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Abstract

We consider stochastic Markovian processes, which describe e.g. queueing network

processes, in a random environment. The environment influences the network by de-

termining random breakdown of nodes, and the necessity of repair thereafter. Starting

from an explicit steady state distribution of product form available in the literature, we

notice that this steady state distribution does not provide information about the cor-

relation structure in time and space (over nodes). We study this correlation structure

via one step correlations for the queueing-environment process. Although formulas

for absolute values of these correlations are rather complicated, it turns out that dif-

ferences of correlations of related networks are surprisingly simple and have a nice

structure. We therefore compare two networks in a random environment having the

same invariant distribution, and focus on questions such as: What happens to the time

behaviour of the processes when in such a network the environment changes or the
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rules for travelling are perturbed? We show that evaluating these comparison formulas

we can compare spectral gaps and asymptotic variances of related processes.

1 Introduction

We consider classical stochastic networks of the Jacksonian type in a random environment.

For a general introduction into the problem of Markov processes in a random environment

with applications to stochastic networks, see [Zhu94], [Eco05], [BM13]. These stochastic

network systems have recently found interest as a general model for queueing networks in

connection with other areas of Operations Research, e.g. inventory theory and reliability

theory. The interaction of network and environment in these models is in the first system

that the service processes of the queues decreases the inventories and the inventory restricts

the possibility of serving customers due to limited stock at hand or that in the second system

external forces let servers break down which requires repair.

We concentrate in the present paper on the second framework: There are external forces

which generate random breakdowns of servers in the network and the subsequent repair is

also performed under random influences. We allow the environment to be of a rather general

structure, which implies that nodes may break down in isolation or in groups, and that batch

repair is possible as well.

For this framework there is a product form extension of Jackson’s steady state result at hand,

which provides in case of ergodicity the joint steady state distribution of the environment

(represented by the set of broken down nodes) and the joint queue length vector in a product

form: The environment status and the queue lengths seem to decouple asymptotically and

in steady state (which is the essence of Jackson’s theorem in case of pure queueing systems).

Clearly, this does not mean that the environment and the queue lengths are independent: The

environment is assumed here to be a Markov process for its own, but it strongly influences the

service provided by the nodes and even the arrival streams there and, furthermore, the nodes

interact as well - the interactions are carried by the traveling customers. These dependencies

are not expressed by the one-dimensional (in time) marginal process distribution, which is

a multidimensional (in space) product form distribution. In fact, very little is known about

the dependence structure of the interacting processes here. Therefore we study in this paper

the correlation structure in time of the environment-queue length process via the one-step

correlations, which in time as well as in space exhibit complex dependence behaviour.

To be more precise, our main interest is focused on the following scenarios: Compare two
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networks in a random environment which have the same invariant (product form) distribu-

tion, and therefore are in some sense variants of one another. Typical questions are: What

happens to the time behaviour of a network when in such a network the rules for traveling

(routing chains) are perturbed, or, when the environment changes ?

Our main results are comparison theorems and formulas which provide differences of one

step correlations in related, resp. perturbed networks. Although the formulas for absolute

values of the one step correlations are rather complicated, it turns out that differences of

correlations of related networks are surprisingly simple and have a nice structure. As a

consequence, whenever we have obtained quantities connected to one step correlations for

some reference network as an anchor (possibly from simulations or numerical evaluations), we

can perform easily explicit performance analysis, especially sensitivity analysis by varying,

e.g., breakdown and repair probabilities or routing probabilities.

The structure of the paper is as follows. In Section 2 we describe the stochastic networks

and the influence of the environment via Markovian breakdown and repair processes, which

results in a non-Markovian structure of the queue size processes alone. We end this section

with citing the steady state distribution for these networks.

In Section 3 we derive the explicit formulas for the one step correlations in time for the joint

environment-network process and show that for the interesting comparison problems these

formulas simplify considerably.

In Section 4 we show that our results allow to compare the spectral gaps and asymptotic

variances of different systems by evaluating our previous formulas suitably. Comparison

results for spectral gaps allow to compare speed of convergence to stationarity for networks

in L2 norm. An Appendix in Section 5 comprises the main technical proofs.

Notation and conventions:

For a set M we denote by 2M = P(M) the set of all subsets of M .

For sets A,B we write A ⊆ B for A which is a subset of B or equals B, and we write A ⊂ B

for A which is a subset of B but does not equal B.

Throughout, the node set of our graphs (networks) are denoted by J̃ := {1, . . . , J}, and the

”extended node set” is J̃0 := {0, 1, . . . , J}, where ”0” refers to the external source and sink

of the network.

We denote the diagonal matrix with a vector ξ on the diagonal and zero otherwise by diag(ξ).

ej is the standard j-th base vector in NJ if 1 ≤ j ≤ J and e0 is the J-dimensional zero vector.

We will use the following abbreviations:

For D ⊆ {1, . . . , J} and n = (nj : j ∈ J̃) ∈ NJ we write nD := (nj : j ∈ D) ∈ N|D| and
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nJ̃\D := (nj : j ∈ J̃ \D) ∈ N|J̃\D|, and will, as usual, identify

n = ((nj : j ∈ D), (nj : j ∈ J̃ \D)) = (nj : j ∈ D,nj : j ∈ J̃ \D).

Similarly we use for NJ -valued random variables with Xt = X(t) = n = (nj : j ∈ J̃) the self

explaining abbreviations XD(t) = (nj : j ∈ D) ∈ N|D| and X(t) = (XD(t), XJ̃\D(t)).

We use the following notation. For (Ẽ, E , π̃) and functions f, g : (Ẽ, E) → (R,B) we define

the inner product of f, g with respect to π̃, whenever the following integral exists:

〈f, g〉π̃ =

∫
Ẽ
f(x) · g(x) π̃(dx).

We denote by L2 := L2(Ẽ, π̃) the space of square integrable functions with respect to π̃, and

‖f‖π̃ = (〈f, f〉π̃)(1/2).

All random variables occurring in the sequel are defined on a common underlying probability

space (Ω,F , P ).

2 Stochastic networks in a random environment

2.1 Stochastic networks

A Jackson network [Jac57]) consists of J nodes numbered 1, . . . , J , where indistinguishable

customers arrive, are served, possibly at several stations, and eventually depart from the

network. The nodes are exponential single servers with state dependent service rates and

with an infinite waiting room under first–come–first–served (FCFS) regime. If at node j

there are nj > 0 customers present, either in service or waiting, then service is provided

there at rate µj(nj) > 0; we set µj(0) := 0. All customers follow the same rules.

We shall need later on a slight extension of the standard Jackson network models. This is

described in terms of an irreducible stochastic routing matrix

R = [rij]i,j=0,...,J , (2.1)

where the artificial ”node 0” represents the source and the sink of all customers. Strict

inequality may hold for r00 ≥ 0, which means that some arriving customers may be rejected.

Customer arrive in a Poisson stream of intensity λ > 0 which is split (independently) ac-

cording to the first row r0 := (r0i : i = 0, 1, . . . , J) of R. Then at nodes j = 1, 2, . . . , J we

observe independent Poisson-λj arrival streams with λj = λr0j, while a portion λ0 = λr00 of

the arriving customers is rejected (lost).
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Routing is Markovian, a customer departing from node i immediately proceeds to node j

with probability rij ≥ 0, and departs from the network with probability rj0.

Then the traffic equations for the admitted customers

ηj = λj +
J∑
i=1

ηirij, j = 1, . . . , J, (2.2)

have a unique solution which we denote by η = (ηj : j = 1, . . . , J). Note, that (2.2) only

counts for the admitted customers because of λj = λ · r0j, j = 1, . . . , J, and λ1 + . . .+ λJ =

λ(1 − r00). For r00 = 0, R is the so-called extended routing matrix of standard Jackson

networks, see [DS08][(3.2)].

Let X = (Xt : t ≥ 0) denote the vector process recording the joint queue lengths in the

network at time t. Xt = (X1(t), . . . , XJ(t)) ∈ NJ reads: at time t there are Xj(t) customers

present at node j, either in service or waiting. The assumptions put on the system imply that

X is a strong Markov process on state space NJ with generator QX = (QX(n,m) : m,n ∈ NJ)

which is given for g : NJ → R by

(QXg)(n) =
J∑
j=1

λj(g(n+ ej)− g(n)) +
J∑
j=1

(1− δ0nj
)µj(nj)rj0(g(n− ej)− g(n))

+
J∑
j=1

(1− δ0nj
)µj(nj)

J∑
i=1

rji(g(n− ej + ei)− g(n)) (2.3)

We assume throughout that X is ergodic and that sup{µj(k) : j ∈ {1, . . . , J}, k ∈ N} < ∞
holds, so that QX is a bounded operator, i.e., inf

n∈NJ QX(n, n) > −∞.

For an ergodic network process X Jackson’s theorem [Jac57] states that the unique steady–

state and limiting distribution π on NJ is

π(n) = π(n1, . . . , nJ) =
J∏
j=1

(
C(j)−1

nj∏
k=1

ηj
µj(k)

)
, n = (n1, . . . , nJ) ∈ NJ , (2.4)

with normalizing constants C(j) for marginal distributions of X.

2.2 Breakdown-repair processes

We are interested in stochastic networks, where the nodes due to external environment influ-

ences can breakdown and are repaired periodically. A simple but common situation is that

the breakdown-repair process is Markov of its own, and the network reacts on this random
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environment driven perturbations. To describe these Markovian processes we consider a set

of J stations or devices (nodes) numbered 1, . . . , J . The stations are unreliable, break down

randomly and are repaired thereafter. The repair time is random as well.

We assume that the availability status of the system can be described by a homogeneous

Markov process

Y = (Y (t) : t ≥ 0), Y (t) : (Ω,F ,P )→ (2J̃ ,P(2J̃)).

The state Y (t) = D indicates that at time t ≥ 0 the stations included in D ⊆ J̃ are broken

down and under repair, while stations in J̃ \D ⊆ J̃ are functioning (”are up”).

The transition rates (breakdown and repair intensities) of the failure process Y are

Definition 2.1. Take any pair of functions A : 2J̃ → [0,∞) and B : 2J̃ → [0,∞), subject

to A(∅) = 1 and B(∅) = 1 and for D, I,H ⊆ J̃ (we set 0/0 = 0 and 1/0 =∞)

A(I)

A(D)
<∞ ∀ D ⊂ I ⊆ J̃ and

B(D)

B(H)
<∞ ∀ H ⊂ D ⊆ J̃ .

With these functions define breakdown and repair rates as follows:

qY(D, I) =
A(I)

A(D)
, D ⊂ I ⊆ J̃ ,

for breakdowns of nodes in non-empty set I \D if nodes in D are already down, and

qY(D,H) =
B(D)

B(H)
, H ⊂ D ⊆ J̃ , ,

for finishing repair of nodes in non-empty set D \H if nodes in D are under repair.

For all other pairs G,H ⊆ J̃ , G 6= H, we set qY(G,H) = 0, and for all D ⊆ J̃ we set

qY(D,D) = −
∑

H⊆J̃ ,H 6=D q
Y(D,H).

Example 2.2. If nodes break down independently of one another with rate a(i), i ∈ J̃ ,

and are individually repaired with rate b(i), i ∈ J̃ , independent of other nodes, we obtain a

network structure which is a node set in a typical dynamical random graph on a prescribed

network, where nodes disappear and return later on. We have

D ⊂ I ⊆ J̃ : qY(D, I) =
∏
i∈I\D

a(i) , and H ⊂ D ⊆ J̃ : qY(D,H) =
∏

i∈D\H

b(i) .

The construction of the respective arcs is described in Section 2.3.
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The generator QY = (qY(K,L) : K,L ⊆ J̃) of Y is defined for real functions f : 2J̃ → R, by

(QYf)(D) =
∑
H⊂D

B(D)

B(H)
(f(H)− f(D)) +

∑
I⊃D

A(I)

A(D)
(f(I)− f(D)) (2.5)

By inspection we see that the probability measure

π̂ :=

(
π̂(D) := Ĉ−1A(D)

B(D)
, D ∈ 2J̃

)
(2.6)

with normalization constant Ĉ−1 fulfills

π̂(D) · qY(D,G) = π̂(G) · qY(G,D), ∀D,G ∈ 2J̃ with D ⊆ G or D ⊇ G ,

which implies that the breakdown and repair process Y is reversible with respect to π̂.

Example 2.3. In the Example 2.2 we obtain with normalization constant Ĉ−1

π̂ :=

(
π̂(D) := Ĉ−1

∏
i∈D

a(i)

b(i)
, D ∈ 2J̃

)
. (2.7)

From these explicit formulas (and similar ones) we can directly perform a parametric analysis

of the impact of breakdown and repair rate functions.

2.3 Rerouting

The network process and the breakdown-repair process (availability process) interact and

we have to fix rules for the interaction regime. The general rule is:

(1) Whenever a station is broken down and under repair, service is interrupted and the

customers present there are frozen, while new customers are not admitted to this station.

(2) Therefore we have to define a new routing mechanism. Examples of how to do this to

obtain explicit steady states can be found in [SD03][Sections 5, 6]. We describe an abstract

”rerouting scheme”, which encompasses the three schemes described there.

Assumption 2.4 (Rerouting schemes in open networks). Consider a Jackson network

(with possible customer rejection (r00 ≥ 0)) with routing matrix (2.1) and traffic equations

for the admitted customers (2.2) where λj = λr0j.

Let D ⊆ J̃ be the set of nodes of the network which are down. Then the routing probabilities

are restricted to nodes in J̃0 \D and are defined by some routing matrix

RD = [rDij ]i,j∈J̃0\D . (2.8)
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The associated traffic equations for the admitted customers similar to (2.2) are

ηDj = λDj +
∑
i∈J̃\D

ηDi r
D
ij , j ∈ J̃ \D, with λDj := λ · rD0,j, j ∈ J̃ \D , (2.9)

and are assumed to be solved by

ηDj = ηj, j ∈ J̃ \D, (2.10)

where the ηj are from the solution of (2.2).

For convenience we set R∅ := R, and similarly other expressions, if necessary.

Note that under the new rerouting scheme (with nodes in set D broken down) λD0 := λ · rD0,0
is the new rejection rate. The following lemma will be useful.

Lemma 2.5. If (ηDj , j ∈ J̃ \D) solves the traffic equations (2.9) for the admitted customers,

when nodes in D are broken down and rerouting is according to Assumption 2.4, then with

ηD0 := λ the vector η̂D := (ηDj , j ∈ J̃0 \D) solves the equation x = x ·RD.

Proof. The traffic equations (2.9) can be written as

ηDj = λ · rD0j +
∑
i∈J̃\D

ηDi r
D
ij , j ∈ J̃ \D . (2.11)

Summing (2.11) over j ∈ J̃ \D yields

λ(1− rD00) =
∑
i∈J̃\D

ηDi r
D
i0 ,

which is the missing equation of x = x ·RD, with the required solution inserted.

Remark 2.6. Prescribing rerouting by (2.9) is not constructive, but a constructive approach

will be not necessary for our main applications. A detailed description of rerouting schemes

which fulfill the requirements of Assumption 2.4 is given in [Sau06][Section 2].

When considering rerouting schemes which are used in the literature it may happen that the

rerouting chain on certain subsets J̃ \ D is not irreducible, for details see [Sau06][Proof of

Theorem 1.2.29]. This makes the computations more involved, but leads to the same results

as those we shall present below.

The following example describes a way that is common to resolve blocking situations in

networks with blocking of stations due to full buffers or blocking due to resource sharing,

and is called blocking principle Repetitive Service - Random Destination (rs–rd).

For applications in modeling of communication protocols in systems with finite buffers or

for ALOHA-type protocols see [Kle76], Section 5.11. Within the abstract framework of

reversible processes it occurs in [Lig85], Proposition II.5.10.
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Example 2.7 (rs–rd with reversible routing in open exponential networks). When nodes

in D ⊆ J̃ of a Jackson network (with possible customer rejection) are down and under repair,

rerouting is restricted to J̃0 \D by

rDij =

rij, i, j ∈ J̃0 \D, i 6= j,

rii +
∑

k∈D rik, i ∈ J̃0 \D, i = j .
(2.12)

The external arrival rates at the Jackson network are in this situation: λDj = λrD0j = λr0j = λj

for nodes j ∈ J̃ \D and λDj = λrD0j = 0 for nodes j ∈ D (j 6= 0).

Note that even if r00 = 0, external arrivals may be rejected with positive probability because

arrivals to nodes under repair are ”rerouted” (≡ rejected): With λ0 = λ · r00

rD00 = r00 +
∑
k∈D

r0k =
∑

k∈D∪{0}

λk
λ
≥ 0 .

A standard assumption in the literature for this rerouting scheme to apply is that the original

routing Markov chain, resp., its transition matrix is reversible:

ηj · rji = ηi · rij for all i, j ∈ J̃0 with ηj from (2.2) and η0 := λ. (2.13)

We shall set this assumption always in force when investigating this protocol.

The next rerouting regime seems to be nearly trivial. Nevertheless, it is often implemented

as reaction to detected failures in complex production systems to maintain high production

quality, e.g. in automotive industry.

Example 2.8 (Stalling). Whenever a node failure occurs and a node (or more) break

down, all arrival processes are shut down and all ongoing services are interrupted. So no

customers move in the network until all nodes are repaired. For nodes in D being down we

have

rDij =

0, i, j ∈ J̃0 \D, i 6= j,

1, i ∈ J̃0 \D, i = j .
(2.14)

We assume that the stopped nodes which are up wait in warm standby. They can therefore

break down without serving and have to be repaired then also.

The next rerouting regime is a typical reaction in case of random walks in a random network

with disappearing nodes. The random walker jumps over the gap, possibly iterated, until a

target node of the random walker allows him to settle down. - In Markov chain theory it

occurs when taboo sets are investigated.
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Example 2.9 (Skipping). When the nodes in D are down, moving customers skip these

nodes. If the destination node i of a customer lies in D the customer performs this jump but

does not stay there. Instead he selects according to R another node, say k with probability

r(i, k). If k /∈ D he settles down, otherwise he immediately selects another node according

to R, and so on. This results in a new routing matrix RD with

rD̄jk = rjk +
∑
i∈D̄

rjir
D
ik for k, j ∈ J̃0 \D (2.15)

with

rDik = rik +
∑
l∈D

rilr
D
lk for i ∈ D, k ∈ J̃0 \D. (2.16)

The external arrival rates during a breakdown of Ī are λDk = 0 for k ∈ D and

λDj = λj +
∑
i∈D

λir
D
ij for j ∈ J̃ \D . (2.17)

2.4 Networks with breakdown and repair: Product formula

We shall exploit the product form of the invariant distribution of the Markov process de-

scribing an unreliable Jackson network in order to find its correlations. In this section we

formally define this process by giving the corresponding generator and prove the product

formula. A Markovian state process for this system requires that the state space NJ of the

Jackson network process X is supplemented by a coordinate Y which indicates the set of

broken down stations. Operating on these states we define a Markov process Z = (Y,X)

describing the degradable network with the state space Ẽ = 2J̃ × NJ . Elements of Ẽ are

n = (D,n) = (D,n1, n2, . . . , nJ) ∈ Ẽ, where the first coordinate in n we call the availability

coordinate. The interpretation is: The set D is the set of servers in down status. At node

i ∈ D there are ni customers waiting for server being repaired. We denote by E the set of

all subsets of Ẽ.

Definition 2.10. The Markov process Z = (Z(t), t ≥ 0) defined by the infinitesimal gener-

ator (transition intensity matrix) QZ = (qZ(n,n′) : n,n′ ∈ Ẽ ) via

(QZf)(D,n1, n2, . . . , nJ) =

=
∑
j∈J̃\D

λrD0j(f(D,n+ ej)− f(n)) +
∑
j∈J̃\D

(1− δ0nj
)µj(nj)r

D
j0(f(D,n− ej)− f(n))

+
∑
j∈J̃\D

(1− δ0nj
)µj(nj)

∑
i∈J̃\D

rDji(f(D,n− ej + ei)− f(n)) (2.18)

+
∑
H⊂D

B(D)

B(H)
(f(H,n)− f(n)) +

∑
I⊃D

A(I)

A(D)
(f(I, n)− f(n))
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is called unreliable Jackson network process.

Theorem 2.11. (Product form for Jackson networks with breakdown and repair)

[Sau06][Theorem 2.4.1] Under the Assumption 2.4, if Z is ergodic then the steady state is

with π from (2.4) and π̂ (2.6) of the product form:

π̃(D, n1, n2, . . . , nJ) = π̂(D) · π(n1, n2, . . . , nJ)

= π̂(D) ·
J∏
j=1

(
C−1
j

nj∏
i=1

ηj
µj(i)

)
, (D, n1, . . . , nJ) ∈ Ẽ . (2.19)

η = (η1, . . . , ηJ) is the solution of the traffic equation (2.2) for admitted customers when all

nodes are up, Cj is the normalization constant for the local queue length process at node j

which is finite if and only if the unreliable network is ergodic. We denote

C = C(J) =
∑

(n1,...,nJ )∈NJ

[
J∏
j=1

nj∏
i=1

(
ηj
µj(i)

)]
=

J∏
j=1

Cj .

Proof. Because the proof gives some structural insight, we give a shortened version of

[Sau06][Theorem 2.4.1] for the sake of completeness. For all (D; n1, n2, . . . , nJ) ∈ Ẽ we

have to check the global balance equations

π̃(D; n1, n2, . . . , nJ)

( ∑
j∈J̃\D

(1− δ0nj
)µj(nj)(1− rDjj) +

∑
j∈J̄\D

λDj

+
∑
I⊃D

qY(D, I) +
∑
H⊂D

qY(D,H)

)
=
∑
j∈J̃\D

(1− δ0nj
)π̃(D; n1, n2, . . . , nj − 1, . . . , nJ)λDj

+
∑
j∈J̄\D

(1− δ0nj
)
∑

k∈J̃\D
k 6=j

π̃(D; n1, . . . , nk + 1, . . . , nj − 1, . . . , nJ)µk(nk + 1)rDkj

+
∑
j∈J̃\D

π̃(D; n1, n2, . . . , nj + 1, . . . , nJ)µj(nj + 1)rDj0

+
∑
I⊃D

π̃(D; n1, n2, . . . , nJ)qY(D, I) +
∑
H⊂D

π̃(D; n1, n2, . . . , nJ)qY(D,H) (2.20)

We first equate the second line of the left hand side with the last line of the right hand side

and see with inserting the product form

π(n1, n2, . . . , nJ) · π̂(D)

(∑
I⊃D

qY(D, I) +
∑
H⊂D

qY(D,H)

)
=
∑
I⊃D

π(n1, n2, . . . , nJ) · π̂(I) qY(I,D) +
∑
H⊂D

π(n1, n2, . . . , nJ) · π̂(H) qY(H,D).
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which is obviously the global balance equation associated with the generator QY, and thus

solved by π̂.

The reminder terms of (2.20) constitute balance equations corresponding to a Jackson net-

work on the node set J̃ \ D with routing scheme rD, the traffic equations of which (using

Assumption 2.4) are solved by (ηj : j ∈ J̃ \ D). Renormalizing, the problem is reduced to

balance equations for a standard Jackson network when π̂(D) is canceled.

In [SD03] the result of Theorem 2.11 is proved for more general breakdown and repair

schemes: These allow the breakdown and repair rates to depend on the load (queue lengths)

of nodes. The question whether in this framework results similar to those in the following

sections can be derived is still open and part of our ongoing research.

Remark 2.12. Theorem 2.11 is not covered by the product form results for networks in

a random environment of Zhu [Zhu94] and Economou [Eco05]. In both papers the central

assumption is that under different environment states the ratio ”local arrival rate/local

service rate” is independent of the environment status. This is obviously not the case in our

systems.

3 One step correlation

Recall λj = λ · r0j, j = 1, . . . , J, and λ1 + . . .+λJ = λ(1− r00) and that we therefore consider

only admitted customers even if all nodes are up. We will not mention this further in this

section. For the network process Z with generator QZ and stationary distribution π̃ consider

one step correlation expressions

〈f,QZg〉π̃. (3.1)

If f = g, then (3.1) is (the negative of) a quadratic form, because −QZ is positive definite.

(3.1) occurs in the definition of Cheeger’s constant because division of (3.1) with f = g

by 〈f, f〉π̃ yields Rayleigh quotients. It also occurs in the definition of the corresponding

Dirichlet form. This is helpful to bound the second largest eigenvalue of QZ and to prove

the corresponding Poincare inequality for the corresponding Markovian process, see e.g.,

[Ch05]. Furthermore, (3.1) can be utilized to determine the asymptotic variance of costs

or performance measures associated with Markovian network processes and to compare the

asymptotic variances of two such related processes. It is possible to compare the correlations

for Z with that of the related process Z′ with the same stationary distribution π̃, using

〈f,QZg〉π̃ − 〈f,QZ′g〉π̃,
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which will be given explicitly in Section 3.2. Because we are dealing with processes having

bounded generators, properties connected with (3.1) can be turned into properties of

〈f, I + εQZg〉π̃ = Eπ̃(f(Z0)g(Zτ )) (3.2)

where I is the identity operator, and ε > 0 is sufficiently small such that I + εQZ is a

stochastic matrix (i.e. the transition matrix of the uniformized chain), and τ ∼ exp(ε)

(exponentially distributed). This enables one to directly apply discrete time methods to

characterize properties of continuous time processes.

3.1 Correlation formulas

Due to the product form steady state distribution of Z the one step correlation 〈f,QZg〉π̃
splits immediately into two terms having an intuitive interpretation. Namely, the one step

correlation is the sum of weighted one step conditional correlations (i) of the environment

process Y , and (ii) of network processes, which for a fixed time point seem to behave

conditionally independent of the environment.

As will be seen immediately, it is illuminating, to define for all D ⊆ {1, . . . , J} the generators

QXJ̃\D of certain ”synthetic subnetworks” on node set J̃\D with overall arrival rate λ, service

rates as prescribed in the Definition 2.10, and routing matrix RD. We have a splitting formula

Proposition 3.1. For unreliable Jackson network processes Z = (Y,X) as in Theorem 2.11

the one step correlations splits as follows

〈f,QZg〉π̃ =
∑
n∈NJ

π(n)

 ∑
D⊆{1,...,J}

π̂(D)f(D,n)
(
QYg(·, n)

)
(D)


+

∑
D⊆{1,...,J}

π̂(D)
∑

nD∈N
|D|

πD(nD)


∑

nJ̃\D∈N
J−|D|

πJ̃\D(nJ̃\D)f(D, (nD, nJ̃\D))
(
QXJ̃\Dg(D, (nD, (·)J̃\D))

)
(nJ̃\D)


The proof of Proposition 3.1 and the next correlation formula are postponed to Section 5.

This more explicit correlation formula seems to be of limited use directly, but will yield

remarkable simplifications when used for differences.
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Proposition 3.2. For unreliable Jackson network processes Z = (Y,X) as in Theorem 2.11,

with ξD the probability solution of the equation xD = xD ·RD (which applies, when nodes in

D are down), the one-step correlation formula is

〈f,QZg〉π̃ =

=
∑

D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)

{∑
H⊂D

qY(D,H)f(D,n)g(H,n) +
∑
I⊃D

qY(D, I)f(D,n)g(I, n)

}

+
∑

D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)
λ

ξD0

 ∑
j∈J̃0\D

∑
i∈J̃0\D

ξDj r
D
jif(D,n+ ej)g(D,n+ ei)


−

∑
D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)f(D,n)g(D,n)

∑
H⊂D

qY(D,H) +
∑
I⊃D

qY(D, I) + λ+
∑
j∈J̃\D

µj(nj)

 .

3.2 Comparison of one step correlations

The following formulas for differences of one step correlations will give additional insight into

various properties of networks, for example to speed of convergence or asymptotic variance.

They display how, e.g., the routing and the breakdown and repair affects correlations in

networks. The proofs of these applications follow those ideas which are used to prove the

following theorems. We therefore present some details of this proof here and give only hints

for proving the applications.

Our first result describes the reaction of an unreliable network to changes of the routing

behaviour of the customers.

Theorem 3.3. Suppose Z = (Y,X) is an ergodic unreliable Jackson network process with

a routing matrix R and Z′ = (Y′,X′) is another Jackson network process having the same ar-

rival and service intensities and failure-repair rates but with routing matrix R′ = [r′ij]i,j=0,1,...,J ,

such that the solutions of the traffic equation derived from R and for R′ coincide (denoted by

η). Assume that both networks follow some rerouting mechanism for which the Assumption

2.4 holds. Then for arbitrary real functions f, g ∈ L2

〈f,QZg〉π̃ − 〈f,QZ′g〉π̃ = Eπ̃

[
λ

ξYt0

(
tr
(
W g,f (Yt, Xt) · diag(ξYt) · (RYt −R′Yt)

))]
,

where ξD is the probability solution of xD = xD · RD (see Lemma 2.5), tr(A) denotes trace

of A, and with e0 = (0, . . . , 0)

W g,f (D,n) = [g(D,n+ ei)f(D,n+ ej)]i,j∈J̃0\D .
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Proof. Because the external arrival streams are the same, and the traffic equations have the

same solution η, and the rerouting mechanisms have property (2.10), for any availability

status D the rerouting schemes on J̃ \D have the same solution of the traffic equation. It

follows from Lemma 2.5 that for all D the probability solution of the equations xD = xD ·RD

and xD = xD ·R′D are in both systems the same. Because of qY = qY
′

we immediately have

from Proposition 3.2 the reduction

〈f,QZg〉π̃ − 〈f,QZ′g〉π̃ =

=
∑

D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)
λ

ξD0

 ∑
j∈J̃0\D

∑
i∈J̃0\D

ξDj r
D
jif(D,n+ ej)g(D,n+ ei)


−

∑
D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)
λ

ξD0

 ∑
j∈J̃0\D

∑
i∈J̃0\D

ξDj r
′D
jif(D,n+ ej)g(D,n+ ei)


=

∑
D⊆{1,...,J}

C−1π̂(D)
∑

nD∈N
|D|

∏
`∈D

n∏̀
i=1

(
η`
µ`(i)

)

∑
nJ̃\D∈N

J−|D|

∏
`∈J̃\D

n∏̀
i=1

(
η`
µ`(i)

) λ

ξD0

 ∑
j∈J̃0\D

∑
i∈J̃0\D

ξDj r
D
jif(D,n+ ej)g(D,n+ ei)


− λ

ξD0

 ∑
j∈J̃0\D

∑
i∈J̃0\D

ξDj r
′D
jif(D,n+ ej)g(D,n+ ei)




We interpret in the last two lines for fixed D and nD and i, j ∈ J̃0 \D the expressions

f(D,n+ ej) =: f(D, (nD, nJ̃\D + ej)) and g(D,n+ ei) =: g(D, (nD, nJ̃\D + ei))

as functions of nJ̃\D only, and see that the resulting expressions have exactly the structure

of the functions dealt with in Proposition 4.1 of [DS08].

After renormalization of the densities
∏

`∈J̃\D
∏n`

i=1

(
η`
µ`(i)

)
, which is in fact result of condi-

tioning on {Y (t) = D,XD(t) = nD}, we obtain 〈f,QZg〉π̃ − 〈f,QZ′g〉π̃

=
∑

D⊆{1,...,J}

∑
nD∈N

|D|

P ({Y (t) = D,XD(t) = nD})

Eπ̃

[
λ

ξD0

(
tr(W g,f (D, (nD, XJ̃0\D)) · diagξD · (RD −R′D))

)
|{Y (t) = D,XD(t) = nD}

]
,

and deconditioning eventually finishes the proof.

Our next result describes the reaction of a network to changes of the breakdown and repair

mechanisms. It turns out that it is possible to write the formula for the difference of one step
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correlations for the corresponding generators of networks in terms of scalar products with

respect to invariant measure for the failure processes using the difference of the corresponding

intensity matrices of the failure processes.

Theorem 3.4. Suppose Z = (Y,X) is an ergodic unreliable Jackson network process with

a routing matrix R = [rij]i,j=0,1,...,J and Z′ = (Y′,X′) is another Jackson network process

having the same arrival and service intensities, and with the same routing regimes, described

by R and rerouting fulfilling Assumption 2.4.

The breakdown-repair process for Z is given in Definition 2.1 and for Z′ is defined similarly

via functions A′, B′ : 2J̃ → [0,∞), subject to the indicated restrictions there.

Then the breakdown and repair rates for Y′ are:

qY
′
(D, I) =

A′(I)

A′(D)
, D ⊂ I ⊆ J̃ , and qY

′
(D,H) =

B′(D)

B′(H)
, H ⊂ D ⊆ J̃ , .

The processes Y and Y′ are Markov with generators QY = (qY(K,L) : K,L ⊆ J̃) of Y and

QY′ = (qY
′
(K,L) : K,L ⊆ J̃) of Y′ as defined in (2.5) for Y and similar for Y′.

Assume that the stationary distributions of Y and Y′ are identical, denoted by

π̂ :=

(
π̂(D) := Ĉ−1A(D)

B(D)
= Ĉ ′−1A

′(D)

B′(D)
, D ∈ 2J̃

)
. (3.3)

Then for arbitrary real functions f, g : Ẽ→ R holds

〈f,QZg〉π̃ − 〈f,QZ′g〉π̃ = Eπ

[
〈f(◦, Xt), Q

Yg(·, Xt)(◦)〉π̂ − 〈f(◦, Xt), Q
Y′g(·, Xt)(◦)〉π̂

]
=

= Eπ

[
〈f(◦, Xt), (Q

Y −QY′)g(·, Xt)(◦)〉π̂
]
.

Proof. Interchanging summations, regrouping terms, and exploiting the product form struc-

ture of the state distributions (which are identical for Z = (Y,X) and Z′ = (Y′,X′)) in the

correlation formula of Proposition 3.2, we obtain

〈f,QZg〉π̃ =

=
∑
n∈NJ

π(n)
∑

D⊆{1,...,J}

π̂(D)

{∑
H⊂D

qY(D,H)f(D,n)g(H,n) +
∑
I⊃D

qY(D, I)f(D,n)g(I, n)

}

−
∑
n∈NJ

π(n)
∑

D⊆{1,...,J}

π̂(D)f(D,n)g(D,n)

{∑
H⊂D

qY(D,H) +
∑
I⊃D

qY(D, I)

}
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+
∑

D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)
λ

ξD0

 ∑
j∈J̃0\D

∑
i∈J̃0\D

ξDj r
D
jif(D,n+ ej)g(D,n+ ei)


−

∑
D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)f(D,n)g(D,n)

λ+
∑
j∈J̃\D

µj(nj)

 .

Because the arrival streams, the service rates, the routing, and the steady states of the

processes Z = (Y,X) and Z′ = (Y′,X′) are the same, for 〈f,QZ′g〉π̃ the last two lines in the

respective formula are identical to those in the displayed formula. The difference becomes

therefore

〈f,QZg〉π̃ − 〈f,QZ′g〉π̃ =

=
∑
n∈NJ

π(n)
∑

D⊆{1,...,J}

π̂(D)

{∑
H⊂D

qY(D,H)f(D,n)g(H,n) +
∑
I⊃D

qY(D, I)f(D,n)g(I, n)

−
∑
n∈NJ

π(n)
∑

D⊆{1,...,J}

π̂(D)f(D,n)g(D,n)

{∑
H⊂D

qY(D,H) +
∑
I⊃D

qY(D, I)

}

−
∑
n∈NJ

π(n)
∑

D⊆{1,...,J}

π̂(D)

{∑
H⊂D

qY
′
(D,H)f(D,n)g(H,n) +

∑
I⊃D

qY
′
(D, I)f(D,n)g(I, n)

}

+
∑
n∈NJ

π(n)
∑

D⊆{1,...,J}

π̂(D)f(D,n)g(D,n)

{∑
H⊂D

qY
′
(D,H) +

∑
I⊃D

qY
′
(D, I)

}

For fixed n we interpret in the last two lines f(D,n) and g(D,n) as functions ofD parametrized

by Xt(ω) = n. This leads to

〈f,QZg〉π̃ − 〈f,QZ′g〉π̃ =
∑
n∈NJ

π(n)
[
〈f(◦, n), QYg(·, n)(◦)〉π̂ − 〈f(◦, n), QY′g(·, n)(◦)〉π̂

]
= Eπ

[
〈f(◦, Xt), Q

Yg(·, Xt)(◦)〉π̂ − 〈f(◦, Xt), Q
Y′g(·, Xt)(◦)〉π̂

]
. (3.4)

In both Theorems 3.3 and 3.4 we prove a reduction of complexity: We show that one can

reduce comparing operators and resulting one step correlations via functions on infinite state

space to comparing matrix operators via functions on finite state space.

The Theorems 3.3 and 3.4 are valid for all square integrable functions f, g on Ẽ. This opens

the way to compare more intricate correlations for multidimensional marginals in time of
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the network processes with unreliable nodes according to concordance ordering utilizing the

abstract setting for Markov processes of [DS08][Theorem 5.2].

For a concise notation we introduce the standard difference operators for functions on NJ .

For all f ∈ L2 and all j = 0, 1, . . . , J, we define (recall e0 is the zero vector)

Djf : Ẽ→ R, (D,n)→ Djf(D,n) := f(D,n+ ej)− f(D,n),

and

Df : Ẽ→ RJ+1−|D|, (D,n)→ (Djf(D,n), j ∈ J̃0 \D).

That way we can treat Df(D,n) as a vector of the dimension corresponding to the size of

D, and the corresponding routing matrices RD as operators on it. Moreover, it is possible to

consider the corresponding scalar products generated by invariant vectors ξD, and write the

formula for the difference of one step correlations (which are scalar products with respect

to invariant measures for the network process π̃) in terms of scalar products with respect to

invariant measures ξD for the routing processes.

Corollary 3.5. For unreliable Jackson network processes Z = (Y,X) as in Theorem 2.11,

with ξD the probability solution of the equation xD = xD ·RD we have

〈f,QZg〉π̃ = Eπ̃

[
λ

ξYt0

〈
(D + Id)f(Yt, Xt), R

Yt(D + Id)g(Yt, Xt)
〉
ξYt

]
+ Eπ

[
〈f(◦, Xt), Q

Yg(·, Xt)(◦)〉π̂
]

− Eπ̃

[
f(Yt, Xt)g(Yt, Xt)(λ+ µ

Yt
)
]

where ξD is the probability solution of xD = xD·RD (see Lemma 2.5), and µ
D

=
∑

j∈J̃\D µj(nj)

is the total service rate for nodes which are up.

Proof. Take the correlation formula from Proposition 3.2, use conditioning as in Theorem

3.3, and insert the suitable difference operators.

We can now reformulate the result of Theorem 3.3 in a more compact form which immediately

relates our results to methods dealt with in optimizing MCMC simulation.

Corollary 3.6. For unreliable Jackson network processes Z,Z′ as in Theorem 3.3 we have

〈f,QZg〉π̃ − 〈f,QZ′g〉π̃ = Eπ̃

[
λ

ξYt0

〈
(D + Id)f(Yt, Xt),

(
RYt −R′Yt

)
(D + Id)g(Yt, Xt)

〉
ξYt

]
,
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4 Applications

4.1 Comparison of spectral gaps

Let Z be a continuous time homogeneous ergodic Markov process with stationary probability

π̃ and generator QZ. Let π̃(f) =
∫
Ẽ f(x)π̃(dx) The spectral gap of Z, resp. QZ is

Gap(QZ) = inf{〈f,−QZf〉π̃ : f ∈ L2(Ẽ, π̃), π̃(f) = 0, 〈f, f〉π̃ = 1}.

The spectral gap determines for Z the speed of convergence to equilibrium π̃ in L2(Ẽ, π̃)

with norm ‖ · ‖π̃: Gap(QZ) is the largest number ∆ such that for the transition semigroup

P = (Pt : t ≥ 0) of Z holds

‖Ptf − π̃(f)‖π̃ ≤ e−∆t‖f − π̃(f)‖π̃ ∀f ∈ L2(Ẽ, π̃).

It should be noted that one has to be careful which class of functions is used for the definition

of spectral gap. For a discussion and more references see the introduction of [LS13].

We shall utilize the following orderings to compare routings, failure processes and then

correlations, see [Pes73].

Definition 4.1. Let R = [rij] and R′ = [r′ij] be transition matrices on a finite set E such

that ξR = ξR′ = ξ for a probability vector ξ.

We say that R′ is smaller than R in the positive semidefinite order, R′ ≺pd R, if the matrix

R−R′ is positive semidefinite.

We say that R′ is smaller than R in the Peskun order, R′ ≺P R, if for all j, i ∈ E with i 6= j

holds r′ji ≤ rji.

Peskun used the latter order to compare reversible transition matrices with the same station-

ary distribution and their asymptotic variance, and Tierney [Tie98] has shown (in a more

general setting, i.e. using operators rather than matrices) that the main property used in

the proof of Peskun, namely that ”R ≺P R′ implies R′ ≺pd R”, holds without reversibility

assumptions.

Example 4.2. For any transition matrix R = [rij] holds for R′ = Id, where Id is the identity

matrix of the same dimension as R,

R′ ≺P R , (4.1)

which says that the family of transition matrices R of a fixed dimension has a (unique)

minimal element. If we consider different routing schemes, resp. rerouting schemes, therefore

stalling from Example 2.8 is an extremal (re-)routing scheme.
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Proposition 4.3. Consider two ergodic unreliable Jackson networks with state processes Z

and Z′ and with the same arrival and service intensities, and the same failure-repair rates.

Assume that the equations x = x ·R and x = x ·R′ have the same stochastic solution ξ, and

the Assumption 2.4 holds, i.e. both networks follow some rerouting mechanism according to

(2.9) with the property (2.10).

If RD ≺pd R′D for all D (also for D = ∅), then

Gap(QZ′) ≤ Gap(QZ).

Proof. From Corollary 3.6 we have for all f ∈ L2

〈f,−QZf〉π̃−〈f,−QZ′f〉π̃ = Eπ̃

[
λ

ξYt0

〈
(D + Id)f(Yt, Xt),

(
R′Yt −RYt

)
(D + Id)f(Yt, Xt)

〉
ξYt

]
,

and from the product formula we rewrite this formula as

〈f,−QZf〉π̃−〈f,−QZ′f〉π̃ = EπEπ̂

[
λ

ξYt0

〈
(D + Id)f(Yt, Xt),

(
R′Yt −RYt

)
(D + Id)f(Yt, Xt)

〉
ξYt

]
=

= Eπ
∑
D

π̂(D)

[
λ

ξD0

〈
(D + Id)f(D,Xt),

(
R′D −RD

)
(D + Id)f(D,Xt)

〉
ξD

]
.

From our Assumption on ≺pd ordering of routings we therefore have for all f ∈ L2

〈f,−QZf〉π̃ ≥ 〈f,−QZ′f〉π̃

Taking infima on both sides over the set {f ∈ L2 : π̃(f) = 0, 〈f, f〉π̃ = 1} we get the

result.

As discussed above, a sufficient condition for Proposition 4.3 is that R′D ≺P RD holds for

any D, because we then have RD ≺pd R′D.

Computing spectral gaps for Markov processes with multidimensional state space is chal-

lenging, in many cases nearly impossible. Exceptions are multidimensional independent

birth-death processes, because for birth-death processes explicit results are known, see e.g.

[Doorn02], and Liggett has proved that the gap of independent processes is the minimum of

the spectral gap of the marginal processes [Lig89][Theorem 6.2].

We will show that the gap of the joint queue length network process Z (with unreliable

nodes) can be bounded from below by the gap of a related process consisting of identical

breakdown-repair process and related multidimensional birth-death process with condition-

aly independent components.
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The first result is in the realm of the abstract rerouting framework of Assumption 2.4, while

the second result is for rerouting schemes which are defined by concrete recipes described in

the Examples 2.7, 2.8, and 2.9.

Proposition 4.4. Consider an ergodic Jackson network process Z with unreliable servers as

in Theorem 2.11. Assume that for all D ⊆ {1, 2, . . . , J} with π̂(D) > 0 the routing matrix

RD = [rDij ]i,j∈J̃0\D has strict positive entrance and departure probabilities (rD0i > 0, rDi0 > 0)

for every node i ∈ J̃ \D.

Assume further that for all D ⊆ {1, 2, . . . , J} the rerouting RD fulfills overall balance for all

network nodes which are up

ηDj
∑
i∈J̃\D

rDji =
∑
i∈J̃\D

ηDi r
D
ij , ∀j ∈ J̃ \D. (4.2)

Then there exists an ergodic Jackson network process process Z′ with unreliable servers as

in Theorem 2.11 with the same stationary distribution π̃ as Z, such that

Gap(QZ′) ≤ Gap(QZ) .

The nodes of Z′ are perturbed by a common breakdown-repair regime identical to that of Z,

and for any given set D of broken down nodes the joint network process on J̃ \D consists of

conditionally independent birth-death processes, and the coordinate birth and death processes

on the i-th coordinate have birth rate λrD0i and state dependent death rate µi(ni)r
D
i0.

Proof. In order to obtain a lower bound for the spectral gap using birth and death processes

the idea is to allow in the comparison network for each node i, which is up, that any customer

who enters node i from the external source after being served only to feed back (possibly

iteratively) to node i or to depart from the network. This results in updating the service

rates suitably. Recall that the original network processes and the constructed comparison

processes are additionally perturbed by the same failure mechanism.

Consider the situation when nodes in D are down. Directly from the formula (2.18) for

the generator of the network process Z, it is clear that after reducing movements inside

the network, and allowing only for movements into the network from outside, or from the

network into outside, or feedback, we get as long as the reliability level D does not change

transitions for changing the queue lengths which look identical as those of the generator of

independent birth and death processes such that on the i-th coordinate the birth rate equals

λrD0i and the state dependent death rate equals µi(ni)r
D
i0, i ∈ J̃ \D.

Now, in order to be able to apply a formula for differences of one step correlations we have

to show on every reliability level D that such a modification is possible within a class of
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networks with extended routings having the same stationary solution. For this reason we

need the assumption on overall balance (4.2).

More precisely, we define R′D by r′Di0 = rDi0, r′D0i = rD0i, for all i, r′Dij = 0 for j 6= i, i, j ∈ J̃ \D,

and r′Dii = 1− rDi0 for i ∈ J̃ \D. With the routing R′D the network process Z′ (when nodes

in D are down) develops as a vector of independent birth and death processes for the up

nodes.

For j ∈ {1, . . . , J} let η′Dj be the solution of the traffic equations for R′D. We have directly

η′Dj = λrD0j + η′Dj r
′D
jj , j ∈ J̃ \D , (4.3)

and the solution of this system is uniquely defined. We show that these equations are solved

(for each D) by ηD = (ηDj , j ∈ J̃ \ D) as well. Inserting ηD into (4.3) we obtain with

r′Djj = 1− rDjo for j ∈ J̃ \D

ηDj = λrD0j + ηDj (1− rDjo) = λrD0j + ηDj
∑
i∈J̃\D

rDji = λrD0j + ηDj
∑
i∈J̃\D

ηDi r
D
ij ,

which is the traffic equation when nodes in D are down in Z and has the unique solution ηD.

The last step is done by first observing that ηD is from Assumption 2.4 the restriction of

η, the solution of the traffic equation when all nodes in Z are up, to J̃ \ D, and, secondly,

by considering the above constructed system of independent birth-death processes for the

reliability level ∅ as the comparison system when all nodes are up with routing R′, and the

R′D as rerouting scheme for this network on reliability level D.

Because η = η′ and ηD = η′D for all D, the η′D are the restriction of η′, the solution of the

traffic equation when all nodes in Z′ are up, to J̃ \D.

Note that for all D

R′D ≺P RD,

therefore RD ≺pd R′D, and the result follows from Proposition 4.3.

Corollary 4.5. Consider an ergodic Jackson network process Z with unreliable servers as

in Theorem 2.11 with the RS-RD procedures of rerouting. Assume that the routing matrix

R = [rij]i,j∈J̃0 is reversible and has strict positive entrance and departure probabilities (r0i >

0, ri0 > 0) for every node i ∈ J̃ .

Then there exists an ergodic Jackson network process process Z′ with unreliable servers as

in Theorem 2.11 with the same stationary distribution π̃ as Z, such that

Gap(QZ′) ≤ Gap(QZ) .
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The nodes of Z′ are perturbed by a common breakdown-repair regime identical to that of Z,

and for any given set D of broken down nodes the joint network process on J̃ \D consists of

conditionally independent birth-death processes, and the coordinate birth and death processes

on the i-th coordinate have birth rate λr0i and state dependent death rate µi(ni)ri0.

Proof. From reversibility of R follows that for any D the overall balance (4.2) holds. So

Proposition 4.4 applies.

Corollary 4.6. Consider two ergodic unreliable Jackson networks with state processes Z

and Z′ and with the same arrival and service intensities, and the same failure-repair rates.

Assume that the equations x = x ·R and x = x ·R′ have the same stochastic solution ξ, and

the Assumption 2.4 holds. Moreover assume that Z′ follows the stalling rerouting scheme. If

R ≺pd R′ then

Gap(QZ′) ≤ Gap(QZ).

Proof. For the stalling scheme R′D = Id for all D 6= ∅, and R′∅ = R′, hence the assumptions

of Proposition 4.3 are fulfilled.

Taking for R′ the routing corresponding to parallel birth and death processes in the above

corollary we obtain

Corollary 4.7. Consider an ergodic Jackson network process Z with unreliable servers as

in Theorem 2.11. Assume that r0i > 0, ri0 > 0 for every node i ∈ J̃ .

Assume further that the routing R fulfills overall balance for all network nodes which are up

ηj
∑
i∈J̃

rji =
∑
i∈J̃

ηirij, ∀j ∈ J̃ . (4.4)

Then there exists an ergodic process Z′ with the same stationary distribution π̃ as Z, such

that

Gap(QZ′) ≤ Gap(QZ),

where Z′ consists of independent birth-death processes, which are perturbed by a common

breakdown-repair regime identical to that of Z, moreover Z′ obeys the stalling rerouting

scheme and the coordinate birth and death processes has on the i-th coordinate the birth

rate λr0i and the state dependent death rate µi(ni)ri0.

Remark: From irreducibility of Z, for i, j ∈ J̃ , i 6= j we obtain from (4.2) ηjr
J̃\{i,j}
ji = ηir

J̃\{i,j}
ij ,

but this does not mean that the matrix R is reversible, because r
J̃\{i,j}
ij 6= rij may hold.
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The lower bound Gap(Z′) in the previous statements is of interest, because it has con-

stitutive processes with conditionally independent coordinates. From [Lig89][Theorem 2.6]

it is known, that the gap of a process with independent coordinates is the minimum of

the gaps of the coordinate processes. Unfortunately enough, this theorem does not apply

here directly, because the coordinate birth-death processes are controlled by the common

breakdown-repair process. However, the comparison result of Proposition 4.3 can be used

to obtain upper bounds for spectral gaps. This topic will be considered in a separate paper.

Nevertheless the bound is of practical value, because the bounding process Z′ is reversible

with respect to π̃, which can be seen by checking the local balance equations. As a con-

sequence, the bounding techniques for reversible processes, e.g., using Cheeger constants,

found in the literature can be applied directly.

In [LS13][Example 6.2] it is shown, that the bounds obtained via Proposition 4.4 can be very

good for networks with reliable nodes. They compare the bound for an example provided

by Ignatiouk-Robert and Tibi [IRT12]:

This is the network described in Section 2.1 with state independent service rates µj = µ, and

routing matrix which fulfills rii = 0, ∀i = 0, 1, . . . , J, and r0i > 0,∀i = 1, . . . , J. Furthermore,

for all i, j = 1, . . . , J, i 6= j, holds complete symmetry by rij = p ∈ (0, 1/(j−1), which results

in ri0 = 1− p(J − 1) > 0,∀i = 1, . . . , J.

It is assumed that no breakdowns (and repair) occur.

In this symmetric network the partial balance (for D = ∅) holds if and only if r0i = 1/J,∀i =

1, . . . , J, which implies λj = λ/J,∀j = 1, . . . , J and ηj = λ/(J(1− p(J − 1))),∀j = 1, . . . , J.

We denote by

µi0 := min
1≤j≤J

µj,

and, recalling the bound of the spectral gap obtained for birth-death processes by van Doorn

[Doorn02], we obtain from the companion result of Proposition 4.4 (see [DS08][Proposition

4.4])

Gap(Z′) ≥

(√
µi0(1− p(J − 1))−

√
λ

J

)2

.

It is easy to check, that for this setting the Assumptions (3.10) and (3.11) of Corollary 3.4

in [IRT12] are fulfilled, which results in an upper bound for L2 spectral gap

Gap(Z) ≤ 1 + p

1− p(J − 2)

(√
µi0(1− p(J − 1))−

√
λ

J

)2

. (4.5)
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For p → 1/(J − 1) the factor 1+p
1−p(J−2)

tends monotonously to J , while for p → 0 it tends

monotonously decreasing to 1.

A consequence which elaborates on the implication Peskun yields positive definiteness is,

that if we perturb routing of customers in the networks by shifting transition probability

mass from non diagonal entries into the diagonal (leaving the routing equilibrium fixed) then

the speed of convergence of the perturbed process is smaller.

The existence of L2 spectral gap (that is the question when Gap(QZ) > 0) for unreliable

networks is a related topic. It is a common knowledge that for networks with constant service

rates (not depending on the number of customers at node) the spectral gap for classical

Jackson network exists. For service rates that can depend on the number of customers the

problem is more delicate. An iff characterization in terms of properties of service rates is

given in Lorek and Szekli [LS13]. A special feature of such processes is that the existence of

L2 spectral gap is directly related to the tail properties of the stationary distribution. For

references and details see [LS13].

An analogue to Peskun ordering and positive semidefinite order of transition matrices to

generator matrices is as follows.

Definition 4.8. Let Q = (q(x, y) : x, y ∈ E) and Q′ = (q′(x, y) : x, y ∈ E) be generator

matrices on a finite set E such that π̂Q = π̂Q′ = 0 holds for a probability vector π̂.

We say that Q′ is smaller than Q in the positive semidefinite order (for generators),

Q′ ≺pd Q, if the matrix Q−Q′ is positive semidefinite.

We say that Q′ is smaller than Q in the Peskun order (for generators), Q′ ≺P Q, if for all

x, y ∈ E with x 6= y holds q′(x, y) ≤ q(x, y).

Lemma 4.9. Let Q = (q(x, y) : x, y ∈ E) and Q′ = (q′(x, y) : x, y ∈ E) be generator matrices

on a finite set E such that π̂Q = π̂Q′ = 0 holds for a probability vector π̂. Then

Q ≺P Q′ =⇒ Q′ ≺pd Q . (4.6)

Proof. From q(x, y) ≤ q′(x, y) for all x, y ∈ E with x 6= y follows for all x ∈ E that

q′(x, x) ≤ q(x, x) holds. So

Q′ −Q := (q′(x, y)− q(x, y) : x, y ∈ E)

is a generator matrix as well. This implies that −(Q′ −Q) is positive semidefinite.

A direct consequence of Definition 4.8, this lemma, and of Theorem 3.4 is (in the spirit of

the previous statements of this section)
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Corollary 4.10. Suppose Z = (Y,X) and Z′ = (Y′,X′) are ergodic unreliable Jackson

network processes, having the same arrival and service intensities, and with the same routing

regimes, described by R = [rij]i,j=0,1,...,J and rerouting fulfilling Assumption 2.4.

The breakdown-repair process for Z is given in Definition 2.1 and for Z′ is defined similarly

via functions A′, B′ : 2J̃ → [0,∞), as given in Theorem 3.4.

The processes Y and Y′ are Markov with generators QY = (qY(K,L) : K,L ⊆ J̃) of Y and

QY′ = (qY
′
(K,L) : K,L ⊆ J̃) of Y′ as defined in (2.5) for Y and similar for Y′.

Assume that the stationary distributions of Y and Y′ are identical, denoted by π̂.

If QY ≺pd QY′ holds, then

Gap(QY′) ≤ Gap(QY)

Proof. Follows from the relation (3.4).

An easy to understand property is that whenever the breakdown-repair process Y of Z

is uniformly faster than the breakdown-repair process Y′ of Z′, i.e., for all x 6= y holds

q′(x, y) ≤ q(x, y), we have Gap(QY′) ≤ Gap(QY). This follows directly from Lemma 4.9.

So, for example, if we have A(D) = κ|D| · A′(D), and B(D) = κ|D| ·B′(D), A ∈ 2J̃ , for some

κ > 1, then QY′ ≺P QY, and these breakdown-repair processes fulfill the requirement of

Corollary 4.10.

4.2 Asymptotic variance

Peskun [Pes73] and Tierney [Tie98] derived comparison theorems for the asymptotic variance

of Markov chains for application to optimal selection of MCMC transition kernels in discrete

time. These asymptotic variances occur as variance in the limiting distribution of central

limit theorems (CLTs) for the MCMC estimators. For our network processes Z we consider

Markov chain (Xk, k ≥ 1), say with transition matrix

K = I + εQZ

(with ε > 0 sufficiently small). Under some regularity conditions on a homogeneous Markov

chain with one step transition kernel K we can obtain CLT of the form

√
n(

1

n

n∑
k=1

f(Xk)− Eπ̃(f(Xt)))
D→ N(0, v(f,K)),
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where the asymptotic variance is

v(f,K) = 〈f, f〉π̃ − π̃(f) + 2
∞∑
k=1

〈f,Kkf〉π̃.

Regularity conditions under which CLT holds for such Markov chains is a related topic

which we shall study in a separate paper. For reversible chains with positive spectral gap

it is possible to give conditions in terms of the service rates of our network but a general

iff characterization in terms of the service rates seem to be an open problem. The next

proposition gives a possibility to compare asymptotic variances provided they are finite.

Proposition 4.11. Consider two ergodic unreliable Jackson networks with the same arrival

and service intensities, and state processes Z and Z′. Assume that the routing matrices R

and R′ are reversible with respect to ξ. Both networks follow a rerouting mechanism according

to (2.9) with the property (2.10), such that RD and R′D are reversible with respect to ξD.

If RD and R′D are ordered for all D in positive definite order, R′D ≺pd RD, then for any

function f ∈ L2
0(Ẽ, π̃) := {g ∈ L2(Ẽ, π̃) : π(g) = 0} holds

v(f, I + εQZ) ≥ v(f, I + εQZ′). (4.7)

Proof. For standard Jackson networks without breakdown and repair it is well known that

reversibility of the routing matrix R implies reversibility of the joint queue length process. A

direct way to prove this is to check the local balance equations with respect to the stationary

distribution π. It is easy to see that this way of proof verifies reversibility of the processes

Z and Z′ here as well. The reason is that the breakdown and repair process is reversible

with respect to π̂, and that for fixed D and ND intensities of possible transitions on N|J̃\D|

balance locally with respect to the densities
∏

`∈J̃\D
∏n`

i=1

(
η`
µ`(i)

)
.

Because Z and Z′ are irreducible we can apply a result of Mira and Geyer [MG99][Theorem

4.2], which states that under this condition (4.7) is equivalent to ordering of the one step

correlations for f ∈ L2
0(E, π̃). The letter statement can be shown exactly as in the proof of

Proposition 4.3.

As in our previous statements, Peskun ordering of the kernels is a sufficient condition for

≺pd ordering, which recovers Tierney’s Theorem 4 in [Tie98].
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5 Proof of the correlation formulas

For f, g : E → R and the steady state probability π̃ of Z we are interested in the one-step

correlation expressions

〈f,QZg〉π̃ =
∑

D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)f(D,n) · (QZg)(D,n) (5.1)

=
∑

D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)f(D,n)
∑

L⊆{1,...,J}

∑
m∈NJ

qZ(D,n;L,m)g(L,m).

Recall that the steady state of Z is of product form: For (D, n1, . . . , nJ) ∈ E

π̃(D, n1, n2, . . . , nJ) = π̂(D) · π(n1, n2, . . . , nJ) = π̂(D) · C−1

J∏
j=1

nj∏
i=1

(
ηj
µj(i)

)

Here η = (η1, . . . , ηJ) is the solution of the traffic equation for the admitted customers of

the corresponding standard Jackson network (2.2) with D = ∅ and λj = λ · r0j, and C is the

normalization constant for the (marginal) joint queue length process

C =
∑

(n1,...,nJ )∈NJ

[
J∏
j=1

nj∏
i=1

(
ηj
µj(i)

)]
= C(J) .

Proof. (of Proposition 3.1) We evaluate directly

〈f,QZg〉π̃ = C−1
∑

D⊆{1,...,J}

∑
n∈NJ

π̂(D)
J∏
`=1

n∏̀
i=1

(
η`
µ`(i)

)
f(D,n)

 ∑
j∈J̃\D

λDj g(D,n+ ej) (5.2)

+
∑
j∈J̃\D

(1− δ0nj
)µj(nj)r

D
j0g(D,n− ej) +

∑
j∈J̃\D

(1− δ0nj
)
∑

i∈J̃\D,i6=j

µj(nj)r
D
jig(D,n− ej + ei)

−

 ∑
j∈J̃\D

λDj +
∑
j∈J̃\D

(1− δ0nj
)µj(nj)(1− rDjj)

 g(D,n)

+
∑
H⊂D

qY(D,H)g(H,n) +
∑
I⊃D

qY(D, I)g(I, n) −

(∑
H⊂D

qY(D,H) +
∑
I⊃D

qY(D, I)

)
g(D,n)

}
.

Interchanging summations, regrouping terms, and exploiting the product form structure of
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the state state distributions, we obtain

〈f,QZg〉π̃ =∑
n∈NJ

π(n)

 ∑
D⊆{1,...,J}

π̂(D)

{∑
H⊂D

qY(D,H)f(D,n)g(H,n) +
∑
I⊃D

qY(D, I)f(D,n)g(I, n)

}

−f(D,n)g(D,n)

{∑
H⊂D

qY(D,H) +
∑
I⊃D

qY(D, I)

}]

+
∑

D⊆{1,...,J}

π̂(D)
∑

nD∈N
|D|

∏
`∈D

(
C−1
`

n∏̀
i=1

η`
µ`(i)

)
 ∑
nJ̃\D∈N

J−|D|

∏
`∈J̃\D

(
C−1
`

n∏̀
i=1

η`
µ`(i)

)
f(D, (nD, nJ̃\D))

 ∑
j∈J̃\D

λDj g(D,n+ ej) +
∑
j∈J̃\D

(1− δ0nj
)µj(nj)r

D
j0g(D, (nD, nJ̃\D − ej))

+
∑
j∈J̃\D

(1− δ0nj
)
∑

i∈J̃\D,i6=j

µj(nj)r
D
jig(D, (nD, nJ̃\D − ej + ei))

−

 ∑
j∈J̃\D

λDj +
∑
j∈J̃\D

(1− δ0nj
)µj(nj)(1− rDjj)

 g(D, (nD, nJ̃\D))




For each fixed D,nD the terms in the last squared brackets are identical to the one step

correlation of a Jackson network in equilibrium on node set J̃ \ D (with the respective

transition rates) with respect to the functions f(D, (nD, (·)J̃\D)) and g(D, (nD, (·)J̃\D)).

We have agreed to denote the generator of such network by QXJ̃\D , and its steady state by

πJ̃\D, which leads to the proposed formula with the aid of the synthetic networks.

Proof. (of Proposition 3.2) We restart with the expression (5.2) and observe that for fixed

D ⊆ {1, . . . , J} the contribution of −rDjj in the negative terms would be exactly the contri-

bution in the double sum of i ∈ J̃ \D, i = j in the positive terms, where for i = j would

occur g(D,n−ej +ej) = g(D,n) otherwise. Together with µj(0) = 0 ∀j, incorporating these
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contributions simplifies our expression to

−C−1
∑

D⊆{1,...,J}

∑
n∈NJ

π̂(D)
J∏
`=1

n∏̀
i=1

(
η`
µ`(i)

)
f(D,n)g(D,n) (5.3)

(∑
H⊂D

qY(D,H) +
∑
I⊃D

qY(D, I)

)
+

 ∑
j∈J̃\D

λDj +
∑
j∈J̃\D

µj(nj)


+C−1

∑
D⊆{1,...,J}

∑
n∈NJ

π̂(D)
J∏
`=1

n∏̀
i=1

(
η`
µ`(i)

)
f(D,n)

{∑
H⊂D

qY(D,H)g(H,n) +
∑
I⊃D

qY(D, I)g(I, n)

}

+C−1
∑

D⊆{1,...,J}

∑
n∈NJ

π̂(D)
J∏
`=1

n∏̀
i=1

(
η`
µ`(i)

)
f(D,n)

 ∑
j∈J̃\D

λDj g(D,n+ ej)

+
∑
j∈J̃\D

µj(nj)r
D
j0g(D,n− ej) +

∑
j∈J̃\D

∑
i∈J̃\D

µj(nj)r
D
jig(D,n− ej + ei)


Our main work will be concerned with the simplified expression represented by the last two

lines of the formula above. Isolating this, we have

C−1
∑

D⊆{1,...,J}

∑
n∈NJ

π̂(D)
J∏
`=1

n∏̀
i=1

(
η`
µ`(i)

)
f(D,n)

 ∑
j∈J̃\D

λDj g(D,n+ ej)

+
∑
j∈J̃\D

µj(nj)r
D
j0g(D,n− ej) +

∑
j∈J̃\D

∑
i∈J̃\D

µj(nj)r
D
jig(D,n− ej + ei)


= C−1

∑
D⊆{1,...,J}

π̂(D)
∑

nD∈N
D

∏
`∈D

n∏̀
i=1

(
η`
µ`(i)

)
 ∑
nJ̃\D∈N

J̃\D

∏
`∈J̃\D

n∏̀
i=1

(
η`
µ`(i)

)
f(D,n)

 ∑
j∈J̃\D

λDj g(D,n+ ej)

+
∑
j∈J̃\D

µj(nj)r
D
j0g(D,n− ej) +

∑
j∈J̃\D

∑
i∈J̃\D

µj(nj)r
D
jig(D,n− ej + ei)



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= C−1
∑

D⊆{1,...,J}

π̂(D)
∑

nD∈N
D

∏
`∈D

n∏̀
i=1

(
η`
µ`(i)

)
 ∑
nJ̃\D∈N

J̃\D

∏
`∈J̃\D

n∏̀
i=1

(
η`
µ`(i)

) ∑
j∈J̃\D

f(D,n)λg(D,n+ ej)r
D
0j

+
∑
j∈J̃\D

µj(nj)f(D,n)g(D,n− ej)rDj0 +
∑
j∈J̃\D

∑
i∈J̃\D

µj(nj)f(D,n)g(D,n− ej + ei)r
D
ji




In the last line, if nj > 0, the expression µj(nj) cancels against a factor in the steady state

probability, otherwise the respective summands vanish.

Canceling in the relevant expressions the factors µj(nj) > 0, shifting the summation indices

thereafter, reduces the last expression to

∑
D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)

 ∑
j∈J̃\D

λf(D,n)g(D,n+ ej)r
D
0j +

∑
j∈J̃\D

ηjf(D,n+ ej)g(D,n)rDj0

+
∑
j∈J̃\D

∑
i∈J̃\D,i6=j

ηjf(D,n+ ej)g(D,n+ ei)r
D
ji +

∑
j∈J̃\D

ηjf(D,n+ ej)g(D,n+ ej)r
D
jj

 .

This simple expression seems to be noteworthy for its own, and could be substituted into

the correlation expression. But we can do even better. Write the last expression as (we

underbrace some intuition and use ηj = ηDj for j ∈ J̃ \D)

∑
D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)


∑
j∈J̃\D

λf(D,n)g(D,n+ ej)r
D
0j︸ ︷︷ ︸

0→j

+
∑
j∈J̃\D

ηDj f(D,n+ ej)g(D,n)rDj0︸ ︷︷ ︸
j→0

+
∑
j∈J̃\D

∑
i∈J̃\D

ηDj f(D,n+ ej)g(D,n+ ei)r
D
ji︸ ︷︷ ︸

j→i

+λf(D,n)g(D,n)rD00︸ ︷︷ ︸
0→0

−λf(D,n)g(D,n)rD00


From Lemma 2.5 we know that with ηD0 := λ the vector η̂D := (ηDj , j ∈ J̃0 \ D) solves the

equation x = x ·RD. Denote by ξD := (ξDi : i ∈ J̃0 \D) the stochastic solution of x = x ·RD.

Inserting this into the last expression yields
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∑
D⊆{1,...,J}

λ

ξD0

∑
n∈NJ

π̃(D,n)

ξD0 rD00f(D,n)g(D,n)︸ ︷︷ ︸
0→0

+
∑
j∈J̃\D

ξD0 r
D
0jf(D,n)g(D,n+ ej)︸ ︷︷ ︸

0→j

+
∑
j∈J̃\D

ξDj r
D
j0f(D,n+ ej)g(D,n)︸ ︷︷ ︸

j→0

+
∑
j∈J̃\D

∑
i∈J̃\D

ξDj r
D
jif(D,n+ ej)g(D,n+ ei)︸ ︷︷ ︸

j→i

 (5.4)

+
∑

D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)λf(D,n)g(D,n)rD00

We are now ready to insert (5.4) into the complete correlation expressions (5.1), resp. (5.3).

Let e0 = (0, 0, . . . , 0).

〈f,QZg〉π̃ =
∑

D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)f(D,n)
∑

L⊆{1,...,J}

∑
m∈NJ

qZ(D,n;L,m)g(L,m)

= C−1
∑

D⊆{1,...,J}

∑
n∈NJ

π̂(D)
J∏
`=1

n∏̀
i=1

(
η`
µ`(i)

)
f(D,n)

{∑
H⊂D

qY(D,H)g(H,n) +
∑
I⊃D

qY(D, I)g(I, n)

}

+C−1
∑

D⊆{1,...,J}

∑
n∈NJ

π̂(D)
J∏
`=1

n∏̀
i=1

(
η`
µ`(i)

)
λ

ξD0ξD0 rD00f(D,n)g(D,n)︸ ︷︷ ︸
0→0

+
∑
j∈J̃\D

ξD0 r
D
0jf(D,n)g(D,n+ ej)︸ ︷︷ ︸

0→j

+
∑
j∈J̃\D

ξDj r
D
j0f(D,n+ ej)g(D,n)︸ ︷︷ ︸

j→0

+
∑
j∈J̃\D

∑
i∈J̃\D

ξDj r
D
jif(D,n+ ej)g(D,n+ ei)︸ ︷︷ ︸

j→i


−C−1

∑
D⊆{1,...,J}

∑
n∈NJ

π̂(D)
J∏
`=1

n∏̀
i=1

(
η`
µ`(i)

)
λf(D,n)g(D,n)rD00

−C−1
∑

D⊆{1,...,J}

∑
n∈NJ

π̂(D)
J∏
`=1

n∏̀
i=1

(
η`
µ`(i)

)
f(D,n)g(D,n)

(∑
H⊂D

qY(D,H) +
∑
I⊃D

qY(D, I)

)
+

 ∑
j∈J̃\D

λDj +
∑
j∈J̃\D

µj(nj)


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=
∑

D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)

{∑
H⊂D

qY(D,H)f(D,n)g(H,n) +
∑
I⊃D

qY(D, I)f(D,n)g(I, n)

}

+
∑

D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)
λ

ξD0

 ∑
j∈(J̃∪{0})\D

∑
i∈(J̃∪{0})\D

ξDj r
D
jif(D,n+ ej)g(D,n+ ei)


−

∑
D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)λf(D,n)g(D,n)rD00

−
∑

D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)f(D,n)g(D,n)

{[∑
H⊂D

qY(D,H) +
∑
I⊃D

qY(D, I)

]

+

 ∑
j∈J̃\D

λDj +
∑
j∈J̃\D

µj(nj)


This yields finally the desired correlation formula from Proposition 3.2:

〈f,QZg〉π̃

=
∑

D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)

{∑
H⊂D

qY(D,H)f(D,n)g(H,n) +
∑
I⊃D

qY(D, I)f(D,n)g(I, n)

}

+
∑

D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)
λ

ξD0

 ∑
j∈(J̃∪{0})\D

∑
i∈(J̃∪{0})\D

ξDj r
D
jif(D,n+ ej)g(D,n+ ei)


−

∑
D⊆{1,...,J}

∑
n∈NJ

π̃(D,n)f(D,n)g(D,n)

{[∑
H⊂D

qY(D,H) +
∑
I⊃D

qY(D, I)

]

+

[ ∑
j∈J̃\D

λDj + λrD00︸ ︷︷ ︸
=λ

+
∑
j∈J̃\D

µj(nj)

]}
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