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Abstract

In this paper we consider autoregressive models with conditional autoregressive
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1 Introduction

Nonlinear AR-ARCH models, i. e. models with an autoregressive conditional mean function

and an autoregressive conditional variance function which are both not assumed linear, have

become increasingly popular. They are also called CHARN (conditional heteroscedastic au-

toregressive nonlinear) models. In this paper we assume an AR-ARCH model of order one.

Our aim is to test for Gaussian distribution of the innovations, which constitutes a typical

assumption in the modelling of time series data. Under the normality assumption, asymp-

totic results often simplify. For instance, then no fourth moments appear in the asymptotic

variance matrix of the empirical autocovariances of linear processes, see e. g. Brockwell &

Davis (2006), Proposition 7.3.3. Further, the lack-of-fit test for ARCH models by Horváth,

Kokozka & Teyssière (2004) strongly depends on the assumption of Gaussian innovations.

Araveeporn (2011) uses the assumption of Gaussian innovations in order to estimate the

conditional mean and volatility functions. Furthermore, estimation of conditional quantiles

is of great importance in the context of financial time series. Starting from a nonpara-

metric AR-ARCH model, however, the quantiles of the innovation distribution need to be

estimated, or better be known (see Franke, Kreiß & Mammen (2009), section 4). Moreover,

under Gaussianity of the innovations one can derive asymptotically distribution-free versions

of other specification tests; see the discussion below.

We suggest a completely nonparametric test, which does not assume any parametric

assumption on either mean or volatility function, but applies kernel estimators for those

functions (see Doukhan & Ghindès (1983), Robinson (1983), Masry & Tjøstheim (1995),

Härdle & Tsybakov (1997), among others, for estimation procedures in nonparametric AR-

ARCH models). Relatedly, in a homoscedastic nonparametric AR model Müller, Schick &

Wefelmeyer (2009), who prove an asymptotic expansion of the empirical process of estimated

innovations, mention the possibility to use their result for testing goodness-of-fit of the inno-

vation distributions. They do not present the asymptotic distribution of the test statistics,

nor finite sample properties. On the other hand, goodness-of-fit tests for the innovation dis-

tribution in parametric time series are suggested by Koul & Ling (2006) in AR-ARCH models

and by Klar, Lindner & Meintanis (2011) for GARCH models, for instance. Ducharme &

Lafaye de Micheaux (2004) test for normality of the innovations in standard ARMA models.

Our test statistic for Gaussianity of the innovations is the Cramér-von Mises distance of a

weighted empirical distribution function of estimated innovations and the standard normal

distribution. Though the mean and volatility functions are not specified in any way, the

test statistic is shown to be asymptotically distribution-free. The test and its asymptotic

distribution are presented in section 2.1. We treat the special cases of nonparametric AR

and nonparametric ARCH models in detail in sections 2.2 and 2.3. In a small simulation

study we demonstrate the good performance of the test for moderate sample sizes in section

3. We further discuss briefly how the test can be generalized to AR-ARCH models of higher
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order or to models with additional covariates.

As already mentioned, under Gaussianity of the innovations other testing procedures

based on the residual empirical process will be asymptotically distribution-free. Then boot-

strap procedures (for which asymptotic validity often is not investigated rigorously in the

literature) can be avoided. As example for an asymptotically distribution-free specifica-

tion test under the normality assumption we present a lack-of-fit test for standard AR(1)

models in section 4. Further we reconsider the test for multiplicative structure by Dette,

Pardo-Fernández & Van Keilegom (2009) under the normality assumption.

Finally, technical assumptions are listed in appendix A.

2 Main results

2.1 AR-ARCH model

Assume we have observed X
0

, . . . , X
n

, where (X
t

)
t2Z is a real valued stationary ↵-mixing

stochastic process following the AR-ARCH model of order one, i, e.

X
t

= m(X
t�1

) + �(X
t�1

)"
t

. (2.1)

Here the innovations "
t

, t 2 Z, are assumed independent and identically distributed with

unknown distribution function F . Moreover, the innovations are centered with unit variance

and "
t

is independent of the past X
s

, s  t� 1, 8t.
Our aim is to test the null hypothesis H

0

of standard normal innovations against a

general alternative H
1

. To this end we define kernel estimators for the conditional mean and

conditional variance function as

m̂(x) =

P

n

i=1

K
⇣

x�X

i�1

c

n

⌘

X
i

P

n

i=1

K
⇣

x�X

i�1

c

n

⌘ , �̂2(x) =

P

n

i=1

K
⇣

x�X

i�1

c

n

⌘

(X
i

� m̂(x))2

P

n

i=1

K
⇣

x�X

i�1

c

n

⌘ (2.2)

where K denotes a kernel function and c
n

a sequence of positive bandwidths. Technical

assumptions are listed in the appendix. Now we estimate the innovations as residuals

"̂
t

=
X

t

� m̂(X
t�1

)

�̂(X
t�1

)

and consider a weighted empirical distribution function, i. e.

F̂
n

(y) =
n

X

t=1

v
n,t

I{"̂
t

 y}, (2.3)

as estimator for the innovation distribution. Here we define

v
n,t

=
w

n

(X
t�1

)
P

n

s=1

w
n

(X
s�1

)
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while w
n

denotes some weight function fulfilling assumption (W) in the appendix. Selk &

Neumeyer (2012) showed (see (A.1), (A.3) and the arguments following in the proof of Th.

3.1 in that paper) that under the assumptions stated in the appendix,

F̂
n

(y) =
n

X

t=1

v
n,t

I
n

"
t

 (m̂�m)(X
t�1

)

�(X
t�1

)
+ y

�̂(X
t�1

)

�(X
t�1

)

o

=
1

n

n

X

t=1

I{"
t

 y} + f(y)
n

X

t=1

v
n,t

⇣(m̂�m)(X
t�1

)

�(X
t�1

)
+ y

(�̂2 � �2)(X
t�1

)

2�2(X
t�1

)

⌘

(2.4)

+ o
P

(
1p
n

)

uniformly with respect to y 2 R, where f denotes the innovation density. Further in the

aforementioned paper it is shown that

n

X

t=1

v
n,t

(m̂�m)(X
t�1

)

�(X
t�1

)
=

1

n

n

X

t=1

"
t

+ o
P

(
1p
n

) (2.5)

n

X

t=1

v
n,t

(�̂2 � �2)(X
t�1

)

2�2(X
t�1

)
=

1

2n

n

X

t=1

("2

t

� 1) + o
P

(
1p
n

) (2.6)

(see (A.5)–(A.7) in the cited paper). Thus,

F̂
n

(y) =
1

n

n

X

t=1

✓

I {"
t

 y} + f(y)"
t

+
yf(y)

2
("2

t

� 1)

◆

+ o
P

(
1p
n

) (2.7)

and the stochastic process
p

n
⇣

F̂
n

(y)� F (y)
⌘

, y 2 R,

converges weakly to a centered Gaussian process (K(y))
y2R with

Cov(K(y), K(z)) = F (y ^ z)� F (y)F (z)

+ f(y)
�

E["
1

I{"
1

 z}] + yE[("2

1

� 1)I{"
1

 z}]
�

+ f(z)
�

E["
1

I{"
1

 y}] + zE[("2

1

� 1)I{"
1

 y}]
�

+ f(y)f(z)
�

1 + (y + z)E["3

1

] + yz(E["4

1

]� 1)
�

.

Now let � and ' denote distribution and density function of the standard normal distribu-

tion, respectively, and denote by (G(u))
u2[0,1]

a centered Gaussian process with covariance

structure

Cov (G(u), G(v)) = u ^ v � uv � '(��1(u))'(��1(v)).

Then we have the following result for the Cramér-von Mises test statistic.

4



Theorem 2.1 Under model (2.1) and the assumptions stated in the appendix under the null

hypothesis H
0

of Gaussian innovations the test statistic

T
n

= n

Z

R
(F̂

n

(y)� �(y))2'(y) dy

converges in distribution to T =

Z

1

0

G2(u) du.

Proof. A calculation of the covariance of K in the case F = � gives

Cov(K(y), K(z)) = �(y ^ z)� �(y)�(z)

� 2'(y)'(z)� 2yz'(y)'(z) + '(y)'(z)(1 + 2yz)

= �(y ^ z)� �(y)�(z)� '(y)'(z).

because for "
1

standard normally distributed one easily calculates E["
1

I{"
1

 y}] = �'(y),

E[("2

1

� 1)I{"
1

 y}] = �y'(y) and one has E["3

1

] = 0, E["4

1

] = 3. From the continuous

mapping theorem it follows that T
n

converges in distribution to

Z

R
K(y)2'(y) dy =

Z

1

0

�

K(��1(u))
�

2

du

while K � ��1 has the same distribution as G. This finishes the proof. 2

Remark 2.2 It follows from Stephens (1976) that G is also the weak limit of some process

(Y (u))
u2[0,1]

such that T̃ =
R

1

0

Y 2(u)du is the limit of

T̃
n

= n

Z

 

1

n

n

X

j=1

I {Z
j

 ·}� �
µ̂,⌧

2

!

2

d�
µ̂,⌧

2 ,

where Z
1

, . . . , Z
n

are iid with known variance ⌧ 2 and unknown expectation µ and where �
µ̂,⌧

2

denotes the normal distribution function with expectation µ̂ = n�1

P

n

j=1

Z
j

and variance ⌧ 2.

That the limits of T
n

and T̃
n

coincide in distribution might be suprising because in our AR-

ARCH model the variance is unknown and has to be estimated. However, as can be seen from

the proof, in the asymptotic covariance of
p

n(F̂
n

��) under H
0

exactly those terms cancel

that arise from the estimation of the variance function �̂2 (cf. (2.6)). Quantiles of T̃ and thus

critical values for T are tabled in Stephens (1976) and restated in Table 1 for convenience.

We obtain an asymptotically distribution-free test by rejecting H
0

for asymptotic level ↵

whenever T
n

is larger than the critical value c
↵

. Consistency can be deduced from uniform

convergence of F̂
n

to F in probability, which follows from (2.7). ⌅
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nominal level ↵ 0.15 0.1 0.05 0.025 0.01

critical value c
↵

0.118 0.135 0.165 0.196 0.237

Table 1: Asymptotic critical values for the Cramér-von Mises test for normality of the

innovations in the AR-ARCH model.

Remark 2.3 The results for the nonparametric AR-ARCH model (2.1) can be extended

to models of the form X
t

= m(Z
t

) + �(Z
t

)"
t

where (X
t

, Z
t

) is a stationary time series

and Z
t

may include covariates as well as a finite number of past values X
t�1

, . . . , X
t�p

while E["
t

| F
t�1

] = 0, Var("
t

| F
t�1

) = 1. Here F
t�1

denotes the sigma-field generated

by Z
t

, (X
t�1

, Z
t�1

), (X
t�2

, Z
t�2

), . . . . We conjecture that applying local polynomial esti-

mators for m and �2 and assuming enough smoothness of those functions the expansion

(2.7) stays valid. A thorough treatment is beyond the scope of the paper. Note also that

asymptotic properties of estimators for the innovation distribution in such nonparametric

AR(p)/regression models have not yet been treated in the literature. However, in the case

of independent observations Neumeyer & Van Keilegom (2010) showed validity of an expan-

sion like (2.7) for the empirical distribution of residuals in multiple nonparametric regression

models (they obtain the same expansion as in the case of one-dimensional covariates, see

Akritas & Van Keilegom (2001)). Thus we believe that Theorem 2.1 stays valid in the more

general model under suitable regularity conditions and the same test for Gaussianity of the

innovation distribution can be applied. ⌅

2.2 AR model

In this section we consider a nonparametric AR model of order one, i. e.

X
t

= m(X
t�1

) + ⌘
t

, (2.8)

where the innovations ⌘
t

, t 2 Z, are iid and centered and ⌘
t

is independent of the past X
s

,

s  t � 1. Thus we have model (2.1) with ⌘
t

= �"
t

for the unknown (constant) variance

�2 = Var(⌘
t

). Our aim is to test the null hypothesis of normal innovations, i. e.

H
0

: 9�2 > 0 s. t. ⌘
t

⇠ N(0, �2).

The constant variance is estimated by

�̂2 =
n

X

t=1

v
n,t

(X
t

� m̂(X
t�1

))2,

where m̂ is the kernel estimator defined in (2.2). In this case we define the residuals as

"̂
t

=
X

t

� m̂(X
t�1

)

�̂
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and consider F̂
n

as defined in (2.3) as estimator for the distribution of the standardized

innovations "
t

. Let again F and f denote distribution and density function of "
t

, respectively.

Then H
0

is equivalent to F = � and we have the following results.

Lemma 2.4 Under the assumptions stated in the appendix we have the expansion

F̂
n

(y) =
1

n

n

X

t=1

✓

I {"
t

 y} + f(y)"
t

+
yf(y)

2
("2

t

� 1)

◆

+ o
P

(
1p
n

)

uniformly with respect to y 2 R.

Proof. First we consider the variance estimator, for which one obtains

�̂2 � �2 =
1

n

n

X

t=1

v
n,t

(⌘
t

� (m̂�m)(X
t�1

))2 � �2

= �2

1

n

n

X

t=1

v
n,t

("2

t

� 1)� 2�
n

X

t=1

v
n,t

"
t

(m̂�m)(X
t�1

) +
n

X

t=1

v
n,t

(m̂�m)2(X
t�1

)

= �2

n

X

t=1

v
n,t

("2

t

� 1) + o
P

(
1p
n

)

by Lemmata B.2 and B.3 in Selk & Neumeyer (2012). Further

1

n

n

X

t=1

(w
n

(X
t�1

)� 1)("2

t

� 1) = o
P

(
1p
n

)

and
1

n

n

X

t=1

w
n

(X
t�1

) = 1 + o
P

(
1p
n

)

(see also (A.4) in Selk & Neumeyer (2012)) and thus

�̂2 � �2 = �2

1

n

n

X

t=1

("2

t

� 1) + o
P

(
1p
n

). (2.9)

Now note that

F̂
n

(y) =
n

X

t=1

v
n,t

I
n

"
t

 (m̂�m)(X
t�1

)

�
+ y

�̂

�

o

and with arguments analogous to the proof of Theorem 3.1 in Selk & Neumeyer (2012) which

leads to (2.4) (see also the proof of Lemma 1 in Dette, Pardo-Fernández & Van Keilegom

(2009) or the proof of Theorem 3.1 in Müller, Schick & Wefelmeyer (2009)) one obtains that

F̂
n

(y) =
1

n

n

X

t=1

I{"
t

 y} + f(y)
n

X

t=1

v
n,t

⇣(m̂�m)(X
t�1

)

�
+ y

�̂2 � �2

2�2

⌘

+ o
P

(
1p
n

)

uniformly with respect to y 2 R. The assertion follows from (2.5) and (2.9). 2
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Corollary 2.5 Under model (2.8) and the assumptions stated in the appendix under the null

hypothesis H
0

of normal innovations

T
n

= n

Z

R
(F̂

n

(y)� �(y))2'(y) dy

converges in distribution to T defined in Theorem 2.1.

Proof. The result immediately follows from Lemma 2.4 and Theorem 2.1. 2

Thus using the critical values from Table 1 we obtain a completely nonparametric con-

sistent distribution-free asymptotic level ↵ test for Gaussianity of the innovations in AR

models (see also Remark 2.3 which holds here analogously).

2.3 ARCH model

In this section we consider a nonparametric ARCH model of order one, i. e.

X
t

= �(X
t�1

)"
t

, (2.10)

where the innovations "
t

, t 2 Z, are iid and centered with unit variance and "
t

is independent

of the past X
s

, s  t� 1. Thus we have model (2.1) with conditional mean m ⌘ 0. Our aim

is to test the null hypothesis H
0

of normal innovations. To this end let �2 be estimated by

the kernel estimator

�̂2(x) =

P

n

i=1

K
⇣

x�X

i�1

c

n

⌘

X2

i

P

n

i=1

K
⇣

x�X

i�1

c

n

⌘

and the residuals be defined as

"̂
t

=
X

t

�̂(X
t�1

)
,

whereas F
n

is as in (2.3). Let again � denote the standard normal distribution function and

let B denote a standard Brownian bridge on [0, 1]. Then we obtain the following result.

Theorem 2.6 Under the assumptions stated in the appendix under the null hypothesis of

Gaussian innovations in the ARCH model (2.10) the test statistic

T
n

= n

Z

R
(F̂

n

(y)� �(y))2'(y) dy

converges in distribution to T =

Z

1

0

B2(u) du.

Proof. In the expansion (2.4) the estimation of m is not present while (2.6) stays valid

for the new estimator �̂. Thus it follows that

F̂
n

(y) =
1

n

n

X

t=1

✓

I {"
t

 y} +
yf(y)

2
("2

t

� 1)

◆

+ o
P

(
1p
n

)
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and the stochastic process p
n
⇣

F̂
n

(y)� F (y)
⌘

, y 2 R,

converges weakly to a centered Gaussian process (K(y))
y2R with

Cov(K(y), K(z)) = F (y ^ z)� F (y)F (z)

+ f(y)yE[("2

1

� 1)I{"
1

 z}] + f(z)zE[("2

1

� 1)I{"
1

 y}]
+ f(y)f(z)yz(E["4

1

]� 1).

As the innovations are standard normally distributed we have E[("2

1

�1)I{"
1

 z}] = �z'(z),

f = ' and E["4

1

] = 3. Hence,

Cov(K(y), K(z)) = �(y ^ z)� �(y)�(z).

The assertion follows by the continuous mapping theorem noting that K ���1 is a standard

Brownian bridge. 2

For convenient reference we state the critical values for the test in Table 2. Here c
↵

is

the (1� ↵)-quantile of T =
R

1

0

B2(u) du, see Shorack & Wellner (1986), p. 147.

nominal level ↵ 0.15 0.1 0.05 0.02 0.01

critical value c
↵

0.284 0.347 0.461 0.6198 0.743

Table 2: Asymptotic critical values for the Cramér-von Mises test for normality of the

innovations in the ARCH model.

3 Simulations

To examine the performance of the test on small samples we consider AR(1) models and

ARCH(1) models, for which we compare the results under the assumption of an AR-ARCH

model like (2.1) and under the assumption of an AR model like (2.8) (respectively ARCH

like (2.10)).

For the AR(1) case we consider the models

X
t

= 0.5 · X
t�1

+ "
t

, "
1

, . . . , "
n

⇠ F̃
⇣

,

where F̃
⇣

denotes the skew-normal distribution with location parameter

�

s

2⇡
�

(5⇣)2 + (5⇣)4

�

⇡2 + (2⇡2 � 2⇡) · (5⇣)2 + (⇡2 � 2⇡) · (5⇣)4

,
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scale parameter (⇡(1 + (5⇣)2)1/2/(⇡ + (⇡ � 2)(5⇣)2)1/2 and shape parameter 5⇣ for di↵erent

values of ⇣. For ⇣ = 0 this is the standard normal distribution. The rejection probabilities for

500 repetitions and level 5% are displayed in Table 3 and Figure 1 for the AR-ARCH model

(2.1) and the AR model (2.8) respectively. It can be seen that the level is approximated well

and the power increases for increasing parameter ⇣ as well as for increasing sample size n.

% ⇣ = 0 ⇣ = 0.1 ⇣ = 0.2 ⇣ = 0.3 ⇣ = 0.4 ⇣ = 0.6 ⇣ = 0.8 ⇣ = 1

AR-ARCH

n = 100 4.8 5.4 8.6 12.2 26.2 48.8 62 75.4

n = 200 5 6 8.8 18.6 44 83.6 94 96.2

AR

n = 100 5 7.4 9 15.6 27 53.2 67.4 76.6

n = 200 5 6.8 8.8 19 41.8 77.8 93.6 98

Table 3: Rejection probabilities obtained from AR(1) models with skew-normally distributed

innovations

0"

0.1"

0.2"

0.3"

0.4"
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y(

difference(zeta(

Figure 1: Rejection probabilities obtained from AR(1) models with skew-normally dis-

tributed innovations for n = 100 (dashed curve) and n = 200 (solid curve). On the left

panel the results for the AR-ARCH model are shown and on the right the ones for the AR

model.

We also examine ARCH(1) models with the same innovation distribution,

X
t

=
q

0.75 + 0.25X2

t�1

· "
t

, "
1

, . . . , "
n

⇠ F̃
⇣

for di↵erent values of ⇣. The rejection probabilities for 500 repetitions and level 5% are

shown in Table 4 and Figure 2 for the AR-ARCH model (2.1) and the ARCH model (2.10)
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respectively. The asymptotic level is approximated well and the power increases with in-

creasing ⇣ as well as with increasing n. For the ARCH model the increase with ⇣ for small n

is not as pronounced as for the models considered before, therefore we additionally examined

this model with sample size n = 500 for which an increase comparable to those before can

be observed.

% ⇣ = 0 ⇣ = 0.1 ⇣ = 0.2 ⇣ = 0.3 ⇣ = 0.4 ⇣ = 0.6 ⇣ = 0.8 ⇣ = 1

AR-ARCH

n = 100 5.2 6.6 8.2 15.8 33 61.8 72.8 82.6

n = 200 4.8 6.2 7.8 22 47.4 82.2 94.8 98.8

ARCH

n = 100 5 6.2 6.4 8 16.2 24.4 31.2 39.6

n = 200 5.2 6 7.2 10.4 15 34 48.8 55.8

n = 500 5 5.6 6.8 14.2 31.8 68.6 87 91.2

Table 4: Rejection probabilities obtained from ARCH(1) models with skew-normally dis-

tributed innovations
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Figure 2: Rejection probabilities obtained from ARCH(1) models with skew-normally dis-

tributed innovations for n = 100 (dashed curve), n = 200 (solid curve) and n = 500 (dotted

curve). On the left panel the results for the AR-ARCH model are shown and on the right

panel the ones for the ARCH model.

To further study the power of the testing procedure, we examine the same models with

Student-t distributed innovations with di↵erent degrees of freedom. Due to the fact that

Var("
t

) has to be one for all t, the Student-t distribution was standardized. The models are

11



AR(1)

X
t

= 0.5 · X
t�1

+ "
t

, "
1

, . . . , "
n

⇠ St(⇣)

and ARCH(1)

X
t

=
q

0.75 + 0.25X2

t�1

· "
t

, "
1

, . . . , "
n

⇠ St(⇣)

for di↵erent values of ⇣. The rejection probabilities for 500 repetitions and level 5% are

displayed in Table 5, Figure 3 (AR(1) model) and Figure 4 (ARCH(1) model). As before

we compare the results under the assumption of an AR-ARCH model like (2.1) and under

the assumption of an AR model like (2.8) (respectively ARCH like (2.10)). It can be seen

that the power is good and increases for increasing sample size n while it decreases for

increasing parameter ⇣, because the Student-t distribution converges to the standard normal

distribution for increasing degree of freedom.

% ⇣ = 3 ⇣ = 4 ⇣ = 5 ⇣ = 6 ⇣ = 7 ⇣ = 3 ⇣ = 4 ⇣ = 5 ⇣ = 6 ⇣ = 7

AR-ARCH

n = 100 61.4 49.8 35.2 27.8 23.6 60.4 45.2 35.8 26.4 22.6

n = 200 90 71.8 52.2 45, 4 34.6 91 72.2 52.4 37.2 31

n = 500 100 98.8 89.6 77.6 62 100 98.4 86.6 75 59.2

AR/ARCH

n = 100 23.4 15.8 15.4 11 9.8 18 9.8 7.6 7.2 5.2

n = 200 54.8 25.6 10.8 9.8 6.4 47.2 22.4 12 6.6 6.2

n = 500 99 74.6 41.8 22.4 18.6 96.8 70.2 37 19.6 13.4

Table 5: Rejection probabilities obtained from AR(1) models (left) and ARCH(1) models

(right) with St(⇣) distributed innovations

Simulation setting. For each simulation 10 · n observations X
t

were generated. For

the test the last n observations were used. This was done to ensure that the process is in

balance.

The empirical processes were built with weight function w
n

= I
[� log(n),log(n)]

. The Nadaraya-

Watson estimators m̂ and �̂ were calculated with Gaussian kernel. This is not compatible

with all assumptions, e. g. the support of the kernel is not compact. However this has

negligible e↵ect on the simulations because the Gaussian kernel decreases exponentially fast

at the tails. The bandwidth was chosen according to the assumptions by a rule of thumb as

�̂2n�
2

6+
p

3 with �̂2 =
P

n

t=1

v
n,t

(X
t

� m̂(X
t�1

))2.
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Figure 3: Rejection probabilities obtained from AR(1) models with St(⇣) distributed inno-

vations for n = 100 (dashed curve), n = 200 (solid curve) and n = 500 (dotted curve). On

the left panel the results for the AR-ARCH model are shown and on the right panel the ones

for the AR model.
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Figure 4: Rejection probabilities obtained from ARCH(1) models with St(⇣) distributed

innovations for n = 100 (dashed curve), n = 200 (solid curve) and n = 500 (dotted curve).

On the left panel the results for the AR-ARCH model are shown and on the right panel the

ones for the ARCH model.

4 Further examples

4.1 Testing for linear AR(1)

As was mentioned in the introduction other distribution-free specification tests for the AR-

ARCH model can be derived once the Gaussianity of the errors has been established. In this

section we will study in detail a lack-of-fit test for the linear AR(1) model. For the method

13



compare Van Keilegom, González Manteiga, & Sánchez Sellero (2008) in a nonparametric

regression model with independent observations. Similarly one can derive tests, e. g., for

parametric ARCH models.

For simplicity here we assume that E[X
0

] = 0 as this is a typical assumption in AR

models. We consider the model

X
t

= m(X
t�1

) + �"
t

, (4.1)

where the innovations "
t

, t 2 Z, are iid standard normal and � is an unknown positive

constant. Further, "
t

is independent of the past X
s

, s  t � 1. Our aim is to test the null

hypothesis

H̃
0

: 9# 2 (�1, 1) s. t. m(x) = #x.

See Hong-zhi & Bing (1991) or Koul & Stute (1999) for other procedures to test for H̃
0

.

Let #̂ denote any (under H
0

)
p

n-consistent estimator for #, e. g. the Yule-Walker or

ordinary least squares estimator under suitable regularity assumptions. Now define residuals

under the null as

"̂
0,t

=
X

t

� #̂X
t�1

�̂

with �̂2 = n�1

P

n

t=1

(X
t

� #̂X
t�1

)2, and

F̂
0,n

(y) =
n

X

t=1

I{"̂
0,t

 y}

Let further F̂
n

be defined as in section 2.2. Then we have the following result.

Theorem 4.1 Under the assumptions stated in the appendix for model (4.1) with Gaussian

innovations we have under H̃
0

that

T
n

= 2
p

⇡n

Z

R
(F̂

n

(y)� F̂
0,n

(y))2 dy

converges in distribution to a �2

1

-distributed random variable.

Proof. Let #
0

denote the ‘true’ parameter under H
0

. Similar to the proof of Lemma 2.4

we have for standard Gaussian "
t

that

F̂
0,n

(y) =
n

X

t=1

I
n

"
t

 (#̂� #
0

)(X
t�1

)

�
+ y

�̂

�

o

=
1

n

n

X

t=1

I{"
t

 y} + '(y)
n

X

t=1

⇣(#̂� #
0

)X
t�1

�
+ y

�̂2 � �2

2�2

⌘

+ o
P

(
1p
n

)
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uniformly with respect to y 2 R. Note that for the �̂2 defined here the last equality in (2.6)

also holds. Further,

1

n

n

X

t=1

X
t�1

= E[X
0

] + o
P

(1) = o
P

(1)

because (X
t

)
t2Z is ergodic due to its mixing property (see e.g. Doukhan (1994)). Thus with

the
p

n-consistency of #̂ we obtain

F̂
0,n

(y) =
1

n

n

X

t=1

⇣

I{"
t

 y} +
y'(y)

2
("2

t

� 1)
⌘

+ o
P

(
1p
n

)

uniformly with respect to y 2 R. Now from Lemma 2.4 we have

p
n(F̂

n

(y)� F̂
0,n

(y)) = '(y)
1p
n

n

X

t=1

"
t

+ o
P

(1)

which converges in distribution to '(y)Z with a standard normally distributed Z. Thus T
n

converges in distribution to

2
p

⇡

Z

R
('(y))2 dy Z2 = Z2,

which is �2

1

-distributed. 2

An asymptotically distribution-free level-↵ test is obtained by rejecting the null hypoth-

esis H̃
0

of a standard AR(1)-model whenever T
n

is larger than the (1 � ↵)-quantile of the

�2

1

-distribution.

4.2 Testing for multiplicative structure

Under the assumption of Gaussian innovations the test for multiplicative models by Dette,

Pardo-Fernández & Van Keilegom (2009) simplifies. Here the null hypothesis to be tested

for model (2.1) is

H̄
0

: 9c s. t. m = c�.

This condition connects ARCH models of the form Z
t

= s(Z
t�1

)✏
t

to model (2.1) by setting

X
t

= Z2

t

= m(X
t�1

) + �(X
t�1

)"
t

with "
t

= ✏2

t

� 1 and c = (E[✏4

1

]� 1)�1/2.

Note that under H̄
0

the constant c can be estimated
p

n-consistently by a least-squares

estimator ĉ defined by Dette, Pardo-Fernández & Van Keilegom (2009). Its asymptotic

expansion under H̄
0

and under our assumptions is

ĉ� c =
1

n

n

X

t=1

⇣

� 1

2
c"2

t

+ "
t

+
1

2
c
⌘ �4(X

t�1

)

E[�4(X
0

)]
+ o

P

(
1p
n

), (4.2)
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see Theorem 5 in the aforementioned paper, but note that under our assumptions given in

the appendix the influence of the weight function vanishes asymptotically. Now define

F̂
0,n

(y) =
n

X

t=1

v
n,t

I{"̂
0,t

 y}

with residuals

"̂
0,t

=
X

t

� ĉ�̂(X
t�1

)

�̂(X
t�1

)
,

where �̂ is as in (2.2). Let for k 2 {4, 8},

s
k

=
n

X

t=1

v
n,t

�̂k(X
t�1

)

and ⌧̂ 2 = s
8

/s2

4

� 1. Finally, let F̂
n

be defined as in (2.3). Then we have the following result.

Theorem 4.2 Under the assumptions stated in the appendix for model (2.1) with Gaussian

innovations we have under H̄
0

that

T
n

=
2
p

⇡n
R

R(F̂
n

(y)� F̂
0,n

(y))2 dy

(3

4

ĉ2 + 1)2⌧̂ 2

converges in distribution a �2

1

-distributed random variable.

Proof. We only sketch the main di↵erences to the proof in Dette, Pardo-Fernández &

Van Keilegom (2009) due to slightly di↵erent assumptions (under which in particular the

influence of the weight function is asymptotically negligible). We have

F̂
0,n

(y) =
n

X

t=1

v
n,t

I
n

"
t

 (ĉ�̂ � c�)(X
t�1

)

�(X
t�1

)
+ y

�̂(X
t�1

)

�(X
t�1

)

o

=
1

n

n

X

t=1

I{"
t

 y} + '(y)
n

X

t=1

v
n,t

⇣(ĉ�̂ � c�)X
t�1

�(X
t�1

)
+ y

�̂2(X
t�1

)� �2(X
t�1

)

2�2(X
t�1

)

⌘

+ o
P

(
1p
n

)

uniformly with respect to y 2 R (compare to (2.4)). From this and (4.2), (2.4), (2.6) one

obtains

p
n(F̂

n

(y)� F̂
0,n

(y)) = '(y)
1p
n

n

X

t=1

⇣1

2
c("2

t

� 1)� "
t

⌘⇣

1� �4(X
t�1

)

E[�4(X
0

)]

⌘

+ o
P

(1)

which by Th. 2.21 in Fan & Yao (2003) converges in distribution to '(y)Z, where Z is

centered normally distributed with variance (3

4

c2 + 1)⌧ 2 with

⌧ 2 = E
h⇣

1� �4(X
t�1

)

E[�4(X
0

)]

⌘

2

i

=
E[�8(X

0

)]

(E[�4(X
0

)])2

� 1.
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Finally the assertion follows because ⌧̂ 2 consistently estimates ⌧ 2 because �̂ consistently

estimates � and (�(X
t

))
t2Z inherits the mixing property of (X

t

)
t2Z and is therefore ergodic

as well. Thus T
n

converges in distribution to

2
p

⇡

Z

R
('(y))2 dy

Z2

(3

4

c2 + 1)⌧ 2

=
Z2

(3

4

c2 + 1)⌧ 2

,

which is �2

1

-distributed. 2

One obtains an asymptotically distribution-free test for H̄
0

and thus avoids to implement

bootstrap procedures. Note that it is not obvious which kind of bootstrap procedure should

be applied here in the context of arbitrary innovation distributions.

A Technical assumptions

The assumptions are similar to those in Selk & Neumeyer (2012) and required for their

Theorem 3.1 which we use.

(K) The kernel K is a three times di↵erentiable density with compact support [�C, C] and

sup
u2[�C,C]

|K(µ)(u)|  K̄ < 1, µ = 0, 1, 2, 3. Moreover K(C) = K(�C) = K 0(C) =

K 0(�C) = 0 and
R

K(u)udu = 0.

(C) The sequence of bandwidths c
n

fulfills

nc4

n

(log n)⌘ ! 0,
(log n)⌘

nc2+

p
3

n

! 0 for all ⌘ > 0.

(I) For the interval I
n

= [a
n

, b
n

] some r
I

< 1 exists, such that (b
n

� a
n

) = O(log(n)r

I ).

Moreover
⇣

R

a

n

+

�1 f
X0(x)dx +

R1
b

n

�

f
X0(x)dx

⌘

= o((log n)�1), where f
X0 denotes the

density of X
0

.

(W) The weight function w
n

: R ! [0, 1] fulfills w
n

(x) = 1 for x 2 [a
n

+ , b
n

� ] and

w
n

(x) = 0 for x /2 [a
n

, b
n

] for some  > 0 independent of n and is three times di↵eren-

tiable such that sup
n2N sup

x2R |w(µ)

n

(x)| < 1 for µ = 1, 2, 3.

(F) The innovations "
j

, j 2 Z, are independent and standard normally distributed.

(E) Some b > 1 +
p

3 exists such that E
⇥

|X
0

|2b

⇤

< 1.

(X) The observation process (X
j

)
j2Z is ↵-mixing with mixing-coe�cient ↵(n) = O(n��) for

some

� > max

 

2
(3 +

p
3)b + 2 +

p
3

(1 +
p

3)b� 2(2 +
p

3)
, 7

!

.
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Their density f
X0 is bounded and four times di↵erentiable with bounded derivatives.

The density is also bounded away from zero on compact intervals and some r
f

< 1
exists, such that 1

inf

x2I

n

f

X0 (x)

= O((log n)r

f ).

(Z) It holds that

sup
x2J

n

⇣

(|m(x)| + |�(x)|)2k f
X0(x)

⌘

= O(1)

and there exists some 1  j⇤ < 1 such that

sup
x,x

02J

n

⇣

(|m(x)| + |�(x)|)k (|m(x0)| + |�(x0)|)k f
X0,X

j�1(x, x0)
⌘

= O(1)

is valid for all j > j⇤+1, for k = 1, 2, n !1 with J
n

= [a
n

�(C+c
� 1

2
n

n�
1
2 (log n)

1
2 )c

n

, b
n

+

(C + c
� 1

2
n

n�
1
2 (log n)

1
2 )c

n

].

(M) The regression function m and the scale function � are four times di↵erentiable and

there exist some r
q

, r
s

< 1 and q
n

, q�

n

with sup
x2[a

n

�Cc

n

,b

n

+Cc

n

]

|m(µ)(x)| = O(q
n

),

sup
x2[a

n

�Cc

n

,b

n

+Cc

n

]

|�(µ)(x)| = O(q
n

), µ = 0, 1, 2, 3, 4 and 1

inf

x2I

n

|�(x)| = O(q�

n

), where

q
n

= O((log n)r

q), q�

n

= O((log n)r

s), (q
n

)�1 = O(1), (q�

n

)�1 = O(1).

Remark A.1 Note that the mixing condition in (X) is weaker than the one in Selk &

Neumeyer (2012). This is due to the nonsequential case that is examined here for which the

proof of Lemma B.3 in the aforementioned paper can be simplified. Further note that the

assumptions above are formulated under the null hypothesis H
0

of Gaussian innovations. To

obtain consistency of the testing procedures one needs to replace assumption (F) by

(F’) The innovations "
j

, j 2 Z, are independent and identically distributed with distribution

function F . Their density f is continuously di↵erentiable and sup
t2R |f(t)t| < 1 as

well as sup
t2R |f 0(t)t2| < 1. Further, E

⇥

|"
1

|2b

⇤

< 1 for b from assumption (E).

For AR model (2.8) with ⌘
t

= �"
t

some conditions in (Z) and (M) are redundant because �

is a constant function. A similar remark holds for the ARCH model (2.10) where m ⌘ 0. ⌅
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