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1 Introduction

In mathematical statistics nonparametric regression models constitute very important

methods of analyzing relations between observed random variables. In this paper we

regard the often neglected case of multivariate covariates, which is of special importance

in applications. To this end consider the random vector (X, Y ), where X is d-dimensional

and Y is one dimensional, and suppose the relation between X and Y is given by

Y = m(X) + σ(X)ε, (1.1)

where m(·) = E(Y |X = ·), σ2(·) = Var(Y |X = ·) and where it is assumed that ε and

X are independent. We are interested in estimating the distribution of the error ε, and

in applying this estimated error distribution to develop tests for model assumptions. As

an estimator for the error distribution function we consider the empirical distribution

of residuals, that are obtained from multivariate local polynomial fits of the regression

and variance functions, respectively. We show weak convergence of the corresponding

empirical residual process to a Gaussian process. Comparable results in a model with

univariate covariates (d = 1) were developed by Akritas and Van Keilegom (2001). In

the case of multivariate covariates we are only aware of the work by Müller, Schick and

Wefelmeyer (2007) for a partially linear model. So far estimating the error distribution

in the nonparametric model has not been considered in the literature in the case of

multivariate covariates. Moreover the proofs as given by Akritas and Van Keilegom (2001)

are not straightforwardly generalized to the case of multivariate covariates.

Akritas and Van Keilegom’s (2001) results for the nonparametric regression model

with univariate covariates have been successfully applied to develop tests for model as-

sumptions. In this context Van Keilegom, González Manteiga and Sánchez Sellero (2008)

consider goodness-of-fit tests for the regression function and Dette, Neumeyer and Van

Keilegom (2007) propose a goodness-of-fit test for the variance function. For comparison

of several independent regression models, Pardo Fernández, Van Keilegom and González

Manteiga (2007) and Pardo Fernández (2007) investigated tests for equality of regression

functions and tests for equality of error distributions, respectively. Neumeyer, Dette and

Nagel (2005) suggested a goodness-of-fit test for the error distribution.

Thanks to the results on estimation of the error distribution developed in this paper,

all of the above tests are also valid in the important case of multivariate covariates. An

important advantage of the proposed test statistics is that they are able to detect local

alternatives that converge to zero at n−1/2-rate, independent of the dimension of the
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covariate, whereas for the classical tests based on smoothing (with bandwidth parameter

h) this rate is n−1/2h−d/4, and this will be substantially slower when d is large. Moreover

the new theory opens various possibilities to test for parametric or semiparametric models

in the context of multiple regression. We explain the general idea for these tests and

consider testing for additivity of the regression function as detailed example. Here we

prove weak convergence of the residual empirical process on which the test statistics are

based.

The paper is organized as follows. In Section 2 we define the estimator of the error

distribution and give the asymptotic results under regularity conditions. In Section 3 we

explain in general how the results can be applied for model testing. The case of testing

for additivity of the regression function is considered in detail in Section 4. All proofs are

given in an Appendix.

2 Estimation of the error distribution

As mentioned in the Introduction, the aim of this section is to propose and study an

estimator of the distribution of the error ε under model (1.1).

Let FX(x) = P (X ≤ x) and Fε(y) = P (ε ≤ y) and let fX(x) and fε(y) denote the

probability density functions of X and ε. Let (X1, Y1), . . . , (Xn, Yn) be an i.i.d. sample

taken from model (1.1), where we denote the components of Xi by (Xi1, . . . , Xid) (i =

1, . . . , n). We start by estimating the regression function m(x) and the variance function

σ2(x) for an arbitrary point x = (x1, . . . , xd) in the support RX of X in IRd, which we

suppose to be compact. We estimate m(x) by a local polynomial estimator of degree p [see

Fan and Gijbels (1996) or Ruppert and Wand (1994), among others], i.e. m̂(x) = β̂0, where

β̂0 is the first component of the vector β̂, which is the solution of the local minimization

problem

minβ

n∑
i=1

{
Yi − Pi(β, x, p)

}2

Kh(Xi − x), (2.1)

where Pi(β, x, p) is a polynomial of order p built up with all 0 ≤ k ≤ p products of factors

of the form Xij−xj (j = 1, . . . , d). The vector β is the vector of length
∑p

k=0 d
k, consisting

of all coefficients of this polynomial. Here, for u = (u1, . . . , ud) ∈ IRd, K(u) =
∏d

j=1 k(uj)

is a d-dimensional product kernel, k is a univariate kernel function, h = (h1, . . . , hd)

is a d-dimensional bandwidth vector converging to zero when n tends to infinity, and
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Kh(u) =
∏d

j=1 k(uj/hj)/hj. To estimate σ2(x), define

σ̂2(x) = γ̂0 − β̂2
0 , (2.2)

where γ̂0 is defined in the same way as β̂0, but with Yi replaced by Y 2
i in (2.1) (i =

1, . . . , n). See also Härdle and Tsybakov (1997), where this estimator is considered for a

one-dimensional covariate.

Next, let for i = 1, . . . , n,

ε̂i =
Yi − m̂(Xi)

σ̂(Xi)
,

and define the estimator of the error distribution Fε(y) by

F̂ε(y) = n−1

n∑
i=1

I(ε̂i ≤ y). (2.3)

We will need the following conditions:

(C1) k is a symmetric probability density function supported on [−1, 1], k is d times

continuously differentiable, and k(j)(±1) = 0 for j = 0, . . . , d− 1.

(C2) hj (j = 1, . . . , d) satisfies hj/h → cj for some 0 < cj < ∞ and some baseline

bandwidth h satisfying nh2p+2 → 0 and nh3d+δ →∞ for some small δ > 0.

(C3) All partial derivatives of FX up to order 2d+ 1 exist on the interior of RX , they are

uniformly continuous and infx∈RX
fX(x) > 0.

(C4) All partial derivatives of m and σ up to order p+ 2 exist on the interior of RX , they

are uniformly continuous and infx∈RX
σ(x) > 0.

(C5) Fε is twice continuously differentiable, supy |y2f ′ε(y)| <∞, and E|Y |6 <∞.

Note that (C2) implies that the order p of the local polynomial fit should satisfy

p + 1 > (3d)/2, e.g. when d = 1 we can take p = 1, when d = 2 a local cubic fit suffices,

etc.

Also, note that the condition nh2p+2 → 0 in (C2) comes from the fact that the asymp-

totic bias, which is of order O(hp+1), should be asymptotically negligible with respect to

terms of order O(n1/2). However, the order of this bias can be refined, in a similar way as

was done in e.g. Fan and Gijbels (1996) (p. 62) when d = 1, which leads to the following

refined condition : nh2p+4 → 0 when p is even, and nh2p+2 → 0 when p is odd. Taking

this refinement into account, we get that p = 0 suffices when X is one-dimensional, and

this coincides with what has been done in Akritas and Van Keilegom (2001).

We are now ready to state the two main results of this Section.
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Theorem 2.1 Assume (C1)-(C5). Then,

F̂ε(y)− Fε(y) = n−1

n∑
i=1

{
I(εi ≤ y)− Fε(y) + ϕ(εi, y)

}
+Rn(y),

where sup−∞<y<∞ |Rn(y)| = oP (n−1/2) and

ϕ(z, y) = fε(y)
{
z +

y

2
[z2 − 1]

}
.

Corollary 2.2 Assume (C1)-(C5). Then, the process n1/2(F̂ε(y)−Fε(y)) (−∞ < y <∞)

converges weakly to a zero-mean Gaussian process Z(y) with covariance function

Cov(Z(y1), Z(y2)) = E
[
{I(ε ≤ y1)− Fε(y1) + ϕ(ε, y1)}{I(ε ≤ y2)− Fε(y2) + ϕ(ε, y2)}

]
.

Note that the above results are considerably more difficult to obtain than the corre-

sponding results for d = 1 obtained by Akritas and Van Keilegom (2001) by using local

constant estimators. A direct extension of the results in the latter paper to dimensions

d larger than one is in fact not possible because that would lead to two contradictory

conditions on the bandwidth, namely on the one hand nh3d+δ → ∞, and on the other

hand nh4 → 0 (where the latter condition comes from the bias term). It was therefore

necessary to consider other estimators of m and σ, that improve the rate of convergence

of the bias term. We chose to use local polynomial estimators, because of their nice bias

properties and also because of their excellent behavior in practice, which has been widely

demonstrated in the literature (see e.g. Fan and Gijbels (1996)). Also note that with-

out any exception, all papers in the literature related to estimation or testing problems

involving the nonparametric estimation of the error distribution, are developed for d = 1.

3 Model tests

Tests for various hypotheses can be based on the suggested estimated error distribution.

Due to the curse of dimensionality in nonparametric multiple regression, investigators

often prefer parametric models

m ∈ {mϑ | ϑ ∈ Θ}, (3.1)

or semiparametric models such as partially linear models,

m(x1, . . . , xd) = β1x1 + · · ·+ βd−1xd−1 + g(xd) for some β1, . . . , βd−1 ∈ R, (3.2)
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single index models

m(x1, . . . , xd) = g(β1x1 + · · ·+ βdxd) for some β1, . . . , βd ∈ R, (3.3)

or additive models

m(x1, . . . , xd) = m1(x1) + · · ·+md(xd) (3.4)

with univariate nonparametric functions g and m1, . . . ,md, respectively. Hence there is a

great interest in goodness-of-fit tests for the regression function. The results displayed in

Section 2 can be applied to test for each of the hypotheses (3.1)–(3.4), and in the next

section we consider in detail the testing for an additive regression model (3.4). General

testing procedures for semiparametric regression models have also been considered by

Rodŕıguez-Póo, Sperlich and Vieu (2005) and Chen and Van Keilegom (2006). Their

tests are based on smoothing techniques (with a bandwidth h), and they are able to

detect local alternatives of the order n−1/2h−d/4. The tests proposed here can detect

however local alternatives that converge to zero at n−1/2-rate, which will be substantially

faster when d is large.

The general idea to apply the new results for hypotheses testing is to compare the

estimated error distribution F̂ε under the full nonparametric model (as in Section 2) with

the empirical distribution function F̃ε of residuals esimated under the null model, and to

apply Kolmogorov-Smirnov or Cramér-von Mises tests based on the process

√
n(F̂ε(·)− F̃ε(·)),

which converges to a Gaussian process. Analogous tests for hypothesis (3.1) were proposed

by Van Keilegom, González Manteiga and Sánchez Sellero (2008) when the covariate is

one-dimensional. Similar tests for the hypothesis

σ2 ∈ {σ2
ϑ | ϑ ∈ Θ}

for the variance function (which includes tests for homoscedasticity as special case) were

considered by Dette, Neumeyer and Van Keilegom (2007), whereas Neumeyer, Dette and

Nagel (2005) test goodness-of-fit of the error distribution, i. e.

Fε ∈ {Fϑ | ϑ ∈ Θ}.

Thanks to the results of Section 2, the three latter tests are now also valid when the

covariate is multi-dimensional.
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Moreover the tests by Pardo Fernández, Van Keilegom and González Manteiga (2007)

and Pardo Fernández (2007) for equality of regression functions, i. e.

m1 = · · · = mk,

and equality of error distributions, i. e.

Fε1 = · · · = Fεk
,

respectively, are now carried over to the case of multivariate covariates. Those tests are

in the context of k independent regression models

Yij = mi(Xij) + σi(Xij)εij, j = 1, . . . , ni, i = 1, . . . , k.

All the considered tests provide the possibility to detect local alternatives of rate

n−1/2, independent of the covariate dimension d. As explained already above, this is

in big contrast with smoothing based tests, that are based e.g. on the L2-distance be-

tween the nonparametrically and parametrically estimated regression fucntion in the case

of hypothesis (3.1). These tests usually can only detect local alternatives of the rate

n−1/2h−d/4.

4 Testing for additivity

In this section we consider in detail the application of the residual-based empirical process

to testing additivity of a multivariate regression function. Different tests for additivity of

regression models were proposed by Gozalo and Linton (2001), Dette and von Lieres und

Wilkau (2001), Yang, Park, Xue and Härdle (2006), among others. Our aim is to test

validity of the hypothesis H0 of an additive regression model, i. e.

H0 : m(x1, . . . , xd) = m1(x1) + · · ·+md(xd) + c for all (x1, . . . , xd) ∈ RX , (4.1)

against the general nonparametric alternative as considered in Section 2. Here in model

(4.1) we assume E[m`(Xi`)] = 0 for all ` = 1, . . . , d to identify the univariate regression

functions. Let m̂, σ̂2 and F̂ε denote the estimators defined in (2.1), (2.2) and (2.3),

respectively. Further, let Xi,−` = (Xi1, . . . , Xi,`−1, Xi,`+1, . . . , Xid) and denote its density

by fX−`
, whereas the density of Xi` is denoted by fX`

. To estimate the additive regression

components we apply the marginal integration estimator [see Newey (1994), Tjøstheim

and Auestad (1994), Linton and Nielsen (1995)] and define

m̂`(x`) =
1

n

n∑
j=1

m̂(Xj1, . . . , Xj,`−1, x`, Xj,`+1, . . . , Xjd)− Y n, (4.2)
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where Y n = n−1
∑n

j=1 Yj. Let

m̃(x1, . . . , xd) = m̂1(x1) + · · ·+ m̂d(xd) + Y n (4.3)

denote the additive regression estimator and let F̃ε be the empirical distribution function

of residuals

ε̃i =
Yi − m̃(Xi)

σ̂(Xi)
, i = 1, . . . , n,

estimated under the null model. Tests for additivity can be based on Kolmogorov-Smirnov

or Cramér-von Mises type functionals of the process n1/2(F̂ε − F̃ε), given by

TKS = n1/2 sup
−∞<y<∞

|F̂ε(y)− F̃ε(y)|

TCM = n

∫
(F̂ε(y)− F̃ε(y))2dF̂ε(y).

Please note that F̂ε consistently estimates Fε, whereas F̃ε consistently estimates the

distribution Fε̃ of ε̃i = (Yi − m1(Xi1) − · · · − md(Xid) − c)σ−1(Xi) for c = E[Yi] and

m`(x`) = E[m(Xi1, . . . , Xi,`−1, x`, Xi,`+1, . . . , Xid)], where m(x) = E[Yi|Xi = x]. Exactly

as in Theorem 2.1 by Van Keilegom, González Manteiga and Sánchez Sellero (2008) it

follows that Fε = Fε̃ is equivalent to the null hypothesis (4.1).

To derive the following asymptotic results we will need an additional assumption.

(C6) All partial derivatives of fX and fX−`
(` = 1, . . . , d) up to order p+ 1 exist and are

uniformly continuous.

Theorem 4.1 Assume (C1)-(C6) and the null hypothesis (4.1). Then,

F̂ε(y)− F̃ε(y) =
fε(y)

n

n∑
i=1

εiH(Xi) + R̃n(y),

where sup−∞<y<∞ |R̃n(y)| = oP (n−1/2). Here, H is defined by

H(Xi) = 1−
d∑
`=1

σ(Xi)
g`(Xi`)fX−`

(Xi,−`)

fX(Xi)
+ (d− 1)σ(Xi)

∫
fX(x)

σ(x)
dx,

where for ` = 1, . . . , d,

g`(Xi`) =

∫
fX(x1, . . . , x`−1, Xi`, x`+1, . . . , xd)

σ(x1, . . . , x`−1, Xi`, x`+1, . . . , xd)
d(x1, . . . , x`−1, x`+1, . . . , xd).
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Corollary 4.2 Assume (C1)-(C6) and the null hypothesis (4.1). Then, the process

n1/2(F̂ε(y)− F̃ε(y)) (−∞ < y <∞) converges weakly to fε(y)Z, where Z is a zero-mean

normal random variable with variance Var(Z) = E[H2(X)].

Please note that for a univariate model (d = 1) the limiting process is degenerate as

could be expected because then each regression model is ‘additive’. Further in models with

homoscedastic variance the dominating part of the expansion in Theorem 4.1 simplifies

to
fε(y)

n

n∑
i=1

εi

d∑
`=1

{
1−

fX`
(Xi`)fX−`

(Xi,−`)

fX(Xi)

}
which vanishes in the case where all covariate components are independent.

Corollary 4.3 Assume (C1)-(C6) and the null hypothesis (4.1). Then,

TKS
d→ sup
−∞<y<∞

fε(y)|Z|

TCM
d→
∫
f 2
ε (y)dFε(y) Z2,

where Z is defined in Corollary 4.2.

The proof of Corollary 4.3 if very similar to the proof of Corollary 3.3 in Van Keilegom,

González Manteiga and Sánchez Sellero (2008) and is therefore omitted.

To apply the test we recommend the application of smooth residual bootstrap. A

discription of the method and asymptotic theory for the univariate case can be found in

Neumeyer (2006).

Remark 4.4 Consider the local alternative

H1n : m(x1, . . . , xd) = m1(x1) + . . .+md(xd) + c+ n−1/2r(x1, . . . , xd),

for all (x1, . . . , xd) ∈ RX , where E[m`(Xi`)] = 0 (` = 1, . . . , d) and the function r satisfies

E(r2(X)) <∞. Then, it can be shown that under H1n,

TKS
d→ sup
−∞<y<∞

fε(y)|Z + b|

TCM
d→
∫
f 2
ε (y)dFε(y) (Z + b)2,

for some b ∈ IR. The proof is similar to the proof of Theorem 3.4 in Van Keilegom,

González Manteiga and Sánchez Sellero (2008), and we therefore refer to that paper for

more details.
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Remark 4.5 Assume we want to test for a separable model with regression function

m(x1, . . . , xd) = G(m1(x1), . . . ,md(xd))

with known link function G, where functions q` (` = 1, . . . , d) are known (or consis-

tently estimable) such that
∫
G(m1(x1), . . . ,md(xd))q`(x−`) dx−` = m`(x`), where x−` =

(x1, . . . , x`−1, x`+1, . . . , xd). With

m̂`(x`) =

∫
m̂(x1, . . . , xd)q̂`(x−`) dx−`

and m̃(x1, . . . , xd) = G(m̂1(x1), . . . , m̂d(xd)) the analogous testing procedure as explained

for testing additivity can be applied.

Remark 4.6 Combining the methods developed in Section 2 with those considered by

Pardo Fernández, Van Keilegom and González Manteiga (2007) and Neumeyer and Sper-

lich (2006) one can also test for equality of additive components, when k regression models

Yij = mi(Xij) + σi(Xij)εij, j = 1, . . . , ni, i = 1, . . . , k,

with additive structure

mi(Xij) = mi(Zij,Wij) = ri(Zij) + gi(Wij), E[ri(Zij)] = 0, i = 1, . . . , k,

are given and one is interested in the hypothesis

H0 : r1 = r2 = · · · = rk.

For i = 1, . . . , k denote by F̂εi
the empirical distribution function of the residuals ε̂ij =

(Yij−m̂(Xij))/σ̂(Xij) (j = 1, . . . , ni), and by F̃εi
the empirical distribution function of the

residuals ε̃ij = (Yij − r̂(Zij)− ĝi(Wij))/σ̂(Xij), where ĝi denotes the marginal integration

estimator for gi (within the ith sample), and r̂ denotes a marginal integration estimator

for r = r1 = · · · = rk under H0 obtained from the pooled sample [see Neumeyer and

Sperlich (2006)]. A test can be obtained from comparing F̂εi
with F̃εi

(i = 1, . . . , k) in

the same manner as shown by Pardo Fernández, Van Keilegom and González Manteiga

(2007) in the context of testing for equality of regression functions.

Appendix: Proofs

In this Appendix the proofs will be given of the main theorems and of several lemmas.
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Lemma A.1 Assume (C1)-(C5). Then,

‖m̂−m‖d+α = oP (1), ‖σ̂ − σ‖d+α = oP (1),

where 0 < α < δ/2, δ is defined as in condition (C2), and where for any function f

defined on RX ,

‖f‖d+α = max
k.≤d

sup
x∈RX

|Dkf(x)|+ max
k.=d

sup
x,x′∈RX

|Dkf(x)−Dkf(x′)|
‖x− x′‖α

,

k = (k1, . . . , kd),

Dk =
∂k.

∂xk11 . . . ∂xkd
d

,

k. =
∑d

j=1 kj, and ‖ · ‖ is the Euclidean norm on IRd.

Proof. First note that it follows from Theorem 6 in Masry (1996) that

sup
x∈RX

|m̂(x)−m(x)| = OP ((nhd)−1/2(log n)1/2) +O(hp+1) = oP (1).

Next, note that based on this result it can now be shown that for k. ≤ d,

sup
x∈RX

|Dkm̂(x)−Dkm(x)| = OP ((nhd+2k.)−1/2(log n)1/2) +O(hp+1−k.) = oP (1),

and for k. = d,

sup
x,x′∈RX

|Dkm̂(x)−Dkm(x)−Dkm̂(x′) +Dkm(x′)|
‖x− x′‖α

= OP ((nh3d+2α)−1/2(log n)1/2) +O(hp+1−d−α) = oP (1).

A detailed proof of the latter two results can be found in Proposition 3.2 and Theorem

3.2 in Ojeda (2008) respectively for the case where d = 1. In the multiple regression case,

the proof is similar but more technical, and is therefore omitted.

For σ̂ − σ, note that we can again apply Theorem 6 in Masry (1996), but with Yi

replaced by Y 2
i (i = 1, . . . , n). Hence, the same reasoning as for m̂−m applies. �

Lemma A.2 Assume (C1)-(C5). Then,∫
m̂(x)−m(x)

σ(x)
fX(x)dx = n−1

n∑
i=1

εi + oP (n−1/2),

and ∫
σ̂(x)− σ(x)

σ(x)
fX(x)dx =

1

2
n−1

n∑
i=1

{ε2
i − 1}+ oP (n−1/2).
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Proof. We prove the first statement. The second one can be shown in a very similar way.

The proof is based on the notion of ‘equivalent kernels’, introduced by Fan and Gijbels

(1996), p. 63-64. Although their development is valid in the case where d = 1, it can be

seen (but the proof is technical) that equivalent kernels can be extended to the context

of multiple regression. In fact, for the extension to d > 1 one needs to stack the
∑p

k=0 d
k

coefficients of the local polynomial of order p into one big vector, and apply the same kind

of development as in the case d = 1. Details are omitted. This development yields that

the estimator m̂(x) can be written in the form of a Nadaraya-Watson type estimator:

m̂(x) =
n∑
i=1

W n
0

(x−Xi

h

)
Yi,

where the weights W n
0 (·) depend on x and satisfy

n∑
i=1

W n
0

(x−Xi

h

)
= 1 and W n

0 (u) =
1

nh

1

fX(x)
K∗(u){1 + oP (1)}

uniformly in u ∈ [−1, 1]d and x ∈ RX . Here, K∗(·) is the so-called equivalent kernel and is

a product kernel K∗(u1, . . . , ud) =
∏d

j=1 k
∗(uj), where k∗ is a univariate kernel satisfying∫

uqk∗(u)du = δ0q (0 ≤ q ≤ p). (A.1)

It now follows that we can write

m̂(x)−m(x) = n−1f−1
X (x)

n∑
i=1

K∗h(x−Xi)(Yi −m(x)){1 + oP (1)},

and hence (we take σ ≡ 1 for simplicity)∫
(m̂(x)−m(x))fX(x)dx

= n−1

n∑
i=1

∫
K∗h(x−Xi)(Yi −m(x))dx{1 + oP (1)}

=
[
n−1

n∑
i=1

εi +O(hp+1)
]
{1 + oP (1)} = n−1

n∑
i=1

εi + oP (n−1/2),

where the second equality follows from a Taylor expansion of m(Xi)−m(x) of order p+ 1

and from equation (A.1), and where the last equality follows from condition (C2). �

12



Lemma A.3 Assume (C1)-(C5). Then,

sup
−∞<y<∞

∣∣∣n−1

n∑
i=1

{
I(ε̂i ≤ y)− I(εi ≤ y)− Fε̂(y) + Fε(y)

}∣∣∣ = oP (n−1/2),

where Fε̂ is the distribution of ε̂ = (Y − m̂(X))/σ̂(X) conditionally on the data (Xj, Yj),

j = 1, . . . , n (i.e. considering m̂ and σ̂ as fixed functions).

Proof. The proof is very similar to that of Lemma 1 in Akritas and Van Keilegom (2001).

Therefore, we will restrict attention to explaining the main changes with respect to that

proof. First note that Lemma A.1 implies that, with probability tending to one, (m̂−m)/σ

and σ̂/σ belong to Cd+α
1 (RX) and C̃d+α

2 (RX) respectively, where 0 < α < δ/2 is as in

Lemma A.1. Here, Cd+α
1 (RX) is the class of d times differentiable functions f defined

on RX such that ‖f‖d+α ≤ 1 (with ‖f‖d+α defined in Lemma A.1), and C̃d+α
2 (RX) is

the class of d times differentiable functions f defined on RX such that ‖f‖d+α ≤ 2 and

infx∈RX
f(x) ≥ 1/2.

Next, note that for any ε̄ > 0, the ε̄2-bracketing numbers of these two classes are

bounded by

N[ ](ε̄
2, Cd+α

1 (RX), L2(P )) ≤ exp(Kε̄−2d/(d+α))

N[ ](ε̄
2, C̃d+α

2 (RX), L2(P )) ≤ exp(Kε̄−2d/(d+α)),

where P is the joint probability measure of (X, ε) and K > 0 [see Theorem 2.7.1 in van

der Vaart and Wellner (1996)]. It now follows using the same arguments as in Akritas

and Van Keilegom (2001) that the ε̄-bracketing number of the class

F1 =
{

(x, e)→ I(e ≤ yf2(x) + f1(x)) : y ∈ IR, f1 ∈ Cd+α
1 (RX) and f2 ∈ C̃d+α

2 (RX)
}

is at most O(ε̄−2 exp(Kε̄−2d/(d+α))) and hence∫ ∞
0

√
logN[ ](ε̄,F1, L2(P )) dε̄ <∞.

The rest of the proof is now exactly the same as in Akritas and Van Keilegom (2001) and

is therefore omitted. �
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Proof of Theorem 2.1. From Lemma A.3 it follows that

F̂ε(y)− Fε(y)

= n−1

n∑
i=1

I(εi ≤ y)− Fε(y)

+

∫ {
Fε

(yσ̂(x) + m̂(x)−m(x)

σ(x)

)
− Fε(y)

}
dFX(x) + oP (n−1/2)

= n−1

n∑
i=1

I(εi ≤ y)− Fε(y)

+fε(y)

∫
σ−1(x)

{
y(σ̂(x)− σ(x)) + m̂(x)−m(x)

}
dFX(x)

+
1

2

∫
f ′ε(ξx)σ

−2(x)
{
y(σ̂(x)− σ(x)) + m̂(x)−m(x)

}2
dFX(x) + oP (n−1/2),

for some ξx between y and σ−1(x){yσ̂(x) + m̂(x) − m(x)}. The third term above is

OP ((nhd)−1 log n) = oP (n−1/2), which follows from the proof of Lemma A.1 and from

conditions (C2) and (C5), while the second term equals n−1
∑n

i=1 ϕ(εi, y) + oP (n−1/2),

which follows from Lemma A.2. �

Proof of Corollary 2.2. The proof is very similar to that of Theorem 2 in Akritas and

Van Keilegom (2001) and is therefore omitted. �

Lemma A.4 Assume (C1)-(C5) and (4.1). Then, for m̃ defined in (4.3),

‖m̃−m‖d+α = oP (1),

where 0 < α < δ/2, with δ defined in condition (C2), and ‖ · ‖d+α defined in Lemma A.1.

Proof. From (4.3) and (4.1) we have for x = (x1, . . . , xd)

m̃(x)−m(x) =
d∑
`=1

(m̂`(x`)−m`(x`)) + Y n − c,

where Y n− c = n−1
∑n

i=1(Yi−E[Yi]) = OP (n−1/2), and it does not depend on x. For the

ease of notation we consider m̂`(x`) − m`(x`) in detail for ` = 1. With the assumption

E[m`(Xi`)] = 0 (` = 1, . . . , d) we obtain

m̂1(x1)−m1(x1) =
1

n

n∑
j=1

(
m̂(x1, Xj2, . . . , Xjd)−m(x1, Xj2, . . . , Xjd)

)

+
d∑
`=2

1

n

n∑
j=1

m`(Xj`) + c− Y n,
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where the terms in the last line are of order OP (n−1/2) and independent of x1. Hence, we

obtain

sup
x1

|m̂1(x1)−m1(x1)| ≤ sup
x
|m̂(x)−m(x)|+OP (n−1/2) = oP (1)

by Lemma A.1. For the derivatives note that for k ≤ d, and for j = 1, . . . , n,

m
(k)
1 (x1) =

∂km(x1, Xj2, . . . , Xjd)

∂xk1
, m̂

(k)
1 (x1) =

1

n

n∑
j=1

∂km̂(x1, Xj2, . . . , Xjd)

∂xk1
,

and hence

sup
x1

|m̂(k)
1 (x1)−m(k)

1 (x1)| ≤ sup
x

∣∣∣∂km̂(x)

∂xk1
− ∂km(x)

∂xk1

∣∣∣ = oP (1)

by Lemma A.1. Further, we have

sup
x1,x′1

|m̂(k)
1 (x1)−m(k)

1 (x1)− m̂(k)
1 (x′1) +m

(k)
1 (x′1)|

|x1 − x′1|α

≤ sup
x1,x′1

1

n

n∑
j=1

∣∣∣∂km̂(x1,Xj,−1)

∂xk
1

− ∂km(x1,Xj,−1)

∂xk
1

− ∂km̂(x′1,Xj,−1)

∂xk
1

+
∂km(x′1,Xj,−1)

∂xk
1

∣∣∣
‖(x1, Xj,−1)t − (x′1, Xj,−1)t‖α

≤ sup
x,x′

|D(k,0,...,0)(m̂−m)(x)−D(k,0,...,0)(m̂−m)(x′)|
‖x− x′‖α

= oP (1)

by Lemma A.1. �

Lemma A.5 Assume (C1)-(C6) and (4.1). Then, for ` = 1, . . . , d,∫
m̂`(x`)−m`(x`)

σ(x)
dFX(x) =

1

n

n∑
i=1

σ(Xi)εi
g`(Xi`)fX−`

(Xi,−`)

fX(Xi)

−
∫
fX(x)

σ(x)
dx

1

n

n∑
i=1

[
σ(Xi)εi +m`(Xi`)

]
+ oP (n−1/2)

where g` is defined in Theorem 4.1.
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Proof. For ease of notation we only consider the case ` = 1. Then from (A.2) and the

proof of Lemma A.2 we have by standard arguments (using condition (C6))∫
m̂1(x1)−m1(x1)

σ(x)
dFX(x)

=

∫
1

n2

n∑
i=1

n∑
j=1

σ(Xi)εi
K∗h(x1 −Xi1, Xj2 −Xi2, . . . , Xjd −Xid)

fX(x1, Xj2, . . . , Xjd)

dFX(x)

σ(x)

+

∫
fX(x)

σ(x)
dx
[
(c− Y n) +

d∑
k=2

1

n

n∑
j=1

mk(Xjk)
]

+ oP (n−1/2)

=

∫
1

nh1

n∑
i=1

σ(Xi)εik
∗
(x1 −Xi1

h1

) fX−1(Xi2, . . . , Xid)

fX(x1, Xi2, . . . , Xid)

dFX(x)

σ(x)

+

∫
fX(x)

σ(x)
dx

1

n

n∑
j=1

[
c− Yj +m2(Xj2) + · · ·+md(Xjd)

]
+ oP (n−1/2)

=
1

n

n∑
i=1

σ(Xi)εi
fX−1(Xi2, . . . , Xid)

fX(Xi)

∫
fX(Xi1, x2, . . . , xd)

σ(Xi1, x2, . . . , xd)
d(x2, . . . , xd)

−
∫
fX(x)

σ(x)
dx

1

n

n∑
j=1

[
σ(Xj)εj +m1(Xj1)

]
+ oP (n−1/2),

which is the desired expansion. �

Proof of Theorem 4.1. Exactly as in the proof of Theorem 2.1 we obtain the expansion

F̃ε(y)− Fε(y) = n−1

n∑
i=1

I(εi ≤ y)− Fε(y)

+ fε(y)

∫
σ−1(x)

{
y(σ̂(x)− σ(x)) + m̃(x)−m(x)

}
dFX(x) + oP (n−1/2)

uniformly with respect to y, and hence,

F̂ε(y)− F̃ε(y) = fε(y)
[ ∫

σ−1(x)
{
m̂(x)−m(x)

}
dFX(x)− (Y n − c)

∫
σ−1(x) dFX(x)

−
d∑
`=1

∫
σ−1(x)

{
m̂`(x`)−m`(x`)

}
dFX(x)

]
+ oP (n−1/2).
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Now Lemma A.2 and Lemma A.5 yield

F̂ε(y)− F̃ε(y)

= fε(y)
( 1

n

n∑
i=1

εi − (Y n − c)
∫
σ−1(x) dFX(x)

−
d∑
`=1

{ 1

n

n∑
i=1

σ(Xi)εi
g`(Xi`)fX−`

(Xi,−`)

fX(Xi)
−
∫
fX(x)

σ(x)
dx

1

n

n∑
i=1

[
σ(Xi)εi +m`(Xi`)

]})
+ oP (n−1/2)

= fε(y)
( 1

n

n∑
i=1

εi

[
1−

d∑
`=1

σ(Xi)
g`(Xi`)fX−`

(Xi,−`)

fX(Xi)

]
+ (d− 1)

∫
fX(x)

σ(x)
dx

1

n

n∑
i=1

σ(Xi)εi

)
+ oP (n−1/2)

and the assertion follows. �
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