \cap]2,8] =]2,5] \Rightarrow M_1 =]2,5] \cup \left\{ a_n \in \mathbb{R} \mid a_n = \frac{1}{n}, n \in \mathbb{N} \right\}$$

 $\Rightarrow M'_1 = \{0\} \cup [2,5] \text{ und } M_1^0 =]2,5[, M_1 \text{ ist weder offen noch abgeschlossen}$

$$M_{2} = \{0\} \cup [3,4] \cup \left\{ a_{n} \in \mathbb{R} \mid a_{n} = 1 + \frac{1}{2n}, n \in \mathbb{N} \right\}$$

$$\Rightarrow M'_{2} = \{1\} \cup [3,4] \text{ und } M_{2}^{0} =]3,4[, M_{2} \text{ ist weder offen noch abgeschlossen}$$

$$M'_{3} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} \middle| 0 \leq y \leq |x| \leq 1 \right\}, M_{3}^{0} = M_{3}, M_{3} \text{ ist offen.}$$

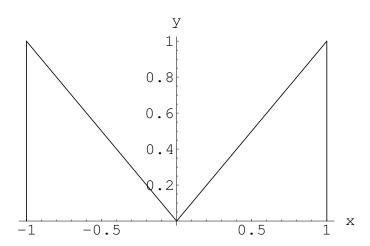
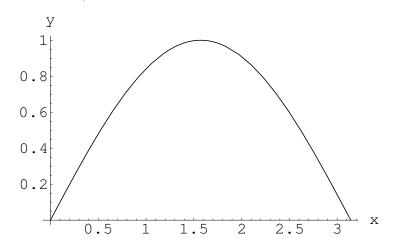


Bild 18 a) Menge M_3

b) (i)
$$\lim_{x \to \pi/2} \cos x \tan x = \lim_{x \to \pi/2} \sin x = 1$$



28

Bild 18 b) (i)
$$f(x) = \cos x \tan x = \sin x$$

(ii) Der folgende Grenzwert existiert nur uneigentlich: $\lim_{x\to 1+} \frac{x+1}{\sqrt{x-1}} = \infty$



Lösung 19:

a) f kann im Punkt $x_0 = 0$ durch f(0) = 0 stetig ergänzt werden, denn dann gilt

$$|f(x) - f(0)| = \left| x \cdot \cos^2 \frac{1}{x} \right| \le |x|.$$

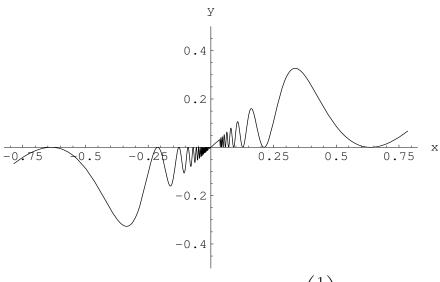


Bild 19 a):
$$f(x) = x \cos^2 \left(\frac{1}{x}\right)$$

Das ε - δ -Kriterium ist erfüllt, wenn man zu beliebig vorgegebenem $\varepsilon>0$ nun $\delta=\varepsilon$ wählt:

$$|x - x_0| = |x| < \delta \quad \Rightarrow \quad |f(x) - f(0)| \le |x| < \delta = \varepsilon.$$

b) g ist im Punkt $x_0 = 0$ unstetig, denn für Folgen $x \to x_0$ mit x < 0 gilt

$$\lim_{x \to 0-} g(x) = \lim_{x \to 0-} e^x = 1 \neq 0 = g(0).$$

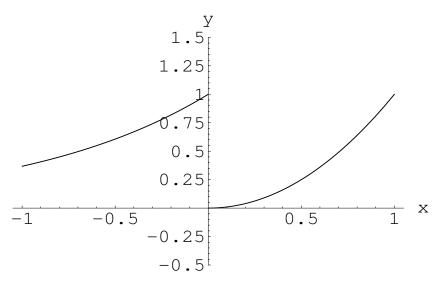


Bild 19 b): g(x)

Lösung 20:

a) Aus den gegebenen Werten für die Ableitung der Funktion folgt:

$$\begin{array}{llll} f(0) & = & 0 & , \\ f(x) & = & -2x + a & \text{für } -\infty < x < -1 \, , \\ f(x) & = & x^2 + b & \text{für } -1 < x < 2 \, , \\ f(x) & = & x + c & \text{für } 2 < x < \infty \end{array}$$

mit Konstanten $a,b,c\in\mathbb{R}$. Diese ist stetig für $x\neq -1$ und $x\neq 2$.

Mit $0 = f(0) = 0^2 + b$ erhält man b = 0.

Die Stetigkeitsforderung im Punkt x = -1 ergibt:

$$2 + a = \lim_{x \to -1-} f(x) \stackrel{!}{=} \lim_{x \to -1+} f(x) = (-1)^2 + b = 1 \implies a = -1.$$

Die Stetigkeitsforderung im Punkt x = 2 ergibt:

$$4 = 2^2 + b = \lim_{x \to 2^-} f(x) \stackrel{!}{=} \lim_{x \to 2^+} f(x) = 2 + c \implies c = 2.$$

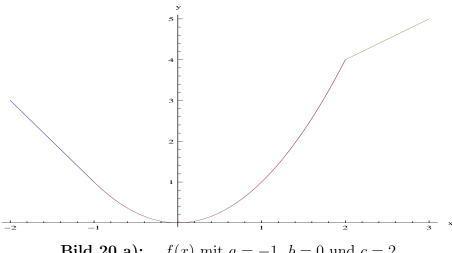


Bild 20 a): f(x) mit a = -1, b = 0 und c = 2

Die nun stetige Funktion f ist im Punkt x = -1 auch differenzierbar, denn es gilt

$$\lim_{x \to -1-} f'(x) = -2 = \lim_{x \to -1+} f'(x) .$$

Im Punkt x = 2 ist f nicht differenzierbar, denn es gilt

$$\lim_{x \to 2-} f'(x) = 4 \neq 1 = \lim_{x \to 2+} f'(x).$$

b) Stetigkeitsforderung im Punkt $x_0 = 1$

$$a + b = \lim_{x \to 1-} ax + b \stackrel{!}{=} f(1) = \ln 1 = 0 \implies b = -a,$$

Differenzierbarkeitsforderung im Punkt $x_0 = 1$

$$a = \lim_{x \to 1-} (ax+b)' = \lim_{x \to 1-} f'(x) \stackrel{!}{=} \lim_{x \to 1+} f'(x) = \lim_{x \to 1+} \frac{1}{x} = 1 \implies a = 1 \implies b = -1.$$

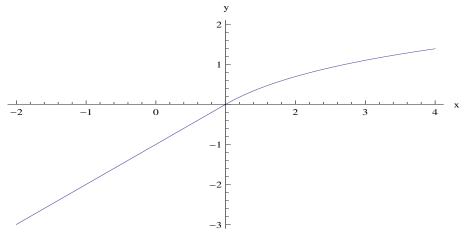


Bild 20 b): f(x) mit a = 1 und b = -1

c)
$$f(x) = \cos x \implies f'(x) = -\sin x$$

$$\Rightarrow T(x) = f\left(\frac{\pi}{2}\right) + f'\left(\frac{\pi}{2}\right)\left(x - \frac{\pi}{2}\right) = \cos\frac{\pi}{2} - \sin\frac{\pi}{2} \cdot \left(x - \frac{\pi}{2}\right) = -\left(x - \frac{\pi}{2}\right)$$

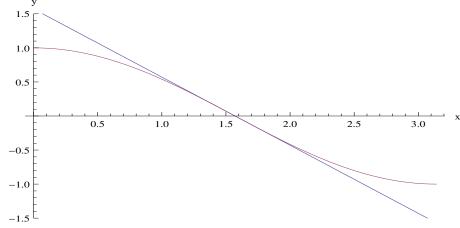


Bild 20 c): $f(x) = \cos x$ mit Tangente $T(x) = -\left(x - \frac{\pi}{2}\right)$ in $x_0 = \frac{\pi}{2}$

Lösung 21:

a) i)
$$f(x) = (2x+1)^{\sin x} = e^{\ln(2x+1)^{\sin x}} = e^{\sin(x)\ln(2x+1)}$$

$$f'(x) = \left(e^{\sin(x)\ln(2x+1)}\right)' = e^{\sin(x)\ln(2x+1)} \left(\sin(x)\ln(2x+1)\right)'$$

$$= (2x+1)^{\sin x} \left(\cos(x)\ln(2x+1) + \frac{2\sin x}{2x+1}\right)$$
ii) $g'(x) = \left(\frac{x+\sin x\cos x}{2}\right)'$

$$= \frac{1+\cos^2 x - \sin^2 x}{2} = \frac{\cos^2 x + \cos^2 x}{2} = \cos^2 x$$
b)
i) $h(x) = \frac{x+2}{x^3+8} = \frac{1}{x^2-2x+4}$

$$h'(x) = \left(\frac{1}{x^2-2x+4}\right)' = -\frac{2x-2}{(x^2-2x+4)^2}$$

$$h''(x) = -\left(\frac{2x-2}{(x^2-2x+4)^2}\right)'$$

$$= -\frac{2(x^2-2x+4)^2-(2x-2)^2(2x-2)(x^2-2x+4)}{(x^2-2x+4)^3}$$

$$= -\frac{2(x^2-2x+4)-2(2x-2)^2}{(x^2-2x+4)^3} = \frac{6x^2-12x}{(x^2-2x+4)^3}$$

ii)
$$k(x) = \ln(x^2 - 1) = \ln((x+1)(x-1)) = \ln(x+1) + \ln(x-1)$$

 $k'(x) = (\ln(x^2 - 1))' = \frac{2x}{x^2 - 1}$
 $k''(x) = \left(\frac{2x}{x^2 - 1}\right)' = \frac{2(x^2 - 1) - 2x \cdot 2x}{(x^2 - 1)^2} = -\frac{2x^2 + 2}{(x^2 - 1)^2}$

Alternative Rechnung:

$$k'(x) = (\ln(x+1) + \ln(x-1))' = \frac{1}{x+1} + \frac{1}{x-1} = \frac{2x}{x^2 - 1}$$

$$k''(x) = \left(\frac{1}{x+1} + \frac{1}{x-1}\right)' = -\frac{1}{(x+1)^2} - \frac{1}{(x-1)^2} = -\frac{2x^2 + 2}{(x^2 - 1)^2}$$
c)
$$i) u'(x) = (2(1 - 3x)^2 + 4(5x - 2) - 7)' = -12(1 - 3x) + 20$$

$$u''(x) = (-12(1 - 3x) + 20)' = 36$$

$$u'''(x) = 0$$

$$ii) v'(x) = \left(\sqrt[3]{(5x+1)^2}\right)' = \left((5x+1)^{2/3}\right)' = \frac{10}{3}(5x+1)^{-1/3}$$

$$v''(x) = -\frac{50}{9}(5x+1)^{-4/3}$$

$$v'''(x) = \frac{1000}{27}(5x+1)^{-7/3}$$

Lösung 22:

a)
$$f(x) = \cos(x^2 - \pi^2)$$
 $\Rightarrow f(\pi) = 1,$
 $f'(x) = -2x\sin(x^2 - \pi^2)$ $\Rightarrow f'(\pi) = 0$
 $f''(x) = -4x^2\cos(x^2 - \pi^2) - 2\sin(x^2 - \pi^2)$ $\Rightarrow f''(\pi) = -4\pi^2$
 $f'''(x) = -12x\cos(x^2 - \pi^2) + 8x^3\sin(x^2 - \pi^2)$
Man erhält die Taylor-Polynome: $T_1(x;\pi) = 1$ und $T_2(x;\pi) = 1 - 2\pi^2(x - \pi)^2$

b) Mit $3 < \xi < \pi$ gilt

$$|f(3) - T_{1}(3;\pi)| = |R_{1}(3;\pi)| = \left| \frac{f''(\xi)}{2!} (3-\pi)^{2} \right|$$

$$= |-4\xi^{2} \cos(\xi^{2} - \pi^{2}) - 2 \sin(\xi^{2} - \pi^{2})| \frac{|3-\pi|^{2}}{2}$$

$$\leq (|-4\xi^{2} \cos(\xi^{2} - \pi^{2})| + |-2 \sin(\xi^{2} - \pi^{2})|) \frac{|3-\pi|^{2}}{2}$$

$$\leq (4\xi^{2} + 2) \frac{|3-\pi|^{2}}{2} < (4\pi^{2} + 2) \frac{|3-\pi|^{2}}{2} = 0.41579...$$

$$|f(3) - T_{2}(3;\pi)| = |R_{2}(3;\pi)| = \left| \frac{f'''(\xi)}{3!} (3-\pi)^{3} \right|$$

$$= |-12\xi \cos(\xi^{2} - \pi^{2}) + 8\xi^{3} \sin(\xi^{2} - \pi^{2})| \frac{|3-\pi|^{3}}{6}$$

$$\leq (|-12\xi \cos(\xi^{2} - \pi^{2})| + |8\xi^{3} \sin(\xi^{2} - \pi^{2})|) \frac{|3-\pi|^{3}}{6}$$

$$\leq (12\xi + 8\xi^{3}) \frac{|3-\pi|^{3}}{6} < (12\pi + 8\pi^{3}) \frac{|3-\pi|^{3}}{6} = 0.13519...$$
Bild 22 a): Funktionsgraphen von
Bild 22 b) Funktionsgraphen von

 $f(x) = \cos(x^2 - \pi^2) \text{ und } T_2(x; \pi)$

Lösung 23:

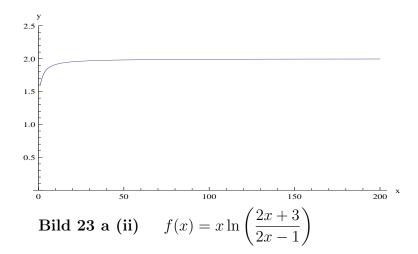
a) Mit Hilfe der Regel von l'Hospital ergibt sich

 $f(x) = \cos(x^2 - \pi^2) \text{ und } T_1(x; \pi)$

(i)
$$\lim_{x \to 0} \frac{e^{(x^2)} - 1}{1 - \cos x} \stackrel{\frac{0}{-}}{=} \lim_{x \to 0} \frac{2xe^{(x^2)}}{\sin x} \stackrel{\frac{0}{-}}{=} \lim_{x \to 0} \frac{2e^{(x^2)} + 4x^2e^{(x^2)}}{\cos x} = 2.$$

Bild 23 a (i)
$$f(x) = \frac{e^{(x^2)} - 1}{1 - \cos x}$$

$$\lim_{x \to \infty} x \ln \left(\frac{2x+3}{2x-1} \right) = \lim_{x \to \infty} \frac{\ln \left(\frac{2x+3}{2x-1} \right)}{1/x} \stackrel{\stackrel{0}{=}}{=} \lim_{x \to \infty} \frac{\frac{2x-1}{2x+3} \cdot \frac{2(2x-1)-2(2x+3)}{(2x-1)^2}}{-1/x^2}$$
$$= \lim_{x \to \infty} \frac{8x^2}{(2x+3)(2x-1)} = \lim_{x \to \infty} \frac{8x^2}{4x^2 + 4x - 3} = 2.$$



b) Die Nullstellen von $g'(x) = 3x^2 - 9$ lauten $x_1 = -\sqrt{3}$, $x_2 = \sqrt{3}$. Die Monotoniebereiche von g ergeben sich aus dem Vorzeichenverhalten von g':

$$g'(x) = 3(x+\sqrt{3})(x-\sqrt{3}) \left\{ \begin{array}{ll} > 0 & , & x \in]-\infty, -\sqrt{3}[& \Rightarrow g \text{ streng monoton wachsend} \\ = 0 & , & x = -\sqrt{3} & \Rightarrow x_1 = -\sqrt{3} \text{ streng lokales Maximum} \\ < 0 & , & x \in]-\sqrt{3}, \sqrt{3}[& \Rightarrow g \text{ streng monoton fallend} \\ = 0 & , & x = \sqrt{3} & \Rightarrow x_2 = \sqrt{3} \text{ streng lokales Minimum} \\ > 0 & , & x \in]\sqrt{3}, \infty[& \Rightarrow g \text{ streng monoton wachsend} \end{array} \right.$$

Nur beim Funktionsgraphen von $g_4(x) = x^3 - 9x$ stimmt das Monotonieverhalten mit dem von g überein.

Die Abbildungsvorschriften zu den anderen Funktionsgraphen lauten

$$g_1(x) = x^3/5,$$

 $g_2(x) = 10 \sin x,$
 $g_3(x) = 12x - x^3.$

Lösung 24:

$$f(x) = \frac{11x - x^3}{x^2 - 9} = -\frac{x(x^2 - 11)}{(x+3)(x-3)} = -x + \frac{2x}{(x+3)(x-3)} = -x + \frac{1}{x+3} + \frac{1}{x-3}$$

a) Definitions bereich: $D = \mathbb{R} \setminus \{-3, 3\}$ b) Symmetrie: f ist ungerade, denn

$$f(-x) = \frac{11(-x) - (-x)^3}{(-x)^2 - 9} = -\frac{11x - x^3}{x^2 - 9} = -f(x)$$

c) Pol 1. Ordnung bei $x_4 = 3$ mit Vorzeichenwechsel:

$$\lim_{x \to 3+} f(x) = \infty , \quad \lim_{x \to 3-} f(x) = -\infty$$

Pol 1. Ordnung bei $x_5 = -3$ mit Vorzeichenwechsel:

$$\lim_{x \to -3+} f(x) = \infty , \quad \lim_{x \to -3-} f(x) = -\infty$$

- d) y = -x ist Asymptote: $\lim_{x \to \pm \infty} (f(x) + x) = \lim_{x \to \pm \infty} \frac{2x}{(x+3)(x-3)} = 0$. Verhalten im Unendlichen: $\lim_{x \to \infty} f(x) = -\infty$, $\lim_{x \to -\infty} f(x) = \infty$.
- e) Nullstellen: $f(x) = 0 \Leftrightarrow x(11 x^2) = 0 \Rightarrow x_1 = 0, x_2 = \sqrt{11}, x_3 = -\sqrt{11}$

$$f(x) = -\frac{x(x-\sqrt{11})(x+\sqrt{11})}{(x+3)(x-3)} \begin{cases} >0 & \text{für } x \in]-\infty, -\sqrt{11}[\Rightarrow f \text{ ist positiv} \\ <0 & \text{für } x \in]-\sqrt{11}, -3[\Rightarrow f \text{ ist negativ} \\ >0 & \text{für } x \in]-3, 0[\Rightarrow f \text{ ist positiv} \\ <0 & \text{für } x \in]0, 3[\Rightarrow f \text{ ist negativ} \\ >0 & \text{für } x \in]3, \sqrt{11}[\Rightarrow f \text{ ist positiv} \\ <0 & \text{für } x \in]\sqrt{11}, \infty[\Rightarrow f \text{ ist negativ} \end{cases}$$

f) Extrema und Monotonie

$$f'(x) = \frac{(11 - 3x^2)(x^2 - 9) - (11x - x^3)2x}{(x^2 - 9)^2}$$
$$= \frac{-x^4 + 16x^2 - 99}{(x^2 - 9)^2} = -\frac{(x^2 - 8)^2 + 35}{(x^2 - 9)^2} < 0$$

f fällt im Definitionsbereich streng monoton. Es gibt keine Extrema.

g) Wendepunkte und Konvexität im Definitionsbereich:

$$f''(x) = -\frac{2(x^2 - 8)2x(x^2 - 9)^2 - ((x^2 - 8)^2 + 35)2(x^2 - 9)2x}{(x^2 - 9)^4}$$
$$= -\frac{4x((x^2 - 8)(x^2 - 9) - ((x^2 - 8)^2 + 35))}{(x^2 - 9)^3} = \frac{4x(x^2 + 27)}{(x^2 - 9)^3}$$

$$f''(x) \begin{cases} <0 & \text{für } x \in]-\infty, -3[\\ >0 & \text{für } x \in]-3, 0[\\ =0 & \text{in } x_1=0 \text{ Wendepunkt}, \end{cases} \Rightarrow f \text{ ist streng konkav} \\ <0 & \text{für } x \in]0, 3[\\ >0 & \text{für } x \in]3, \infty[\end{cases} \Rightarrow f \text{ ist streng konkav} \\ <0 & \text{für } x \in]3, \infty[\end{cases} \Rightarrow f \text{ ist streng konkav}$$

Einziger Wendepunkt im Definitionsbereich ist $x_1 = 0$.

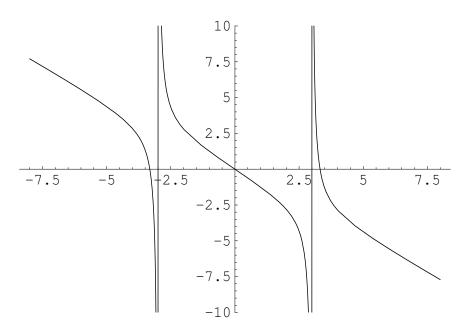


Bild 24 Funktionsgraph von $f(x) = \frac{11x - x^3}{x^2 - 9}$