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We consider state dependent queueing systems which interact with a ran-
dom environment in both directions: The queue can trigger a change of the
environment and the environment can interrupt service of customers and the
arrival stream of new customers, such that new arrivals are lost to the sys-
tem. The systems live in continuous time and we observe them at departure
instants only, which results in considering an embedded Markov chain. Our
main aim is to identify conditions which enforce the systems to stabilize in a
way that the queue and the environment decouple in the sense that the sta-
tionary queue length and environment behave independently, i.e., a product
form equilibrium exists.
We show that the behaviour of the embedded Markov chain is often con-

siderably different from that of the original continuous time Markov process
investigated in [11].
For exponential queueing systems we show that there is a product form

equilibrium under rather general conditions. For systems with non-exponential
service times more restrictive constraints are needed, which we prove by a
counter example where the environment represents an inventory attached to
an M/D/1 queue. Such integrated queueing-inventory systems are dealt with
in the literature previously. Further applications are, e.g., in modeling unre-
liable queues.
Keywords: Queuing systems, random environment, product form steady

state, loss systems,M/M/1/∞,M/M/m/∞,M/G/1/∞, embedded Markov
chains, inventory systems, availability, lost sales, matrix invertibility.
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1 Introduction

Product form networks of queues are common models for easy to perform structural and
quantitative first order analysis of complex networks in Operations Research applica-
tions. The most prominent representatives of this class of models are the Jackson [7]
and Gordon-Newell [5] networks and their generalizations as BCMP [1] and Kelly [9]
networks, for a short review see [2].
Over the last years product form models became popular in other areas of operations

research as well, especially when constructing integrated models for production (queue-
ing models) and inventory, for a review on integrated queueing-inventory models see the
survey paper [12]. A review with emphasis on product form models in this and related
areas can be found in the introduction of [11].

We continue in this paper our investigations described in [11]. In that paper we
analyzed a loss system in a random environment, described by a homogeneous continuous
time Markov process (X,Y ) = ((X(t), Y (t)) : t ≥ 0), where X describes an M/M/1/∞-
type queuing system (or a general birth-and-death process) and Y is an environment
process (representing, e.g., the stock size of an attached inventory or the availability
status of the production system modeled by the queue).
In the present paper for the reader’s convenience we take X as a single server queue,

and Y as a general environment. X and Y will interact vice versa, in both directions.
The main feature of this class of models is that jumps of the queue may enforce the

environment to jump instantaneously, and in the other direction the evolving environment
may interrupt the queue in a way, that service is interrupted and no customers are
admitted during the interruption interval. For more details see the introduction of [11]
and Section 2 below.
The main contribution of [11] is to identify conditions which guarantee that the ergodic

continuous time Markov process eventually settles down in a stable state distribution
which is of product form, i.e., the limiting and stationary distribution of the vector pro-
cess (X,Y ) is the independent product of the stationary distributions of X and Y , which
are both not Markov. In this paper we partly continue that research by observing the
systems at departure time instants only.

For investigatingM/G/1/∞ queues this is a standard procedure to avoid using supple-
mentary variable technique. Embedded chain analysis was applied by Vineetha [15] who
extended the theory of integrated queueing-inventory models with exponential service
times to systems with service times which are i.i.d. and follow a general distribution.
Our investigations which are reported in this paper were in part motivated by her inves-
tigations.
In Section 3 we revisit some of Vineetha’s [15] queueing-inventory systems, using sim-

ilarly embedded Markov chain techniques. In the course of these investigations we found
that there arise problems even for purely exponential systems, which we describe in Sec-
tion 2.2 and 2.3 first, before describing the M/G/1/∞ queue in a random environment
and its structural properties.
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To emphasize the problems arising from the interaction of the two components of
integrated systems, we remind the reader, that for ergodicM/M/1/∞ queues the limiting
and stationary distribution of the continuous time queue length process and the Markov
chains embedded at either arrival instants or departure instants are the same.
Our first finding is, that even in the case of M/M/1/∞ queues with attached in-

ventory this in general does not hold. This especially implies, that the product form
results obtained in [11] do not carry over immediately to the case of loss systems in a
random environment observed at departure times from the queue (downward jumps of
the generalized birth-and-death process).
A striking observation is that for a system which is ergodic in the continuous time

Markovian description the Markov chain embedded at departure instants may be not
ergodic. The reason for this is two-fold. Firstly, the embedded Markov chain may have
inessential states due to the specified interaction rules. Secondly, even when we delete
all inessential states, the resulting single positive recurrent class may be periodic.
We study this problem in depth in Section 2.3 for purely exponential systems, and

provide a set of examples which elucidate the problems which one is faced with. Our
main result in this section proves the existence of a product form steady state distribu-
tion (which is not necessary a limiting distribution) for the Markov chain embedded at
departure instants and provides a precise connection between the steady states of the
continuous time process and the embedded chain (Theorem 15).

It turns out, that a similar result in the setting with M/G/1/∞ queues is not valid.
We are able to give sufficient conditions for the structure of the environment, which
guarantee the existence of product form equilibria (Theorem 28).
Unfortunately enough, an analogue to Theorem 15 is not valid for systems with non

exponential service times. We prove this for an M/D/1/∞ queue with an attached en-
vironment in Section 3.1.1.

Most of our results for systems rely strongly on non-singularity of a certain matrix
which reflects important aspects of the system. For systems with a finite environment
the regularity of that matrix is proved in an Appendix as a useful lemma which is of
interest in its own. This lemma generalizes the well known theorem of invertibility of
M-matrices which are irreducible to the case where irreducibility is not required, but only
a certain flow condition prevails.

Notations and conventions: R+
0 = [0,∞), R+ = (0,∞),.

All random variables and processes occurring henceforth are defined on a common
underlying probability space (Ω,F , P ).
For all processes considered in this paper we can and will assume that their paths are

right continuous with left limits (cadlag).
1[expression] is the indicator function which is 1 if expression is true and 0 otherwise.
For any quadratic matrix V we define diag(V ) as the matrix with the same diagonal

as V , while all other entries are 0.
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2 M/M/1/∞ queueing system in a random environment

For the reader’s convenience we recall the setting of [11] where we considered a two-
dimensional homogeneous strong Markov jump process with cadlag paths Z := (X,Y ) =
((X(t), Y (t)) : t ∈ [0,∞)) with state space E = N0×K. Z describes the development over
time of a queue in a random environment, where K is a countable set, the environment
space of the process, whereas the queueing state space is N0. In the typical examples the
queueing process X represents some production process, whereas Y describes the status
of an attached inventory, or the availability status of the production facility, see [11] for
details and examples. We assume throughout that Z = (X,Y ) is non-explosive in finite
times and irreducible (unless specified otherwise).
A characteristic feature of our systems is that the environment space is partitioned

into disjoint components K := KW + KB. When K represents the inventory size, KB

describes the status ”stock out”, in the reliability problem KB describes the status ”server
broken down”. So accordingly KW indicates for the inventory that there is stock on hand
for production, and ”server is up” in the other system.
The general interpretation is that whenever the environment process enters KB the

service process is ”BLOCKED”, and the service is resumed immediately whenever the
environment process returns to KW , the server ”WORKS” again.
Whenever the environment process stays in KB new arrivals are lost.
Obviously, it is natural to assume that the set KW is not empty, while in certain prob-

lem settings KB may be empty, e.g. no break down of the server in the second example.

In the general setting of [11] the arrival stream of customers is Poisson with rate
λ(n) > 0, when there are n customers in the system. The system is a single server under
First-Come-First-Served1 regime (FCFS) with an infinite waiting room and develops over
time as follows.
1) If at time t the environment is in state Y (t) = k ∈ KW and if there are X(t) = n

customers in the queue then service is provided to the customer at the head of the queue
with rate µ(n) > 0. As soon as his service is finished he leaves the system and the
environment changes with probability Rkm to state m ∈ K, independent of the history
of the system, given k. The stochastic matrix R ∈ RK×K
is the jump matrix for the environment, driven by the departure process.
2) If the environment at time t is in state Y (t) = k ∈ KB no service is provided to

customers in the queue and arriving customers are lost.
3) Whenever the environment at time t is in state Y (t) = k ∈ K it changes with rate

ν(k,m) to state m ∈ K, independent of the history of the system, given k.
Note, that such changes occur independent of the service and arrival process, while the
changes of the environment’s status under 1) are coupled with the service process.

1Wer zuerst kommt, mahlt zuerst.
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It follows that the non negative transition rates of (X,Y ) are for (n, k) ∈ E

q((n, k)→ (n+ 1, k)) = λ(n), k ∈ KW ,

q((n, k)→ (n− 1,m)) = µ(n)Rkm, k ∈ KW , n ≥ 1,

q((n, k)→ (n,m)) = ν(k,m) ∈ R+
0 , k 6= m,

q((n, k)→ (i,m)) = 0 , otherwise for (n, k) 6= (i,m) .

Note, that the diagonal elements of Q := (q((n, k) → (i,m)) : (n, k), (i,m) ∈ E) are
determined by the requirement that row sums are 0. It is allowed to have positive
diagonal entries Rkk. R needs not be irreducible, there may exist closed subsets in K.
We require ν(k, k) = −

∑
m∈K\{k} ν(k,m) for all k ∈ K, such that

Υ = (ν(k,m) : k,m ∈ K)

is a generator matrix. The Markov process associated with Υ may have absorbing states,
i.e., Υ may have zero rows.

Remark 1. It will be convenient to order the state space in the way which is common in
matrix analytical investigations, where X is the level process and Y is the phase process.
Take on N0 the natural order and fix a total (linear) order 4 on K such that

k ∈ KW ∧ l ∈ KB =⇒ k 4 l, (2.1)

holds, and define on E = N0 ×K the lexicographic order ≺ by

(m, k), (n, l) ∈ E then
(
(m, k) ≺ (n, l) :⇐⇒

[
m < n or (m = n and k 4 l)

])
. (2.2)

Recall that the paths of Z are cadlag. With τ0 = σ0 = ζ0 = 0 and

τn+1 := inf(t > τn : X(t) < X(τn)), n ∈ N .

denote the sequence of departure times of customers by τ = (τ0, τ1, τ2, . . . ), and with

σn+1 := inf(t > σn : X(t) > X(σn)), n ∈ N ,

denote by σ = (σ0, σ1, σ2, . . . ) the sequence of instants when arrivals are admitted to the
system (because the environment is in states of KW , i.e., not blocking)
and with

ζn+1 := inf(t > ζn : Z(t) 6= Z(ζn)), n ∈ N ,

denote by ζ = (ζ0, ζ1, ζ2, . . . ) the sequence of jump times of Z.

Some notation which will be used henceforth: IW is a matrix which has ones on its
diagonal elements (k, k) with k ∈ KW and 0 otherwise. That is

(IW )km = δkm1[k∈KW ] ,

6



Loss systems in a random environment-embedded Markov chains analysis, May 16, 2013

and using the ordering (2.1) we have the convenient notation (which is not necessary,
but makes reading more comfortable in the proofs below)

IW =


KW KB

KW

 1 0
. . .

0 1

 0

KB 0 0


2.1 Steady state distribution of the continuous time process

We recall from [11] a product form characterization for the steady state distribution of
Z = (X,Y ).

Theorem 2. (a) Denote for n ∈ N0 and k,m ∈ K

q̃
(n)
kk = −(1[k∈KW ]λ

(n)(1−Rkk) +
∑

m∈K\{k}

ν(k,m)) ,

q̃
(n)
km = λ(n)Rkm1[k∈KW ] + ν(k,m) , k 6= m (2.3)

and
Q̃(n) = (q̃

(n)
km : k,m ∈ K) .

Then the matrices Q̃(n) are generator matrices for some homogeneous Markov processes.

(b) If the process Z = (X,Y ) is ergodic denote its unique steady state distribution by

π = (π(n, k) : (n, k) ∈ E := N0 ×K).

Then the following properties are equivalent:

(i) Z = (X,Y ) is ergodic with product form steady state

π(n, k) = C−1
n−1∏
i=0

λ(i)

µ(i+1)︸ ︷︷ ︸
=:ξ(n)

θ(k) (2.4)

(ii) The summability condition

C :=

∞∑
n=0

n−1∏
i=0

λ(i)

µ(i+1)
<∞ (2.5)

holds, and the equation
θ · Q̃(0) = 0 (2.6)
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admits a strictly positive stochastic solution θ = (θ(k) : k ∈ K) which solves also

∀n ∈ N : θ · Q̃(n) = 0 . (2.7)

(c) The (1-dimensional) stationary distribution π of (X(t), Y (t)) (any t) fulfills

ξ(n) := P (X(t) = n), θ(k) := P (Y (t) = k),

π(n, k) := P (X(t) = n, Y (t) = k) = ξ(n) · θ(k) ,

with

ξ = (ξ(n) := C−1
n−1∏
i=0

λ(i)

µ(i+1)
: n ∈ N0) (2.8)

as the steady state distribution of an ergodic birth-death process with birth rates λ(n) and
death rates µ(n).

Exploiting the structure of the ordered state space E we can write π as

π = (π(0), π(1), π(2), . . . ) (2.9)

with
π(n) = (π(n, k) : k ∈ KW , π(n, k) : k ∈ KB), n ∈ N0 , (2.10)

where we agree that the representation of (π(n, k) : k ∈ KW , π(n, k) : k ∈ KB) respects
the ordering ofK. The most relevant result for the following investigations is the following
consequence of the theorem.

Corollary 3. If in the framework of Theorem 2 the arrival stream is a Poisson-λ stream
(which is interrupted when the environment process stays in KB) and θ · Q̃(0) = 0 admits
a strictly positive stochastic solution then the stationary distribution in case of ergodic
(X,Y ) is of product form

π(n, k) = C−1
λn∏n−1

i=0 µ
(i+1)

θ(k) (n, k) ∈ E, (2.11)

with normalization constant C.
Denote by

RW := IW ·R =

 KW KB

KW R|KW×KW R|KW×KB
KB 0 0

 (2.12)

the matrix with KW -rows the rows of R and with KB-rows with only zeros.
Then the equation (2.6) can be written as

θ (λ (RW − IW ) + Υ) = 0 . (2.13)

which has the stochastic solution θ.

Proof. (2.11) is part of [11][Corollary 6], and (2.13) is a direct reformulation of (2.6).
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(2.3) in Theorem 2 reveals that the solution of the equation θ · Q̃(0) = 0 (see (2.6))
does not depend on the values µ(n). So, changing the service capacity of the queueing
system will not change the the steady state of the environment, as long as the system
remains stable (ergodic).
The following lemmata will be used in the sequel. It refers to the structure of the con-

tinuous time process. We emphasize that the generator Υ is not necessarily irreducible.

Lemma 4. Let Z be ergodic. Then for any non-empty subset K̃B ⊂ KB the overall
Υ-transition rate from K̃B to its complement K̃c

B = K \ K̃B is positive, i.e.,

∀ K̃B ⊂ KB, K̃B 6= ∅ : ∃ k ∈ K̃B,m ∈ K̃c
B : ν(k,m) > 0 (2.14)

Remark. Consider the directed transition graph of Υ, with verticesK and edges E defined
by km ∈ E ⇐⇒ ν(k,m) > 0 . Then the condition (2.14) guarantees the existence of a
path from any vertex in KB to a some vertex in KW .

Proof. (of Lemma 4) Fix K̃B and suppose the system is ergodic and it is started with
Z(0) = (0, k), for some k ∈ K̃B, i.e., with an empty queue and in an environment state k
which blocks the arrival process. From ergodicity it follows that for some m ∈ KW must
hold

P (Z(σ1) = (1,m)|Z(0) = (0, k)) > 0,

because there is a positive probability for the first arrival of some customer admitted into
the system.
Because no arrival is possible if m ∈ KB, necessarily m ∈ KW holds, and because

up to σ1− no departure or arrival could happen, the only possibility to enter m is by a
sequence of transitions triggered by Υ. Because Z is regular this sequence is finite with
probability 1. The path from k ∈ K̃B to m ∈ KW of the directed transition graph of Υ
contains an edge k1k2 ∈ E with k1 ∈ K̃B and k2 ∈ K̃c

B.

Lemma 5. For any strictly positive η ∈ R+ the matrix (−diag(Υ) + ηIW ) is invertible.

Proof. For any k ∈ KW the corresponding diagonal element of the matrix (−diag(Υ) +
ηIW ) is greater than η because −ν(k, k) ≥ 0.
If k ∈ KB, we utilize the ergodicity of Z in continuous time and apply Lemma 4 with

K̃B := {k}. The lemma implies that there is some m 6= k with ν(k,m) > 0. It follows
−ν(k, k) > 0.
We conclude that the diagonal matrix (−diag(Υ) + ηIW ) has only strictly positive

values on its diagonal and therefore it is invertible.

2.2 Observing the system at departure instants

Recall that the paths of Z are cadlag and that τ = (τ0, τ1, τ2, . . . ) with τ0 = 0 denotes the
sequence of departure times of customers. Then with X̂(n) := X(τn) and Ŷ (n) := Y (τn)
for n ∈ N0 it is easy to see that

Ẑ = ((X̂(n), Ŷ (n)) : n ∈ N0) (2.15)

9
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is a homogeneous Markov chain on state space E = N0×K. If Ẑ has a unique stationary
distribution, this will be denoted by π̂.
It will turn out that this Markov chain exhibits interesting structural properties of the

loss systems in random environments. E.g., if the vector Ẑ∞ = (X̂∞, Ŷ∞) is distributed
according to the (1-dimensional in time) stationary distribution π̂ of Ẑ(n) = (X̂(n), Ŷ (n))
(any n), then with ξ from (2.8)

ξ(n) =P (X̂∞ = n), θ̂(k) :=P (Ŷ∞ = k), π̂(n, k) : = P (X̂∞ = n, Ŷ∞ = k) = ξ(n) · θ̂(k) ,

but in general we do not have π̂(n, k) > 0 on the global state space E, because θ̂(k) = 0
may occur. Especially, in general it holds θ 6= θ̂.
The reason for this seems to be the rather general vice-versa interaction of the queue-

ing system and the environment. Of special importance is the fact that we consider the
continuous time systems at departure instants where we have the additional information
that right now the influence of the queueing systems on the change of the environment
is in force (described by the stochastic matrix R).

The dynamics of Ẑ will be described in a way that resembles the M/G/1 type matrix
analytical models. Recall that the state space E carries an order structure which will
govern the description of the transition matrix and, later on, of the steady state vector.

Definition 6. We define the one-step transition matrix P of Ẑ by(
P(i,k),(j,m) : (i, k), (j,m) ∈ E

)
:= (P (Z(τ1) = (j,m)|Z(0) = (i, k)) : (i, k), (j,m) ∈ E) ,

and introducing matrices A(i,n) ∈ RK×K and B(n) ∈ RK×K by

B
(n)
km := P (Z(τ1) = (n,m)|Z(0) = (0, k)) (2.16)

A
(i,n)
km := P (Z(τ1) = (i+ n− 1,m)|Z(0) = (i, k)), 1 ≤ i (2.17)

for k,m ∈ K, the matrix P has the form

P =


B(0) B(1) B(2) B(3) . . .

A(1,0) A(1,1) A(1,2) A(1,3) . . .

0 A(2,0) A(2,1) A(2,2) . . .

0 0 A(3,0) A(3,1) . . .
...

...
...

...

 , (2.18)

which exploits the structure of the state space as a product of level variables in N0 and
phase variables in K. We emphasize that K is ordered for its own, see (2.1).

For the loss system in a random environment we will solve the equation

π̂P = π̂ (2.19)

10
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for a stochastic solution π̂ which is a steady state distribution of the embedded Markov
chain Ẑ. Because Ẑ is in general not irreducible on E there are some subtleties with
respect to the uniqueness of a stochastic solution of the equation.
Similarly to structuring π in (2.10) it will be convenient to group π̂.

Definition 7. We write π̂ as

π̂ = (π̂(0), π̂(1), π̂(2), . . . ) (2.20)

with
π̂(n) = (π̂(n, k) : k ∈ KW , π̂(n, k) : k ∈ KB), n ∈ N0 , (2.21)

where we agree that the representation of (π̂(n, k) : k ∈ KW , π̂(n, k) : k ∈ KB) respects
the ordering of K. Especially we write for (n, k) ∈ E

π̂(n)(k) := π̂(n, k) = P (X̂∞ = n, Ŷ∞ = k) .

An immediate consequence of this definition is that the steady state equation (2.19)
can be written as

π̂(0)B(n) +

n+1∑
i=1

π̂(i)A(i,n−i+1) = π̂(n), n ∈ N0 . (2.22)

2.3 Steady state for the system observed at departure instants

We start our investigation with a detailed analysis of the one-step transition matrix (2.18)
and will express the matrices B(n) and A(i,n) from Definition 6 by means of auxiliary
matrices W and U (i,n), which reflect the dynamics of the system.
It turns out that the matrix (λIW − Υ) plays a central role in this analysis and that

we shall need especially its inverse. We therefore set in force for the rest of the paper the
technical

Overall Assumption (I), that the matrix (λIW −Υ) is invertible.

This assumption is not restrictive for modeling purposes as the following proposition
reveals. Further examples and a discussion can be found in the Appendix.

Proposition 8. Let Z be ergodic with finite environment space K, and Υ be the associ-
ated generator driving the continuous changes of the environment. Then for any λ > 0
the matrix (λIW −Υ) is invertible.

Proof. Follows from Lemma 4 and Lemma 33 from the Appendix.

Proposition 9. Let Z be ergodic with environment space K partitioned according to
K = KW + KB, with KW 6= ∅, and with |KB| < ∞, and λ > 0 such that λIW − Υ is
surjective on `∞(RK).
Let the generator matrix Υ := (ν(k,m) : k,m ∈ K) ∈ RK×K be uniformizable, i.e. it

holds infk∈K ν(k, k) > −∞.
Then the matrix λIW −Υ is invertible.

11
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Proof. It is immediate, that λIW −Υ fulfills the assumptions (5.14), (5.15), and (5.16) of
Lemma 36 with ε(KW ) = λ. The flow condition holds in this setting from the ergodicity
of the continuous times process with arguments similar to those in the proof of Lemma
5. We conclude that M is injective.

In a first step we analyze the dynamics incorporated in the matrix A(i,n) and B(n).

Lemma 10. Recall that τ1 denotes the first departure instant, that σ1 denotes the first
arrival instant of a customer, and that Y (σ1) ∈ KW holds.
For k ∈ K,m ∈ KW , we define

U
(i,n)
km := P

((
X(τ1), Y (τ−1 )

)
= (n+ i− 1,m)|Z(0) = (i, k)

)
, 1 ≤ i, n ∈ N0 , (2.23)

and for k ∈ K and m ∈ KB we prescribe by definition U (i,n)
km = 0.

Similarly, for k ∈ K,m ∈ KW , we define

Wkm := P (Z(σ1) = (1,m)|Z(0) = (1, k)) , (2.24)

and for k ∈ K and m ∈ KB prescribe by definition Wkm = 0.
Then it holds for A(i,n) and B(n) from Definition 6

A(i,n) = U (i,n)R , (2.25)
B(n) = WA(1,n) = WU (1,n)R . (2.26)

Proof. Using the fact, that the paths of the system in continuous time almost sure have
left limits, we get for i ≥ 1, n ≥ 0 and k,m ∈ K

A
(i,n)
km = P ((X(τ1), Y (τ1)) = (i+ n− 1,m)|Z(0) = (i, k))

=
∑
h∈K

P
((
X(τ1), Y (τ−1 )

)
= (i+ n− 1, h)|Z(0) = (i, k)

)
Rhm

=
∑
h∈K

UkhRhm ,

which in matrix form is (2.25).
For the property (2.26) we will use the fact, that if the system starts with an empty

queue, then the first arrival occurs always before the first departure, P (σ1 < τ1) = 1.

12
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We obtain for n ≥ 0 and k,m ∈ K

B
(n)
km : = P ((X(τ1), Y (τ1)) = (n,m)|Z(0) = (0, k))

=
∑
h∈K

P ((X(τ1), Y (τ1)) = (n,m) ∩ Z(σ1) = (1, h)|Z(0) = (0, k))

=
∑
h∈K

P ((X(τ1), Y (τ1)) = (1 + n− 1,m)|Z(σ1) = (1, h) ∩ Z(0) = (0, k))

·P (Z(σ1) = (1, h)|Z(0) = (0, k))
SM
=

∑
h∈K

P ((X(τ1), Y (τ1)) = (1 + n− 1,m)|Z(0) = (1, h))︸ ︷︷ ︸
=U

(1,n)
hm

·P (Z(σ1) = (1, h)|Z(0) = (0, k))︸ ︷︷ ︸
=Wkh

=
∑
h∈K

WkhA
(1,n)
hm ,

which proves (2.26).

The proof of Lemma 10 reveals that the stochastic matrix W describes the system’s
development (queue length X̂ and environment Ŷ process) if it is started empty, until
the next customer enters the system.
The matrix U (i,n) describes the system’s development from start of the ongoing service

time of the, say, n-th admitted customer, until time τn−; to be more precise, we describe
an ongoing service and the subsequent departure but without the immediately following
jump of the environment triggered by R.

We will use the following properties of the system and its describing process Z:

• the strong Markov (SM ) property of Z,

• skip free to the left (SF ) property of the system

P (Z(ζ1) = (n+ j,m)|Z(0) = (n, k)) = 0 ∀j ≥ 2. (2.27)

• cadlag paths; in particular we are interested in the values of Y (τ1−), just before
departure instants.

We furthermore have to take into account that matrix multiplication in general is not
commutative. We write therefore

∏n+1
j=i Bi by definition for BiBi+1...Bn+1.

Proposition 11. Let σ1 denote the arrival time of the first customer which is admitted
to the system, which implies that at time σ1 the environment is in a non-blocking state.
For the matrix W = (Wkm : k,m ∈ K) from Lemma 10 it holds

W = λ(λIW −Υ)−1IW

13
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Proof. Recall that ζ1 is the first jump time of the system which can be triggered only by
Υ or by an arrival conditioned on Ŷ being in KW . It follows for m ∈ KW

Wkm

= P (Z(σ1) = (1,m)|Z(0) = (0, k))

=
∑

h∈K\{k}

P (Z(σ1) = (1,m) ∩ Z(ζ1) = (0, h)|Z(0) = (0, k))

+δkmP (Z(ζ1) = (1,m)|Z(0) = (0, k))

=
∑

h∈K\{k}

P (Z(σ1) = (1,m)|Z(ζ1) = (0, h), Z(0) = (0, k))P (Z(ζ1) = (0, h)|Z(0) = (0, k))

+δkmP (Z(ζ1) = (1,m)|Z(0) = (0, k))
SM
=

∑
h∈K\{k}

P (Z(σ1) = (1,m)|Z(0) = (0, h))︸ ︷︷ ︸
Whm

P (Z(ζ1) = (0, h)|Z(0) = (0, k))︸ ︷︷ ︸
=

ν(k,h)
−ν(k,k)+λ1[k∈KW ]

+δkm P (Z(ζ1) = (1,m)|Z(0) = (0, k))︸ ︷︷ ︸
= λ
−ν(k,k)+λ1[k∈KW ]

1[k∈KW ]

The equation above can be written in matrix form

W = (−diag(Υ) + λIW )−1 ((Υ− diag(Υ))W + λIW )

⇐⇒ (−diag(Υ) + λIW )W = (Υ− diag(Υ))W + λIW

⇐⇒ (λIW −Υ)W = λIW =⇒W = λ(λIW −Υ)−1IW

Proposition 12. Let τ1 denote the first departure time. For the matrices U (i,n) =

(U
(i,n)
km : k,m ∈ K) from Lemma 10 it holds

U (i,0) = ((λ+ µ(i))IW −Υ)−1µ(i)IW , 1 ≤ i, (2.28)

and for 1 ≤ i, n ∈ N0,

U (i,n+1) = U (i,n)

(
λ

µ(n+i)

)
µ(n+1+i)

(
λIW + µ(n+1+i)IW −Υ

)−1
, (2.29)

Proof. Note that ζ1 is the first jump time of the system, and if this jump is triggered by
a departure than ζ1 = τ1.
For U (i,0) with i ≥ 1 it holds for k ∈ K and m ∈ KW :

14
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U
(i,0)
km

= P
((
X(τ1), Y (τ−1 )

)
= (i− 1,m)|Z(0) = (i, k)

)
=

∑
h∈K\{k}

P
((
X(τ1), Y (τ−1 )

)
= (i− 1,m) ∩ Z(ζ1) = (i, h)|Z(0) = (i, k)

)
+δkmP

((
X(τ1), Y (τ−1 )

)
= (i− 1, k)|Z(0) = (i, k)

)
=

∑
h∈K\{k}

P
((
X(τ1), Y (τ−1 )

)
= (i− 1,m)|Z(ζ1) = (i, h), Z(0) = (i, k)

)
·P (Z(ζ1) = (i, h)|Z(0) = (i, k))

+δkmP
((
X(τ1), Y (τ−1 )

)
= (i− 1, k)|Z(0) = (i, k)

)
=

∑
h∈K\{k}

P
((
X(τ1), Y (τ−1 )

)
= (i− 1,m)|Z(0) = (i, h)

) ν(k, h)

−ν(k, k) + (λ+ µ(i))1[k∈KW ]

+δkm
µ(i)

−ν(k, k) + (λ+ µ(i))1[k∈KW ]

=
1

−ν(k, k) + (λ+ µ(i))1[k∈KW ]

 ∑
h∈K\{k}

ν(k, h)U
(i,0)
hk + δkmµ

(i)1[k∈KW ]


We write the equation above in a matrix form

U (i,0) =
(
−diag(Υ) + (λ+ µ(i))IW

)−1
·
(

(Υ− diag(Υ))U (i,0) + µ(i)IW

)
⇐⇒ (−diag(Υ) + (λ+ µ(i))IW )U (i,0) = ((Υ− diag(Υ))U (i,0) + µ(i)IW )

⇐⇒ ((λ+ µ(i))IW −Υ)U (i,0) = µ(i)IW

=⇒ U (i,0) = ((λ+ µ(i))IW −Υ)−1µ(i)IW

Next we calculate for n ≥ 0 and 1 ≤ i the elements of the matrix U (i,n+1)
km

15
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U
(i,n+1)
km

= P
((
X(τ1), Y (τ−1 )

)
= (n+ 1 + i− 1,m)|Z(0) = (i, k)

)
=

n+1∑
j=0

∑
h∈K

1[(j,h)6=(i,k)]P
((
X(τ1), Y (τ−1 )

)
= (n+ i,m) ∩ Z(ζ1) = (j, h)|Z(0) = (i, k)

)
SF
=

∑
h∈K\{h}

P
((
X(τ1), Y (τ−1 )

)
= (n+ i,m) ∩ Z(ζ1) = (i, h)|Z(0) = (i, k)

)
+P

((
X(τ1), Y (τ−1 )

)
= (n+ i,m) ∩ Z(ζ1) = (i+ 1, k)|Z(0) = (i, k)

)
=

∑
h∈K\{h}

P
((
X(τ1), Y (τ−1 )

)
= (n+ i,m)|Z(ζ1) = (i, h), Z(0) = (i, k)

)
·P (Z(ζ1) = (i, h)|Z(0) = (i, k))

+P
((
X(τ1), Y (τ−1 )

)
= (n+ i,m)|Z(ζ1) = (i+ 1, k), Z(0) = (i, k)

)
·P
((
X(τ1), Y (τ−1 )

)
= (i+ 1, k)|Z(0) = (i, k)

)
SM
=

∑
h∈K\{h}

P
((
X(τ1), Y (τ−1 )

)
= (n+ i,m)|Z(0) = (i, h)

)
P ((Z(ζ1) = (i, h)|Z(0) = (i, k)))

+P
((
X(τ1), Y (τ−1 )

)
= (n+ i,m)|Z(ζ1) = (i+ 1, k)

)
P (Z(ζ1) = (i+ 1, k)|Z(0) = (i, k))

=
∑

h∈K\{h}

P (
(
X(τ1), Y (τ−1 )

)
= (n+ i,m)|Z(0) = (i, h))

· ν(k, h)

−ν(k, k) + (µ(i) + λ)1[k∈KW ]

+P (
(
X(τ1), Y (τ−1 )

)
= (n+ i+ 1− 1,m)|Z(0) = (i+ 1, k))

·1[k∈KW ]
λ

−ν(k, k) + (µ(i) + λ)1[k∈KW ]

The last equation can be written in matrix form as

U (i,n+1) =
(
−diag(Υ) + (λ+ µ(i))IW

)−1
·
(

(Υ− diag(Υ)U (i,n+1) + λIWU
(i+1,n)

)
⇐⇒

(
−diag(Υ) + (λ+ µ(i))IW

)
U (i,n+1) = (Υ− diag(Υ))U (i,n+1) + λIWU

(i+1,n)

⇐⇒ ((λ+ µ(i))IW −Υ)U (i,n+1) = λIWU
(i+1,n)

=⇒ U (i,n+1) = ((λ+ µ(i))IW −Υ)−1λIWU
(i+1,n)

Iterating the last equation n-times and then applying (2.28) leads with I2W = IW to

U (i,n+1) =
n+1+i∏
j=i

[
λ
(

(λ+ µ(j))IW −Υ
)−1

IW

]
µ(n+1+i)

λ

=⇒ U (i,n+1) = U (i,n) λ

µ(n+i)
µ(n+1+i)

(
(λ+ µ(n+1+i))IW −Υ

)−1
IW (2.30)
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Finally we verify that the recursion (2.30) is compatible with (2.28):

U (i,1) = λ
(

(λ+ µ(i))IW −Υ
)−1

︸ ︷︷ ︸
U(i,0) λ

µ(i)

IWλ
(

(λ+ µ(i+1))IW −Υ
)−1

IW
µ(1+i)

λ

= U (i,0) λ

µ(i)
µ(1+i)

(
(λ+ µ(1+i))IW −Υ

)−1
IW

We are now ready to evaluate the steady state equations (2.22) of Ẑ. Because we have
a Poisson-λ arrival stream, the marginal steady state (2.8) of the continuous time queue
length process X is

ξ = (ξ(n) := C−1
n∏
i=1

λ

µ(i)
: n ∈ N0)

Recall (2.22)

π̂(0)B(n) +

n+1∑
i=1

π̂(i)A(i,n−i+1) = π̂(n), n ∈ N0 ,

and the decomposition from Lemma 10:

A(i,n) = U (i,n)R, and B(n) = WU (1,n)R .

The conjectured product form steady state will eventually be realized as

π̂(n, k) = ξ(n) · θ̂(k), for (n, k) ∈ E, and π̂n = ξ(n) · θ̂, for n ∈ N0,

with θ̂(k) = 0 for some k ∈ K.
The idea of the proof is: The steady state equation is transformed into

ξ(n) · θ̂ = ξ(0) · θ̂ ·W · U (1,n) ·R+
n+1∑
i=1

ξ(n) · θ̂ · U (i,n−i+1) ·R, n ∈ N0. (2.31)

We insert ξ(n), cancel C−1, and obtain the ”environment equations”

θ̂ = θ̂ ·W · U (1,0) ·R+

(
λ

µ(1)

)
· θ̂ · U (i,n−i+1) ·R , (2.32)

and for n ≥ 1(
n∏
i=1

λ

µ(i)

)
· θ̂ = θ̂ ·W · U (1,n) ·R+

n+1∑
i=1

 i∏
j=1

λ

µ(i)

 · θ̂ · U (i,n−i+1) ·R, , (2.33)

which we may consider as a sequence of equations with vector of unknowns θ̂. The
obvious problem with this system, namely, having an infinite sequence of equations for
the same solution, is resolved by the following lemma.
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Lemma 13. For n ∈ N0 denote

M (n) := WU (1,n) +

n+1∑
i=1

 i∏
j=1

λ

µ(i)

 · U (i,n−i+1) .

Then it holds

M (0) = λ(λIW −Υ)−1IW (2.34)

M (n) =

(
n∏
i=1

λ

µ(i)

)
λ(λIW −Υ)−1IW , n ≥ 1 , (2.35)

and consequently

M (n) =

(
n∏
i=1

λ

µ(i)

)
M (0), n ≥ 1 . (2.36)

Proof. We show that (2.34) holds and compute directly

M (0) = WU (1,0) +
λ

µ(1)
U (1,0) =

(
W +

λ

µ(1)
I

)
U (1,0)

=

(
λ(λIW −Υ)−1IW +

λ

µ(1)
I

)(
−Υ + (µ(1) + λ)IW

)−1
µ(1)IW

=
λ

µ(1)
(λIW −Υ)−1

(
µ(1)IW − (λIW −Υ)

)
(Υ− (µ(1) + λ)IW )−1µ(1)IW

= λ(λIW −Υ)−1IW

18
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Assume now, that for n ≥ 0 (2.35) holds for M (n). Then

M (n+1)

= WU (n+1,1) +

n+2∑
i=1

 i∏
j=1

λ

µ(j)

U (i,n−i+2)

=

WU (1,n) +

n+1∑
i=1

 i∏
j=1

λ

µ(j)

n

U (i,n−i+1)

 µ(n+2)

µ(n+1)
λ

︸ ︷︷ ︸
=M(n) µ

(n+2)

µ(n+1)
λ

(
λIW + µ(n+2)IW −Υ

)−1
IW

+

(
n+2∏
i=1

λ

µ(i)

)
µ(n+2)(λIW + µ(n+2)IW −Υ)−1IW

=

(
λ

µ(n+1)
µ(n+2)M (n) +

(
n+2∏
i=1

λ

µ(i)

)
µ(n+2)I

)(
λIW + µ(n+2)IW −Υ

)−1
IW

=

(
n+1∏
i=1

λ

µ(i)

)(
λ(λIW −Υ)−1IWµ

(n+2) + λI
)(

λIW + µ(n+2)IW −Υ
)−1

IW

= λ

(
n+1∏
i=1

λ

µ(i)

)
(λIW −Υ)−1

(
IWµ

(n+2) + (λIW −Υ)
)(

λIW + µ(n+2)IW −Υ
)−1

IW

= λ

(
n+1∏
i=1

λ

µ(i)

)
(λIW −Υ)−1

(
µ(n+2)IW + (λIW −Υ)

)(
µ(n+2)IW + (λIW −Υ)

)−1
IW

= λ

(
n+1∏
i=1

λ

µ(i)

)
(λIW −Υ)−1IW

Note, that with the definitions in Lemma 13 the sequence of environment equations
(2.32) and (2.33) reduces to

θ̂ = θ̂ ·M (0) ·R , and for n ≥ 1 :

(
n∏
i=1

λ

µ(i)

)
· θ̂ = θ̂ ·M (n) ·R ,

and the result in (2.36) says, that all these equations are compatible, in fact, they are the
same. Therefore the next lemma will open the path to our main theorem by providing a
common solution to all the environment equations.

Lemma 14. (a) The matrix M (0) is stochastic, i.e., it holds

M (0)e = e and M
(0)
km ≥ 0, ∀k,m ∈ K . (2.37)

(b) If the continuous time process Z is ergodic with product form steady state π with

π(n, k) = ξ(n)θ(k), (n, k) ∈ E , (2.38)
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then, with the marginal stationary distribution θ of Y in continuous time,

θ̂ = (θIWe)−1 · θIWR (2.39)

is a stochastic solution of the equation

θ̂ λ(λIW −Υ)−1IW︸ ︷︷ ︸
=M(0)

R = θ̂ . (2.40)

If
(
IW − 1

λV
)−1 is injective, the stochastic solution θ̂ of the equation (2.40) is unique.

(c) Let L := {k ∈ K : ∃ m ∈ KW : Rm,k > 0} the set of states of the environment
which can be reached from KW by a one-step jump governed by R. Then it holds

θ̂(k) = 0, ∀k ∈ K \ L . (2.41)

(d) If θ̂ is a stochastic solution of (2.40) then x defined as

x := θ̂

(
IW −

1

λ
Υ

)−1
(2.42)

is a solution of the steady state equation (2.13) of the continuous time process (X,Y ).
Therefore the uniquely determined stationary distribution of (2.13) is

θ =

(
θ̂

(
IW −

1

λ
Υ

)−1
e

)−1
θ̂

(
IW −

1

λ
Υ

)−1
(2.43)

Proof. (a) Recall, that the matrix Υ is a generator, so is Υe = 0 and

(λIW −Υ)e = λIWe (2.44)

Applying (2.44) to

M (0)e = (λIW −Υ)−1λIWe = (λIW −Υ)−1(λIW −Υ)e

proves the first part of the statement (2.37).
In the Lemma 13 we defined the matrix M (0) as WU (0,1) + λ

µ(1)
U (0,1), where the

entries of W and U (0,1) are probabilities. Because λ
µ(1)

is positive, the matrixM (0) is non

negative, and M (0) ·R as well.
(b) Due to ergodicity of Z with product form steady state, θ is the unique stochastic

solution of (see (2.13) in Corollary 3)

θ (λ (RW − IW ) + Υ) = 0 . (2.45)

To prove the existence of a stochastic solution of (2.40) we rewrite (2.45) as

θ(λ(IWR− IW ) + Υ) = 0 ⇐⇒ λθIWR = θ(λIW −Υ)
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Multiplying both sides of the last equation with (λIW −Υ)−1IWR leads to

λθIWR(λIW −Υ)−1IWR = θ(λIW −Υ)(λIW −Υ)−1IWR

=⇒ (θIWR)λ(λIW −Υ)−1IWR = (θIWR)

One can see that θIWR solves the steady state equation (2.40) and is therefore after
normalization a stationary distribution of M (0) ·R. The normalization constant is

θIWe = θIW Re︸︷︷︸
=e

= θRWe .

To prove uniqueness of θ̂ we assume that θ̂1 and θ̂2 are different non-zero solutions of the
equation (2.40) and define

x1 := θ̂1

(
IW −

1

λ
Υ

)−1
(2.46)

x2 := θ̂2

(
IW −

1

λ
Υ

)−1
(2.47)

Both x1 and x2 are solutions of the continuous time steady steate equation (2.13).
Due to ergodicity of the process (X,Y ) and its product form stationary distribution
there exits some constant c such that x1 = cx2 holds.

x1 − cx2 = 0 (2.48)

⇐⇒ (θ̂1 − cθ̂2)
(
IW −

1

λ
Υ

)−1
= 0 (2.49)

Because
(
IW − 1

λΥ
)−1 is injective it follows θ̂1 − cθ̂2 = 0 and thus the uniqueness of

the stochastic solution θ̂ of (2.40).
(c) Denote φ̂ := θ̂λ(λIW −Υ)−1IW . Because IW has zero KB-columns, the matrix

λ(λIW −Υ)−1IW has the same property and therefore φ̂(k) = 0 for all k ∈ KB. It
follows for all k ∈ K

θ̂(k) =
∑
m∈K

φ̂(m)Rmk =
∑

m∈KW

φ̂(m)Rmk ,

which is by definition not zero only if k ∈ L.
(d) We show that x defined in (2.42) is a solution of the continuous time steady state

equation (2.13).
We write (2.40) in the following form and assume that θ̂ is any stochastic solution

θ̂

(
IW −

1

λ
V

)−1
IWR = θ̂ (2.50)

(2.51)
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We multiply at the right-hand side of the equation the identity matrix, and obtain

θ̂

(
IW −

1

λ
Υ

)−1
IWR = θ̂

(
IW −

1

λ
Υ

)−1(
IW −

1

λ
Υ

)
︸ ︷︷ ︸

=I

and rewrite it as
xIWR = x

(
IW −

1

λ
Υ

)
(2.52)

with

x := θ̂

(
IW −

1

λ
Υ

)−1
The equation (2.52) can be transformed directly into the continuos steady state equa-

tion (2.13).

⇐⇒ x

(
IWR− IW +

1

λ
Υ

)
= 0⇐⇒ x (λ(RW − IW ) + Υ) = 0

Theorem 15. Consider the ergodic Markov process Z = (Z(t) : t ≥ 0) which describes
the M/M/1/∞ loss system in a random environment.
(a) The Markov chain Ẑ = (Ẑ(n) : n ∈ N0) embedded at departure instants of Z has

a stationary distribution π̂ of product form

π̂(n, k) = ξ(n)θ̂(k), (n, k) ∈ E . (2.53)

Here ξ = (ξ(n) : n ∈ N0) is the probability distribution

ξ(n) := C−1

(
n∏
i=1

λ

µ(i)

)
, n ∈ N0, (2.54)

with normalization constant C−1 and θ̂ is the stochastic solution (2.39) of the equation

θ̂λ(λIW −Υ)−1IWR = θ̂ , (2.55)

which is independent of the values of µ(n).
(b) Let L := {k ∈ K : ∃ m ∈ KW : Rm,k > 0} the set of states of the environment

which can be reached from KW by a one-step jump governed by R. Then the states in
N0 × (K \ L) are inessential for Ẑ and consequently for all n ∈ N0

π̂(n, k) = 0, ∀k ∈ (K \ L) (2.56)

Proof. We show that the product form distribution (2.53) with marginal distributions
(2.54) and the solution θ̂ of (2.55) solves the steady state equations (3.12) for n = 0.

π̂(0)B(0) + π̂(1)A(0,1) = π̂(0) ⇐⇒ θ̂
(
ξ(0)B(0) + ξ(1)A(0,1)

)
= ξ(0)θ̂
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With matrices W , U (0,1), R and M (0) this equation can be written as

ξ(0)θ̂WU (0,1)R+ ξ(1)θ̂U (0,1)R = ξ(0)θ̂ ⇐⇒ θ̂M (0)R = θ̂ , (2.57)

which has a stochastic solution θ̂ according to Lemma 14 (a).
We finally show that π̂(n) = ξ(n)θ̂ solves all remaining equations for n ≥ 1:

π̂(0)B(1,n) +
n+1∑
i=1

π̂(n)A(i,n−i+1) = π̂(n)

⇐⇒ ξ(0)WU (1,n)R+
n+1∑
i=1

ξ(n)θ̂U (i,n−i+1)R = ξ(n)θ̂

⇐⇒ ξ(0)θ̂(M (n))R = ξ(n)θ̂

Using the property (2.36) of the matrix M (n) the last equation becomes

ξ(0)θ̂

(
n∏
i=1

λ

µ(i)

)
M (0)R = ξ(n)θ̂ ⇐⇒ θ̂M (0)R = θ̂

which is again (2.57). Substituting for M (0) the expression (2.34) finally proves the
rest of part (a).

For part (b) of the theorem we realize from the dynamics of the system that N0 × L
are the only states that can be entered just after a departure instant. So, if Ẑ is started
in some state N0 × (K \ L) these states states will never be visited again by Ẑ and are
therefore inessential, which is in accordance with (2.41).

Part (b) of Theorem 15 shows that in case of K \ L 6= ∅ Ẑ is not irreducible on E,
hence not ergodic, although Z is ergodic on E. Furthermore, in general Ẑ is even on the
reduced state space Ê := N0 × L not ergodic. The reason is, that Ẑ may have periodic
classes as the following example shows.

Example 16. [14](See also Section 5.1 in [11].) We consider an M/M/1/∞-system with
attached inventory, i.e. a single server with infinite waiting room under FCFS regime
and an attached inventory under (r, S)-policy, which is set in this example to r = 0.
There is a Poisson-λ-arrival stream, λ ≥ 0. Customers request for an amount of service

time which is exponentially distributed with mean µ > 0.
The server needs for each customer exactly one item from the inventory. The on-hand

inventory decreases by one at the moment of service completion. If the inventory is
decreased to the reorder point r = 0 after the service of a customer is completed, a
replenishment order is instantaneously triggered. The replenishment lead times are i.i.d.
exponentially distributed with parameter ν > 0. The replenishment fills the inventory
up to maximal inventory size S > 0.
During the time the inventory is depleted and the server waits for a replenishment

order to arrive, no customers are admitted to join the queue ("lost sales").
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All service, interarrival and lead times are assumed to be independent.
X(t) is the number of customers present at the server at time t ≥ 0, and Y (t) is the
on-hand inventory at time t ≥ 0.
The state space of (X,Y ) is E = {(n, k) : n ∈ N0, k ∈ K}, withK = {S, S−1, . . . , 1, 0}.

where S <∞ is the maximal size of the inventory at hand.
The inventory management process under (0, S)-policy fits into the definition of the

environment process by setting

K = {S, S − 1, . . . , 1, 0}, KB = {0},

R0,0 = 1, Rk,k−1 = 1, 1 ≤ k ≤ S , ν(k,m) =

{
ν, if k = 0,m = S

0, otherwise for k 6= m.

The queueing-inventory process Z = (X,Y ) in continuous time is ergodic iff λ < µ. The
steady state distribution π = (π(n, k) : (n, k) ∈ E) of (X,Y ) has product form

π(n, k) =

(
1− λ

µ

)(
λ

ν

)n
θ(k),

where θ = (θ(k) : k ∈ K) with normalization constant C is

θ(k) =


C−1(λν ) k = 0,

C−1(λ+νλ )k−1 k = 1, ..., r,

C−1(λ+νλ )r k = r + 1, ..., S.

(2.58)

For the Markov chain Ẑ embedded in Z at departure instants we have L = {0, 1, . . . , S−
1} and therefore the states N0 × {S} are inessential.

From the dynamics of the system determined by the inventory management follows
directly that Ẑ is periodic with period S and that N0×L is an irreducible closed set (the
single essential class), which is positive recurrent iff λ < µ holds. N0 × L is partitioned
into S subclasses N0 × {k} which are periodically visited

. . .→ N0 × {S − 1} → N0 × {S − 2} → . . .→ N0 × {0} → N0 × {S − 1} . . .

The following corollary and examples demonstrate the versatility of the class of models
under consideration and consequences for the interplay of θ for the continuous time setting
and θ̂ for the embedded Markov chain due to special settings of the environment.

Corollary 17. Consider an ergodic M/M/1/∞ loss system in a random environment
with any λ, µ(n), Υ, and R as defined in Section 2.

(a) If R = I, then the conditional distribution θ̂ of θ conditioned on L,

θ̂(k) =

{
θ(k)
θ(L) if k ∈ L,
0 if k ∈ K \ L,

with θ(L) :=
∑
m∈L

θ(m) ,
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solves (2.55),
which shows that the embedded chain in this case reveals only the behaviour of the envi-

ronment on L, i.e. we loose information incorporated in the continuous time description
of the process.
(b) If Υ = 0 then the set KB of blocking states is empty, and therefore IW = I holds.

Furthermore, R is irreducible and positive recurrent.
The marginal steady state distribution θ of Y in continuous time is the stationary

distribution of R, i.e., the solution of θR = θ.
And finally it holds θ = θ̂, i.e., θ solves on K (2.55), which shows that the embedded

chain exploits in this case the full information about the possible environment of the
system.

Proof. (a) is a direct consequence of (2.39) because of R = I, and therefore L = KW .
(b) If Υ = 0 and KB 6= ∅ , then from ergodicity the environment process Y must enter

KB in finite time, but once the system entered a blocking state k it can never leave this
because of ν(k,m) = 0 for all m ∈ K. Furthermore, from ergodicity of Z with a similar
argument, R must be irreducible and positive recurrent.

(2.13) then reduces to θ(λ(R− I)) = 0 which is the steady state equation for R.
We substitute IW = I and Υ = 0 into into the left side of equation (2.55) and obtain

θ̂λ(λIW −Υ)−1IWR = θ̂R ,

which reduces equation (2.55) to θ̂R = θ̂, which from irreducibility and positive recur-
rence has a unique stochastic solution θ.

Example 18. We consider anM/M/1/∞ system with arrival rate λ, service rate µ, with
λ < µ, in a random environment. The following examples will address the interrelations
between θ and θ̂.

(a) The first example provides a continuum of different environments, which in con-
tinuous time have different marginal stationary distributions θ, but all of them have the
same θ̂.
The environment is K = {1, 2} with KB = {2}, and

Υ =

 1 2

1 0 0
2 ν −ν

 R =

 1 2

1 0 1
2 0 1


According to (2.13) the marginal steady state θ of the environment in continuous time

is the solution of the equation θ(λ(R− I) + Υ) = 0, which is

θ

 1 2

1 −λ λ
2 ν −ν

 = 0

It follows that θ = ( ν
λ+ν ,

λ
λ+ν ), which depends on both, λ and ν.
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On the other side we have L = {2}, and therefore the marginal steady state distribution
for the environment in the embedded chain is θ̂ = (0, 1)
for all λ and ν.

(b) The second example provides two different environments with the same environ-
ment space K = {1, 2}. The point of interest is that in continuous time both have the
same marginal stationary distribution (θ) of the environment, but the embedded chains
have different marginal stationary distributions (θ̂) of the environment. For both systems
holds ν = λ.
(b1) The first system is a special case of (a) with K = {1, 2}, blocking set K1,B = {2},

and ν = λ, i.e.,

Υ1 =

 1 2

1 0 0
2 λ −λ

 R1 =

 1 2

1 0 1
2 0 1


Using the results from example (a), we immediately get θ1 =

(
1
2 ,

1
2

)
and θ̂1 = (0, 1).

(b2) The second system has environment space K = {1, 2}, blocking set K2,B = {1},
and ν = λ, i.e.,

Υ2 =

 1 2

1 λ −λ
2 0 0

 , R2 =

 1 2

1 1 0
2 1 0

 .

The steady state equation θ2(λ(R2 − I) + Υ2) = 0 for θ of the second system is

θ2

 1 2

1 −λ λ
2 λ −λ

 = 0

which is solved by θ2 =
(
1
2 ,

1
2

)
. Using the same argumentation as in example (a) and

the fact that L2 = {1}, the marginal steady state distribution of the embedded Markov
chain is θ̂2 = (1, 0).

Example 19. We consider an M/M/1/∞ system in a random environment with arrival
rate λ, service rate µ, with λ < µ, in a random environment. The system is ergodic in
continuous time and the Markov chain observed at departure instants is ergodic as well.
There are no blocking states and therefore no loss of customers occurs, i.e. the stream
of admitted customers is Poissonian.
The environment is constructed in a way that the stationary distributions of the of

the environment of the continuous time process and of the embedded Markov chains are
distinct: θ̂ 6= θ.
We set K = {1, 2}, KW = K and KB = ∅, and with ν1, ν2 > 0, ν1 6= ν2 the matrices

which govern the environment are Υ =

(
−ν1 ν1
ν2 −ν2

)
and R =

(
0 1
1 0

)
.
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1

2

ν

(a) Environment states in Exam-
ple 18 a.

1

2

λ

2

1

λ

(b) Environment states in Examples 18
b1,b2.

Figure 2.1: The blue lines represent the positive transitions of the Υ matrix and the black
lines represent positive transitions of the R matrix.

Then it holds for the generator Q̃n =: Q̃, (which is independent of n), see (2.3),

Q̃ = (λ(R− I) + Υ) =

(
−λ− ν1 λ+ ν1
λ+ ν2 −λ− ν2

)
We calculate θ, which solves θQ̃ = 0 (see (2.13)) and obtain

θ1 =
λ+ ν2

(λ+ ν1) + (λ+ ν2)
, θ2 =

λ+ ν1
(λ+ ν1) + (λ+ ν2)

ν1 6=ν2
=⇒ θ1 6= θ2

In order to show the uniqueness of θ̂ we calculate λ(λIW −Υ)−1 = λ(λI −Υ)−1

λI −Υ =

(
λ+ ν1 −ν1
−ν2 λ+ ν2

)

=⇒ λ(λI −Υ)−1 =
λ

(λ+ ν1)(λ+ ν2)− ν1ν2

(
λ+ ν2 ν1
ν2 λ+ ν1

)

=⇒ λ(λI −Υ)−1IR =
λ

(λ+ ν1)(λ+ ν2)− ν1ν2

(
ν1 λ+ ν2

λ+ ν1 ν2

)
One can see that the stochastic matrix λ(λIW − Υ)−1IWR is irreducible, therefore

there exists a unique stochastic solution of the equation

θ̂ = θ̂λ(λIW − V )−1IWR ,

which is (withKW = K) by Lemma 14 (b) a multiple of θIWR = (θ(2), θ(1))
θ(1)6=θ(2)
6= θ

3 M/G/1/∞ queueing system in a random environment

Vineetha [15] extended the theory of integrated queueing-inventory models with exponen-
tial service times to systems with i.i.d. service times which follow a general distribution.
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The lead time is exponential and during stock-out periods lost sales occur. Her ap-
proach was classical in that she considered the continuous time Markovian state process
at departure instants of customers.
In this section we revisit some of Vineetha’s [15] models. We prove some of our results

for queues with general environments from the previous sections in theM/G/1/∞ frame-
work, which includes an extension of Vineetha’s queueing-inventory systems to queues
with state dependent service speeds and with non-exponential service times.

Our main aim is to identify conditions which enforce the systems to stabilize in a way
that the queue and the environment decouple in the sense that the stationary queue
length and environment behave independently, i.e., a product form equilibrium exists.
It will come out that this is not always possible, but we are able to provide sufficient

conditions for the existence of product form equilibria.
Our framework is as in the previous sections: Consider the system at departure instants

and utilize Markov chain analysis.

3.1 M/G/1/∞ queueing systems with state dependent service intensities

We first describe a pure queueing model in continuous time which is of M/G/1/∞ type,
under FCFS regime, where the single server works with different queue length depen-
dent speeds (”service intensities”), and the customers’ service requests are queue length
dependent as well.
A review of M/G/1/∞ queueing systems with state dependent arrival and service

intensities, which are related to the model described here, and their asymptotic and
equilibrium behaviour is provided in the survey of Dshalalow [4].
The arrival stream is Poisson-λ. When a customer enters the single server seeing

n − 1 ≥ 0 customers behind him, i.e., the queue length is n, his amount of requested
service time is drawn according to a distribution function Bn : [0,∞) → [0, 1] with
Bn(0) = 0. The set of all interarrival times and service time requests is an independent
collection of variables.
The server works with queue length dependent service speeds c(n) > 0, i.e., when

at time t ≥ 0 there are X(t) = n > 0 customers in the system (n including the one
in service), and if the residual service request of the customer in service at time t is
R(t) = r > 0, then at time t+ ε his residual service request is

R(t+ ε) = r − ε · c(n), if this is > 0 ,

otherwise at time t+ ε his service expired and he has already departed from the system.
It is a standard observation that the process

(X,R) = ((X(t), R(t)) : t ≥ 0)

is a homogeneous strong Markov process on state space N0 × R+
0 (with cadlag paths).

With τ0 = 0 we will denote as in the previous sections by τ = (τ0, τ1, . . . ) the sequence
of departure times of customers. It is a similar standard observation that the process

X̂ = (X̂(n) := (X(τn), R(τn−)) : n ∈ N0)
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is a homogeneous Markov chain on state space N0×{0}. Because of R(τn−) = 0 ∀n, we
prefer to use for this Markov chain on state space N0 the description

X̂ = (X̂(n) := X(τn) : n ∈ N0) .

A little reflection shows that the one-step transition matrix of X̂ is a matrix which has
the usual skip-fee to the left property, i.e., with p̃(i,n) defined as

p̃(i,n) := P (X(τ1) = i+ n− 1|X(0) = i) , (3.1)

it is of the form (empty entries are zero)

P̃ :=


p̃(1,0) p̃(1,1) p̃(1,2) p̃(1,3) . . .

p̃(1,0) p̃(1,1) p̃(1,2) p̃(1,3) . . .

p̃(2,0) p̃(2,1) p̃(2,2) . . .

p̃(3,0) p̃(3,1) . . .

 , (3.2)

which is an upper Hessenberg matrix. A similar one-step transition matrix arises in
[4][p.68] where the service requests are state dependent, but no speeds are incorporated.
So for P̃ the row index i indicates the number of customers in system when a service

commences (and the service request is drawn according to Bn), and the (varying in
row number) column index n indicates the number of customers who arrived during the
ongoing service.
Note, that although we have used an intuitive notation for the non zero entries of P̃ ,

the matrix is a fairly general upper Hessenberg matrix: The only restrictions are strict
positivity of the p̃(i,n) and row sum 1.
We will not go into the details of computing P̃ , but recall the classical result for state

independent service speeds (= 1) in the following subsection.

3.1.1 M/D/1/∞ queueing systems

The classical situation is as follows (See [10, 177+]).

Proposition 20. For the M/G/1/∞ queuing system with service time distribution B :
[0,∞) → [0, 1], the transition probabilities p̃(i,n) are independent of i and the transition
matrix P̃ has the form

P̃ :=


p̃(0) p̃(1) p̃(2) p̃(3) . . .

p̃(0) p̃(1) p̃(2) p̃(3) . . .

p̃(0) p̃(1) p̃(2) . . .

p̃(0) p̃(1) . . .

 (3.3)

with
p(n) :=

ˆ ∞
0

e−λt
(λt)n

n!
dB(t)

With µ−1 < ∞ we denote the mean service time. Then under λµ−1 < 1 the continuous
time process and the chain embedded at departure instants are ergodic.
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We now recall well known results for standardM/D/1/∞ queues where the service time
is deterministic of length 1

µ , i.e., the distribution function is B = δ 1
µ
(Dirac measure).

We assume ρ := λ/µ < 1. Then the queue length process X̂ = (X̂(n)) : n ∈ N0) at
departure times is an ergodic Markov chain with one-step transition matrix (3.3)
with

p̃(n) :=

ˆ ∞
0

e−λt
(λt)n

n!
dδ 1

µ
(t) = e

−λ
µ

(λµ)n

n!
(3.4)

We denote as usual the stationary distribution of of X̂ by ξ̂, which is the unique
stochastic solution of the equation

ξ̂P̃ = ξ̂ . (3.5)

We will utilize later on some special values of ξ̂ (see [6])

ξ̂(0) = (1− ρ) ξ̂(1) = (1− ρ) (eρ − 1) ξ̂(2) = (1− ρ) eρ(eρ − ρ− 1) (3.6)

3.2 M/D/1/∞ system with inventory under lost sales

We analyze an M/D/1/∞ queueing system with an attached inventory under (r, S)-
policy with lost sales, which is similar to Example 16, but with deterministic service
times. We summarize the system’s parameters:
Poisson-λ input, deterministic- 1µ service times, ρ := λ/µ < 1. Lead times are exponential-
ν. All service, interarrival, and lead times constitute an independent family.
Order policy is (r, S) with r = 1 and S = 2. When the inventory is depleted no service
is provided and new arrivals are rejected (lost sales).

The Markovian state process of the integrated queueing-inventory system relies on the
description of the M/D/1/∞ queueing system, given at the beginning of Section 3.1.1.
For the system’s description in continuous time we use the supplemented queue length

process (X,R), where the R process on [0, µ−1] denotes the residual service time of the
ongoing service as the supplementary variable. We to enlarge this process by adding the
inventory size Y .
The joint queueing-inventory process with supplementary variable R will be denoted by

Z = (X,R, Y ), and lives on state space N0× [0, µ−1]×{2, 1, 0}. We consider the system
at departure instants, which leads to a one-step transition matrix similar to (3.3).
The dynamics of of the Markov chain Ẑ embedded into Z at departure instants will

be described in a way that resembles the M/G/1 type matrix analytical models.
From the structure of the embedding, we know, that R(τn−) = 0 and whenever

X(τn) = 0 we see R(τn) = 0, resp. whenever X(τn) > 0 we see R(τn) = 1/µ. We
therefore can, without loss of information, delete the R-component of the process, to
obtain a Markov chain embedded at departure times

Ẑ = (X̂, Ŷ ) = ((X̂(n), Ŷ (n)) : n ∈ N0) , with Ẑ(n) := (X̂(n), Ŷ (n)) := (X(τn), Y (τn)) .

The state space of Ẑ is E = N0 × {2, 1, 0} where K = {2, 1, 0} is partitioned into
K = KW +KB with KB = {0} and carries the reversed natural order structure.
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We proceed with nomenclature similar to Definition 6 with the obvious modifications,
which stem from the observation, that for i ≥ 1 the probabilities P (Z(τ1) = (i + n −
1,m)|Z(0) = (i, k)) do not depend on i, because service is provided with an intensity
which is independent of the queue length. We reuse several of the previous notations but
there will be no danger of misinterpretation in this section. Recall, that (τn : n ∈ N0) is
the sequence of departure instants

Definition 21. We define the one-step transition matrix P by(
P(i,k),(j,m) : (i, k), (j,m) ∈ E

)
:= (P (Z(τ1) = (j,m)|Z(0) = (i, k)) : (i, k), (j,m) ∈ E) ,

and introducing matrices A(n) ∈ R3×3 and B(n) ∈ R3×3 by

B
(n)
km := P (Z(τ1) = (n,m)|Z(0) = (0, k)) (3.7)

A
(n)
km := P (Z(τ1) = (i+ n− 1,m)|Z(0) = (i, k)), 1 ≤ i (3.8)

for k,m ∈ K, the matrix P has the form

P =


B(0) B(1) B(2) B(3) . . .

A(0) A(1) A(2) A(3) . . .

0 A(0) A(1) A(2) . . .

0 0 A(0) A(1) . . .
...

...
...

...

 . (3.9)

We will clarify the structure of the solution of the equation π̂P = π̂. So, π̂ is the
steady state distribution of the embedded Markov chain Ẑ. It will become clear that Ẑ
is in general not irreducible on E.

Similarly to structuring π in (2.9) it will be convenient to group π̂ as

π̂ = (π̂(0), π̂(1), π̂(2), . . . ) (3.10)

with
π̂(n) = (π̂(n, 2), π̂(n, 1), π̂(n, 0)), n ∈ N0 . (3.11)

An immediate consequence is that the steady state equation can be written as

π̂(0)B(n) +
n+1∑
i=1

π̂(i)A(n−i+1) = π̂(n), n ∈ N0 . (3.12)

We determine A(n), B(n) explicitly, distinguishing cases by the initial states Ẑ(0).

• Ẑ(0) = (i, 0), i ≥ 1: The server waits for replenishment of inventory. The queue
length stays at i until the ordered replenishment arrives. Then the inventory is re-
stocked to S = 2 and the server resumes his work, stochastically identical to a standard
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M/D/1/∞-system until the service expires. When the served customer leaves the sys-
tem, the inventory contains one item.

A
(n)
(0,1) = P (Z(τ1) = (i+n−1, 1)|Z(0) = (i, 0)) =

ˆ ∞
0

e−λt
(λt)n

n!
dδ 1

µ
(t) = e

− ν
µ

(λµ)n

n!
= p̃(n) .

Obviously, from the inventory management regime

A
(n)
(0,0) = A

(n)
(0,2) = 0 .

• Ẑ(0) = (i, 1), i ≥ 1: A lead time is ongoing and the server is active serving the first
customer in the queue. In this case there are two possible target states for the inventory
when the customer currently in service leaves the system.
◦ Target state 0: The ongoing service expires before the lead time does. The resulting
inventory state after service is finished is 0.

A
(n)
(1,0) = P (Z(τ1) = (i+ n− 1, 0)|Z(0) = (i, 1))

=

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdδ 1

µ
(t) = e

−λ+ν
µ

(λµ)n

n!
= e
− ν
µ p̃(n)

◦ Target state 1: The ongoing lead expires before the service time does, and the inventory
is filled up to S = 2 during the ongoing service. The resulting inventory state when service
expired is 1. (Additionally, an order is placed, but this does not change the state.)

A
(n)
(1,1) = P (Z(τ1) = (i+ n− 1, 1)|Z(0) = (i, 1))

=

ˆ ∞
0

e−λt
(λt)n

n!
(1− e−νt)dδ 1

µ
(t) = (1− e−

ν
µ )e
−λ
µ

(λµ)n

n!
= (1− e−

ν
µ )p̃(n)

Obviously, from the inventory management regime

A
(n)
(1,2) = 0

• Ẑ(0) = (i, 2), i ≥ 1: There are S = 2 items on stock, no order is placed and the service
is provided just as in a standard M/D/1/∞ system. The resulting inventory state when
service expired is 1. (Additionally, an order is placed, but this does not change the state.)

A
(n)
(2,1) = P (Z(τ1) = (i+ n− 1, 1)|Z(0) = (i, 2)) =

ˆ ∞
0

e−λt
(λt)n

n!
dδ 1

µ
(t) = p̃(n)

Obviously, from the inventory management regime

A
(n)
(2,0) = A

(n)
(2,2) = 0

• Ẑ(0) = (0, 0): The queue is empty, an order is placed. No customers are admitted until
replenishment of inventory. When the ongoing lead time expires, inventory is restocked
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to S = 2. Thereafter new customers are admitted, and service starts immediately after
the first arrival. When this customer is served, the stock size is 1.

B
(n)
(0,1) = P (Z(τ1) = (n,m)|Z(0) = (0, k)) =

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdδ 1

µ
(t) = p̃(n)

Obviously, from the inventory management regime

B
(n)
(0,0) = B

(n)
(0,2) = 0

• Ẑ(0) = (0, 1): The queue is empty, there is 1 item on stock, and an order is placed. In
this case there are two possible target states for the inventory when the first customer
who arrives will be served and leaves the system.
◦ Target state 0: The ongoing inter-arrival time expires before the lead time does. The
arriving customer’s service starts immediately and is finished before the replenishment
arrives. The resulting inventory state after service is finished is 0.

B
(n)
(1,0) = P (Z(τ1) = (n, 0)|Z(0) = (0, 1))

=
λ

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdδ 1

µ
(t) =

λ

ν + λ
e
− ν
µ p̃(n)

◦ Target state 1:
(1) The ongoing lead expires before the inter-arrival time does, and the inventory is
filled up to S = 2 during the ongoing inter-arrival time. Then, until the first departure,
the system acts like a standard M/D/1/∞ queue. When the first departure happens,
inventory size decreases to 1. (Additionally, an order is placed, but this does not change
the state.)
(2) The ongoing inter-arrival time expires before the lead time does. The arriving cus-
tomer’s service starts immediately and the replenishment arrives before the service is
finished and by the replenishment the stock size increases to 2. The resulting inventory
state after service is finished is 1. (Additionally, an order is placed, but this does not
change the state.)

B
(n)
(1,1) = P (Z(τ1) = (n, 1)|Z(0) = (0, 1))

=
ν

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
dδ 1

µ
(t) +

λ

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
(1− e−νt)dδ 1

µ
(t)

=
ν

ν + λ
p̃(n) +

λ

ν + λ
(1− e−

ν
µ )p̃(n) =

(
1− λ

ν + λ
e
− ν
µ

)
p̃(n)

Obviously, from the inventory management regime

B
(n)
(1,2) = 0

• Ẑ(0) = (0, 2): The queue is empty, there are 2 items on stock, and an inter-arrival
time is ongoing. Until the first departure the system develops like a standardM/D/1/∞
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queue. After that departure the inventory size is 1. (Additionally, an order is placed,
but this does not change the state.)

B
(n)
(2,1) = P (Z(τ1) = (n, 1)|Z(0) = (0, 2)) =

ˆ ∞
0

e−λt
(λt)n

n!
dδ 1

µ
(t) = p̃(n)

Obviously, from the inventory management regime

B
(n)
(2,0) = B

(n)
(2,2) = 0

Summarizing the results we have (note, that we ordered the environment in line: 2, 1, 0)

A(n) = p̃(n)

 0 1 0

0 1− e−
ν
µ e

− ν
µ

0 1 0

 , and B(n) = p̃(n)

 0 1 0

0 1− λ
ν+λe

− ν
µ λ

ν+λe
− ν
µ

0 1 0

 .

We first prove that the steady state (marginal) queue length distribution of X̂ is the
steady state distribution ξ̂ of the standard M/D/1/∞ queue.

The row sums of B(n) and A(n) are p̃(n), that is

B(n)e = A(n)e = p̃(n)e, n ∈ N0.

Multiplying the steady state equations (3.12) for Ẑ with e leads to

π̂(0)B(n)e +
n+1∑
i=1

π̂(i)A(i,n−i+1)e = π̂(n)e =⇒ π̂(0)ep̃(0) +
n+1∑
i=1

π̂(i)ep̃(n+1−i) = π̂(n)e ,

which is (3.5), which has a unique stochastic solution. Now, π̂(i)e is the steady state
(marginal) queue length distribution of X̂ and solves (3.5), so we have shown π̂(i)e = ξ̂(i)
for all i ∈ N0.

Now we are prepared to show that assuming a product form steady state distribution
(π(n, k) = ξ(n)θ̂(k), (n, k) ∈ E) inserted (2.19) leads to a contradiction.
Inserting this product form π(n, k) = ξ(n)θ(k) into the equation for the level n = 0

and phase k = 0, the steady state equation (2.22) is transformed into

π̂(0, 1)B
(0)
(1,0) + π̂(1, 1)A

(0)
(1,0) = π̂(0, 0)

⇐⇒ λ

ν + λ
e
−λ+ν

µ ξ̂(0)θ̂(1) + e
−λ+ν

µ ξ̂(1)θ̂(1) = ξ̂(0)θ̂(0)

⇐⇒ e
−λ+ν

µ

(
λ

ν + λ
+
ξ̂(1)

ξ̂(0)

)
θ̂(1) = θ̂(0)

⇐⇒ e
−λ+ν

µ

(
λ

ν + λ
+ eρ − 1

)
θ̂(1) = θ̂(0) , (3.13)
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and the equation for level n = 1 and phase k = 0 under this product form assumption
is transformed into

π̂(0, 1)B
(1)
(1,0) + π̂(1, 1)A

(1)
(1,0) + π̂(2, 1)A

(0)
(1,0) = π̂(1, 0) (3.14)

ξ̂(0)θ̂(1)B
(1)
(1,0) + ξ̂(1)θ̂(1)A

(1)
(1,0) + ξ̂(2)θ̂(1)A

(0)
(1,0) = ξ̂(1)θ̂(0)

⇐⇒
(

λ

ν + λ
e
−λ+ν

µ
λ

µ
ξ̂(0) + e

−λ+ν
µ
λ

µ
ξ̂(1) + e

−λ+ν
µ ξ̂(2)

)
θ̂(1) = ξ̂(1)θ̂(0)

⇐⇒ e
−λ+ν

µ

(
λ

ν + λ

λ

µ

ξ̂(0)

ξ̂(1)
+
λ

µ
+
ξ̂(2)

ξ̂(1)

)
θ̂(1) = θ̂(0)

⇐⇒ e
−λ+ν

µ

(
λ

ν + λ

λ

µ

1

eρ − 1
+
λ

µ
+
eρ(eρ − ρ− 1)

(eρ − 1)

)
θ̂(1) = θ̂(0) (3.15)

One can see that the expressions (3.13) and (3.15) are in general not equal. For exam-
ple, with the parameters λ = 1, µ = 2 and ν = 3 the θ̂(0) from (3.13) is approximately
equal to 0.122 · θ̂(1) and the θ̂(0) from the expression (3.15) is approximately equal to
0.145 · θ̂(1).

3.3 M/G/1/∞ queueing systems with state dependent service intensities
and product form steady state

In the previous section we have shown by a counterexample, that in general the steady
state distribution of an M/G/1/∞ system with (r, S) policy and lost sales does not have
a product form. Nevertheless, there are cases where loss systems in a random environ-
ment have product form steady states. These systems belong to a class of generalized
M/G/1/∞ loss systems, which will be discussed in this subsection. We point out, that
the results apply to general birth-and-death processes in a random environment as well.

Definition 22. We consider an M/G/1/∞ queueing system in continuous time with
state dependent service intensities (speeds) as described at the beginning of Section 3.1
(p.28) and use the notation introduced there.
The supplemented queue length process (X,R) (queue length, residual service request)

is not Markov because we additionally assume that this queueing system is coupled with
a finite environment K = KW +KB with KW 6= ∅, driven again by a generator Υ and
a stochastic jump matrix R, as described at the beginning of Section 2. The state of the
environment process will be denoted by Y again.
We prescribe that the interaction of (X,R) with the environment process Y is via the

following principles and restrictions:
(1) If the environment process is in a non-blocking state k, i.e. k ∈ KW , the queueing

system develops in the same way as an M/G/1/∞ queuing system in isolation, governed
by P̃ from (3.2), without any change of the environment until the next departure happens.
Holding the environment invariant during this period is guaranteed by ν(k,m) = 0 for
all k ∈ KW ,m ∈ K.
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(2) If at time t a customer departs from the system, the environment state changes
according to the stochastic jump matrix R, independent of the history of the system
given Y (t).

(3) Whenever the environment process is in a blocking state k ∈ KB, it may change
its state with rates governed by the matrix Υ, independent of the queue length and the
residual service request.

From these assumptions it is immediate, that Z = (X,R, Y ) is a continuous time strong
Markov process. We introduce sequences of stopping times for the process Z = (X,R, Y )
as before: With τ0 = σ0 = ζ0 = 0 we will denote by
τ = (τ0, τ1, . . . ) the sequence of departure times of customers,
σ = (σ0, σ1, . . . ) the sequence of arrival times of customers admitted to the system,
ζ = (ζ0, ζ1, . . . ) the sequence of jump times of the continuous time process Z.

By standard arguments it is seen that the sequence

(X(τn), R(τn−), Y (τn)) : n ∈ N0)

is a homogeneous Markov chain on state space N0 × {0} × K. Because for all n ∈ N0

holds R(τn−) = 0 we omit the R-component and consider henceforth the homogeneous
Markov chain

Ẑ = ((X̂(n), Ŷ (n)) := (X(τn), Y (τn)) : n ∈ N0)

on state space N0 ×K. The following formulae follow directly from the description.
(1) =⇒ for k ∈ KW , m ∈ K

P ((X(τ1), Y (τ1−)) = (n+ i− 1,m)|Z(0) = (i, k)) = δkmp̃
(i,n) .

(2) =⇒ for k ∈ KW , m ∈ K

P ((X(τ1), Y (τ1)) = (n+ i− 1,m)|Z(0) = (i, k))

=
∑
h∈K

P ((X(τ1), Y (τ1−)) = (n+ i− 1, h)|Z(0) = (i, k)) ·Rhm .

(3) =⇒ for k ∈ KB, m ∈ K

P ((X(ζ1), Y (ζ1)) = (j,m)|Z(0) = (i, k)) = δij
ν(k,m)

−ν(k, k)
.

Note, that in the last expression k ∈ KB implies that the queueing system is frozen,
and therefore in the denominator of the right side a summand +1[k∈KW ](λ + µ1[i>0]),
which one might have expected, does not appear.

Although we have imposed constraints on the behaviour of the environment the model
still is a very versatile one. The class of models from Definition 22 encompasses (e.g.)
many vacation models. These are models describing a server working on primary and
secondary customers, a situation which arises in many computer, communication, and
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production systems and networks. If one is mainly interested in the service process of
primary customers, then working on secondary customers means from the viewpoint of
the primary customers, that the server is not available or is interrupted. For more de-
tails see e.g. the survey of Doshi [3]. In the classification given there [3][p. 221, 222] the
above model is a single server queue with general nonexhaustive service with nonpreemp-
tive vacations and general vacation rule. Our system fits into these classification because
whenever a service expires the server decides (governed by R) whether to perform an-
other service or to wait for the next arriving customer (a state in KW is selected), or to
change its activity for secondary customers (a state in KB is selected). The sojourn time
in this status is completely general distributed by construction, in fact these sojourns in
general are neither identical distributed nor independent.

The proposed product form property of Ẑ originates from the specific structure of the
one-step transition matrix P of Ẑ. With some stochastic matrix H ∈ RK×K , which we
present in all details below,

P =


p̃(1,0)H p̃(1,1)H p̃(1,2)H p̃(1,3)H . . .

p̃(1,0)H p̃(1,1)H p̃(1,2)H p̃(1,3)H . . .

0 p̃(2,2)H p̃(2,1)H p̃(2,2)H . . .

0 0 p̃(3,0)H p̃(3,1)H . . .
...

...
...

...

 . (3.16)

We will use an evaluation procedure similar to that used for the M/M/1/∞ in a random
environment, by decomposing the matrices B(n) = WU (n,0)R and A(i,n) = U (i,n)R.
The next lemma guarantees that the expression 1

−ν(k,k)+1[k∈KW ]
in Lemma 24 and

Lemma 25 is always well defined.

Lemma 23. For the system defined in Definition 22 it holds

|ν(k, k)| > 0, ∀k ∈ KB (3.17)

Therefore the expression 1
−ν(k,k)+1[k∈KW ]

is well defined for any k ∈ K

Proof. The proof uses the same idea as that of Lemma 5. Because Z is ergodic there
must be a positive rate ν(k,m) > 0 to leave any blocking state k ∈ KB. The generator
property |ν(k, k)| =

∑
h6=k ν(k, h) of the matrix Υ proves the inequality (3.17).

We now define similar to (2.24) in Lemma 10 a matrix W and determine an explicit
representation.

Lemma 24. For the system from Definition 22 we set for k,m ∈ K

Wkm := P (Z(σ1) = (1,m)|Z(0) = (0, k)) , (3.18)

and remark that Wkm = 0 for all m ∈ KB. Then it holds

W = (IW −Υ)−1IW (3.19)
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Proof. Basically, the matrix W has the same structure as W in Proposition 11, but we
will derive a new representation, which is more suitable in the subsequent proofs. Using
the same transformation as in Proposition 11 we get by a first entrance argument

Wkm =
∑

h∈K\{k}

P (Z(σ1) = (1,m)|Z(0) = (0, h))︸ ︷︷ ︸
=Whm

P (Z(ζ1) = (0, h)|Z(0) = (0, k))

+δkmP (Z(ζ1) = (1,m)|Z(0) = (0, k))

The last term simplifies (with ν(k, k) = 0 for k ∈ KW ) to

δkmP (Z(ζ1) = (1,m)|Z(0) = (0, k)) = δkm
λ1[k∈KW ]

λ1[k∈KW ] − ν(k, k)
= δkm1[k∈KW ] .

If k 6= h the expression P (Z(ζ1) = (0, h)|Z(0) = (0, k)) is ν(k,h)
−ν(k,k) for k ∈ KB and 0 for

k ∈ KW . In both cases we will use the expression ν(k,h)
−ν(k,k)+λ1[k∈KW ]

, which is defined for
any k ∈ K (see Lemma 23); it follows:

Wkm =
∑

h∈K\{k}

Whm
ν(k, h)

−ν(k, k) + λ1[k∈KW ]
+ δkm

λ

−ν(k, k) + λ1[k∈KW ]
1[k∈KW ]

=
∑

h∈K\{k}

Whm
ν(k, h)

−ν(k, k) + 1[k∈KW ]
+ δkm

1

−ν(k, k) + 1[k∈KW ]︸ ︷︷ ︸
1 for k∈KW

1[k∈KW ]

This equation reads in matrix form

W = (−diag(Υ) + IW )−1 ((Υ− diag(Υ))W + IW )

and can finally be transformed into the lemma’s statement (3.19):

(−diag(Υ) + IW )W = (Υ− diag(Υ))W + IW

⇐⇒ (IW −Υ)W = IW =⇒W = (IW −Υ)−1IW

We now determine in a similar way the matrices U (i,n), see the definition (2.23) in
Lemma 10 for the exponential case, and determine an explicit representation.

Lemma 25. In the system from Definition 22 we define for n ≥ 0 and i ≥ 1

U
(i,n)
km := P

((
X(τ1), Y (τ−1 )

)
= (n+ i− 1,m)|Z(0) = (i, k)

)
.

Then for the transition probability matrix U it holds

U (i,n) = p̃(i,n)(IW −Υ)−1IW
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Proof. For U (i,n) with any n ≥ 0 and i ≥ 1 it holds:

U
(i,n)
km = P

((
X(τ1), Y (τ−1 )

)
= (n+ i− 1,m)|Z(0) = (i, k)

)
=

∑
h∈K\{k}

P
((
X(τ1), Y (τ−1 )

)
= (n+ i− 1,m) ∩ Z(ζ1) = (i, h)|Z(0) = (i, k)

)
+δkmP

((
X(τ1), Y (τ−1 )

)
= (n+ i− 1, k)|Z(0) = (i, k)

)
=

∑
h∈K\{k}

P
((
X(τ1), Y (τ−1 )

)
= (n+ i− 1,m)|Z(ζ1) = (i, h), Z(0) = (i, k)

)
·P (Z(ζ1) = (i, h)|Z(0) = (i, k))

+δkmP
((
X(τ1), Y (τ−1 )

)
= (n+ i− 1, k)|Z(0) = (i, k)

)
=

∑
h∈K\{k}

P
((
X(τ1), Y (τ−1 )

)
= (n+ i− 1,m)|Z(0) = (i, h)

)︸ ︷︷ ︸
=U

(i,n)
hm

·P (Z(ζ1) = (i, h)|Z(0) = (i, k))

+δkmP
((
X(τ1), Y (τ−1 )

)
= (n+ i− 1, k)|Z(0) = (i, k)

)
We analyze the expression P (Z(ζ1) = (i, h)|Z(0) = (i, k)):

it is ν(k,h)
−ν(k,k) for k ∈ KB and 0 for k ∈ KW . As in the proof of the Lemma 24, we use

the combined expression ν(k,h)
ν(k,k)+λ1[k∈KW ]

= ν(k,h)
ν(k,k)+1[k∈KW ]

which is valid for any k ∈ K.
It follows

U
(i,n)
km =

∑
h∈K\{k}

U
(i,n)
hm

ν(k, h)

−ν(k, k) + λ1[k∈KW ]
+

λ

−ν(k, k) + λ1[k∈KW ]
δkmp̃

(i,n)1[k∈KW ]

=
∑

h∈K\{k}

U
(i,n)
hm

ν(k, h)

−ν(k, k) + 1[k∈KW ]
+

1

−ν(k, k) + 1[k∈KW ]︸ ︷︷ ︸
=1 for k∈KW

δkmp̃
(i,n)1[k∈KW ]

The equation above, written in matrix form, reads

U (i,n) = (−diag(Υ) + IW )−1((Υ− diag(Υ))U (i,n) + p̃(i,n)IW )

⇐⇒ (−diag(Υ) + IW )U (i,n) = ((Υ− diag(Υ))U (i,n) + p̃(i,n)IW )

⇐⇒ (IW −Υ)U (i,n) = p̃(i,n)IW ⇐⇒ U (i,n) = p̃(i,n)(IW −Υ)−1IW .

We are now prepared to evaluate the transition matrix of the M/G/1/∞ system in
a random environment from Definition 22. It turns out that it has precisely the form
(3.16).

Lemma 26. Consider the continuous time Markov state process of the system described
in Definition 22, and the Markov chain Ẑ, embedded at departure instants of customers.
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The one-step transition matrix P of Ẑ

P =


B(0) B(1) B(2) B(3) . . .

A(0,1) A(1,1) A(2,1) A(3,1) . . .

0 A(0,2) A(1,2) A(2,2) . . .

0 0 A(0,3) A(1,3) . . .
...

...
...

...

 ,

is build up by the following block matrices:

B(n) = A(1,n) = p̃(1,n)H and A(i,n) = p̃(i,n)H

with
H := (IW −Υ)−1IWR (3.20)

Proof. We analyze the block structure of the matrix (IW −Υ)−1IW :

(IW −Υ) =

 KW KB

KW IW 0
KB −Υ|KB×KW −Υ|KB×KB


=⇒ (IW −Υ)−1 =

 KW KB

KW IW 0
KB (IW −Υ)−1|KB×KW (IW −Υ)−1|KB×KB


=⇒ (IW −Υ)−1IW =

 KW KB

KW IW 0
KB (IW −Υ)−1|KB×KW 0


This leads to the useful property

(IW −Υ)−1IW (IW −Υ)−1IW = (IW −Υ)−1IW . (3.21)

In a completely similar way as in Lemma 10 we can show the following representations

A(i,n) = U (i,n)R and B(n) = WU (1,n)R.

Inserting the results from Lemma 25 and Lemma 24 we obtain directly

A(i,n) = U (i,n)R = p̃(i,n)(IW −Υ)−1IWR ,

B(n) = WU (1,n)R = p̃(1,n)
(
(IW −Υ)−1IW

)2
R

(3.21)
= p̃(1,n)(IW −Υ)−1IWR = A(1,n) ,

which is the proposed result.
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The next step is similar to that in case of the purely exponential system.

Lemma 27. The matrix H = (IW − Υ)−1IWR defined in (3.20) is a stochastic matrix
and there exists a stochastic solution θ̂ of the steady state equation

θ̂H = θ̂ (3.22)

Proof. The generator property of Υ leads to

(IW −Υ)e = IWe + Υe︸︷︷︸
=0

= IWe (3.23)

and the stochasticity of R yields Re = e. Inserting this into the definition of M leads to

He = (IW −Υ)−1IWRe = (IW −Υ)−1IWe
(3.23)

= (IW −Υ)−1(IW −Υ)e = e

Since the matrix p̃(i,n)(IW −Υ)−1IW describes transition probabilities, all its entries are
non-negative, therefore the matrix H is stochastic.

Finally, finiteness of K guarantees the existence of a stochastic solution of (3.22).

Theorem 28. Consider the M/G/1/∞ in a random environment from Definition 22
with state dependent service speeds and state dependent selection of requested service
times. The describing Markov process (X,R, Y ) in continuous time is assumed to be
ergodic. For the Markov chain (X̂, Ŷ ) embedded at departure points of customers denote
the (existing) stationary distribution by π̂.
Then π̂ has product form according to

π̂(n, k) = ξ̂(n)θ̂(k) , (n, k) ∈ N0 ×K.

Here ξ̂ is the steady state distribution of the Markov chain with one-step transition
matrix (3.2) derived for the queue length process at departure points in a system with the
same parameter as under consideration but without environment, that is a solution of

ξ̂P̃ = ξ̂ , (3.24)

and θ̂ is a stochastic solution of the equation

θ̂H = θ̂(IW −Υ)−1IWR = θ̂ (3.25)

Proof. According to Lemma 26 the transition matrix P of the system has block form
(3.16), which is the tensor product of P̃ from (3.2) and H:

P = P̃ ⊗H .

Let ξ̂ be the steady state solution of (3.24), i.e., of the pure queuing system without
environment.
Let θ̂ be the stochastic solution of the equation θ̂H = θ̂, which exists according to

Lemma 27. Then from tensor calculus of matrices [13, (2.2.1.9) on p. 53] π̂(n, k) =
ξ̂(n)θ̂(k) solves the steady state equation

π̂P = (ξ̂ ⊗ θ̂)P̃ ⊗H = (ξ̂P̃ )⊗ (θ̂H) = ξ̂ ⊗ θ̂ = π̂.
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4 Applications

We apply the results from Sections 2.2, 2.3, and 3 to queueing-inventory systems which
are dealt with in literature recently, see the review in [12].
In any of the following applications the queueing system represents a production facility

where raw material arrives and for to assemble a final product from a piece of raw material
exactly one item from the stock is needed. This item will formally be taken from the
stock when the production of the final product is finished.

4.1 Systems with exponential service requests

Proposition 29. We consider an exponential single server queue with state dependent
service rates, environment dependent replenishment rates, and an attached inventory un-
der (r, S) policy (with 0 ≤ r < S ∈ N), and lost sales when the inventory is depleted.
Using the definitions of Section 2.2 we set the environment state space K := {0, ..., S}

with KB = {0}, X(t) the queue length at time t, and Y (t) = k indicates that at time t
the stock contains exactly k items. The appropriate transitions intensities are

q((n, k)→ (n+ 1, k)) = λ k > 0

q((n, k)→ (n, S)) = νk 0 ≤ k ≤ r
q((n, k)→ (n− 1, k − 1)) = µ(n) n > 0, 1 ≤ k ≤ S

q((n, k)→ (l,m)) = 0, otherwise

The steady state π̂ of the Markov chain (X̂, Ŷ ) embedded at departure times has product
form

π̂(n, k) = ξ(n)θ̂(k) , (n, k) ∈ N0 ×K , (4.1)

with

ξ(n) =

(
1− λ

µ

)(
λ

µ

)n
and

θ̂(k) =


C−1 ·

∏k
i=1

(
λ+νi
λ

)i
, 0 ≤ k ≤ r

C−1 ·
∏r
i=1

(
λ+νi
λ

)i
, r + 1 ≤ k ≤ S − 1

0 k = S

(4.2)

with

C =
r−1∑
k=0

k∏
i=1

(
λ+ νi
λ

)i
+ (S − r)

r∏
i=1

(
λ+ νi
λ

)i
Note that even for the constant values νk = ν the marginal distribution θ̂ (4.2) differs

from the marginal stationary distribution P (Y (t) = k) in continuous time in [14, p. 66].
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Proof. According to Theorem 15 the marginal distribution θ̂ is a solution of the equation

θ̂λ(λIW −Υ)−1IWR = θ̂

We calculate the matrix λ(λIW −V )−1IWR explicitly. The cautious reader will realize,
that we write down the matrices here with indices in an order which inverts the usual
one which we prescribed for 4 on K in the first part of the paper. This will make reading
easier in this special case.

(λIW −Υ) =

0 1 2 . . . r − 1 r r + 1 . . . S − 1 S
0 ν0 0 0 0 0 0 0 −ν0
1 0 (ν1 + λ) 0 0 0 0 0 −ν1
2 0 0 (ν2 + λ) 0 0 0 0 −ν2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

r 0 0 0 . . . 0 (νr + λ) 0 . . . 0 −νr
r + 1 0 0 0 0 0 λ . . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
S − 1 0 0 0 . . . 0 0 λ 0
S 0 0 0 . . . 0 0 0 0 λ



λ(λIW −Υ)−1IW =

0 1 2 . . . r − 1 r r + 1 . . . S − 1 S
0 0 0 0 0 0 0 0 1

1 0 λ
ν1+λ

0 0 0 0 0
ν1

ν1+λ

2 0 0 λ
ν2+λ

0 0 0 0
ν2

ν2+λ

.

.

.
.
.
.

.

.

.
. . .

.

.

.
r 0 0 0 . . . 0 λ

νr+λ
0 . . . 0 νr

νr+λ
r + 1 0 0 0 0 0 1 . . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
S − 1 0 0 0 . . . 0 0 1 0
S 0 0 0 . . . 0 0 0 0 1


R =

0 1 2 . . . S − 1 S
0 1 0 0 . . . 0 0
1 1 0 0 . . . 0 0
2 0 1 0 0 0

.

.

.
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
S − 1 0 0 0 . . . 0 0
S 0 0 0 . . . 1 0


λ(λIW −Υ)−1IWR =

0 1 2 . . . r − 1 r r + 1 . . . S − 1 S
0 0 0 0 0 0 0 1 0

1 λ
ν1+λ

0 0 0 0 0
ν1

ν1+λ
0

2 0 λ
ν2+λ

0 0 0 0 0
ν2

ν2+λ
0

.

.

.
.
.
.

.

.

.
. . .

.

.

. 0

r 0 0 0 . . . λ
νr+λ

0 0 νr
νr+λ

0

r + 1 0 0 0 0 1 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

. . .
.
.
. 0

S − 1 0 0 0 . . . 0 0 0
. . . 0 0

S 0 0 0 . . . 0 0 0 1 0


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Proposition 30. We consider an exponential single server queue with state dependent
service rates, environment dependent replenishment rates, and an attached inventory un-
der (r,Q) policy (with 0 ≤ r < Q ∈ N), and lost sales when the inventory is depleted.
Using the definitions of Section 2.2 we set the environment state space K := {0, ..., S}

with KB = {0}, X(t) the queue length at time t, and Y (t) = k indicates that at time t
the stock contains exactly k items. The appropriate transition intensities are

q((n, k)→ (n+ 1, k)) = λ k > 0

q((n, k)→ (n, k +Q)) = νk 0 ≤ k ≤ r
q((n, k)→ (n− 1, k − 1)) = µ(n) n > 0, 1 ≤ k ≤ r +Q

q((n, k)→ (l,m)) = 0, otherwise

The steady state π̂ has product form

π̂(n, k) = ξ(n)θ̂(k) , (n, k) ∈ N0 ×K , (4.3)

with

ξ(n) =

(
1− λ

µ

)(
λ

µ

)n
and

θ̂(k) =



C−1 ·
∏k
i=1

(
λ+νi
λ

)i
, 0 ≤ k ≤ r

C−1 ·
∏r
i=1

(
λ+νi
λ

)i
, r + 1 ≤ k ≤ Q− 1

C−1
∏r
i=1

(
λ+νi
λ

)i
−
∏k−Q
i=1

(
λ+νi
λ

)i
, Q ≤ k ≤ r +Q− 1

0 , k = r +Q

(4.4)

with normalization constant

C = (Q− r)
k∏
i=1

(
λ+ νi
λ

)i
Proof. According to Theorem 15 the marginal distribution θ̂ is a solution of the equation

θ̂λ(λIW −Υ)−1IWR = θ̂

We calculate the matrix λ(λIW − V )−1IWR explicitly (the remark from Proposition 29
on indexing the matrices applies here as well).
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(λIW −Υ) =

0 1 2 . . . r − 1 r r + 1 . . . Q 1 +Q 2 +Q . . . r +Q
0 ν0 0 0 0 0 0 −ν0 0
1 0 (ν1 + λ) 0 0 0 0 0 −ν1 0
2 0 0 (ν2 + λ) 0 0 0 0 −ν2 0

.

.

.
.
.
.

.

.

.
. . .

. . .
.
.
.

r 0 0 0 . . . 0 (νr + λ) 0 . . . 0 −νr
r + 1 0 0 0 0 0 λ . . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
Q 0 0 0 . . . 0 0 λ 0

1 +Q 0 0 0 0 0
2 +Q

.

.

.
r +Q 0 0 0 . . . 0 0 0 0 λ


λ(λIW −Υ)−1IW =

0 1 2 . . . r − 1 r r + 1 . . . Q 1 +Q 2 +Q . . . r +Q
0 0 0 0 0 0 0 1 0 0 0

1 0 λ
ν1+λ

0 0 0 0 0
ν1

ν1+λ

2 0 0 λ
ν2+λ

0 0 0 0
ν2

ν2+λ

.

.

.
.
.
.

.

.

.
. . .

. . .
r 0 0 0 . . . 0 λ

νr+λ
0 . . . 0 νr

νr+λ
r + 1 0 0 0 0 0 1 . . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
Q 0 0 0 . . . 0 0 0 1 0

1 +Q 0 0 0 0 0 0 1
2 +Q 0 0 0 0 0 0 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
S 0 0 0 . . . 0 0 0 0 0 0 1



R =
0 1 2 . . . r − 1 +Q r +Q

0 1 0 0 0 0
1 1 0 0 0 0
2 0 1 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

r − 1 +Q 0 0 0 . . . 0 0
r +Q 0 0 0 . . . 1 0


λ(λIW −Υ)−1IWR =

0 1 2 . . . r − 1 r r + 1 . . . Q− 1 Q 1 +Q 2 +Q . . . r +Q
0 0 0 0 0 0 0 1 0 0 0 0

1 λ
ν1+λ

0 0 0 0 0
ν1

ν1+λ

2 0 λ
ν2+λ

0 0 0
ν2

ν2+λ

.

.

.
.
.
.

.

.

.
. . .

. . .
r 0 0 0 . . . λ

νr+λ
0 0 νr

νr+λ
r + 1 0 0 0 0 1 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Q− 1 0 0 0 0 0 0
. . .

Q 0 0 0 . . . 0 0 0 1 0
1 +Q 0 0 0 0 0 0 1
2 +Q 0 0 0 0 0 0 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
r +Q 0 0 0 . . . 0 0 0 0 0 0 1 0


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Note that even for constant values νk = ν the marginal distribution θ̂ under (r,Q)
policy differs from the marginal steady state distribution P (Y (t) = k) in continuous
time from [14, p. 66].

4.2 Systems with non-exponential service requests

Proposition 31. We consider a single server queue of M/G/1/∞-type, with state de-
pendent service speeds, state dependent selection of requested service times, exponential-ν
replenishment times, and an attached inventory under (r = 0, S) policy (with 0 < S ∈ N),
and lost sales when the inventory is depleted (see Definition 22).
We have K = {S, S − 1, . . . , 1, 0} with KB = {0}.
The relevant matrices are the stochastic jump matrix R which represents the downward

jumps of the inventory and is

R =


0 . . . S − 1 S

0 (1, 0, . . . , 0) 0
1
...
S

 1
. . .

1

 0


and because the environment moves only for itself if there is stockout, the environment
generator Υ has only non zero entries ν(0, S) = ν, ν(0, 0) = −ν. So with KB = {0} the
requirement of Theorem 28 is fulfilled.

Υ =


0 1 . . . S

0 −ν (0, . . . , 0, ν)
1
...
S

0


From Theorem 28 we conclude that the Markov chain (X̂, Ŷ ), embedded at departure

instants of customers has a stationary distribution π̂ of product form

π̂(n, k) = ξ̂(n)θ̂(k) , (n, k) ∈ N0 ×K.

Here ξ̂ is the steady state distribution of the Markov chain with one-step transition
matrix (3.2) derived for the queue length process at departure points in a system with
the same parameters as under consideration but without environment, i.e, a solution of
ξ̂P̃ = ξ̂, and θ̂ is for k ∈ {0, 1, . . . , S}

θ̂(k) =
1

S
k 6= S, θ̂(S) = 0 (4.5)

According to Theorem 28, θ̂ is a stochastic solution of the equation θ̂(IW −Υ)−1IWR =
θ̂ We calculate the matrix H = (IW −Υ)−1IWR explicitly.
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(IW −Υ) =


0 1 . . . S

0 ν (0, . . . , 0,−ν)
1
...
S

0
...
0

 1
. . .

1





(IW −Υ)−1 =


0 1 . . . S

0 1
ν (0, . . . , 0, 1)

1
...
S

0
...
0

 1
. . .

1





(IW −Υ)−1IW =


0 1 . . . S

0 0 (0, 0, . . . , 1)
1
...
S

0
...
0

 1
. . .

1





H = (IW −Υ)−1IWR =


0 . . . S − 1 S

0 (0, 0, . . . , 1) 0
1
...
S

 1
. . .

1

 0
...
0


θ̂ defined in (4.5) is the unique solution of the (3.25).

Proposition 32. We consider a single server queue of M/G/1/∞-type, with state de-
pendent service speeds, state dependent selection of requested service times, inventory
management policy (r,Q) or (r, S), and zero lead times (see Definition 22, and note that
lost sales do not occur because of zero lead time).
In the case of (r, S) policy the inventory size after the first delivery will stay on between

r + 1 and S, therefore for long term behaviour of the system we take in account only
environment states K = {r + 1, r + 2, ..., S}. The zero lead time means Υ = 0, KB = ∅,
and the corresponding R matrix has the form

R =


r + 1 . . . S − 1 S

r + 1 (0, 0, . . . , 0) 1
r + 2
...
S

 1
. . .

1

 0


The steady state distribution has a product form

π̂(n, k) = ξ̂(n)θ̂(k) , (n, k) ∈ N0 ×K ,

47



Loss systems in a random environment-embedded Markov chains analysis, May 16, 2013

with

θ̂(k) =
1

S − r
, k ∈ K . (4.6)

Proof. According to Theorem 28 θ̂ is a stochastic solution of the equation θ̂(IW −
Υ)−1IWR = θ̂ We calculate the matrix H = (IW − Υ)−1IWR, which in the case of
the model equivalent to

θ̂ (IW − V )−1︸ ︷︷ ︸
=I

IW︸︷︷︸
=I

R = θ̂ (4.7)

⇐⇒ θ̂R = θ̂ (4.8)

with a unique stochastic solution (4.6).
For system under (r,Q) policy with zero lead times (4.6) holds as well , the proof is

analogous, we just set S = r +Q.

Remark. Similar results for the steady state of queueing-inventory systems with zero lead
times (without speeds) were obtained by Vineetha in [15, Theorem 5.2.1] for the case of
i.i.d service times.

5 Appendix

5.1 Useful lemmata

In our proofs we require the matrix (λIW − Υ) to be invertible, the following lemma is
the key to this property in case of finite K.

Lemma 33. Let M ∈ RK×K , where the set of indices is partitioned according to K =
KW +KB, KW 6= ∅, and |K| <∞, whose diagonal elements have following properties:

|Mkk| =
∑
k 6=m
|Mkm|, ∀k ∈ KB (5.1)

|Mkk| >
∑
k 6=m
|Mkm|, ∀k ∈ KW (5.2)

and it holds the flow condition

∀K̃B ⊂ KB, K̃B 6= ∅ : ∃ k ∈ K̃B, m ∈ K̃c
B : Mkm 6= 0 . (5.3)

Then M is invertible.

Remark. The Lema 33 does not require the matrix to be irreducible. Since we are
interested in systems with reducible matrices Υ which appear in inventory models (see
Propositions 29 and 30), we have to modify the proof for irreducible matrices which can
be found e.g. in [8, Lemma 4.12].
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Proof. We prove the lemma by contradiction, and let x = (xk : k ∈ K) be a vector with

Mx = 0 with x 6= 0. (5.4)

The property Mx = 0 leads for all k ∈ K to

−Mkkxk =
∑
k 6=m

Mkmxm,

=⇒ |Mkk||xk| ≤
∑
k 6=m
|Mkm||xm|,

=⇒ |Mkk|
|xk|
||x||∞

≤
∑
k 6=m
|Mkm|

|xm|
||x||∞︸ ︷︷ ︸
≤1

≤
∑
k 6=m
|Mkm|, (5.5)

We denote by J the set of indices of elements xk of x with the largest absolute value

J := {k ∈ K| |xk| = ||x||∞} .

Because of x 6= 0 and |K| <∞ the set J is non empty.
First we show that

∀k ∈ KW : |xk| < ||x||∞ (5.6)

holds, which implies
KW ⊂ Jc . (5.7)

For KB = ∅ the proof is complete because we have

K = KW ⊆ Jc $ K ,

and so we proceed with the proof for KB 6= ∅.
From (5.5) and (5.2) it follows for all k ∈ KW

|Mkk|
|xk|
||x||∞

≤
∑
k 6=m
|Mkm| < |Mkk|,

=⇒ |Mkk|
|xk|
||x||∞

< |Mkk|, (5.8)

The inequality (5.8) is valid if and only if |xk|
||x||∞ is strictly less than 1, which implies

|xk| < ||x||∞ and therefore (5.7).

Next, we analyze the set J ⊂ KB. For k ∈ J we examine the kth row of the equation
Mx = 0.

For all k ∈ J it follows from (5.5)

|Mkk| ≤
∑
k 6=m
|Mkm|

|xm|
||x||∞︸ ︷︷ ︸
≤1

≤
∑
k 6=m
|Mkm| ≤ |Mkk|,

=⇒
∑
k 6=m
|Mkm|

|xm|
||x||∞︸ ︷︷ ︸
≤1

=
∑
k 6=m
|Mkm| (5.9)
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KB JJKW

Figure 5.1: Sets in proposition 33. The set KB is gray.

Because |xm|
||x||∞ is strictly less than 1 for all m ∈ Jc, the inequality (5.9) yields

Mkm = 0, ∀k ∈ J,m ∈ Jc

Since KW ⊂ Jc we have a contradiction to the existence of a path of positive values
Mkm from k ∈ J ⊂ KB to KW which is guaranteed by (5.3).

Example 34. This example provides a matrix M which fulfills the requirements of
Proposition Lemma 33 and is therefore invertible It is neither irreducible nor strictly
diagonal dominant. We set λ, ν(2, 3), ν(3, 2), ν(4, 3), ν(4, 6), ν(5, 4), ν(6, 3) > 0, all other
entries are zero. Figure 5.2 on page 51 shows the resulting flow graph according to the
remark below the statement of Corollar 4.
M =

1 ∈ KW 2 ∈ KW 3 ∈ KB 4 ∈ KB 5 ∈ KB 6 ∈ KB

1 ∈ KW λ
2 ∈ KW (λ+ ν(2, 3)) −ν(2, 3)
3 ∈ KB −ν(3, 2) ν(3, 2)
4 ∈ KB −ν(4, 3) (ν(4, 3) + ν(4, 6)) −ν(4, 6)
5 ∈ KB −ν(5, 4) ν(5, 4)
6 ∈ KB −ν(6, 3) ν(6, 3)


Note, that this matrix is of the form M = λIW −Υ with Υ =

1 ∈ KW 2 ∈ KW 3 ∈ KB 4 ∈ KB 5 ∈ KB 6 ∈ KB

1 ∈ KW 0
2 ∈ KW ν(2, 3) −ν(2, 3)
3 ∈ KB −ν(3, 2) ν(3, 2)
4 ∈ KB −ν(4, 3) (ν(4, 3) + ν(4, 6)) −ν(4, 6)
5 ∈ KB −ν(5, 4) ν(5, 4)
6 ∈ KB −ν(6, 3) ν(6, 3)


,

and fits therefore exactly into the realm of our investigations of loss systems in a random
environment. (Hier ist noch ein Bild wieder herzustellen.)

For infinite K we have the following results.

Proposition 35. Let M ∈ RK×K , be a linear operator on `∞(RK). If for all k ∈ K
holds |Mkk| ≥

∑
m∈K\{k} |Mkm| + ε for some ε > 0 and supk∈K |Mkk| < ∞ ,then M is

invertible.
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KW KB

1

2

3

4

5

6

Figure 5.2: Graph from example according to the remark of corollary 4.

Proof. (1) Assume Mkk > 0 for all k ∈ K. Define β := 1
supk∈KMkk

, then it holds

||I − βM ||∞ = sup
k∈K

|1− βMkk︸ ︷︷ ︸
≤1

|+ β
∑

m∈K\{k}

|Mkm︸ ︷︷ ︸
≤Mkk−ε

|

 (5.10)

≤ sup
k∈K

(1− βMkk + β(Mkk − ε)) < 1 (5.11)

Thus M is invertible and it holds

M−1 = β

∞∑
n=0

(I − βM)i

(2) We define a matrix S with

Skm =


1 k = m, Mkk > 0

−1 k = m, Mkk < 0

0 otherwise
(5.12)

Then S is a bounded invertible operator with S−1 = S. According to (1) SM is invertible
and it holds M−1 = (SSM)−1 = (SM)−1S−1 = (SM)−1S

Lemma 36. Let M ∈ RK×K , be a linear operator on `∞(RK) where the set of indices
is partitioned according to K = KW +KB, KW 6= ∅, and |KB| < ∞, with the following
properties:

Flow condition: Define a directed graph (K, E) by

(k,m) ∈ E :⇔M(k,m) 6= 0 .
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Then for any k ∈ KB there exists some m = m(k) ∈ KW such that there exists a directed
path of finite length in (K, E) from k to m.

The sequence |Mmm|,m ∈ K, is bounded. (5.13)

|Mkk| =
∑
k 6=m
|Mkm|, ∀k ∈ KB . (5.14)

sup
k∈KW

∑
k 6=m
|Mkm| =: ND(KW ) <∞ . (5.15)

There exists some ε(KW ) > 0 such that

inf
m∈KW

|Mmm| = ND(KW ) + ε(KW ) (5.16)

holds.
Then M is injective.

Remark. The sequence |Mmm|,m ∈ K, needs not be bounded.

Proof. In the caseKB = ∅ the matrixM is strictly diagonal dominant and thus invertible
according to Proposition 35.
Let x = (xk : k ∈ K) ∈ `∞(RK) be any vector with

Mx = 0 with x 6= 0 (5.17)

(a) To show that
∀k ∈ KW : |xk| < ||x||∞ (5.18)

holds, is a word-by-word analogue of that property in the proof of Proposition 33.
(b) We show: {|xk| : k ∈ KW } is uniformly bounded away from ||x||∞ from below.
The property Mx = 0 leads for all k ∈ K to

−Mkkxk =
∑
k 6=m

Mkmxm =⇒

|Mkk||xk| ≤
∑
k 6=m
|Mkm||xm| ≤ ||x||∞

∑
k 6=m
|Mkm| ≤ ||x||∞ND(KW ) ,

and therefore

|xk| inf
m∈KW

|Mmm| ≤ ||x||∞ND(KW ) =⇒

|xk| ≤
ND(KW )

infm∈KW |Mmm|
||x||∞ =

1− ε(KW )

ND(KW ) + ε(KW )︸ ︷︷ ︸
∈(0,1)

 ||x||∞
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(c) We show: J := {k ∈ K : |xk| = ||x||∞} 6= ∅ and KW ⊂ Jc.
The second property follows from (b), while the first property holds, because the set
{|xk| : k ∈ KW } is uniformly bounded away from ||x||∞ from below and KB is finite, so
there must exist some k(0) ∈ KB where |xk(0)| = ||x||∞ is attained.
(d) To show that

Mkm = 0, ∀k ∈ J,m ∈ Jc

holds, is a word-by-word analogue of that property in the proof of Proposition 33. There-
fore the flow condition is violated and we have proved the theorem.
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