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Abstract

For a closed cycle of Bernoulli servers in discrete time with a single bottleneck we prove weak
convergence of the suitably rescaled joint queue length vector for all nodes and weak convergence
of the suitably rescaled cycle time when the network approaches heavy traffic regime. We further
investigate asymptotic dependencies of the sojourn time vector and find unexpected behaviour of
the covariance structure. A technical device for our proofs is a Harrison-type formula for arrival
probabilities which is of independent interest.
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1 Introduction

Bottleneck behaviour of closed product form queueing networks in continuous time is studied from
the early days of the theory and dates back to the general model construction of Gordon and Newell
[GN67]. It is well known that there are two essentially different pictures.

(i) All servers have the same load: Then the total population in system is shared equally by all nodes
up to random fluctuations.

(ii) Differently loaded servers exist: Then bottlenecks occur, which in the simplest case with exactly
one slowest server means that almost the whole population is queued up at this slowest server.

Similar pictures are observed in discrete time networks of queues. In the cyclic network case which we
shall study in this paper this means that (i) all servers have the same service probability (the case of
balanced machines), and (ii) if there is exactly one server with smallest service probability then this
node evolves as a unique bottleneck. For a more detailed introduction into this class of models which
emphasizes the differences of especially case (i) to the continuous time setting see [MDO04].



Our focus in the present paper is the possibly more interesting case (ii): We consider cyclic discrete
time networks of Bernoulli servers (geometrical nodes under first-come-first-served). Our main interest
is in the detailed travel time behaviour of individual customers: The starting point is the steady state
distribution of a customer’s vector of successive sojourn times at the different nodes during a cycle.
We further are interested in the customer’s cycle time distribution. These distributions are in principle
well known and given in the transform domain by their respective z-transforms (generating functions)
[Dad01].

We transform the obtained formulae in a way that allows to prove weak convergence results for the
customer’s travel time behaviour when the bottleneck dominates the travel times — in an eventually
dramatic way.

In continuous time this was studied under the heading of influence of the slowest server by Boxma
[Box88|, including qualitative characterization of the speed of convergence to total dominance. We
study similar questions in Section 3 and are able to prove a sharper characterization (o-convergence
instead of O-convergence).

In continuous time theory for closed cyclic product form networks with unique bottleneck the usual
interpretation of the results obtained by Gordon and Newell [GN67] is that with increasing number
of customers the bottleneck node is asymptotically approaching a Poissonian source for the network,
while all the other nodes eventually form an open ergodic tandem system the behaviour of which
is well understood: Local geometrical queue length distribution and independence over the nodes in
steady state. While this is generally understood as a statement about the queue length description
of the cycle, it seems to be rather obvious that a similar property should hold for cycle times and
their asymptotic behaviour, respectively for the joint sojourn times of a customer during a cycle. In
Section 4 we revisit this problem. Investigation of the asymptotic behaviour of (mixed) moments of
sojourn time indicates that there occur some unexpected phenomena, which we discuss in detail: The
covariances between a customer’s sojourn times at the bottleneck and the other non-bottleneck nodes
does not vanish in the limit. In contrast to this the usual interpretation states that in the limiting
open tandem system the Poissonian source is independent from the service mechanism at the stations.
This observation is the starting point to reprove the limit theorem for the joint sojourn time vector
of a customer’s visits at the non-bottleneck nodes, and support anew the usual interpretation.

Combining the results about the influence of the slowest server and about the usual interpretation of
the limiting behaviour of non-bottleneck nodes and following the intuition suggested by these pictures
we study in Section 5 jointly the asymptotics of the overall sojourn time vector. Our main result in
Theorem 5.1 is a weak convergence limit theorem which in one coordinate looks like a central limit
theorem, because rescaled sojourn times at the bottleneck are asymptotically normal, while at the
other nodes we have without scaling convergence to geometric distributions. Furthermore the limiting
distribution has independent coordinates.

This result and the influence of the slowest server observation suggest that there should be a standard
normal limit of the scaled cycle times, which is proved in Theorem 5.2.

In Section 2 we provide the necessary prerequisites for our computations. The main device is a Harrison-
type formula for norming constants in the discrete time setting. Such a formula was already obtained
for the time stationary distribution by Pestin and Ramakrishnan [PR99]. We extend this formula and



prove an analogue for the customer stationary distribution. The existence of a Harrison-type formula
for the norming constant of the customer stationary distribution is surprising due to the rather strange
form of these norming constants. We apply these formulas to sojourn time expressions found in the
literature and utilize the so transformed expressions in our limit theorems.

Due to the occurrence of network applications which are based on a generic internal lattice structured
time scale, networks in discrete time have found much interest in recent years in the literature. E.g. in
the ATM protocol for high speed networks at least three relevant levels with different time scales are
considered, call level, burst level, and cell level. The latter two levels can be modelled on a basis of
generic discrete scales. For a discussion see the editorial introduction and several papers in the special
volume [TGBT94]. A more recently evolved class of applications for such models is the analysis and
control of Wireless Local Area Networks (WLANSs), for more details see the relevant contributions
in the Proceedings of the 18th International Teletraffic Congress (2003) [CLTGO03], especially [SVO03],
[NSB*03], [MKCO03] and [KNO03]. For surveys on discrete time network theory see [Woo094], [BK93],
[CMP99], [Dad01], and the references cited there.

Our results contribute to better understanding the behaviour of such systems under heavy traffic con-
ditions. Although we deal only with cyclic networks, our models are of relevance to transfer times in
networks with general topology. The principle to transform problems in general networks into prob-
lems in linear systems is known as principle of adjusted transfer rates in continuous time theory, the
application in discrete time is described in [Dad01][Section 4.1].

Conventions and notation:
N denotes the set of positive integers and Ng = NU {0} is the set of nonnegative integers. Empty sums
are 0, empty products are 1. n(n,m) := 1 — §(n,m) is the complementary Kronecker delta.

Acknowledgment: We thank Ingram Olkin for helpful discussions on the subject of this paper.

2 Description of the system and prerequisites

We consider closed cyclic queueing networks with M nodes and N indistinguishable, clockwise circu-
lating customers. The time scale for the system is No. The servers at the nodes Q[i],i = 1...., M, are
state independent Bernoulli servers, which are working independently, i. e. station Q[i] is a single-
server with service probability p; € (0,1), infinite waiting room and first-come-first-serve (FCFS)
queueing discipline. If at time instant n at node Q[i] a customer is in service, then his service ends at
time instant n 4 1 with probability p;. With probability ¢; := 1 — p; this customer will stay on at node
Q[i] requesting at least one more unit of service time. Customers being served at station @Q[i] jump
instantaneously to node Q[i + 1] (resp. to Q[1] if a service ends at node Q[M]). If at some node at
the same time an arrival and a departure occur we prescribe that the departure event takes place first
(late arrivals, departures first, LA-DF). As a consequence, a customer arriving at the end of time slot
[n —1,n) at Q[i] has to stay there for at least until the end of time slot [n,n + 1), that is, his sojourn
time at any queue is one time unit at minimum. A sojourn time at Q[i] is the sum of the waiting time
at node Q[i] and the subsequent service time there.



For station Q[i] let X;(t) denote the queue length (= number of waiting customers + customer in
service, if any) at time ¢ € Ny. Then the joint queue length process X = ((X1(¢),...,Xwm(t)) : t € Np)
is a discrete time Markov chain with state space

Z(M,N) = {(n17“‘7nM)€N84|nl+“‘+nM:N}.

(X1(t),..., Xnm(t)) = (n1,...,npr) indicates that n; customers reside at time ¢ at node Q[i].
X is ergodic with unique stationary and limiting distribution [PR94]

M N\ i (0,n;)
vale,...,nM):G<M,N>—1H(§> (5) . (... nar) € Z(OMLN)

with normalizing constant

corn= Y H() <1>n(o’m)- 1)

(nl, SN EZ(MN Z 1

The investigations described in this paper are concerned mainly with customers’ sojourn and cycle
times. To determine these times we tag one customer to follow him on his itinerary through the cycle.
To compute the joint sojourn times distribution of the tagged customer, the knowledge of the arrival
distribution w{\/l’N at arrival instants of the tagged customer at node Q[1] is necessary. Let ﬂ,iw’N be
defined as the conditional distribution of the other customers seen by the test customer jumping from
node Q[k — 1] to node Q[k] at his arrival instant at node Q[k], given that such a transition of the
tagged customer takes place (k = 1 means a jump from node Q[M] to Q[1]).

Theorem 2.1. [Dad96] Let X = (X,)nez be the stationary continuation of (Xp)nen, under w0V,
Further let A(k) be the event ”At time instant n = 0 an arrival at node Q[k] takes place”. Then

WyN(nl,...,nm) = P(XO = (N1, s N1, + 1, kg 1y o M) | A(k))
ng M n; n(0,n;)
; 1
Se M,N—1-<q—’“> ||<q—> (-) 2
kl ) Pk o1 \Di qi @)
i£k

for all (ny,...,nyn) € Z(M,N —1).

The arrival probability wg/[’N depends on k, the number of the node where the arrival appears: the
expression in (2) is asymmetric with respect to k and the arrival probability keeps trace of the arriving
customer. Note that the value of the normalizing constant

oun- 5 EUHEQ™ o

iez(N-1) Pk = Pi %

is independent of the node number k € M, see [Dad01], lemma 7.3. The common value is denoted by
GA(M,N).

If necessary, we use the subscript (M, N) similarly as in 7" and Tré\/[’N to indicate that the underlying
distribution P = Py, n) refers to M nodes and a total population of N circulating customers (including
the test customer).



2.1 Norming constants

The structure of the normalizing constants in the steady state (1) and in the arrival distribution
(3) occurs in a natural way. On the other hand from the continuous time analogue it is well known
that computing norming constants is a difficult task, see, e.g., [BB80]. Because the norming con-
stants in discrete time are even less smooth than in continuous time (see the Buzen-type formulae in
[Dad01][Proposition 3.18 and 3.19]) similar problems arise.

A useful device to overcome at least some of the difficulties with the continuous time expressions
are the formulae developed by Koenigsberg [Koe58] and Harrison [Har85a). Surprisingly the more
cumbersome discrete time constants admit Harrison-type formulae as well. These will be described
next. For simplicity of the presentation we restrict our investigations to the case of either pairwise
distinct probabilities or to the case of identical service probabilities at all nodes.

The first such result, see (4), for discrete time systems was derived by Pestien and Ramakrishnan for
the steady state normalizing constant, see Theorem 4.1 of [PR94]. We shall provide a simplified proof
in the appendix and derive similar expressions for (3) and, even more, for sojourn and cycle time
distributions below.

We start with a useful lemma, which simplifies many of our later computations. The proof is given in
the Appendix, see Section 6.1.

Lemma 2.2. Let z1,...,z) be pairwise distinct complex numbers (x; # x; for alli,j € M, i # j)
and x; # 1, for everyi € M, M € N. Let y; == 1 — x; and N € N. Then the following formulae hold.

i M N M
> H(J“) ooy (2) T2 o

and

(m e Mo\ M M y
> () TG e (3) T g
neZ(M,N) 1 i—o \Yi i—1 #1 Yj — Vi

From Lemma 2.2 we have as an immediate consequence

Corollary 2.3. Let M € N, 0<p; <1, ¢;:=1—p;, pi #pj for alli,j € M, i # j (pairwise distinct
service probabilities). Then for N € N the steady state normalizing constant is [PR94[[Theorem 4.1]

i
and the normalizing constant of the arrival distribution is
GA(M,N+1):§/[:<ﬂ>N P . (7)
: Di 1 Pj —Di
7



Formulae (6) and (7) are in the spirit of the formulae obtained by Koenigsberg [Koe58] and Harrison
[Har85b] for the continuous time models. Additional care is needed here because of the differences in
the expression caused by idle nodes, and of the different structure due to the arrival situation.

For pairwise distinct real numbers p; € (0,1), i € M and ¢; := 1 — p; we define coefficients C; n by

N-1 M
Di i1 Pj— Pi

o
C@N = M N—Jl M . (8)
(%) T2
im1 Di =1 Pj — DPi
i
For notational convenience we assume henceforth p; < py < -+ < pys such that node Q[1] is the

bottleneck. (The steady state distribution and the joint sojourn time distribution is independent of the
nodes’ locations with respect to their service probabilities, see Theorem 2.5.)

Lemma 2.4. The constants C; y have the following properties:
(i)
M
Z Cz',N =1 )
i=1

(it)
li =1
NE)HOO Cl,N )
(iii)
P2 N
lim NTC]QN <—> =0, k#1, reRy
N—oo P1

and (in particular)
A}im CkJV:O, ]\}im NCkJV:O, k#l y

(i)
Ci,n >0 for k odd and Cy, n <0 for k even .
Proof. Property (i) follows immediately from the definition. The ordering 0 < p1 < ps < -+- < py < 1

implies
1> p1q2 > p1qs3 S . biam

s> >0 .
qip2 qip3 q1pPMm
Therefore
M
|l
i PP
. IRT J#£1 -
]\}EHOOCLN - ]\}l—r}loo M M N-1 M =1
2> (B2) 112
=2 bj—p1 5 \4Pi ].;1_ pj —p1
JF



In order to proof (iii) we write

N
vas(3) - v (3
b1 p1

N-1 M
N7 (m%) P2 11 pj

q1Pk P15, Pj — Pk
_ i#k
BRI (e T P
J 145 J
T2 (B2) T2
j=2+47 i=2 ! =1 J !
JF

Taking into account peq;/q1p; < 1 and p1q;/qip; < 1 for every i = 2,..., M yields (iii).
Finally, by Corollary 2.3 the denominator of the rhs of (8) is equal to the normalizing constant
GA (M, N) and therefore positive. This is utilized to prove property (iv) by the alternating signs of

N-1 M
pi =1 Pj— Pi

i
O
2.2 Joint sojourn times and cycle times
Let (S1,n,...,Sm,n) denote the vector of the sojourn times of the tagged customer at the successive

nodes Q[i],i = 1,..., M, of the cycle with N customers. The cycle is started when the tagged customer
arrives at Q[1] and ends when his next arrival occurs there. Then Sy := S; x + - -+ Sy n is his cycle
time. We always assume steady state conditions, i.e., when the tagged customer starts his cycle, he
observes the other N — 1 customers distributed according to N from Theorem 2.1. The relevant
known facts are as follows.

Theorem 2.5. [Dad97] The generating function of the joint sojourn time vector (Sin,...,Sum.N) in
steady state with population size N is

M) (g, up) = Ga(M,N)! 3y <ﬂ>m (ﬂylﬂ 9)

(n1,...,n01)EZ(M,N—1) p1 1—qiuq

M a\™ s P ni+1
11 <_Z> (qiug) ")~ <#> :
-\ Di 1 — qiu;

=2



The generating function of the cycle time distribution under this conditions is

RMN) () = Ga(M,N)™! 3 <q—1>n< Pt >m+1 (10)

1 _
(n1rmaneZ(M,N—1) NP1 v

TT()" (72 )™ upon
o \Pi I —qiu

In the literature on continuous time linear networks it was remarked that the structure of the Laplace
transform of the joint sojourn times and cycle time distribution resembles the structure of the norming
constant. Due to the special role played by empty nodes and the asymmetry of the arrival distribution
a similar observation is here not as obvious, but exists as we shall show below for the case of distinct
service probabilities. Lemma 2.2 and Corollary 2.3 are the key results to explore the structure of joint
sojourn times and cycle time in the spirit of Harrison-type expressions. Then the properties of the
C; n will enable us to compute asymptotics for the distributions.

Theorem 2.6. Assume we have pairwise distinct service probabilities (p; # p; for alli,j € M, i # j),
a total of N customers circulating (including the test customer), and steady state conditions.
Then the generating function of the cycle time distribution Sy = S1 N + -+ Sym,N 18

RN ( ZC“V< )N . uelo1) . (11)
1_%

Let

B:={(v,...,un) € RM |3(i,5) € M2, i #j : qv; = q;vi} - (12)

The generating function of the joint sojourn times distribution on [0,1)M \ B is

biu;g N qi — 4
- For () R
g Ur, ..., U N u .
( Z AT - g H qiui — qju;j (13)
i

The Fourier transform of the joint sojourn times distribution is

o N M
~(M,N) ’ 4; — a iz M
g (z1,..., 20 ZOJN (1 i el%) l]:[ <—qjemj —e ) we RM . (14)
1]
Remark: Obviously the set B is the union of the planes E; ; := {v € RM | givi = q;vj}, i # j and the

point 1 is not contained in any of these (finitely many) planes. Consequently there is a neighbourhood
U of 1 such that U N B = @ and the representation (13) of g@N) is valid in U N [0,1)



Proof. Applying (5) of Lemma 2.2 to (10) yields

+1 M it+1
3 <q_1>m < piu >"1 < > < >n (gua)On) =1
(2
nez(in_1) \P1 1—qu 1 —qu
- (I) 2 () () e
i L~ qiu neZ(M N-1) l=qu/) 25 \1-qu
M N-1 N M
R () T
— \Di 1 —qiu o Pj — Pi
JFT

Using equation (7) of Corollary 2.3 leads to

i=1 4 =1 M N
,(M,N) (v) = I7 — Z C. _biti
N M . < AT qiu;

Applying (5) of Lemma 2.2 similarly to g™ (uy,...,up) with (ug,...,upy) € [0,1)M \ B to (9)

yields
M . i+1
Z <(]_1>nl < pirus >m+1H <&>n q,J(O,ni)—l < piu; >n * ué(O,ni)—1
e i 0 X
p1 I —qu 5 \Di 1 — qiu; !

neZ(M,N—1)
i qui \" 1 au \"
7% 2) —
( T u) 2 (1 — i > 11 <1 - u> (@) o
i=1 qit; neZ(M,N—1) qi1u1 i—9 q;iU;
M N-1 N M
-y <Q_> (&) j
= \Pi L—qui) 57 qiui — qju;
i
And applying (5) of Lemma 2.2 to §MN)(zq,...,z) with (z1,...,23) € RM obtained in the form
of (9) yields
Z n " _pie™ " H 4 " q;50mi)—1 pje . (eizj)é(o’”j)—l
b1 1—qe , Pj / 1 — gjet®i
n€Z(M,N—1) Jj=2
— ﬁ/[: 25 N=L /o pret o ﬁ pre’E
1 \Pj L—gqje™™ ) o e —que™
= ki
We only have to ensure that qe™t, ..., gye'™ are pairwise distinct for any choice of (z1,...,2a) €
RM. But grek** = ge™ can hold only if |gx| = |¢|. Using equation (7) of Corollary 2.3 gives the
O

desired results.



Theorem 2.6 states that in the case of pairwise distinct service probabilities the cycle time distribution
is a linear combination of negative binomial distributions convolved with a Dirac-distribution:

M M
PO =% " Cin (Nb(Lpi) x €)™ =3 Ci NNB(N,p;) en - (15)
=1 i=1
Therefore the mean cycle time is
U 1
E(Sy) =3 CinN-—- . (16)
i=1 t

It should be noted, that C; y N p%- is not the test customer’s mean sojourn time at node Q[i] (recall that
some of the coefficients C; y are negative). The mean sojourn time at node Q[i] is given in equation
(43) below.

Taking derivatives of the generating function, we easily find the cycle time variance (see page 33 in
the Appendix)

M 2
Z i 1 1
Var(SN) =N OZ'7Nq—2 + N2 E Oi,NOj,N <— - —> . (17)
i—1 b; (iiyen? bi Py
i<j

We mention here an interesting observation which readily comes out from the definition of the C; x
and Corollary 2.3. We have for pairwise distinct service probabilities

% 1, _ GOLN)
Zap; "N T GA(M,N)
and therefore from (16)
G(M, N)
E =N 1

Denoting the network’s throughput N/E(Sn) by 6 ( which is the local progress of the network in the
sense of ([PR99]) we obtain

Proposition 2.7. In a closed cyclic M -station tandem with N customers, which is in equilibrium,
the throughput 0 is given by
B GA(M,N)

0= GOLN (19)

So it comes out explicitly that the throughput is related to both the time stationary and the customer
stationary behaviour of the network. In the continuous time setting this is hidden by the fact that
the customer stationary normalizing constant equals the time stationary normalizing constant of an
network with one customer less (see [CYO01]).

The formula 19 is valid for the general case as well as can be seen by direct computation.

10



2.3 Sojourn times and cycle times: Densities

In the following a random vector (Si,...,Sy) in RY, with generating function gM:N) | see (9) and
(13) is interpreted as the family of successive sojourn times under steady-state conditions. Similarly a
random variable S with generating function h(-N) see (10) and (11) is interpreted as the steady-state
cycle time.

The generating function ¢(*N) of the joint distribution of the successive sojourn times can be inverted
with a closed form expression for the corresponding pmf.
Recall that Z(M,N) = {(z1,...,2m) € N}' |21+ --- + 2p = N} and define

ZX(M,N) == {(z1,...,am) e NM |21 + -+ + 23y = N}
Lemma 2.8. [MD04] The distribution of the successive sojourn times (S1,...,Sn) experienced by

the test-customer on his itinerary under steady-state conditions possesses the pmf p™MN) | given by

sp+-- sy —1

pPMN (s, sur) :GA(M,N)—1< N1

M
>Hpiqfi_11[(sl,...,sM) e NM, (20)
i=1

The cycle time S := Sy + - -+ + Syr has the pmf ¢™MN) | given by
-1 M
gMN)(s) = Gp(M,N)™* <]SV B 1) > H pig (21)
(51,-y801)EZ* (M, 5) i=1
Note that g™ (s) = 0 for s < max(M, N): if s < M holds, then Z*(M,s) = ), hence the empty

sum is null by definition. If s 2 M but s < N holds, then the binomial coefficient ( ]f,__ll) vanishes.

Utilizing the properties of the C; y we discuss two special cases which show completely different
behaviour.
For pairwise distinct service probabilities we have

s—1 M M T
006 = Gaor N () (H’”) Yo h——tlsz M) (22)

M
i=1 i=1 H (qz _ q])
j=1
i
Inserting the expression of Corollary 2.3 for G (M, N) yields
s\ M M »
pigc 1 l_1[s> M
<.7V—1>Z,Z:;ZZ ]71pj_pz[ ]
.
@M (s) = M N—i M
> (%) T~
P i =1 P — Pi
i
M Nirs—1
= C = s = M 23
e (B) (57 Janisz (23



In the special case of balanced machines (p; = - -+ = pys =: p) our technical lemmata are not applicable.
By direct computation we have obtained a similar structural result in [MDO04]:

LS

N-1
GA(M,N) = <g> 1-M Z q5(07"1)+"'+5(07nM—1)
P neZ(M,N—1)

COUEEOET e
q(M7N)(3):<B>N pM—1q8<]i7__11> <J\84__11> . (25)

T (M)

=

leading to

As a by-product we get the identities

o= () ECTIGELE) -0 B G)E)
(26)
o= (8) M- S () S T2 e

i=1 =1 Pi TP Ty
i i

and

3 The influence of the slowest server

The strong influence of the slowest server on the performance of networks is already discussed by
Gordon and Newell in their seminal paper [GN67].

We recall here that in discrete time the asymptotic bottleneck behaviour of the joint queue length
vector process of the cycle is structural similar to the well known behaviour of continuous time systems.
We restrict ourself to the case of exactly one bottleneck (slowest server) because this is the case of
interest in the main part of the paper.

Theorem 3.1. [MDO0j/[Theorem 5.1] Let (X1,...,Xn) be the joint queue-length process of a closed
cyclic queueing system with M nodes and N indistinguishable customers in discrete time Ng. The
nodes are single-server state independent Bernoulli stations under FCFS with LA-DF regime. Let the
service probability at queue Qli] be p;, © € M and assume p; < min(py,...,prr). Then the sequence
(#MN) e of the (M — 1)-dimensional marginal distributions of the queue-length at the stations
Q[2],...,Q[M] under steady state conditions converges weakly to the equilibrium distribution of an open
(M — 1) stage tandem with Bernoulli arrival process and service probabilities po, . ..,py respectively,
that is

. A(M,N) N pr\ (prg\™ (1) M-1
lim 7% (ng,...,nM):H 1—— | (=— , V(ng,...,ny) € Ny . (28)

N—oo o Di q1pi i

12



The arrival probability is p1, the service probability of the slowest queue Q[1] in the closed network.

The dramatic influence of the slowest server on the customers’ cycle time distribution was discussed
by Boxma [Box88]. He showed that for service rates pu; < pio < --- < pps in continuous time holds

E(Sy) = Nuy'{1+ 0([%]N)}, N — . (29)
and
Var(Sy) = Np2{1 + 0([%}%}, N — . (30)

Our methods from Section 2.1 allow to prove stronger speed of convergence for the discrete time cycle.

Proposition 3.2. Let p; < p2 < ... <ppy. Then

BE(Sy) = N2 114 [E}N 31
(N)_ p1 0 D2 ( )

and
q1 n N
Var(Sy) = N-—75<1+o [—} . (32)
P D2
M
Proof. Using the the expression given in (16) for the mean cycle time we have (recall that ) C; vy = 1)
i=1
1
o\ EEN) =N\ AT p2\" p1—pi
(B 25 (2 (e fient) S ()
h N_— h i— Di P h Di
4!

Taking the limit gives (31) by observing property (iii) of Lemma 2.4. Similarly, with the expression
given in (17) for the cycle time variance,

N Var(Sy) — N%

() g
P N%

p1

p\ Y l pig; pt 1 1)\?
= — CLN—l—f— C'JV + N C'JVC',N— <———>
<p1> ; " aqip} Z g\ py

¢ (i,5) €M
i<j

-z p2\" [ Pla p\V (1 1\?
= > Cixn <—> <1;—1>+ Y NCinCin <—> —1<f—f> . (33)
i—2 b1 a1p; (iiyen? b1 a1 \Pi Pj
i<j

Now (32) follows by taking the limit in (33) and utilizing properties (ii) and (iii) of Lemma 2.4. O

13



Proposition 3.2 is the discrete time counterpart to Boxma’s result.

The result of Proposition 3.2 is in the usual spirit of bottleneck analysis. But there is a result which
seems to be completely counterintuitive in connection with the strong concentration on staying at
node Q1] expressed by the bottleneck behaviour.

This is the following semi-invariance property which resembles the results for continuous time networks
in [Kel83] and [MDO5].

Theorem 3.3. [MDO04] In the cyclic network with N indistinguishable customers let (S1,...,Sn) be
the successive sojourn times at the FCFS state independent Bernoulli single-server nodes Q[1], ..., Q[M]
of a customer in steady-state.

The conditional joint distribution P((]\S;[i}'\}')’SM IS of the tagged customer’s successive sojourn times, given
his cycle time S = S1+-- -+ S, is distributed as an independent family (X1, ..., Xr), the components
of which are geometrically distributed on N given their sum X1+ --- 4+ Xypy.

That is, for s 2 max(M, N), the pmf p ns) of P((ASZ}'\}')’SM)‘S:S 18

p(M,N;s)(sl7"'7sM) = P(M,N)(Sl =S1,...,5M = SMm | S = 8)

1[(81, . 781\4) € Z*(M, S)] 1]\_4[ piqfi_l
= =1 ' (34)

M t;—1
> [ pig;*

(t1,.tar)€EZ*(M,s) i=1

This result is striking. It means that looking at p(as n.s) as a function of the total network population
N, for feasible values s of the cycle time the conditional joint distribution is independent of the number
of customers circulating: let M < s. Then

P(M,N;s) = P(M,135)> N < s.

If a feasible cycle time is given, the distribution of the successive sojourn times which the tagged
customer experiences at the nodes QI[1],...,Q[M] of his cycle is the same, irrespective of whether
there are many, few, or no other customers present, provided N < s.

Saying it the other way round: if the tagged customer is the only customer cycling, his sojourn times
coincide with his service times. If we compute in this trivial case the conditional distribution of the
tagged customer’s successive sojourn times, given his cycle time, then the theorem says that the result
of the computation applies without any changes to feasible vectors and cycle time values for the case of
further customers present in the system as well. So we can compute the (due to customer interactions)
complicated conditional vector distribution for networks with large population sizes in a network where
only one customer lives who has not to compete for network resources. This is unexpected and seems
to be contrary to the intuition guided by the bottleneck behaviour of queueing networks as described
above.

14



4 Heavy Traffic behaviour of sojourn times:
Moments and the asymptotics of non-bottleneck nodes

Closed queueing systems in continuous time, consisting of single-server stations with exponentially
distributed and queue independent service rates, a finite population of indistinguishable customers
(jobs) and random routing, i. e. queueing-systems of the Gordon-Newell type show the well known
bottleneck behaviour:

The slowest server becomes the bottleneck of the system. With increasing number of customers, the
queue at the slowest server grows without bound, while the marginal distribution of the other node(s)
remains finite, see [GN67].

In discrete time the cycle of section 2 shows such bottleneck behaviour as well, as was shown in (28)
of Theorem 3.1. The usual interpretation of (28) is:
If in a closed cyclic queueing system with M nodes, with service probability p; at queue Q[i], i € M,

and with p; < min(ps,...,pa), the number N of customers increases unboundedly, then the sequence
(#(MN)Y yeny of the (M — 1)-dimensional marginal distributions of the queue-length at the stations
Q[2],...,Q[M] under steady state conditions converges weakly to the equilibrium distribution of an

open (M — 1) stage tandem with Bernoulli arrival process (parameter p;) and service probabilities

p2;..-sPM-

We now collect some information about the behaviour of moments of cycle times and sojourn times in
this limiting process and restrict our investigation to the case of pairwise distinct service probabilities.
The proof of following lemma 4.1] is given in the Appendix, page 41.

Lemma 4.1 (Asymptotic behaviour).

(i) Mean cycle time.

E
lim (Sn) = —
N—oo N P1
(ii) Cycle time variance.
. Var (Sn) @1
! 2
N—oo0 N Y2

(iii) Bottleneck mean sojourn time.

N—oo N 1
(iv) Non-bottleneck mean sojourn time.
. q1
lim F Sk N) = .
N—o0 (Si,n) @~ Gk

(v) Bottleneck sojourn time variance.

1 q
lim —Var(S;n) =5 .
N »i

N—oo

15



(vi) Non-bottleneck sojourn time variance.

. 919k
lim Var(S = —
N—oo (Sk.v) (1 — qr)?

(vit) Covariance of sojourn times at bottleneck and some other station.

lim COV (Sl,Nasl,N) = Li 5
N—oo Q—qq—q

1£1 .

(viii) Covariance of sojourn times at two non-bottleneck stations.

lim Cov (Sk,N7Sl,N) =0 y k,l 75 1.

—00

(iz) Correlation coefficient of sojourn times at bottleneck and some non-bottleneck node.

/i P1 _1
Q‘S,]\fﬂg7 - ~ +0<N 2)

(x) Correlation coefficient of sojourn times at two non-bottleneck stations.

Jim o(SkN,SiN) =0, k#L.

The result (vii) in Lemma 4.1 on the asymptotic nonvanishing covariance between the bottleneck
sojourn time and subsequent sojourn times at non-bottleneck nodes indicates that there is still some-
thing beside the usual interpretation sketched above. While in the approrimating open tandem the
(Bernoulli) arrival stream is independent from all service times, in the sequence of closed M-node cy-
cles there persits some dependence between a customer’s behaviour at the node Q[1] at the subsequent
nodes Q[i],i =2,..., M.,

Following from the usual interpretation the next Proposition 4.2 is part of the common knowledge on
approximating networks. But due to (vii) in Lemma 4.1 a proof seems reasonable.

Let (Sa,...,Sh) be the family of successive sojourn times of a customer traversing the nodes Q[2]
to Q[M] in an open M — 1 station tandem, which is fed by an Bernoulli input stream, stochastically
independent of the service processes, with parameter p;. The nodes Q[2] to Q[M] are Bernoulli Servers
with FCFS LA-DF service discipline with respective service probabilities po, ..., pas.

The joint distribution of (Sa, ..., Sa), given in terms of its generating function, is (see [Dad96, Dad97]
and [Dad01], Corollary 4.9)

4dj
M 5 M 1—q—
. 1 .
E s I1¢” :HTW luj| <1, j=2,...,M .
j=2 =2 1= U

So the individual sojourn times are independent and geometrically distributed with respective param-

eters "
1-=2, j=2...,M.
q1
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This result is the analogue of Burke’s and Reich’s results on the independence of a customer’s successive
sojourn times in an open exponential tandem in continuous time (for a review see [BD90]).

Thinking of the limiting network under heavy traffic as an open M — 1-station tandem with Bernoulli
input with arrival probability p; (the bottleneck’s service probability) is therefore supported by prop-
erties (iv), (vi) and (viii) of Lemma 4.1. Something more can be said.

Proposition 4.2. The joint distribution of the family (San,...,Sm.N) of successive sojourn times
of a customer traversing the nodes Q[2] to Q[M] in the closed M station tandem with N customers
converges weakly to the distribution of the family (Sg, .. SM) of successive sojourn times of a customer
traversing the open M — 1 stage tandem with Bemoullz -p1 tnput stream.

N)

Proof. The Fourier transform f]é
is

a7 of the joint (marginal) sojourn time distribution of (So N, ..., Sa,N)

N -
g2,..?M(‘T2"T37 <o TM ) = g(MyN)(O Z2,x3,. .- ,$M)

; N M
G~ g prett a1~k U — 4y i
= C iy C . : . — '
1,N H q1 —qj ezz] kZQ k,N 1 — gpeivr q1 — qRe’r ]:12: qreiTh — qjezxj

ik

Now for every k € M

_ Pk _ 1
1+ —20ccos(e) /T +28 (1= cos(x)

A

L,

pkeixk
1 — ge'®x

and therefore from Lemma 2.4 (ii) and (iii)

EM: ™ Y a—a 7 e g
lim C , : ‘ i iy
N <1 - lem’“> q1 — qre*’* ]11 qpe’®r — q;e'%i
J#k

M M
Z . q1 — dg qr — 45 Ty
é ]\}1—I>I(1>Q|Ck’N‘ 1— 2 H ; . ] .eZ:E] =0 .

s Q1 — Qe S qrettt — giett
ek
Hence for any x9,...,,xp € R
i
wo M 1-Z
. 1—G g o
lim gé )M(mg,ajg,...,xM) = lim Ci n H —= Y e — H 791‘6”?; )
N—oo N—oco q — q;ie'®i 1 9 ix;
j=2 J j=21— ae

O

This is the (Fourier transform of the) distribution of the joint sojourn time distribution of a customer
traversing an open M — 1 station tandem with FCFS Bernoulli servers with the respective service
probabilities po, ..., py fed by an Bernoulli input (arrival) stream, which is stochastically independent
of the service processes and has arrival probability p;.
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On the other hand, recall that the limiting values of the covariance of any pair (S1 n,Sin), i. e. bot-
tleneck sojourn time versus any other sojourn time, is strictly negative (Lemma 4.1, (vii)):

lim Cov (S1,n5,S5n) = N

__me oM
N—oo0 (1 — q)?

5 Weak convergence of the joint sojourn times distribution

Theorem 5.1. We consider a sequence of M-station cyclic networks with nodes Q[1], Q[2], ..., Q[M]
which have pairwise distinct service probabilities pi,...,py and where Q[1] is the bottleneck i.e.,
p1 =min{p;, j € M}). The networks” population size N increases unboundedly.

Let (S1,n,S2.Ns .-, Su,n), N > 1, be the sequence of the joint sojourn times vectors of a test customer
i equilibrium on his round trip and

T .o LN — B(Siy)
LN = :
Var(S1,n)

the standardized sojourn time at the bottleneck. Then the sequence (T N, S2. N, - - . ’SMvN)NEN converges
weakly to

N(0,1) ® Geogy (1 - %) ®---® Geo <1 - qq—M> . (35)
1 1

Proof. By theorem 2.6 (14) the Fourier transform §(™N) of of the joint sojourn times vector (S1,Nny-- - SMN)
is

M (@,

M
p1€ q1 — 4k iy
<1 - q1e”1> H <q1e”“ —qre >
S e \" 4 — @ a 4 — ak
Yl iT1 ) ixy
+ZC ( — g e”ﬂ) <qy'6“”j — e > 11 (qjemf ~qre >

j= k=2
k#j

Therefore the Fourier Transform gy of (11 n, 52N, ..., Sm,n) is given by

_; EG1N)

~ +/Var ~ z
gN(I') = ¢ v (Sl’N)g(M’N)(717$27"'7$M)
Var(S1,n)

_ (1 E<51,N>> N
1T -—— N

pre VLN al (q1 — qr) €

= CLN X ] ; Tl

1 11—
1 _ q1€ A /Var(SlyN) k=2 q1€ A /Var(SlyN) _ qkeimk

z
; “1EGLN)

M - —_— . ’iCCj N ( . ) ‘ Var(Sl N) M

+ E Cjne V/Ver(S1,n) < Pj€ : ) 4G~ % <—_ 9k emk> .
; gje
Jj=2

I:1

— .00 ir; _ 1Tk,
1 4 AT Vdr(Sl ,N) k=2 B L
q;e Q1e k]
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The mean bottleneck sojourn time and the variance of the bottleneck sojourn time are (see (43) and

(44))
N aCinN
E(Sin)=C1 NN + < G, ’ >
( ) b1 Z q; — q1 q1 — qj
and
Var(SLN)
1
= N?Cyn— — N?C} + NCy N —2NCi N
p? 1Np2 Zpl @ — g
1 a4
+20% N - 201 NN Cin
b Zplql—q Zz; "pra-a
X g - ai(q + q1)
IRCRD DISULSSBICND B DE e D RCRT =
= (@1 —ar) = 2T22QI_QT1QI_QT2 pors (¢ —q1)
qi l
Ci N - Ci N +2 C; NC1N .
( Zq —qr> <ZZ:; g -a ;g G — a1 q1— a
We show
(i)
< E(Sl N))
1
ar M y M
hrn Cin pie /Var(S1,N) H (1 — qi)e'™ _ 6_533% H 1= Z_If eiTh
SRS S - TR ’
N—oo 1_ qle . /vdr(sl N) k=2 q1€Z Var(Sy n) GReiT k=2 1 at "

(ii) For j=2,...,. M

Tl

i =1 E(S1,N) iz; N ‘ Var(Sy n) M
lim Cjye V'51y Pi¢ (95 —ar)e H _ BT iae) — g
Nooo 0 1-— qjeizj i Il qjemj — qkeizk ’

gje'®i — qre VVer(Sin) - k=2

k#j

We abbreviate
o1(N) :==y/Var(Si1n) .

First, for every k € M

1T (1— W)

O‘1(N) 1

Pr €

I
A
—_




Utilizing |u™ — v"| < nju — v| (which holds for every u,v € C with |u] <1, v £ 1 and n € N) (see
[Kal02], Lemma 4.13) we have for N sufficiently large

N
i (1 - EGp) i (1 EGp)
N
pe 2 (2 ey e
1 2N = w 2N
1—qre?t®) 1—qrett)
ix 1——E(51’N) —1ix E(SI’N)
N N
e (o 1)) - 5)

= N

p? +2q1 (1 — cos (ﬁ))

Because of lim o01(N) = oo (Lemma 4.1, (v))

N—o0
lim (p2+2¢ (1 — cos * = p?
N—oo ! O'l(N) L

Therefore it is sufficient to show

i (1 - £Gp2) —iw (B e
lim N _ _ N N T e
m N \py exp ) P1q1 €Xp o1 (V) Pt 5P
x 22 x
—2q1 <1 — Cos <—01(N)>> + ﬁqu <1 — cos <—01(N)>> ' =0 .
Denotin
g k
i (1 B E(%,N)) 9 i (1 . E(?\l[,N)) 1
r1(N) :=exp - Z =
O‘1(N) =0 O‘1(N) k!
and s B(s &
—ix (7( ]\}’N)> 2 [ —ix (7( ]\}’N)> 1
ro(N):=exp | ————=| — Z _— | =,
O‘1(N) s O‘1(N) k!
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and using the triangular inequality we have

iz (1 - LS&*N’) iz (E(Sl N) 42
p1 €xp a1(N) — P1q1 €Xp 2Np1
1'2 X
o (1o (50 )) ( aG)
iz (1 _ E(il[,N)) ( E(51 N ) z (E(il[,z\f))
= |p1+tm o1 (V) - pl 2(N) +pir1(N) —p1g1 + p1a o1 (V)
E(Sl,N)>2 9
—N QT 2q1 EN a? P2
- N = J N) — p? — Bl
gty ) 3= 8+ st (i) < v
n gzt 1 qa® gin [ S~
2No?(N) N oj(N) o1(N)
(4 E(Sun) . (E(Si.n)
<|p1 — a1 — pI| + plm (1 ol ) +p1q1M
- ' o1(N) o1(N)
2 2
ol )382 (1 . E(S]'\II,N)) N 2 (E(il[,z\f)) qlx N 2 2
h 202(N) P52 () o2(N) " 2n?
2q1

+ [p1ri(N)| + [praara(N)| +

| | F e )

We have used the Taylor expansion of exp(iy) and the Taylor expansion of order two of the real
function

that is

for some ¢x € (0, |x]), N € N.

Now first
lp1 —prn —pi| =0 .
Further
i (1 - W) i (%) | — py EL)
p1 o1V + p1qu o1 (V) o (V) |[|p1]
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and

1 P M q; C; q1 C
lim N |1 —p1—=FE(S1.ny = lile—CN——l <] N d1 1,N>
M M
; ¢ Cin  aCin
= lim NCj N —p1 < _ >
N—“X’]Z:; ’ Jz:; G- @ —g
M
_ Z g1
=2 QI_q]
Hence
ix (1 E(SIN)> ix <E(§\1,N))
lim N —0.
NPT oy TR T oW
Furthermore
2
lim N - (1 E(%N)) i - EQ%N) 12q2% 2%
im — _Z el
E(S 2 E(S 2
1 1, —m (1 (J\lfN)) -|-p1£]1( (J\lfN)) 9 ;
= im —zx +p?
N—ooo 2 %0%(‘]\7)

For (36) we have used Lemma 4.1 (iii) and (v):

o1 1 .1 q1
lim —FE(S;n)=— d lim —c?(N)==% .
Jim < E(51,n) o and o lim o1 (N) P
To determine the limits
lim N |rg(N)| , k=12
N—oo

we observe that (see [Kal02], Lemma 4.14) for any ¢t € R and n € N

. 1
it - @ < |t|n+ .
— Ell = (n+1)!
Now, because of lim o1(N) = oo,
N—oo
E(S1,n)
-5 oy

Nin(NI s 1370

(36)



and

Z52 g

N T

N N)| < 0

Finally
. 2q1 1 qa? Q!
| N — =0.
N <a{>(N)‘ NB3M)| 2N

This proofs (i). The proof of (ii) is straightforward:

z]
_; z1E(S1 N)

ittt TR i N : Var(S ) M
quVWEm<zwm ) (4 —a)e LNII( 9 — G em)

’ 2

J

Tl qjeifﬂj _ qkelwk

1 —gje'® - Ve
gjei®s — qre VN

k#
1T N M
GN<pﬁ] 9 — a1 4 —
= J> 1 i ; z] i iz
—g;er . o woo | 4GETT — qer
g€ — qre VLN
< NIC: lgj — a1l a 4 — 4k 0
= ’ ]7N| i T q]€ZIJ _ qkelfﬂk N—oo :
i Var(S k=2
qjezacj —qie v/ Var(S1 N) oy

O

Theorem 5.2. Let Sy be the cycle time in equilibrium of a test customer in the closed M station
tandem network of Theorem 5.1 with increasing population size N.
Then the sequence of standardized cycle times

_ Sy —E(Sy)

N . , NeN,
Var(Sy)

converges weakly to the Standard Normal Distribution N(0,1).
Proof. We denote o(N) := /Var(Sy). By theorem 2.6 (11) the cycle time Fourier transform hg,, (z)

18 M p'eix N
~ - ‘ Ji
hSN(iE) = ;OLN <W> 5 z € R.

Therefore the Fourier Transform }NLTN of the normalized and centered sojourn time Ty is

hir, () = exp [—%] sy (ﬁ) , TR
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where the mean cycle time and the variance of the cycle time are (see (16) and (17))

& 1
Sn) =Y CinN—
j=1 bs

and
) 1 1)\?
Var(Sy) NZCN —I-N Z CiNCpnN | — — — .
5 Pk Pk
(j,k)eM:
i<k
Hence
iz | 1 > c 1 N
ix —kzzzl k,Nﬁ
p;e o(N)
hTN Z Cj N ’ i
1—gqje ™
We show

(i)

1€ o'(N) 1.2
lim Ci N p — =e 3%
1—qie ™
(ii) For j=2,...,. M
M N
zz(l j;lc]Np]
e o(N)
lim Oy | 2 ~0.
N—oo 1_q] o'(N)

First, for every k € M

ZM 1

pie il 1

. qkeaffw \/1 +23% <1 o <a<:§v>>)
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Utilizing |[u™ — v"| < n|u — v| once more we have for N sufficiently large

o N
iz |1—> Cj,N%

j=1 !

o(N

pie ) ) 22\ N
ir -\ 2N

I—q eo(N)

M 1 M 1
iz (17]21 Cj’Np—j> —ix (321 Cj7prj
= = 2
R - “pae T - (p% 20 (1 o (o(?\ﬂ))) (1 B ;_N)

p% + 21 (1 — COS <%))

Because of A}im Var (Sy) = oo (see Proposition 3.2)

. x
e - ))) -

Therefore it is sufficient to show

M, 1 M 1
‘]:

O‘(N) — P14q1 €Xp

p1 exp

lim N
N—oo

Denoting
1T (1 — —E(SN)) 2 1T (1 — —E(SN)> g
r3(N) = ex al - Z al
W) = e 7(N) — 7(N) k!
and . N
. ( (J@N)) > [ _ix (E(ESV*N)) )
r4(N) := exp ) —kz_;) ) o
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and using the triangular inequality we have

) M 1 ) M 1
T (17]'21 Cj,NFj> —ix (j§1 CijITj> ) $2 )
€ a(N) — e a(N) —pf + —
p1 P1q1 P 2Np1

o (1 — cos <ﬁ>> + %qu (1 — cos <J(fv)>> '

M 1 M 1 ’
1T 1—20]'7]\[17—]_ IL’2 1—210]'7]\[])—],

J=1 J=
— — N) —
P11+ (V) D1 202(N) +p1r3(N) —p1aa
A 1 o [ & 1 i
m 121 Cij_’ ! 321 CLNp_j q 2
= = - N
21 . EN ? gt 1 qa? En
T T <U(N)> TN T ANz () T N T o ()
M M
iz (1 — Zl Cj,Np%) i (Zl Cj,Npi>
= =
< |p1— i — P3| + |21 1) +pa =i
2 2
2 1 M C 1 2 M C 1
U ng s ) ng gtz ar® 2,
+ (_pl) 20'2(N) +pIQI 20'2(N) - 0'2(N) + ﬁpl

M k
o 1T (1 — Zl ijNp_j> ) o — ( ) . :
Jj= Jj=
+p1kz_:3 (N - +p1Q1kZ_3 T

) k! o(N) k!
n 2q1 ' 1 qua® ' Qi
a3(N) N o3(N) 2No?%(N)

We have used the Taylor series expansion of exp(iy) and the Taylor expansion of order two of the real

function
x
= 1 _ _
hn () Ccos <U(N)>
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that is

for some ¢ € (0, |x]), N € N.
Now first

lp1 — prn — P3| =0 .

S 1
j=1

Further

M
X Z Oj7
7=1

1
Np;

lim N |p; + DP1q1
N—oo

o(N)

M
——— I —(1—q)Cin =) Cin
i=2

And

lim N

M M M
—— |P1 Z Cijn— Z Cj,N& + ZC]‘,N
j=2 j=2 Pi 5

o(N)

p1q1

pj

D
1
—+ E CjN
pi =

p1q1
by

N—oo

M
>

J=1

S |

2
) + i1 (
J

N
CiN;

2
> —2q1

oL
N 2 72(N)

N

1)? 1)?

1—p—1) +p1q (10—1) —2q
q

i

1 —Dh1 (
Ch

For (39), we have used Lemma 4.1, (ii):

(39)



Now, because of lim o(N) = oo,

1 2, s
Nr3(N)| = T53(N) % Neooo
and
‘M‘g 3
NI £ s 0
Finally
2 4
¥ (| |+ e =

This proofs (38) (recall, that A}im Ci,ny =1). From (37) we have for k =2,..., M,
—00

. M 1
iz [1—> CiNg:
j=1

N

lim N |Cpn | 256 o) < lim N|C 0
i N = = lim |ICrn|=0 .
1—qk (V)

6 Appendix

6.1 A useful lemma

In this section we prove Lemma 2.2, which relies on the following formulae.

Lemma 6.1. For M > 2 and pairwise distinct complex numbers y1,...,ym € C
M M
1
> 1 —==0
im1 =1 Ji Y
i

or, equivalently,
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Proof. Consider
1

M-1M-1 i —x
flyr, o yym—152) = Z H !
=1

T Y — Y
i

(SRR
S

as a polynomial of degree M — 2 in x € C. Then

M—ly y M—ly y M—ly y
| — Yk k — Yk i — Yk
f(yl,--',yM—1;yk):H]7+Z H ’ =1

o1 Yi T Yk =1 Y5 Y oo Y5 T Y
J£k ik ik
for k=1,...,M — 1, hence f(y1,...,ym—1;2) = 1 for any = € C. O

We now are ready to prove Lemma 2.2:

Proof of Lemma 2.2. The proof of both equations is by induction with respect to M.
Equation (4): For M = 1 this is obviously satisfied (recall that empty products are defined to be
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one). Now let M = 2. Then

> 10 (mf)’” s0m)-1

n€Z(M,N) j=1

Ty
M—1 , i
¥ > 2\ ot | T\ L
-\ ! ym) M
ny=1 |neZ(M—1,N—nys) j=1 ]
M-1 M—1
=1 i \Yi e Ym TM
i
N-1 [M-1 — M-1
+ v L <£>N B <$_M>”NL
ny=1 | i=1 Li \Yi ;1 Yj —Yi Ym M
J#L
M-1 N M-1 N
i Li \Yi =t Yi —Yi Ym TM
JF1
M-1 M-1 [ N+1 N+1 N N
o\ Lt e (G) -G )-G) -6
iy iMoo\ G YT Yi Ym — Yi Yi Ym Yi Ym
7 -
M-1 M-1
_ i(ﬁ)N 4 {HL [Mm__lﬂ
-1 i \VYi i Yi— Y M YM — Yi Yi
7
N M-1 M—-1
+L<$_M> -y L i {yin x_MH}
Tym \YMm o i\ o YT Y Ym —Yi Ym
%
M-1 N M N M-1 M
1 xl> Yj 1 (mM>
(™ +— (= 1 —
; Li <yi Hyj—yi TyM \YMm 2:31:[
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Now we make use of equation (41), replacing there M by M + 1 and taking yas41 := 0, which leads to
M M M-1 M
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Equation (5): For M =1 (and also for M = 0) this equation is obviously satisfied. Let us assume
the validity of (5) for M — 1. Then

= () i)
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Now, using Lemma 6.1 once more,
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6.2 The cycle time

Generating function of Sy (the cycle time with a total of N customers circulating, including the
test customer, see Theorem 2.6 (11))

M u N
B =Y Co (F2)
b

First derivative of the cycle time generating function

d . M pau \ V1 P; i 2 0
_h M,N — N Z 1 7 7 _Z
du (u) ; C’N<1—qiu> {1—qiu+ <1—qiu> piu}

Mean cycle time

M 1
E(Sy)=)_N CZ,N}7 :
i=1 ¢

Second derivative

2 oo M N i i \%q 2
_h ? = N N_ ]- 7 ‘ : Z _Z
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M Dt N-1 i 2 0 i 3 0 2
N C; ! 2 ! 242 ! 2
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Therefore
M 1 2 M 4
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Cycletime variance

M

12 .U 1 M 1\’
Var(Sy) = ZN ZN< ) +Z2NCZ +ZNCZ-,NE—<ZNC@NE>
2
_ ZN2 ZN( ) Z CZN< >+22Ncy 1 +szcmp1
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~ 2 2 11
;N OLN( > ZN cchNpp .

i,j=1 ]
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Collecting terms with N? we have

M 1\> X 11
() -Een () Lot
i=1 v i=1

i,j=1 ij
i#£]
M N2 M M 11
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< 11
- N Zcch]N< ) Zcmc N
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1)? 1\? 11
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1\2
= N Z CzNCN<f——> :
(i,5)€EM?2 pi Pj
i<j
Collecting terms with N we have

M 12 i 1 & 12
NZ —Ci N <—> +20in5+Cin— | = NZQ’,N <—> (=14 2q; +pi)

=1 b b; Di i1

M

hence

1 1)’
Var(Sy) NZC +N2 Z CinCj N <;——> .
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6.3 Sojourn time at node Q[k]
Looking at node Qk] separately, we get from (13) the generating function of Sy, n,

N M
(M,N) DrUL — qk
ug) = C, — I | + E ———u
Tk () N (1 - Qkuk> <Qkuk — Q]> ( — QU k>

j;ék z#k

This yields the mean sojourn time at node Q[k]

M
qi
E(S = (C N——C + C 42
(Sk,n) e, N kNZ p— ; & r— (42)
l¢k £k
aCi N QkaN>
_ NS4 ! - : 43
N Pk Z(Qz—% qr — q1 ( )

£k

from the first derivative of the sojourn time generating function

M
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2
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The Variance of the sojourn time at node QIk] is

Var(ShN)
= NQCkN——NQCkN —l—NCkN —QNCkN
P; Py ; ;pk 9k — qr
r#£k
1 qi
+2C% yN —2C, NN Ci N
N XQMer ;;prﬁ%
r#k ik
k9 = qi(qi + qr)
kqr qx il + qk
+ Ck,N + Ck,N +Y Cin Tt
Z 2 ;;Qk_% 4k — dry z:; "N g — qr)?
rH&k ri#k ro#k itk
2 2
M

- kNZ > cin - +2ZZCZNCkN

r;ék ik i;ék rk

This is directly obtained by some tedious computations:
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Second derivative of g(M AN

d? (N
du2gl(f )(uk)
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and
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6.4 Sojourn times covariance

The covariance of the sojourn time at the nodes Q[k] and Q[l], k,l € M, is

Cov (Sk,n, S1.N)

J q q q U q q U q
' ‘ I ! k k
= Z Cin—= — —Cin Z = Ck.N Z (45)
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qk L NC qi

+ NCyp,Nn— ILN—
Pk g — q1 pz(ﬂ—%
11 1 ¢
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M q M q M q M q
k 1 k i
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gi—a | \ = a—a —a | | &= g —
z;tk r#l z;ék il
This holds for the covariance between the bottleneck and any other station as well as for the covariance
between two non bottleneck stations.

Again, direct but tedious computations suffice. We have the generating function of (Si v, S| n)
(sojourn times at Q[k] and Q[l]), see Theorem 2.6, (13)))
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Partial derivative with respect to uy
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Mixed partial derivative of order two
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From (48) we obtain
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6.5 Computation of the asymptotic moments
Proof of Lemma 4.1. Property (i) and (ii) are immediate consequences of Proposition 3.2. From Lemma

2.4 follows (iii) by
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and (v) by
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From equation (43) we also get (iv) for k # 1
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From equation (45)
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To determine the limiting behaviour of
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Also from equation (45)
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(ix) We have to show
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(x) Now o(S1,n5,SI.N) e 0 is immediate from property (ix). And from properties (viii) and (vi)
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for k,1 <2, k #1. O

References

[BB&0] S.C. Bruell and G. Balbo. Computational algorithms for closed queueing networks. North—
Holland, New York, 1980.

[BD9O] 0. J. Boxma and H. Daduna. Sojourn times in queueing networks. In H. Takagi, editor,
Stochastic Analysis of Computer and Communication Systems, pages 401-450, Amsterdam,
1990. IFIP, North—Holland.

[BK93| H. Bruneel and Byung G. Kim. Discrete-Time Models for Communication Systems includ-
ing ATM. Kluwer Academic Publications, Boston, 1993.

[Box88| O. J. Boxma. Sojourn times in cyclic queues - the influence of the slowest server. In O.J.
Boxma, P.J. Courtois, and G. Iazeolla, editors, Computer Performance and Reliability,
pages 13-24. North - Holland, Amsterdam, 1988.

[CLTGO3] J. Charzinski, R. Lehnert, and P. Tran-Gia, editors. Providing Quality of Service in Het-
erogeneous Environments, volume 5 of Teletraffic Science and Engineering. Elsevier, Am-
sterdam, 2003.

[CMP99] X. Chao, M. Miyazawa, and M. Pinedo. Queueing Networks — Customers, Signals, and

Product Form Solutions. Wiley, Chichester, 1999.

44



[CY01]
[Dad96]

[Dad97]

[Dad01]

[GN67]
[Har85a]
[Har85b]
[Kal02]

[Kel83]

[KNO3]

[Koe58]

IMD04]

[MDO5]

[MKCO03]

H. Chen and D.D. Yao. Fundamentals of queueing networks. Springer, Berlin, 2001.

H. Daduna. The cycle time distribution in a cycle of Bernoulli servers in discrete time.
Mathematical Methods of Operations Research, 44:295 — 332, 1996.

H. Daduna. The joint distribution of sojourn times for a customer traversing an overtake-
free series of queues: The discrete time case. Queueing Systems and Their Applications,
27:297-323, 1997.

H. Daduna. Queueing Networks with Discrete Time Scale: Explicit Expressions for the
Steady State Behavior of Discrete Time Stochastic Networks, volume 2046 of Lecture Notes
in Computer Science. Springer, Berlin, 2001.

W.J. Gordon and G.F. Newell. Closed queueing networks with exponential servers. Oper-
ations Research, 15:254-265, 1967.

J. M. Harrison. Browian Motion and Stochastic Flow Systems. Wiley Series in Probability
and Statistics. John Wiley, New York, 1985.

P. G. Harrison. On normalizing constants in queueing networks. Operations Research,
33:464-468, 1985.

O. Kallenberg. Foundations of Modern Probability. Springer, New York, 2 edition, 2002.

F. P. Kelly. Invariant measures and the Q-matrix. In J. F. C. Kingman and G. E. H.
Reuter, editors, Probability, Statistik and Analysis, London Math. Soc. Lect. Notes, pages
143-160. Cambridge University Press, 1983.

K. Kordybach and S. Nousiainen. Radio resource management in WCDMA-based networks
in emergency situations. In J. Charzinski, R. Lehnert, and P. Tran-Gia, editors, Provid-
g Quality of Service in Heterogeneous Environments, volume bHa of Teletraffic Science
and Engineering, pages 331-338, Amsterdam, 2003. Proceedings of the 18th International
Teletraffic Congress, Elsevier.

E. Koenigsberg. Cyclic queues. Opnl. Res. Quart., 9:22-35, 1958.

C. Malchin and H. Daduna. On the structure of roundtrip time distributions in discrete
time networks. Preprint 2004-03, Schwerpunkt Mathematische Statistik und Stochastische
Prozesse, Fachbereich Mathematik der Universitat Hamburg, 2004.

C. Malchin and H. Daduna. An invariance property of sojourn times in cyclic networks.
Operations Research Letters, 33:1-8, 2005.

M. Menth, S. Kopf, and J. Charzinski. Impact of resilience requirements on the performance
of network admission control methods. Technical report, University of Wiirzburg, Institute
of Computer Science, 2003. No. 309.

45



[NSB*03]

[PRY4]

[PROY]

[SV03]

[TGBT94]

[Wo0094]

A. Nucci, B. Schroeder, S. Bhattacharyya, N. Taft, , and C. Diot. IGP link weight assign-
ment for transient link failures. In J. Charzinski, R. Lehnert, and P. Tran-Gia, editors, Pro-
viding Quality of Service in Heterogeneous Environments, volume 5a of Teletraffic Science
and Engineering, pages 321-330, Amsterdam, 2003. Proceedings of the 18th International
Teletraffic Congress, Elsevier.

V. Pestien and S. Ramakrishnan. Features of some discrete-time cyclic queueing networks.
Queueing Systems and Their Applications, 18:117 — 132, 1994.

V. Pestien and S. Ramakrishnan. Queue length and occupancy in discrete-time cyclic
networks with several types of nodes. Queueing Systems and Their Applications, 31:327 —
357, 1999.

M. Schopp and J. Viallon. Service availability in distributed network architectures: Evalua-
tion and planning issues. In J. Charzinski, R. Lehnert, and P. Tran-Gia, editors, Providing
Quality of Service in Heterogeneous Environments, volume 5a of Teletraffic Science and
Engineering, pages 251-260, Amsterdam, 2003. Proceedings of the 18th International Tele-
traffic Congress, Elsevier.

P. Tran-Gia, C. Blondia, and D. Towsley. Editorial introduction to: Discrete-time models
and analysis methods, (Special issue of Performance Evaluation). Performance Evaluation,
21:1-2, 1994.

M.E. Woodward. Communication and Computer Networks: Modelling with Discrete—Time
Queues. IEEE Computer Society Press, Los Alamitos, CA, 1994.

46



