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Abstract

We propose a new test for independence of error and covariate in a nonparametric
regression model. The test statistic is based on a kernel estimator for the L2-distance
of the conditional and unconditional distribution of the covariates. In contrast to tests
so far available in literature, the test can be applied in the important case of multi-
variate covariates. It can also be adjusted for models with heteroscedastic variance.
Asymptotic normality of the test statistic is shown. Simulation results and a real data
example are presented.
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1 Introduction

We consider independent and identically distributed data (X1, Y1), . . . , (Xn, Yn), where Xi

is d-dimensional and Yi one-dimensional. Our purpose is to test whether the data follow a

homoscedastic regression model

Yi = m(Xi) + εi (1.1)

with regression function m(x) = E[Yi | Xi = x], where the error εi = Yi − E[Yi | Xi] is

independent of the covariate Xi. As a new test for the hypothesis

H0 : Xi and εi are independent (1.2)
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a simple kernel based test statistic is suggested.

Although the independence of error and covariate is a common assumption in nonparametric

regression [compare Fan and Gijbels (1995), Koul and Schick (1997), Akritas and Van Kei-

legom (2001), Müller, Schick and Wefelmeyer (2004, 2006), Cheng (2005), Neumeyer, Dette

and Nagel (2006), Pardo–Fernández, Van Keilegom and González–Manteiga (2007), . . . ], to

the present author’s knowledge so far there are only two tests for hypothesis (1.2) available

in literature. In the homoscedastic model with univariate covariate Einmahl and Van Keile-

gom (2007a) consider a stochastic process based on differences of the observations Yi, which

converges weakly to a bivariate Gaussian process. In the heteroscedastic model [defined

in (1.3) below] with univariate covariate Einmahl and Van Keilegom (2007b) propose tests

based on the difference of the empirical distribution function of (Xi, ε̂i) and the product of

the empirical distribution functions of the covariates Xi and residuals ε̂i, respectively. The

considered process converges weakly to a bivariate Gaussian process. Both tests have been

shown to be superior to tests for simple heteroscedasticity in cases, where the dependence of

error and covariate is complicated. However, both procedures cannot easily be extended to

the important case of multivariate covariates. In contrast the test considered in the present

paper is valid for multivariate covariates and theory is less complicated. In Einmahl and Van

Keilegom (2007a) the reason for only considering one-dimensional covariates lies within the

special structure of the processes which uses ordering of the covariates. The test proposed

in Einmahl and Van Keilegom (2007b) depends on residual based empirical processes, for

which (in a nonparametric setting) asymptotic theory is so far not available in the case of

multivariate covariates [see Akritas and Van Keilegom (2001) for the case of one-dimensional

covariates]. Hence, in the multivariate design case tests cannot be based on estimators for

the joint and marginal distributions of (Xi, εi) (such as a Kolmogorov-Smirnov type test).

Further tests based on density estimates such as estimators for the L2-distance of the joint

and marginal densities of (Xi, εi) should not be recommended, because those require the

choice of 4 smoothing parameters (for the estimation of the regression function, the joint

density and both marginal densities, respectively). Nonparametric tests for independence of

components of paired iid-data include those by Hoeffding (1948), Blum, Kiefer and Rosen-

blatt (1961), Rosenblatt (1975) and Deheuvels (1980), among others.

We follow an idea by Zheng (1997), who proposed a procedure for testing independence

of components Ui and Vi in an iid sample of paired observations (U1, V1), . . . , (Un, Vn) and

showed asymptotic normality under the null hypothesis of independence and under local

alternatives. This test statistic was further investigated by Dette and Neumeyer (2000) who

proved asymptotic normality under fixed alternatives. Please note that in our model the

errors εi are not observable. Hence, when applying procedures constructed for testing inde-

pendence of components Ui and Vi in paired observations (U1, V1), . . . , (Un, Vn) for testing
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independence of Ui = Xi and εi the errors are nonparametrically estimated by residuals

ε̂i = Yi − m̂(Xi). Here m̂ denotes, for instance, a local polynomial estimator for the re-

gression function. This complicates asymptotic theory as now the random variables Vi = ε̂i

are dependent. In general it depends crucially on the structure of the test statistic whether

estimating the regression function has influence on the asymptotic distribution of the test or

not, compare Ahmad and Li (1997), where there is no influence or Loynes (1980), where re-

placing true (unobservable) errors by residuals changes the asymptotic distribution. Zheng’s

(1997) test is based on an estimator for an L2-distance between the conditional distribu-

tion of Vi and Ui, denoted by FV |U , and the unconditional distribution, FV . Zheng’s test is

not symmetric in interchanging the roles of Ui and Vi, which may not be desirable, when

paired random variables are observed and one is interested in detecting dependence of the

two components. However, this asymmetry is essential for our purpose. Our key idea is

to apply Zheng’s test to Xi and ε̂i instead of Ui and Vi. A natural way seems to be to set

Vi = Xi and Ui = ε̂i to investigate whether the (measurement) error εi at some measurement

point Xi actually depends on Xi, i. e. whether the conditional distribution Fε|X depends on

X. Yet, doing so we run into the same problems as Einmahl and Van Keilegom (2007b)

and asymptotic distribution theory is only available in the one-dimensional covariate case.

Moreover the estimation of the residuals here results in unwanted bias and a rather compli-

cated asymptotic distribution (as will be explained in section 4 of the present paper). This

is not the case when interchanging the roles of Xi and ε̂i, applying Zheng’s (1997) test to

Ui = Xi, Vi = ε̂i, and this is the route we will take in this paper. I. e. we base our test

on an estimated L2-distance between the conditional distribution of the covariate given the

error, FX|ε, and the unconditional covariate distribution, FX . This approach lacks the above

measurement error interpretation but then the test statistic is applicable in the multivariate

covariate case. Under regularity assumptions asymptotic normality of the test statistic can

be shown both under the null hypothesis of independence and under alternatives.

Because the asymptotic null distribution depends on unknown features of the data-generating

process, we recommend to apply resampling procedures. We prove consistency of the clas-

sical residual bootstrap as introduced by Härdle and Bowman (1988) in our context and

discuss the small sample performance of this procedure.

The test can also be adjusted to justify a regression model with heteroscedastic variance,

i. e.

Yi = m(Xi) + σ(Xi)εi, (1.3)

where the covariates Xi are independent of the errors εi = (Yi−E[Yi | Xi])/(Var(Yi | Xi))
1/2.

We should mention some of the vast literature on model tests in nonparametric regression

models such as goodness-of-fit tests for the regression function [see Härdle and Mammen

(1993), Zheng (1996), Stute (1997), Stute, Thies and Zhu (1998), Alcalá, Cristóbal and
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González Manteiga (1999), Dette (1999) and Van Keilegom, González Manteiga and Sánchez

Sellero (2007), among others] and tests for heteroscedasticity [for instance, Eubank and

Thomas (1993), Dette and Munk (1998), Dette (2002), Zhu, Fujikoshi and Naito (2001) and

Liero (2003)].

The remainder of the paper is organized as follows. In section 2 we motivate and define the

test statistic and list the model assumptions. Section 3 states the asymptotic distributions

under H0 as well as under fixed alternatives, and discusses bootstrap theory. In section

4 interchanging the roles of residuals and covariates is discussed for the case of univariate

covariates. Section 5 explains the extension to heteroscedastic models and compares related

literature, whereas in section 6 the small sample performance is investigated in a simulation

study, and a real data example is presented. Section 6 concludes the paper and all proofs

are given in an appendix.

2 Assumptions and test statistic

First we consider the homoscedastic model (1.1) where our aim is to test whether the covari-

ate Xi is independent of the error εi = Yi−m(Xi) = Yi−E[Yi | Xi] [see hypothesis (1.2)]. We

impose the following model assumptions. The d-dimensional design points X1, . . . , Xn are in-

dependent and identically distributed with distribution function FX on compact support, say

[0, 1]d. FX has a twice continuously differentiable density fX such that infx∈[0,1]d fX(x) > 0.

The regression function m is twice continuously differentiable in (0, 1)d. The errors ε1, . . . , εn

are independent and identically distributed with bounded density fε which has one bounded

continuous derivative. The errors are centered, i. e. E[εi] = 0 (by definition), with existing

fourth moment, E[ε4
i ] < ∞.

The error εi is estimated nonparametrically by the residual

ε̂i = Yi − m̂(Xi), i = 1, . . . , n, (2.1)

where m̂(x) denotes the Nadaraya-Watson [Nadaraya (1964) and Watson (1964)] kernel

regression estimator for m(x), that is

m̂(x) =
1

nbd
n

n∑
i=1

k
(Xi − x

bn

)
Yi

1

f̂X(x)
(2.2)

with the kernel density estimator f̂X(x) for the design density fX(x), i. e.

f̂X(x) =
1

nbd
n

n∑
i=1

k
(Xi − x

bn

)
. (2.3)

Here bn denotes a sequence of positive bandwidths such that bn → 0, nb2d
n → ∞, nb4d

n → 0

for n → ∞. Let further κ denote a twice continuously differentiable symmetric density
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with compact support [−1, 1], say, such that
∫

uκ(u) du = 0, and let k denote the product

kernel k(u1, . . . , ud) = κ(u1) · · ·κ(ud). We assume a modification of the estimator m̂ at the

boundaries to obtain uniform rates of convergence, compare Müller (1984) or Härdle (1989,

p. 130). Note, that other uniformly consistent nonparametric function estimators such as

local polynomial estimators [see, e. g. Fan and Gijbels (1996)] can be applied as well and

very similar results can be obtained.

To test hypothesis (1.2) we suggest the simple kernel based test statistic (compare Zheng,

1997)

Tn = (2.4)

1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn

K
( ε̂i − ε̂j

hn

) ∫
(I{Xi ≤ x} − FX,n(x))(I{Xj ≤ x} − FX,n(x))w(x) dx,

where I{·} denotes the indicator function, w a positive integrable weight function, and FX,n

is the empirical distribution function of the covariates X1, . . . , Xn. Further, hn is a sequence

of positive bandwidths such that hn → 0, nhn →∞ and hn/b
d−2
n → 0 for n →∞. K denotes

a bounded symmetric density function such that
∫

u2K(u) du < ∞. We assume that K is

λ ≥ 2 times continuously differentiable in the inside of its support with bounded derivatives.

These assumptions are sufficient when the λ-th derivative of K vanishes [when K is chosen

to be a (truncated) polynomial such as the Epanechnikov kernel]. Otherwise we have to

impose the following additional technical bandwidth condition which is less restrictive for

very smooth kernels (for instance, the Gaussian kernel where λ is arbitrarily large). We

assume that there exists some ρ ∈ (0, 1
2
) such that

nb
dρλ

ρλ−1
n h

λ− 1
2

λ−2
n →∞.

For example, consider the limit case ρ = 1
2

with λ = 8, which gives the condition: nb
4d/3
n h2.5

n →
∞.

Please note that in contrast to Zheng’s (1997) setting the pairs (Xi, ε̂i) are dependent for

different i ∈ {1, . . . , n}. We will investigate whether this changes the asymptotic theory. Tn

is an estimator for the expectation

Bhn = E
[ 1

hn

K
(ε1 − ε2

hn

) ∫
(I{X1 ≤ x} − FX(x))(I{X2 ≤ x} − FX(x))w(x) dx

]
(2.5)

=

∫ ∫ ∫
1

hn

K
(y1 − y2

hn

)
(FX|ε(x|y1)− FX(x))(FX|ε(x|y2)− FX(x))fε(y1)fε(y2)

w(x) dy1 dy2 dx,

where FX|ε(·|y) = P (X1 ≤ · | ε1 = y) denotes the conditional distribution of Xi given

εi = y. Under the null hypothesis of independence Bhn is zero, whereas under the alternative
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it converges for hn → 0 to a positive L2-distance of the conditional and unconditional

distribution of the covariates, i. e.∫ ∫
(FX|ε(x|y)− FX(x))2f 2

ε (y)w(x) dy dx,

Under the alternative H1 we assume that FX|ε(·|y) has a uniformly bounded continuous

derivatives with respect to y and the corresponding density fX|ε(x|y) is continuously differ-

entiable with bounded partial derivatives with respect to y and all components of x. For the

asymptotic theory under H1 we additionally assume for the bandwidths nh2
nb

d
n → ∞ and

nh4
n →∞.

Throughout we will use the notations

∆(x|y) = FX|ε(x|y)− FX(x), v(x|y) = ∆(x|y)fε(y)− E[∆(x|ε1)fε(ε1)]. (2.6)

3 Asymptotic results and bootstrap

For the test statistic Tn defined in (2.4) under the assumptions stated in section 2 we obtain

the following limiting distributions.

Theorem 3.1 (a) Under the null hypothesis (1.2) of independence nh
1/2
n Tn converges to a

mean zero normal distribution with variance

τ 2 = 2

∫
K2(u) du

∫
f 2

ε (y) dy

∫ ∫
(FX(x ∧ t)− FX(x)FX(t))2w(x)w(t) dx dt,

where x ∧ t denotes the componentwise minimum of the vectors x and t.

(b) Under the fixed alternative of dependence of errors and covariates,
√

n(Tn − Bhn) con-

verges to a mean zero normal distribution with variance

ω2 = ω̃2 + 4Var(Z1) + 8Cov
(
Z1 ,

∫
(I{X1 ≤ x} − FX(x))v(x|ε1)w(x) dx

)
,

where

Z1 = ε1

∫
(I{X1 ≤ x} − FX(x))

∫ ∫ ∫
fX|ε(X1|z)

fX(X1)

∂fX|ε(s|z)fε(z)

∂z

×(I{s ≤ x} − FX(x))fε(z)w(x) dx ds dz

∫
K ′(u)u du

ω̃2 = 4Var
( ∫

∆(x|ε1)v(x|ε1) w(x) dx
)

+ 4E
[ ∫ ∫

(FX|ε(x ∧ t|ε1)− FX|ε(x|ε1)FX|ε(t|ε1))∆(x|ε1)v(x|ε1)v(t|ε1)w(x)w(t) dx dt
]

with notations (2.6) and Bhn defined in (2.5).
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The proof of Theorem 3.1 is given in the appendix.

Remark 3.2 Note that for T̃n defined by

T̃n = (3.1)

1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn

K
(εi − εj

hn

) ∫
(I{Xi ≤ x} − FX,n(x))(I{Xj ≤ x} − FX,n(x))w(x) dx,

we have from results by Zheng (1999) and Dette and Neumeyer (2000) that nh
1/2
n T̃n and

√
n(T̃n − Bhn) converge to mean zero normal distributions with variance τ 2 and ω̃2 (both

defined in Theorem 3.1), respectively. Hence, replacing the true (unobservable) errors by

residuals does not change the asymptotic distribution under the null hypothesis of indepen-

dence. However, it changes the asymptotic distribution under the alternative. �

Remark 3.3 Local alternatives of convergence rate n1/2h
1/4
n can be detected with the pro-

posed test. Under H1n : FX|ε(x|y) = FX(x) + d(x, y)(nh
1/2
n )−1/2 with continously differen-

tiable d with bounded partial derivatives, nh
1/2
n Tn converges to a normal distribution with

expectation
∫ ∫

d2(x, y)f 2
ε (y)w(x) dy dx and variance τ 2 from Theorem 3.1. As was described

by Zheng (1997) optimal choices of the weight function w with respect to maximizing power

under local alternatives would now depend on FX|ε − FX .

Considering asymptotics for the test statistic Tn with a fixed bandwidth hn ≡ h would

result in a test which can detect local alternatives of convergence rate n−1/2, compare Hall

and Hart (1990) or Hart (1997, chapter 6). �

A consistent asymptotic level α test could be obtained from Theorem 3.1 by applying

a standardized test statistic nh
1/2
n Tn/τ̂ with asymptotic standard normal law (under H0),

where τ̂ 2 consistently estimates τ 2. However, as is quite common in nonparametric regression

model tests, more accurate critical values can be obtained by resampling procedures. In the

following we discuss the applicability of the classical residual bootstrap as introduced by

Härdle and Bowman (1988) for nonparametric regression models.

Let ε̃i = ε̂i − n−1
∑n

l=1 ε̂l denote the centered residuals and let F̃ε,n denote the empirical

distribution function of ε̃1, . . . , ε̃n. Given the original sample Yn = {(X1, Y1), . . . , (Xn, Yn)}
let the bootstrap errors ε∗1, . . . , ε

∗
n be independent with distribution function F̃ε,n. Then we

define as bootstrap observations

Y ∗
i = m̂(Xi) + ε∗i . (3.2)

Let T ∗
n be defined as Tn in (2.4), but based on the bootstrap sample (X1, Y

∗
1 ), . . . , (Xn, Y

∗
n ).

Then we have the following asymptotic result.
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Theorem 3.4 Conditionally on Yn the bootstrap test statistic nh
1/2
n T ∗

n converges in dis-

tribution to a mean zero normal distribution with variance τ 2 defined in Theorem 3.1, in

probability.

A sketch of the proof is given in the appendix. Critical values for an asymptotic level α

test can then be approximated by repeating the bootstrap procedure B times, resulting in

ordered values of the bootstrap test statistics T
∗(1)
n , . . . , T

∗(B)
n . The null hypothesis is rejected

if Tn > T
∗([B(1−α)])
n .

Remark 3.5 Please note that even in the heteroscedastic model wild bootstrap is not ap-

plicable in our context. Wild bootstrap asymptotically changes the error distribution and,

hence, in general changes the asymptotic variance τ 2. More importantly, bootstrap ob-

servations should be generated under the null hypothesis, i. e. independence of covariates

and bootstrap error. However, wild bootstrap is usually applied in heteroscedastic models

because it preserves dependence of errors and covariates [see for example, Stute, González

Manteiga and Presedo Quindimil (1998)], which is clearly not desired in our test. �

4 The univariate design case

A critical point of discussion of Zheng’s (1997) test statistic is the asymmetry in the roles of

Xi and εi, which is not desirable in the context of testing independence of components in an

iid-sample (Xi, εi), i = 1, . . . , n. However, in our case, where εi has to be estimated before

performing the test, this asymmetry turns out to be an advantage because it allows us to

consider multivariate design in contrast to the so far available procedures by Einmahl and

Van Keilegom (2007a, 2007b). In the case d = 1 we discuss in this section an alternative

test statistic interchanging the roles of Xi and ε̂i. Of course, then also symmetrized versions

of the test could be considered.

We assume during this section that εi and Xi are independent, i. e. H0 is valid. It turns

out that even then replacing residuals by true errors changes the asymptotic behaviour of

the test statistic seriously. Let us consider model (1.1) for d = 1. We define the test statistic

Sn =

1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn

K
(Xi −Xj

hn

) ∫
(I{ε̂i ≤ y} − F̂ε,n(y))(I{ε̂j ≤ y} − F̂ε,n(y))w(y) dy,

where F̂ε,n denotes the empirical distribution function of residuals ε̂1, . . . , ε̂n. Akritas and Van

Keilegom (2001) prove weak convergence of the process
√

n(F̂ε,n − Fε) (for one-dimensional
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covariates) under some regularity conditions. Please note that analogous results for multi-

variate design have not been proven so far and Akritas and Van Keilegom’s (2001) proof is

not transferable to that case.

Denote by S̃n the (not available) statistic defined analogously to Sn, but replacing all ε̂i

by the true errors εi and F̂ε,n by Fε,n, the empirical distribution function of errors ε1, . . . , εn.

Zheng (1997) showed under H0 that nh
1/2
n S̃n converges to a mean zero normal distribution

with variance

γ̃2 = 2

∫
K2(u) du

∫
f 2

X(x) dx

∫ ∫
(Fε(y ∧ z)− Fε(y)Fε(z))2w(y)w(z) dy dz.

We introduce the notations

U(y) = E[ε1I{ε1 ≤ y}], V (y) =

∫
(I{r ≤ y} − Fε(y))f ′

ε(r) dr

Cn =
K(0)

nhn

(
2

∫
U(y)V (y)w(y) dy + σ2

∫
V 2(y)w(y) dy

)
.

It is interesting that here even under H0 we obtain a bias term Cn in contrast to the results in

section 3 (see Theorem 3.1). Further the asymptotic distribution is much more complicated.

Under suitable regularity conditions it can be shown that under the null hypothesis (1.2) of

independence nh
1/2
n (Sn − Cn) converges to a mean zero normal distribution with variance

γ2 = γ̃2 + 2

∫
K2(u) du

∫
f 2

X(x) dx
[
σ4

( ∫
V 2(y)w(y) dy

)2

+ 4σ2

∫ ∫
(Fε(y ∧ z)− Fε(y)Fε(z))V (y)V (z)w(y)w(z) dy dz

+ 4
( ∫

U(y)V (y)w(y) dy
)2

+ 8

∫ ∫
U(y)(Fε(y ∧ z)− Fε(y)Fε(z))V (z)w(y)w(z) dy dz

+ 8

∫
U2(y)w(y) dy

∫
V 2(y)w(y) dy + 8σ2

∫
U(y)V (y)w(y) dy

∫
V 2(y)w(y) dy

]
.

Because the proof uses results by Akritas and Van Keilegom (2001) we run into the same

problems as Einmahl and Van Keilegom (2007b) in terms of generalization to the multivari-

ate design case. Further for test statistics based on the empirical distribution function of

residuals theory relies substantially on the smoothness of the error distribution. Hence a

smooth residual bootstrap [as was discussed by Neumeyer (2006)] should be applied instead

of the classical residual bootstrap. For this kind of bootstrap an additional smoothing pa-

rameter has to be chosen, such that for the bootstrap version of Sn one needs three different

bandwidths. Because of these disadvantages we do not recommend to apply test statistic

Sn, but rather Tn as defined in section 2. Hence, details of the derivations of the above

asymptotic result are omitted.

9



5 The heteroscedastic model

In the following we consider a modification of the test statistic to detect dependence of

the standardized error from the covariate in a heteroscedastic model, i. e. we are testing

hypothesis (1.2) in model (1.3). To this end the errors εi = (Yi−E[Yi | Xi])/(Var(Yi | Xi))
1/2

are estimated by residuals

ε̂i =
Yi − m̂(Xi)

σ̂(Xi)
,

where

σ̂2(x) =
1

nbd
n

n∑
i=1

k
(Xi − x

bn

)
(Yi − m̂(Xi))

2 1

f̂X(x)

and m̂, f̂X are defined in (2.2) and (2.3), respectively. With this different definition of

residuals the same test statistic as defined in (2.4) can be applied for testing (1.2). Additional

to the assumptions in section 2 we now assume that σ2 is twice continuously differentiable

and bounded away from zero. Then under the null hypothesis of independence, nh
1/2
n Tn has

the same limit distribution as given in Theorem 3.1. For the bootstrap version of the test,

similar to (3.2) bootstrap observations are defined as

Y ∗
i = m̂(Xi) + σ̂(Xi)ε

∗
i ,

where now ε∗i is generated from the empirical distribution function of the standardized resid-

uals

ε̃i =
ε̂i − n−1

∑n
l=1 ε̂l

(
∑n

k=1(ε̂k −
∑n

l=1 ε̂l)2)1/2
, i = 1, . . . , n.

6 Finite sample performance

First we compare our procedure to the so far availabe procedures by Einmahl and Van

Keilegom (2007a, 2007b) in the univariate case, which have been shown to be superior to

tests for heteroscedasticity in cases where higher error moments depend on the design.

In our experiments the design variable X1 is uniformly distributed in [0, 1] and the re-

gression function is m(x) = x−x2/2. Sample sizes are n = 100 and n = 200. Under the null

hypothesis, ε1 is centered normally distributed with standard deviation σ = 0.1. We use R

for the simulations [R Development Core Team (2006)]. For the regression estimation we

apply procedure sm.regression in R package sm [Bowman and Azzalini (1997)] and procedure

h.select for a choice of the bandwidth bn via cross validation. The bandwidth hn is chosen

by a rule of thumb: h∗n = (ŝ2
n/n)1/5, where ŝ2

n denotes an estimator for the variance, i. e. the

variance estimator by Rice (1984) applied to the residuals. To investigate how sensitive the

results are with respect to the choice of this bandwidth we also display simulation results for
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hn ∈ {h∗n, h∗n/2, 2h∗n}. The simulation results are based on 500 simulations with 250 boot-

strap repetitions in each simulation. The bootstrap samples are generated according to the

classical residual bootstrap as explained in section 3. The nominal level is α = 0.05. We con-

sider the following alternatives investigated by Einmahl and Van Keilegom (2007a, 2007b):

The conditional distributions of the error ε1 given that X1 = x, are normal, chisquared and

t-distributions defined by

H1,A : ε1|X1 = x ∼ N(0,
1 + ax

100
)

H1,B : ε1|X1 = x
D
=

Wx − rx

10
√

2rx

, where Wx ∼ χ2
rx

, rx = 1/(bx)

H1,C : ε1|X1 = x
D
=

1

10

√
(1− cx)1/4Tx, where Tx ∼ t2/(cx)1/4

with parameters a, b > 0, c ∈ (0, 1] that control variance, skewness and kurtosis, respectively.

H1,A n = 100 n = 200

a \ hn h∗n 2h∗n h∗n/2 h∗n 2h∗n h∗n/2

0 0.054 0.032 0.048 0.047 0.044 0.054

1 0.222 0.190 0.148 0.352 0.390 0.254

2.5 0.476 0.506 0.358 0.748 0.860 0.624

5 0.706 0.734 0.508 0.932 0.976 0.848

10 0.822 0.884 0.678 0.976 0.972 0.998

Table 1: Rejection probabilities for model H1,A

H1,B n = 100 n = 200

b \ hn h∗n 2h∗n h∗n/2 h∗n 2h∗n h∗n/2

0 0.054 0.032 0.048 0.047 0.044 0.054

1 0.122 0.084 0.212 0.224 0.108 0.416

2.5 0.140 0.104 0.224 0.228 0.106 0.436

5 0.162 0.134 0.272 0.252 0.152 0.400

10 0.146 0.116 0.225 0.240 0.126 0.360

Table 2: Rejection probabilities for model H1,B
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H1,C n = 100 n = 200

c \ hn h∗n 2h∗n h∗n/2 h∗n 2h∗n h∗n/2

0 0.054 0.032 0.048 0.047 0.044 0.054

0.2 0.084 0.050 0.096 0.114 0.050 0.156

0.4 0.090 0.106 0.120 0.192 0.154 0.216

0.6 0.174 0.138 0.224 0.304 0.214 0.412

0.8 0.308 0.272 0.420 0.536 0.372 0.688

1 0.540 0.438 0.676 0.830 0.648 0.904

Table 3: Rejection probabilities for model H1,C

The results are given in tables 1–3. For model H1,A they show a behaviour very similar

to the best simulation results by Einmahl and Van Keilegom (2007b) in the same setting.

In model H1,B Einmahl and Van Keilegom’s (2007b) test has larger rejection probabilities

than the new test, but for model H1,C results are again very similar

We consider additionally the alternatives H1,D, where (X1, ε1) = (X,U−E[U |X]), where

(X, U) are generated with the Farlie-Gumbel-Morgenstern copula as distribution function

with parameter a ∈ {0, 1, 2, 3, 5} [here E[U |X] = 1
2
− a

6
(2X − 1)]. Further the heteroscedas-

tic model H1,D,h is defined by model (1.3) with variance function σ2(x) = (2 + x)2/100

and ε1|X1 = x distributed as in H1,D. The rejection probabilities for H1,D and H1,D,h are

displayed in table 4 and show slightly underestimated levels, but good power properties.

H1,D n = 100 n = 200

b \ hn h∗n h∗n

0 0.024 0.034

1 0.172 0.620

2 0.284 0.926

3 0.452 0.998

5 0.662 1.000

H1,D,h n = 100 n = 200

c \ hn h∗n h∗n

0 0.036 0.035

1 0.278 0.630

2 0.388 0.774

3 0.190 0.402

5 0.156 0.268

Table 4: Rejection probabilities for model H1,D and heteroscedastic model H1,D,h

Finally, we give a simulation example in a bivariate design case. Here the covariates Xi

are distributed with the Farlie-Gumbel-Morgenstern copula with parameter 3 as distribution

function (and uniformly distributed marginals). The regression function is m(x1, x2) =

12



x1 − x2
2/2 and we consider the following model,

H1,A(2) : ε1|X1 = (x1, x2) ∼ N(0, (1 + a(x1 + x2))
1

100
)

The results are given in table 5 and show very good detection of the alternatives, but levels

are overestimated in the case n = 100. Please note that there exist no competing procedures

for our test statistic in this setting.

H1,A(2) n = 100 n = 200

a \ hn h∗n 2h∗n h∗n/2 h∗n 2h∗n h∗n/2

0 0.104 0.100 0.086 0.076 0.068 0.054

1 0.294 0.172 0.272 0.574 0.574 0.482

2.5 0.620 0.532 0.484 0.938 0.940 0.818

5 0.802 0.778 0.646 0.988 0.994 0.912

10 0.878 0.904 0.694 1.000 1.000 0.950

Table 5: Rejection probabilities for model H1,A(2) with bivariate covariates

To conclude this section we consider the application of the method to a real data example.

We used n = 200 observations of the aircraft-based LIDAR (Light Detection and Ranging)

data set as available in the R-library MBA (the sample size is chosen to be 200 to give

a similar setting as in the simulations; for the data structure to remain intact we chose

every 50th observation in the original data set). The covariates are bivariate (longitude

and latitude), measured is the ground surface elevation. Figure 1 shows an estimator of the

regression function after transformation of the covariates into the unit interval.

We tested for the homoscedastic regression model (1.1) with B = 1000 bootstrap replica-

tions. The bandwidth selection is as described for the simulations. Here we have h∗n = 0.439,

for which we obtain 0.003 as p-value, so clearly the hypothesis (1.2) for model (1.1) is re-

jected. This result is not sensitive to the choice of the bandwidth; we obtain p-values of

0.009, 0.005, 0.003, 0.001, 0.001 for bandwidhts hn = 0.2, 0.3, 0.4, 0.5, and 0.6, respectively.

Please note that heteroscedasticity in LIDAR data was observed, for instance, by Lindström,

Holst and Weibring (2005). We then tested hypothesis (1.2) for the heteroscedastic model

(1.3) for the same data set and setting as above with h∗n = 0.339. For bandwidths hn = 0.1,

0.2, 0.3, 0.4, 0.6 and h∗n we have p-values of 0.000, 0.005, 0.007, 0.013, 0.014, and 0.009,

respectively. Hence, this model is also rejected and methods applied to analyse this data set

should take into account an error distribution dependend of the covariate.
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Figure 1: Estimated regression curve in the LIDAR data set

7 Conclusion

This paper proposes a new test for independence of error and covariate in the nonparametric

regression model. The simple kernel based test statistic has an asymptotic normal law. It

can be applied to models with multivariate covariates, which is very important for appli-

cations, for example in econometrics. It can also be adjusted to test for independence of

a standardized error and the covariate in heteroscedastic regression models. We suggest to

apply a residual bootstrap version of the test and we investigate its behaviour in theory as

well as in simulations.

So far in literature there are only two tests available for the same testing problem. Ein-

mahl and Van Keilegom (2007a) propose a very innovative procedure that is based on a

stochastic process of differences of the observations, which converges weakly to a bivariate

Gaussian process. Generalizations to multivariate covariates or heteroscedasticity as well as

universal consistency are not clear for this test.

Einmahl and Van Keilegom’s (2007b) test is valid for the homoscedastic as well as het-

eroscedastic model and is based on differences of empirical distribution functions. This test

is asymptotically distribution free, which is a very nice theoretical result. The authors nev-

ertheless suggest the application of a bootstrap version of the test. This procedures needs
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a bandwidth bn for the estimation of the regression and variance function, but avoids the

choice of a second bandwidth hn as we need for our test. It is not clear whether Einmahl

and Van Keilegom’s (2007b) test can be generalized to higher dimensional covariates because

so far no weak convergence results for the empirical process of residuals in nonparametric

regression models with multivariate covariates are available in literature.

Our test is a version of Zheng’s (1997) test, but applied to covariates and (dependent)

residuals instead of an independent sample of paired observations. Zheng (1997) and Dette

and Neumeyer (2000) gave results on asymptotic distributions of the latter test, but no

bootstrap version has been considered so far. Zheng’s (1997) test could be criticized for its

asymmetry in interchanging the components of the paired observations. However, in our

context this asymmetry is desired and essential. When we interchange the roles of residuals

and covariates in the test statistic, asymptotic theory so far is only available for the univariate

design case (and is much more complicated). This situation is comparable to Einmahl and

Van Keilegom (2007b).

The simulation results show comparable results to Einmahl and Van Keilegom (2007a,

2007b) in most (univariate) settings and good power properties in a multivariate setting,

where no competing procedures exist in literature so far.

A Proofs

A.1 Proof of Theorem 3.1

From the definitions of Tn in (2.4) and T̃n in (3.1) it follows that

Tn − T̃n =
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn

(
K

( ε̂i − ε̂j

hn

)
−K

(εi − εj

hn

))
×

∫
(I{Xi ≤ x} − FX,n(x))(I{Xj ≤ x} − FX,n(x))w(x) dx.

By a Taylor expansion we obtain Tn − T̃n =
∑λ

`=1
1
`!
V

(`)
n , where

V (`)
n =

1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

h`+1
n

K(`)
(εi − εj

hn

)
(m(Xi)− m̂(Xi)−m(Xj) + m̂(Xj))

`Hn(Xi, Xj)

(` = 1, . . . , λ− 1)

V (λ)
n =

1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hλ+1
n

K(λ)(ξi,j,n)(m(Xi)− m̂(Xi)−m(Xj) + m̂(Xj))
λHn(Xi, Xj)

with ξi,j,n between (εi − εj)/hn and (ε̂i − ε̂j)/hn, and

Hn(Xi, Xj) =

∫
(I{Xi ≤ x} − FX,n(x))(I{Xj ≤ x} − FX,n(x))w(x) dx
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=
1

n2

n∑
k=1
k 6=i

n∑
l=1
l6=j

∫
ηi,k(x)ηj,l(x)w(x) dx.

Here the ηi,k(x) = I{Xi ≤ x}− I{Xk ≤ x} are centered and bounded. The following lemma

gives the asymptotic behaviour of V `
n , ` = 1, . . . , λ.

Lemma A.1 Under the assumptions of section 2, under the null hypothesis H0 we have

V
(`)
n = op(1/(nh

1/2
n )) for ` = 1, . . . , λ, whereas under the alternative H1, V

(`)
n = op(1/

√
n) for

` = 2, . . . , λ, and V
(1)
n = T̃

(1)
n + op(1/

√
n), where T̃

(1)
n = 2

n

∑n
i=1 wni and

wni = εi

∫ ∫ ∫ ∫
1

bd
n

k
(Xi − t

bn

)fX|ε(t|z)

fX(t)

∂fX|ε(s|z)fε(z)

∂z
(I{t ≤ x} − FX(x))

×(I{s ≤ x} − FX(x))fε(z)w(x) dx dt dz ds

∫
K ′(u)u du.

Proof of Lemma A.1. Note that using symmetry of K we obtain

V (1)
n =

2

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

h2
n

K ′
(εi − εj

hn

)
(m̂(Xj)−m(Xj))Hn(Xi, Xj).

Applying further the decomposition m̂(Xj)−m(Xj) = µ
(1)
j,n + µ

(2)
j,n + µ

(3)
j,n + µ

(4)
j,n, where

µ
(1)
j,n =

1

nbd
n

n∑
ν=1

k
(Xν −Xj

bn

)
εν

1

fX(Xj)

µ
(2)
j,n =

1

nbd
n

n∑
ν=1

k
(Xν −Xj

bn

)
(m(Xν)−m(Xj))

1

fX(Xj)

µ
(3)
j,n =

1

nbd
n

n∑
ν=1

k
(Xν −Xj

bn

)
εν

( 1

f̂X(Xj)
− 1

fX(Xj)

)
µ

(2)
j,n =

1

nbd
n

n∑
ν=1

k
(Xν −Xj

bn

)
(m(Xν)−m(Xj))

( 1

f̂X(Xj)
− 1

fX(Xj)

)
we obtain a decomposition V

(1)
n = U

(1)
n + U

(2)
n + U

(3)
n + U

(4)
n , where (k = 1, . . . , 4)

U (k)
n =

2

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

h2
n

K ′
(εi − εj

hn

)
µ

(k)
j,n.

To begin with we consider

U (1)
n =

2

n4(n− 1)h2
nb

d
n

n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i

n∑
l=1
l6=j

n∑
ν=1

K ′
(εi − εj

hn

)
εν

×k
(Xν −Xj

bn

) 1

fX(Xj)

∫
ηi,k(x)ηj,l(x)w(x) dx.
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Because by definition E[εν | X1, . . . , Xn] = 0, for the expectation E[U
(1)
n ], only terms where

ν ∈ {i, j} can have a nonvanishing impact on the sum. For example for ν = i (all other

indices different) one obtains

E
[
K ′

(ε1 − ε2

hn

)
ε1k

(X1 −X2

bn

) 1

fX(X2)

∫
η1,3(x)η2,4(x)w(x) dx

]
=

∫ ∫ ∫ ∫
K ′

(y − z

hn

)
yk

(s− t

bn

) 1

fX(t)
fε(y)fε(z)fX|ε(s|y)fX|ε(t|z)fX(v)fX(w)

×
∫

(I{s ≤ x} − I{v ≤ x})(I{t ≤ x} − I{w ≤ x})w(x) dx d(s, y) d(t, z) dv dw

=

∫ ∫ ∫ ∫ ∫ ∫
K ′(u)yk(r)

1

fX(t)
fε(y)fε(y − hnu)fX|ε(t + bnr|y)fX|ε(t|y − hnu)fX(v)fX(w)

×
∫

(I{t + bnr ≤ x} − I{v ≤ x})(I{t ≤ x} − I{w ≤ x})w(x) dx du dt dr dy dv dw hnb
d
n

= O(h2
nb

d
n),

where the last equality is obtained by a Taylor expansion of fε(y−hnu)fX|ε(t|y−hnu) around

y and we use the assumptions, especially
∫

K ′(u) du = 0. Similar considerations for ν = j

(all other indices different) yield under the alternative the rate O(h2
n), because one still can

use
∫

K ′(u) du = 0, but no substitution to gain the factor bd
n is possible. Under the null

hypothesis of independence of εi and Xi however one can apply that E[ηi,k(x)] = 0 and,

hence, the summand in the expectation does not vanish only when {i, k} ∩ {j, l} 6= ∅. This

yields altogether

E[U (1)
n ] =

2

n4(n− 1)h2
nb

d
n

[
O(n4)O(h2

nb
d
n) + O(n3)O(h2

n)
]

= O(
1

n
) + O(

1

n2bd
n

) = o(
1

nh
1/2
n

)

under the null hypothesis H0, and

E[U (1)
n ] =

2

n4(n− 1)h2
nb

d
n

[
O(n4)O(h2

nb
d
n) + O(n4)O(h2

n)
]

= O(
1

n
) + O(

1

nbd
n

) = o(
1

n1/2
)

under fixed alternatives H1.

Next, we show that E[(U
(1)
n )2] = o(1/(n2hn)) under the null hypothesis H0 of indepen-

dence of errors and covariates. To this end we calculate

E[(U (1)
n )2] = O(

1

n10h4
nb

2d
n

)
n∑

i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i

n∑
l=1
l6=j

n∑
ν=1

n∑
i′=1

n∑
j′=1
j′ 6=i′

n∑
k′=1
k′ 6=i′

n∑
l′=1
l′ 6=j′

n∑
ν′=1

E
[
K ′

(εi − εj

hn

)
K ′

(εi′ − εj′

hn

)
ενεν′k

(Xν −Xj

bn

)
k
(Xν′ −Xj′

bn

) 1

fX(Xj)fX(Xj′)

×
∫

ηi,k(x)ηj,l(x)w(x) dx

∫
ηi′,k′(x)ηj′,l′(x)w(x) dx

]
.
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Here, the term

E
[
K ′

(εi − εj

hn

)
K ′

(εi′ − εj′

hn

)
ενεν′

]
is zero unless ν = ν ′ or at least two pairs of indices are equal such as ν = j and ν ′ = i′ or

similarly. When the other indices are distinct, the term is of order O(h4
n) which follows, as

before, from
∫

K ′(u) du = 0. Under the null hypothesis we further can exploit the fact that

E[ηi,k(x)] = 0 and obtain the rate

E[(U (1)
n )2] = O(

1

n10h4
nb

2d
n

)
[
O(n8h4

nb
2d
n ) + O(n7hnb

d
n)

]
= O(

1

n2
) + O(

1

n3h3
nb

d
n

) = o(
1

n2hn

)

by our bandwidth assumptions. We obtain by Markov’s inequality that U
(1)
n is of order

op(1/(nh
1/2
n )) under H0 and, hence, negligible.

However, under the alternative with similar calculations one only obtains E[(U
(1)
n )2] =

O( 1
n
) and, hence, this term is not negligible under H1. U

(1)
n is approximately a U–statistic of

order 5. By symmetrizing its kernel and applying a Hoeffding decomposition one can show

that the dominating term (with remainder of order op(1/n
1/2)) are the U–statistics of order

1 in the Hoeffding decomposition. Because εν is centered those are

Ũ (1)
n =

2

n

n∑
ν=1

ενE
[ 1

h2
nb

d
n

K ′
(εi − εj

hn

)
k
(Xν −Xj

bn

) 1

fX(Xj)

×
∫

ηi,k(x)ηj,l(x)w(x) dx
∣∣∣ Xν

]
,

where the conditional expectation is evaluated for ν ∩ {i, j, k, l} = ∅. This gives

Ũ (1)
n =

2

n

n∑
ν=1

εν

∫ ∫
1

h2
n

K ′
(y − z

hn

) ∫
1

bd
n

k
(Xν − t

bn

) 1

fX(t)

∫
(I{s ≤ x} − FX(x))

×(I{t ≤ x} − FX(x))w(x) dx fX|ε(t|z)fX|ε(s|y)fε(y)fε(z) d(s, y)d(s, z).

With similar methods as before one shows that Ũ
(1)
n = T̃

(1)
n + op(n

−1/2).

Next, we show that the remaining terms, U
(k)
n (k = 2, 3, 4) and Vn are negligible both

under H0 and H1. To this end we first consider the expectation E[U
(2)
n ] for

U (2)
n =

2

n4(n− 1)h2
nb

d
n

n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i

n∑
l=1
l6=j

n∑
ν=1

K ′
(εi − εj

hn

)
(m(Xν)−m(Xj))

×k
(Xν −Xj

bn

) 1

fX(Xj)

∫
ηi,k(x)ηj,l(x)w(x) dx.

The argumentation is similar to that for E[U
(1)
n ]. However we cannot use the fact of centered

errors here. Instead, under the null hypothesis we use E[ηi,k(x)] = 0 to explain that at least
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two indices have to be equal to gain nonvanishing terms in the sum. Further,
∫

K ′(u) du = 0

can be exploited as before, and the factor bd
n can always be gained by a substitution in the

integral because the terms for ν = j vanish due to the factor m(Xν) −m(Xj). We obtain

the rate

E[U (2)
n ] =

2

n4(n− 1)h2
nb

d
n

O(n4)O(h2
nb

d
n) = O(

1

n
) = o(

1

nh
1/2
n

)

under H0. Under H1 however, even the term where all indices are distinct gives the domi-

nating term, i. e.

E
[
K ′

(ε1 − ε2

hn

)
(m(X3)−m(X2))k

(X3 −X2

bn

) 1

fX(X2)

∫
η1,4(x)η2,5(x)w(x) dx

]
=

∫ ∫ ∫ ∫ ∫
K ′

(y − z

hn

)
(m(u)−m(t))k

(u− t

bn

)fX(u)fX(v)fX(w)

fX(t)
fε(y)fε(z)fX|ε(s|y)

×fX|ε(t|z)

∫
(I{s ≤ x} − I{v ≤ x})(I{t ≤ x} − I{w ≤ x})w(x) dx d(s, y) d(t, z) du dv dw

=

∫ ∫ ∫ ∫ ∫ ∫ [
K ′(u)fε(z + hnu)fX|ε(s|z + hnu) du

]
fX(v)fX(w)fε(z)g(t|z)

×
[ ∫

k(r)(m(t + bnr)−m(t))
fX(t + bnr)

fX(t)
dr

]
×

∫
(I{s ≤ x} − I{v ≤ x})(I{t ≤ x} − I{w ≤ x})w(x) dx ds dt dz dv dw hnb

d
n.

Applying Taylor expansions and utilizing that
∫

K ′(u) du = 0 and
∫

κ(u)u du = 0, we obtain

the rate O(h2
nb

3d
n ), which yields

E[U (2)
n ] =

2

n4(n− 1)h2
nb

d
n

O(n5)O(h2
nb

3d
n ) = O(b2d

n ) = o(
1

n1/2
)

under H1, by the bandwidth assumptions.

With similar considerations as before one can show that E[(U
(2)
n )2] has, under H0 the

following rate,

O(
1

n10h4
nb

2d
n

)
[
O(n9h4

nb
6d
n ) + O(n8hnb

6d
n ) + O(n8h4

nb
2
n)

]
= o(

1

n2hn

),

where we have used the bandwidth conditions b2d
n /hn → 0 and hn/b

d−2
n → 0. From this we

obtain U
(2)
n = op(1/(nh

1/2
n )) under H0.

Under the alternative, applying the bandwidth conditions nb4d
n → 0, b4d

n /(nh3
n) → 0,

nbd−2
n →∞, one can show E[(U

(2)
n )2] = op(1/n), and obtains that U

(2)
n is of order op(1/n

1/2)

under H1.

Similar argumentations to before show that U
(l)
n for l = 3, 4 and V

(`)
n for ` = 2, . . . , λ− 1

are of order op(1/(nh
1/2
n )) or op(1/n

1/2) under H0 and H1, respectively.
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To conclude the proof we show that V
(λ)
n is negligible. This term has to be treated differ-

ently because ξi,j,n depends on all observations and, hence, to obtain rates of convergence for

the expectation and variance of V
(λ)
n is difficult. Instead we use the direct bound [compare

Härdle and Mammen (1993, proof of Prop. 1) for the uniform convergence rate]

|V (λ)
n | ≤ O(

1

hλ+1
n

) sup
x∈[0,1]d

|m(x)− m̂(x)|λ = Op

( 1

hλ+1
n (nbd

b)
λρ

)
= op(

1

n
√

hn

) = op(
1√
n

)

for 0 < ρ < 1
2

by the bandwidth assumptions. 2

From the decomposition Tn = T̃n +
∑λ

`=1
1
`!
V

(`)
n , Lemma A.1, and the results by Zheng

(1997) (see Remark 3.2) directly follows part (a) of Theorem 3.1.

To conclude the proof of part (b) of Theorem 3.1 under the alternative we have to

consider T̃n + T̃
(1)
n in the following to obtain the asymptotic distribution. From results by

Neumeyer and Dette (2000) we have under H1 with notations from (2.6) and Ii(x) = I{Xi ≤
x} − FX|ε(x|εi),

√
n(T̃n −Bhn) =

√
n(W (1)

n − E[W (1)
n ] + 2W (2)

n − 2W (3)
n ) + op(1), (A.1)

where

W (1)
n =

1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn

K
(εi − εj

hn

) ∫
∆(x|εi)∆(x|εj)w(x) dx

W (2)
n =

1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn

K
(εi − εj

hn

) ∫
Ii(x)∆(x|εj)w(x) dx

W (3)
n =

1

n2(n− 1)

n∑
i=1

n∑
j=1
j 6=i

n∑
k=1

1

hn

K
(εi − εj

hn

) ∫
∆(x|εi)(I{Xk ≤ x} − FX(x))w(x) dx.

Those statistics are U–statistics and one can deduce that the dominating terms (with re-

mainder of order op(n
−1/2)) are the U–statistics of order 1 in a Hoeffding decomposition. For

instance, for W
(1)
n we have

W (1)
n =

1(
n
2

) n∑
i=1

n∑
j=1
j<i

1

hn

K
(εi − εj

hn

) ∫
∆(x|εi)∆(x|εj)w(x) dx

= E[W (1)
n ] +

2

n

n∑
i=1

(
E

[ 1

hn

K
(εi − εj

hn

) ∫
∆(x|εi)∆(x|εj)w(x) dx

∣∣∣ εi

]
− E[W (1)

n ]
)

+ op(
1√
n

),
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where the conditional expectation is evaluated for i 6= j, and with calculations as in the

proof of Lemma A.1 one obtains

W (1)
n = E[W (1)

n ] +
2

n

n∑
i=1

( ∫
∆2(x|εi)fε(εi)w(x) dx− E

[ ∫
∆2(x|ε1)fε(ε1)w(x) dx

])
+ op(

1√
n

),

and similarly

W (2)
n =

1

n

n∑
i=1

∫
Ii(x)∆(x|εi)fε(εi)w(x) dx + op(

1√
n

)

W (3)
n =

1

n

n∑
i=1

∫
(I{Xi ≤ x} − FX(x))E[∆(x|ε1)fε(ε1)]w(x) dx + op(

1√
n

).

The dominating terms in the decomposition (A.1) can further be combined nicely because

I{Xi ≤ x} − FX(x) = Ii(x) + ∆(x|εi). By Lemma A.1 we have

√
n(T̃n + T̃ (1)

n −Bhn) =
2√
n

n∑
i=1

(vni − E[vni] + wni) + op(1),

where

vni =

∫
(I{Xi ≤ x} − FX(x))v(x|εi)w(x) dx

with v from (2.6), and wni is defined in Lemma A.1. Asymptotic normality follows from

the central limit theorem and the asymptotic variance is derived straightforwardly from the

formula

Var
( 2√

n

n∑
i=1

vni

)
= 4

(
Var(E[vni | εi]) + E[Var(vni | εi)] + E[w2

ni] + 2Cov(vni, wni)
)
.

Hence, the assertion of Theorem 3.1 follows. 2

A.2 Proof of Theorem 3.4

From the bootstrap sample (X1, Y
∗
1 ), . . . , (Xn, Y

∗
n ) defined in (3.2) one calculates the Nadaraya-

Watson estimator m̂∗ as well as bootstrap residuals ε̂i = Y ∗
i − m̂∗(Xi). With this notation

the bootstrap test statistic is

T ∗
n =

1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn

K
( ε̂∗i − ε̂∗j

hn

)
Hij,
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where, conditionally on Yn the

Hij =

∫
(I{Xi ≤ x} − FX,n(x))(I{Xj ≤ x} − FX,n(x))w(x) dx

are known (not random). Let P ∗ be the conditional distribution P (· | Yn) and denote the

corresponding conditional expectation and variance by E∗[·], Var∗(·).
Then let T̃ ∗

n be defined as T ∗
n , but replacing the bootstrap residuals ε̂∗i by bootstrap errors

ε∗i (i = 1, . . . , n). With calculations similar to the proof of Theorem 3.1 one can show that

T ∗
n − T̃ ∗

n = op((n
√

hn)−1). (A.2)

From this follows that in terms of conditional weak convergence in probability, T ∗
n and T̃ ∗

n are

equivalent. To be more specific, note that for all η > 0 it follows that P ∗(n
√

hn|T ∗
n−T̃ ∗

n | > η)

converges to zero in probability, which follows from Markov’s inequality and (A.2).

Further we have E∗[T̃ ∗
n ] = Op(n

−1) = op((n
√

hn)−1) and it remains to show the assertion

for n
√

hn(T̃ ∗
n − E∗[T̃ ∗

n ]). Though with respect to P ∗ the statistic T̃ ∗
n is not a U-statistic, we

mimic Hoeffding’s decomposition to obtain

n
√

hn(T̃ ∗
n − E∗[T̃ ∗

n ]) = T̃ ∗,1
n + T̃ ∗,2

n ,

where

T̃ ∗,1
n =

√
hn

(n− 1)

n∑
i=1

n∑
j=1
j 6=i

Hij

{ 1

hn

K
(ε∗i − ε∗j

hn

)
− E∗

[ 1

hn

K
(ε∗i − ε∗j

hn

) ∣∣∣ ε∗i

]

−E∗
[ 1

hn

K
(ε∗i − ε∗j

hn

) ∣∣∣ ε∗j

]
+ E∗

[ 1

hn

K
(ε∗i − ε∗j

hn

)]}
T̃ ∗,2

n =
2
√

hn

(n− 1)

n∑
i=1

n∑
j=1
j 6=i

Hij

{
E∗

[ 1

hn

K
(ε∗i − ε∗j

hn

) ∣∣∣ ε∗i

]
− E∗

[ 1

hn

K
(ε∗i − ε∗j

hn

)]}
.

By the definition of FX,n we have
∑n

j=1 Hij = 0 for all i = 1, . . . , n, and hence

T̃ ∗,2
n =

2
√

hn

(n− 1)

n∑
i=1

Hii

{∫
1

hn

K
(ε∗i − y

hn

)
dF̃ε,n(y)−

∫ ∫
1

hn

K
(z − y

hn

)
dF̃ε,n(y) dF̃ε,n(z)

}
= op(1).

What remains to show now is conditional weak convergence of T̃ ∗,1
n to a centered normal

distributed random variable T with variance τ 2, in probability. In the original proof by

Zheng (1997) (without bootstrap) a central limit theorem for U-statistics with n-dependent

kernel by Hall (1984, Th. 1) is applied. In our context we do not have the U-statistic

structure, but similar methods can be applied. Theorem 1 by Hall (1984) is proven with
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an application of Brown’s (1971) central limit theorem for Martingales [see Hall and Heyde

(1980, p. 58)], which itself is proven by establishing convergence of characteristic functions.

In our context we need to show that the characteristic function of T̃ ∗,1
n with respect to the

conditional probability measure P ∗, i. e. E∗[exp(itT̃ ∗,1
n )], converges (for every t ∈ IR) in

probability to the characteristic function E[exp(itT )], compare Shao and Tu (1995, p. 78).

To this end note that T̃ ∗,1
n = S∗

n,n, where S∗
k,n =

∑k
i=2 Z∗

ni, 2 ≤ k ≤ n, is a Martingale

with respect to P ∗ with filtration Fni = σ(ε∗1, . . . , ε
∗
i ). Here we use the definition

Z∗
ni =

i−1∑
j=1

HijHn(ε∗i , ε
∗
j)

2
√

hn

n− 1
,

where

Hn(ε∗i , ε
∗
j) =

1

hn

K
(ε∗i − ε∗j

hn

)
− E∗

[ 1

hn

K
(ε∗i − ε∗j

hn

) ∣∣∣ ε∗i

]
− E∗

[ 1

hn

K
(ε∗i − ε∗j

hn

) ∣∣∣ ε∗j

]
+ E∗

[ 1

hn

K
(ε∗i − ε∗j

hn

)]
.

Now the rest of the proof follows along the lines of the proofs of Theorem 1 by Hall (1984)

and Corollary 3.1 by Hall and Heyde (1980, p. 58). Here for the convergence of the sequence

of characteristic functions we only need to establish the conditions

n∑
i=2

E∗[(Z∗
ni)

2]
P−→ τ 2 ,

n∑
i=2

E∗[(Z∗
ni)

4]
P−→ 0

n∑
i=2

E∗[(Z∗
ni)

2 | ε∗1, . . . , ε∗i−1]
P−→ τ 2.

As an example we prove validity of the first condition, the others follow similarly. For

i 6= j 6= k 6= i we have E∗[Hn(ε∗i , ε
∗
j)Hn(ε∗i , ε

∗
k)] = 0, and hence

n∑
i=2

E∗[(Z∗
ni)

2] =
4hn

(n− 1)2

n∑
i=2

i−1∑
j=1

H2
ijE

∗[(Hn(ε∗i , ε
∗
j)

2].

Inserting the definition of Hn the dominating term is clearly

4hn

(n− 1)2

n∑
i=2

i−1∑
j=1

H2
ijE

∗
[ 1

h2
n

K2
(ε∗i − ε∗j

hn

)]
=

2

(n− 1)2

n∑
i=1

n∑
j=1
i6=j

H2
ij

1

n2

n∑
l=1

n∑
k=1

1

hn

K2
( ε̃l − ε̃k

hn

)
.

It is not difficult to show that this term converges in probability to the limit (for hn → 0) of

E
[( ∫

(I{X1 ≤ x} − FX(x))(I{X2 ≤ x} − FX(x))w(x) dx
)2] 2

hn

∫
K2

(y − z

hn

)
dFε(y) dFε(z)
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which equals τ 2. 2
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