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1. Introduction

This master thesis covers topics from number theory, commutative algebra and representation
theory. The main objective of this work is to work out and present in an uniform way recent
and mostly not yet published results concerning bi-period polynomials. These results were
presented during the last years in either the Arithmetische Geometrie und Zahlentheorie
Seminar or in courses on multiple zeta values by U.Kühn at the Universität Hamburg. This
leads to the question for even more general multivariate period polynomials.

We will mainly study polynomials that satisfy certain relations. In the case of bivariate
polynomials f ∈ Q[x, y], these relations are given by

f(x, y) + f(−y, x) = 0

f(x, y) + f(x− y, x) + f(−y, x− y) = 0.
(1.1)

We denote the vector space of all homogeneous polynomials of degree k − 2 that satisfy
(1.1) by Wk. These period polynomials are classical in the theory of modular forms (see
e. g. [Lan87], [Zag91], [GKZ06], [PP13] and [CPZ19]). A theorem by Eichler–Shimura–
Manin shows that the space of modular forms is isomorphic to a certain subspace of period
polynomials. Apart from modular forms, period polynomials also have applications in
the theory of multiple zeta values where they can be used to describe certain Q-linear
relations (see [GKZ06], [Bro21], [Eca11] and [Sch15]). So overall, period polynomials are an
interesting object of research with important applications.

The term period polynomial usually refers to polynomials in one variable or to their
homogeneous analogues, i. e. homogeneous polynomials in two variables. Lately, however,
variants of period polynomials in 4 variables were studied in the context of multiple q-zeta
values (see [BBK20]). We will refer to them as bi-period polynomials in order to distinguish
them from the regular ones. We will see that most statements on period polynomials also
hold for bi-period polynomials.

This leads to the question of whether there is some generalization of period polynomials
in n variables. To generalize the relations (1.1), we want to define an appropriate right
action of SL2(Z) on the homogeneous spaces of Q[x1, . . . , xn]. We therefore consider the
irreducible n-dimensional representations of the matrix Lie group SL2(C). Via the inclusion
SL2(Z) ⊂ SL2(C) we obtain our desired action. There are currently, however, no applications
of these multivariate extensions of period polynomials known to the author.

This master thesis is organized as follows.

In chapter 2 we will first review the theory of period polynomials. We therefore begin
by defining a right action of the group GL2(Z) on the homogeneous spaces of Q[x, y] in
section 2.1. We refer to this action as the slash operator. This GL2(Z)-action will be
extended to an action of the group ring Z[GL2(Z)] in section 2.2 which is then used to
define the space of period polynomials Wk. In section 2.3, we consider a non-degenerate
pairing on the homogeneous spaces of Q[x, y]. This pairing has the useful property of
being invariant under the action of SL2(Z). We use this pairing in section 2.4 to describe
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1. Introduction

the orthogonal complement of Wk. This allows us to compute the dimensions of Wk as
well as the (anti)symmetric subspaces (w. r. t. swapping x and y). To conclude chapter 2,
we discuss applications of period polynomials to modular forms and multiple zeta values.
In section 2.5 we review some theory of modular forms and emphasize the connections
to period polynomials. In the following sections we then discuss applications of multiple
zeta values. In section 2.6 we begin by reviewing the definition of multiple zeta values.
We use the previously established theory of period polynomials such as the invariant and
non-degenerate pairing to compute linear relations amongst single and double zeta values. In
section 2.7 we consider the linearized double shuffle Lie algebra ls and describe connections
between period polynomials and conjectural generators and relations of this Lie algebra.

In chapter 3 we review the theory of bi-period polynomials. This discussion is mostly
analogous to the previous chapter to emphasize the similarities to period polynomials. We
also begin in section 3.1 by defining an action of GL2(Z) on the homogeneous spaces of
Q[x1, x2, y1, y2] and refer to this as the bi-slash operator. We will then use this action to
define the space of bi-period polynomials Wk. As the quadratic form q = x1y1 + x2y2

will turn out to play a key role in this discussion, we extend the bi-slash operator to
an action of its group of isometries Γ. In section 3.2 we will prove a special case of a
theorem by Weitzenböck for polynomials in 4 variables. This theorem explicitly describes
the finitely generated subalgebra that is invariant under an action of the additive group
Ga(C). Similar to before, we will then define a non-degenerate pairing on the homogeneous
spaces of Q[x1, x2, y1, y2] and show that this is invariant under the action of SL2(Z) in
section 3.3. Both the theorem of Weitzenböck and the pairing will then be used in section
3.4 to compute the dimensions of Wk as well as the (anti)symmetric subspaces of Wk.
Besides the invariant pairing, we also study another interesting structure that interacts well
with both the bi-slash operator and the pairing, namely the differential operator that is
associated to the quadratic form q. The study of this Laplacian operator is the content of
section 3.5. One important implication of this theory is the fact that we obtain recursive
decompositions of the homogeneous spaces. The idea of considering this differential operator
was proposed by D. Zagier in a private conversation with U.Kühn. We conclude chapter 3
by discussing applications of bi-period polynomials to q-analogues of multiple zeta values.
In section 3.6 we begin by reviewing multiple q-zeta values. We consider combinatorial
multiple Eisenstein series as a spanning set for the vector space of multiple q-zeta values.
Similar to section 2.6, we then use bi-period polynomials and established tools such as the
invariant and non-degenerate pairing to obtain relations amongst combinatorial multiple
Eisenstein series. In section 3.7 we consider the linearized balanced quasi shuffle algebra
lbs. Similar to section 2.7, we use bi-period polynomials to describe conjectural generators
and relations of this Lie algebra. In particular, we use the recursive decomposition that is
induced by the Laplacian operator to compute the dimension of relations in depth 2.

In chapter 4 we review central aspects of the representation theory of the matrix Lie group
SL2(C). The main goal is to describe all finite-dimensional irreducible representations of
SL2(C) (up to isomorphism). To compute the irreducible representations of SL2(C), it turns
out to be more convenient to compute the representations of the corresponding Lie algebra
sl2(C) instead. The established representation theory then tells us that the respective
representations are in one-to-one correspondence. This, however, is only true for simply
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connected matrix Lie groups. So after reviewing some fundamental concepts of matrix Lie
groups and Lie algebras in section 4.1, we will prove that SL2(C) is simply connected in
section 4.2. In section 4.3, we give some necessary definitions and state some propositions
that will allow us to focus on computing the irreducible representations of sl2(C) instead of
SL2(C). Since the proofs of these propositions use concepts that are not relevant for the
rest of this master thesis, we will not prove them but instead refer to respective literature.
We will then compute the finite-dimensional irreducible representations of SL2(C) in section
4.4. Throughout this chapter, we assume that the reader has basic knowledge of topology.

In chapter 5, we begin in section 5.1 by using the n-dimensional irreducible representation of
SL2(C) from the previous chapter to define an analogue of the slash operator on Q[x1, . . . , xn].
As this operator coincides with the slash operator for the case of n = 2, we will also refer to
this as the slash operator. The action of this slash operator is obtained for some γ ∈ SL2(Z)
by considering the transformation matrix of the respective representation of γ−1. Using
this action, we introduce a generalization of period polynomials in n variables which we
will refer to as generalized period polynomials. In section 5.2 we are then interested in the
question of whether the space of generalized period polynomials W (n)

k coincides with the
kernel of a certain operator in the cases where W (n)

k is non-trivial. Since this Lewis space
has been shown to equal the space of (bi-)period polynomials in the previous chapters, we
expect a similar result here. In fact, empirical evidence suggests that this is true. However,
it was not possible to prove this within the scope of this thesis. In section 5.3 we proceed by
defining a non-degenerate pairing and prove in Theorem 5.21 that this pairing is invariant
under the action of SL2(Z). By similar means as before, we then want to use this pairing
in section 5.4 to compute the dimension of W (n)

k . However, it turns out that the space of
SL2(Z)-invariant polynomials is not so easy to describe. We thus conclude the discussion
on the dimension of W (n)

k with a formula that still depends on the dimension of the space
of invariant polynomials.

This master thesis contains three appendices. In appendix A we give an exemplary discussion
on the representation theory of finite groups using the example of the dihedral group of
order 6. This is useful as we are often interested in groups generated by certain matrices of
finite order. An important tool that is repeatedly used is Molien’s theorem. This lets us
compute the Hilbert-Poincaré series of the space of polynomials that are invariant under
the action of a finite group.

In appendix B we use Molien’s theorem to compute the Hilbert-Poincaré series for spaces
of polynomials that are invariant under the action of certain matrices. These matrices are
used to define the space of generalized period polynomials.

In appendix C we list the source code of some computer based calculations in the context
of this master thesis. The code is written for the free and open-source computer algebra
system SageMath [The22] and is not claiming to be efficient.
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2. Period polynomials

2. Period polynomials

In order to define period polynomials, we first need to define an action of the general
linear group of degree 2 over the ring of integers GL2(Z) on bivariate polynomials, the
slash operator. This will be the goal of section 2.1. We will then recall some fundamental
statements of the established theory of period polynomials. In section 2.2 we will define
the space of period polynomials as well as the Lewis space which coincides with the period
polynomials whenever the latter space is non-trivial. We will then define a non-degenerate
pairing on the period polynomials in section 2.3 in order to compute their dimensions in
section 2.4. Finally, we discuss some applications of period polynomials in sections 2.5, 2.6
and 2.7. Unless stated otherwise, we let k ∈ N be an integer with k ≥ 2.

2.1. GL2(Z)-action via slash operator

Definition 2.1. For k ≥ 2 we denote the set of homogeneous polynomials in 2 variables of
degree k − 2 over Q by

Vk := {f = f(x, y) ∈ Q[x, y] | f homogeneous, deg(f) = k − 2} .

We further set V0 := {0}, V1 := {0} and

V :=
∞⊕
k=0

Vk.

Note that V is a graded vector space with homogeneous components given by Vk.

Remark 2.2. We have dim(Vk) = k − 1 since a basis is given by

xk−2, xk−3y, . . . , xyk−3, yk−2.

Definition 2.3. We define the slash operator on the space Vk by

GL2(Z)× Vk −→ Vk

(γ, f) 7−→ f |γ := f
(
(γ · z)t

)
where z = (x, y)t.

Proposition 2.4. The slash operator yields a right group action on Vk.

Proof. Let f ∈ Vk and γ ∈ GL2(Z). We then have f |γ ∈ Vk by the binomial theorem. Let
γ1, γ2 ∈ GL2(Z) with

γi =

(
ai bi
ci di

)
for i ∈ {1, 2}.
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2.1. GL2(Z)-action via slash operator

Then

(f |γ1 ) |γ2 = f(a2x+ b2y, c2x+ d2y) |γ1

= f
(
a1(a2x+ b2y) + b1(c2x+ d2y), c1(a2x+ b2y) + d1(c2x+ d2y)

)
= f

(
(a1a2 + b1c2)x+ (a1b2 + b1d2)y, (a2c1 + c2d1)x+ (b2c1 + d1d2)y

)
= f |(γ1 · γ2) .

Lemma 2.5. For even k ∈ N the space Vk is invariant under −1, i. e. for f ∈ Vk we have

f |(−1) = f.

Proof. For f ∈ Vk we write

f(x, y) =

k−2∑
i=0

ai x
iyk−2−i. (2.1)

Then k − 2 is even and thus

f |(−1) = f(−x,−y) = (−1)k−2
k−2∑
i=0

ai x
iyk−2−i = f.

Notation. We consider the SL2(Z)-matrices

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
, U =

(
1 −1
1 0

)
as well as the GL2(Z)-matrices

ε =

(
0 1
1 0

)
and δ =

(
−1 0
0 1

)
. (2.2)

Definition 2.6. We denote the eigenspaces of the operator |ε on Vk with eigenvalues 1
and −1, respectively, by

V +
k = {f ∈ Vk | f(y, x) = f(x, y)} and V −k = {f ∈ Vk | f(y, x) = −f(x, y)}

and the eigenspaces of the operator |δ on Vk with eigenvalues 1 and −1, respectively, by

V ev
k = {f ∈ Vk | f(−x, y) = f(x, y)} and V odd

k = {f ∈ Vk | f(−x, y) = −f(x, y)} .

Furthermore, for a subspace W ⊆ Vk we set W • := W ∩ V •k for all • ∈ {+,−, ev, odd}.
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2. Period polynomials

Remark 2.7.

i) Since ε and δ are diagonalizable, we obtain decompositions in eigenspaces

Vk = V +
k ⊕ V

−
k and Vk = V ev

k ⊕ V odd
k

with projections given by

π+ : Vk → V +
k , π− : Vk → V −k ,

f 7→ 1

2
(f + f |ε) f 7→ 1

2
(f − f |ε)

and

πev : Vk → V ev
k , πodd : Vk → V odd

k

f 7→ 1

2
(f + f |δ ) f 7→ 1

2
(f − f |δ ).

We further denote
f• := π•(f)

for all f ∈ Vk and • ∈ {+,−, ev, odd}.

ii) Let k be even. The operators |ε and |δ on Vk commute in this case since εδ ≡ δε
modulo ±1 (cf. Lemma 2.5). This implies that |ε acts on V ev

k and V odd
k and |δ acts

on V +
k and V −k . Hence we obtain a refined decomposition given by

Vk = V +,ev
k ⊕ V +,odd

k ⊕ V −,evk ⊕ V −,odd
k

where

V +,ev
k := V +

k ∩ V
ev
k , V +,odd

k := V +
k ∩ V

odd
k ,

V −,evk := V −k ∩ V
ev
k , V −,odd

k := V −k ∩ V
odd
k .

Note that the projections π+ and π− commute pairwise with πev and πodd for even k.
These compositions yield projections onto V +,ev

k , V +,odd
k , V −,evk and V −,odd

k which we
denote by

π+,ev := π+ ◦ πev, π+,odd := π+ ◦ πodd,

π−,ev := π− ◦ πev, π−,odd := π− ◦ πodd.

We further denote
f•,◦ := π•,◦(f)

for all f ∈ Vk, • ∈ {+,−} and ◦ ∈ {ev, odd}.

Projections onto invariant subspaces such as π+ and πev are generalized in the following
definition.
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2.1. GL2(Z)-action via slash operator

Definition 2.8. Let G ⊂ GL2(Z) be a finite group. The Reynolds operator of G on Vk is
given by

ρG : f 7→ 1

|G|
∑
γ∈G

f |γ .

Lemma 2.9. Let G ⊂ GL2(Z) be a finite group. The Reynolds operator of G is a surjective
linear map ρG : Vk −→ V G

k where V G
k ⊂ Vk is the G-invariant subspace.

Proof. The linearity of ρG follows immediately from the definition. For surjectivity note
that ρG averages over the action of G. Hence ρG(f) = f for all f ∈ V G

k . Now let σ ∈ G
and f ∈ Vk. We then have by standard group theoretical arguments that

ρG (f) |σ =
1

|G|
∑
γ∈G

f |(γσ) =
1

|G|
∑
γ′∈G

f
∣∣γ′ = ρG(f).

Remark 2.10. Note that the operators |S and |U have order 2 and 3, respectively, with
eigenvalues ±1 and {1, ω, ω2} where ω = e

2πi
3 . Following [Zag00], we denote

• the eigenspace of |S on Vk with eigenvalue 1 by Ak,

• the eigenspace of |S on Vk with eigenvalue −1 by Bk,

• the eigenspace of |U on Vk with eigenvalue 1 by Ck and

• the sum of the eigenspaces of |U on Vk with eigenvalues ω and ω2 by Dk.

We further denote the finite groups generated by S and U by GS and GU , respectively. We
then have Ak = im(ρGS ), Bk = ker(ρGS ), Ck = im(ρGU ) and Dk = ker(ρGU ). Hence we
obtain the decompositions1

Vk = Ak ⊕Bk and Vk = Ck ⊕Dk. (2.3)

Note that we can compute the respective dimensions for all k ∈ N via Molien’s theorem
A.12. This yields

dimAk = 1 + 2

⌊
k − 2

4

⌋
and dimCk = 1 + 2

⌊
k − 2

6

⌋
. (2.4)

1For more details on this, see appendix A. There is an exemplary discussion on the dihedral group D6.
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2. Period polynomials

2.2. Group ring action and period polynomials

Definition 2.11. Let G be a group and R be a ring. The set of formal linear combinations

R[G] :=

∑
g∈G

rg g

∣∣∣∣∣∣ rg ∈ R, rg = 0 except for finitely many g ∈ G


equipped with addition∑

g∈G
ag g

+

∑
g∈G

bg g

 :=
∑
g∈G

(ag + bg) g

and multiplication ∑
g∈G

ag g

 ·
∑
g∈G

bg g

 :=
∑
g∈G

(ag · bg) g

is the group ring of G with coefficients in R.

The notion of a group ring lets us extend Definition 2.3 to the group ring Z[GL2(Z)].

Definition 2.12. For
∑

γ∈GL2(Z) rγ γ ∈ Z[GL2(Z)] and f ∈ Vk we set

f

∣∣∣∣∣∣
∑

γ∈GL2(Z)

rγ γ :=
∑

γ∈GL2(Z)

rγ (f |γ ).

Remark 2.13. We can rewrite the spaces Ak, Bk, Ck and Dk from Remark 2.10 in terms
of the group ring action as

Ak = ker(1− S) = im(1 + S), Bk = ker(1 + S) = im(1− S)

and

Ck = ker(1− U) = im(1 + U + U2), Dk = ker(1 + U + U2) = im(2− U − U2).

The respective identities of kernels and images follow immediately via both-way inclusions.

We are now able to define the space of period polynomials.

Definition 2.14. For k ≥ 1 the space of period polynomials is given by

Wk :=
{
f ∈ Vk

∣∣ f |1 + S = f
∣∣1 + U + U2 = 0

}
.

For compatibility reasons, we further set W0 := Q (cf. Theorem 2.40).
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2.2. Group ring action and period polynomials

Remark 2.15. For odd k we have Wk = {0} since for f ∈ Vk as in (2.1) f ∈ ker(1 + S)
implies

ai = ak−2−i and ai = −ak−2−i

for all i ∈ {0, . . . , k − 2}. Hence f = 0.

Example 2.16. For k = 12 we consider

p12(x, y) = x10 − y10

rev∆ (x, y) = x8y2 − x2y8 − 3 (x6y4 − x4y6)

rodd
∆ (x, y) = 4x9y − 25x7y3 + 42x5y5 − 25x3y7 + 4xy9.

Note that p12 and rev∆ are simultaneously contained in W−k and W ev
k . Similarly, rodd

∆ is
contained in W+

k and W odd
k . This is no coincidence as we will see in Proposition 2.17.

Similar to Definition 2.14, we set W+
0 := {0}, W−0 := Q, W ev

0 := Q and W odd
0 := {0} for

compatibility reasons.

Proposition 2.17. For k ∈ N0 we have

W+
k = W odd

k and W−k = W ev
k .

Proof. The claim follows by definition for the case k = 0. Now let k ∈ N and f ∈Wk. By
Remark 2.15 the claim is trivial for odd k. So without loss of generality we assume that k
is even. We need to show that

f ∈ ker(1∓ ε) ⇐⇒ f ∈ ker(1± δ).

Note that δ ≡ εS modulo ±1 and ε = δS. Now if f ∈ ker(1∓ ε) then

f |1± δ = f |1± εS = f |(S ± ε) |S = f |(1 + S − (1∓ ε)) |S = 0.

And if f ∈ ker(1± δ) we have

f |1∓ ε = f |1∓ δS = f |(S ∓ δ) |S = f |(1 + S − (1± δ)) |S = 0.

Definition 2.18. We set T ′ = εT ε. The action of 1− T − T ′ is called the Lewis operator.
The kernel of the Lewis operator

Lk := ker(1− T − T ′) ⊆ Vk

is the Lewis space.

Proposition 2.19 ([GKZ06]). Let k ≥ 4 be even. Then

Wk = Lk. (2.5)

9



2. Period polynomials

Table 1: Dimensions of Wk, W±k and Lk for k ∈ {3, . . . , 20}.2
k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

dimWk 0 1 0 1 0 1 0 1 0 3 0 1 0 3 0 3 0 3

dimW+
k 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1

dimW−k 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 2

dimLk 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 3 1 3

Proof. For f ∈ Vk we have

f
∣∣1− T − T ′ |S = f

∣∣1 + S − (1 + U + U2) . (2.6)

If f ∈ ker(1− T − T ′) then f |1 + S = f
∣∣1 + U + U2 . This polynomial is then invariant

under both |S and |U and is thus invariant under the slash operator of U ·S = −T . Due to
the invariance under |(−1) (Lemma 2.5) this implies invariance under |T . Since the only
non-zero |T -invariant polynomials in Vk are of the form a · yk−2, for some a ∈ Q, we obtain
f ∈Wk as yk−2 is not invariant under |S . Now if f ∈Wk then the right-hand side of (2.6)
vanishes. Applying |S again yields f ∈ ker(1− T − T ′) since S2 ≡ 1 modulo ±1.

Remark 2.20. Equation (2.5) is called the Lewis equation.

Corollary 2.21. Let k ≥ 4 be even. Then

W±k = ker(1− T ∓ Tε). (2.7)

Proof. For f ∈ Vk assume f |ε = ±f . Then f |εT ε = ±f |Tε and hence

f |1− T ∓ Tε = f
∣∣1− T − T ′ .

The identities in (2.7) therefore follow immediately from (2.5).

Remark 2.22. Note that the Lewis space Lk is, unlike Wk, non-trivial for odd k. The
respective dimensions for small values of k can be found in table 1.

2.3. An invariant pairing

In order to compute the dimension of Wk we construct a direct sum decomposition of Vk
that contains Wk as a summand. To do so, we want to compute an orthogonal complement
of Wk in Vk and therefore consider a pairing on the space Vk that is invariant under the
action of SL2(Z).

2The source code that was used to compute these dimensions can be found in appendix C.1.
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2.3. An invariant pairing

Definition 2.23. For r, s,m, n ≥ 1 we set

〈
xr−1ys−1, xm−1yn−1

〉
:=

(−1)r−1(
k−2
m−1

) δ(r,s),(n,m)

and linearly extend this to a non-degenerate pairing 〈·, ·〉 on V .

Example 2.24. We consider f, g ∈ V8 with f(x, y) = 22x5y + 146x4y2 + 25x3y3 and
g(x, y) = 82x3y3 + 11x2y4 + 13xy5. Then we have

〈f, g〉 = −431

10
.

The pairing from Definition 2.23 can also be described in terms of partial derivatives.

Definition 2.25. For f, g ∈ V we set

〈f, g〉∂ :=
1

(k − 2)!
f

(
− ∂

∂y
,
∂

∂x

)(
g (x, y)

)(
0
)
.

Proposition 2.26. For f, g ∈ V we have

〈f, g〉 = 〈f, g〉∂ .

Proof. Since both pairings are linear, it suffices to proof the claim for monomials f ∈ Vk1
and g ∈ Vk2 . If k1 6= k2 then both pairings vanish. So we assume without loss of generality
that f = xr−1ys−1 and g = xm−1yn−1 for some r, s,m, n ≥ 1 with r+ s = k = m+ n. Now
both pairings vanish unless r = n and s = m. In this case we have

〈f, g〉∂ =
(−1)r−1

(k − 2)!

(
∂r−1

∂yr−1

∂s−1

∂xs−1

)(
xs−1yr−1

)
=

(−1)r−1(r − 1)!(s− 1)!

(k − 2)!

=
(−1)r−1(

k−2
r−1

) = 〈f, g〉 .

Considering the inclusion morphism SL2(Z) ↪→ GL2(Z), the GL2(Z)-action from Definition
2.3 induces an SL2(Z)-action on Vk.

Proposition 2.27. The pairing 〈·, ·〉 is invariant under the action of SL2(Z), i. e. for
f, g ∈ Vk we have

〈f |γ , g |γ 〉 = 〈f, g〉 for all γ ∈ SL2(Z). (2.8)

Furthermore, if k is even then the pairing 〈·, ·〉 on Vk is invariant under the action of
GL2(Z).

11



2. Period polynomials

Proof. Due to the linearity of 〈·, ·〉 we assume without loss of generality that f = xr−1ys−1

and g = xm−1yn−1 for some r, s,m, n ≥ 1 with r + s = k = m+ n. Since the group SL2(Z)
is generated by S and T , it suffices to check that (2.8) holds for for γ ∈ {S, T}. This is
equivalent to showing

〈f |S , g〉 =
〈
f, g

∣∣S−1
〉

(2.9a)
and

〈f |T , g〉 =
〈
f, g |T −1

〉
. (2.9b)

The left-hand side of (2.9a) yields

〈f |S , g〉 = (−1)r−1
〈
xs−1yr−1, xm−1yn−1

〉
=

(−1)k−2(
k−2
m−1

) δ(s,r),(n,m)

while the right-hand side is〈
f, g

∣∣S−1
〉

= (−1)n−1
〈
xr−1ys−1, xn−1ym−1

〉
=

(−1)n+r−2(
k−2
n−1

) δ(s,r),(n,m).

Both vanish unless f = g. If f = g both sides equal (−1)k−2
(
k−2
m−1

)−1
.

The left-hand side of (2.9b) yields

〈f |T , g〉 =
〈
(x+ y)r−1ys−1, xm−1yn−1

〉
=

r−1∑
i=0

(
r − 1

i

)〈
xiyk−2−i, xm−1yn−1

〉
=

(
r − 1

n− 1

)
(−1)n−1(

k−2
m−1

)
while the right-hand side is〈

f, g
∣∣T−1

〉
=
〈
xr−1ys−1, (x− y)m−1yn−1

〉
=

m−1∑
i=0

(
m− 1

i

)
(−1)m−1−i

〈
xr−1ys−1, xiyk−2−i

〉
=

(
m− 1

s− 1

)
(−1)m+r−s+1(

k−2
s−1

) =

(
m− 1

s− 1

)
(−1)n−1(

k−2
r−1

) .

First note that the left-hand side vanishes if and only if n > r and the right-hand side
vanishes if and only if s > m. Since n+m = r + s these conditions are equivalent. Now
assume r ≥ n. This is equivalent to m ≥ s. By using r − n = m− s we obtain that(

r − 1

n− 1

)
(−1)n−1(

k−2
m−1

) = (−1)n−1 (r − 1)!(m− 1)!(n− 1)!

(n− 1)!(r − n)!(k − 2)!

= (−1)n−1 (r − 1)!(m− 1)!(s− 1)!

(s− 1)!(m− s)!(k − 2)!

=

(
m− 1

s− 1

)
(−1)n−1(

k−2
r−1

) .

12



2.3. An invariant pairing

This proves the first claim.

Now let k be even. Since the group GL2(Z) is generated by {ε, δ, T} it suffices to show that

〈f |ε , g〉 = 〈f, g |ε〉 (2.10a)

and

〈f |δ , g〉 = 〈f, g |δ 〉 . (2.10b)

The left-hand side of (2.10a) yields

〈f |ε , g〉 =
〈
xs−1yr−1, xm−1yn−1

〉
=

(−1)s−1(
k−2
m−1

) δ(s,r),(n,m)

while the right-hand side is

〈f, g |ε〉 =
〈
xr−1ys−1, xn−1ym−1

〉
=

(−1)r−1(
k−2
n−1

) δ(s,r),(n,m).

Both sides vanish unless f = g. If f = g then both sides agree since s + r is even by
assumption and therefore s ≡ r mod 2.

The left-hand side of (2.10b) yields

〈f |δ , g〉 = (−1)r−1 〈f, g〉

while the right-hand side is

〈f, g |δ 〉 = (−1)m−1 〈f, g〉 .

Both sides vanish unless r = n and s = m. In this case we have r+m is even by assumption,
hence r ≡ m mod 2 and both sides agree.

Corollary 2.28. Recall the spaces Ak, Bk, Ck and Dk from Remark 2.10. We then have
〈f, g〉 = 0 for

1. f ∈ Ak, g ∈ Bk and

2. f ∈ Ck, g ∈ Dk.

Proof. This follows immediately from Proposition 2.27 since for M ∈ {S,U} we have

〈f, g〉 = 〈f |M , g |M 〉 = 〈f, λM · g〉 = λM 〈f, g〉

where λS = −1 and λU = ωi for some i ∈ {1, 2}. In particular we have λM 6= 1, hence the
claim follows.
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2. Period polynomials

2.4. Dimensions

In this section, we compute the dimensions of Wk, W+
k and W−k by following [Zag00]. We

recall that W0 = Q (see Definition 2.14) and that W+
0 = {0} and W−0 = Q.

Proposition 2.29.

i) Let k ≥ 4 be even. The dimension of Wk is explicitly given by

dimWk = k − 3− 2

(⌊
k − 2

4

⌋
+

⌊
k − 2

6

⌋)
.

ii) The generating series of Wk is given by

∞∑
k=0

dimWk x
k =

1 + x12

(1− x4)(1− x6)
.

Proof. Let k ≥ 4 be even. Corollary 2.28 shows that the decompositions (2.3) are in fact
orthogonal, i. e.

Ak ⊥ Bk = Vk = Ck ⊥ Dk. (2.11)

Now since we have Wk = Bk ∩Dk by definition, the orthogonality in (2.11) implies that
Wk = (Ak + Ck)

⊥. However, the space Ak ∩ Ck is trivial as we saw in the proof of
Proposition 2.19. We thus obtain Ak + Ck = Ak ⊕ Ck and therefore

Vk = Wk ⊕Ak ⊕ Ck (2.12)

which implies dimension-wise that

dimWk = dimVk − dimAk − dimCk. (2.13)

For i) we use the dimensions of Vk form Remark 2.2 and the dimensions of Ak and Ck from
(2.4). Then (2.13) implies that

dimWk = k − 3− 2

(⌊
k − 2

4

⌋
+

⌊
k − 2

6

⌋)
.

For ii) we first observe that the definition of Vk immediately yields since V0 = V1 = {0} that

∞∑
k=0

dimVk x
k =

x2

(1− x)2
.

Note that Vk is non-trivial for odd k. However, since (2.13) only holds for even k we first
observe that

∞∑
k=0
k even

dimVk x
k =

x2
(
1 + x2

)
(1− x2)2

.

14



2.4. Dimensions

We further obtain the generating series of Ak and Ck via Molien’s theorem A.12 which
yields

∞∑
k=0

dimAk x
k =

x2
(
1 + x4

)
(1− x4)(1− x2)

∞∑
k=0

dimCk x
k =

x2(1 + x6)

(1− x6)(1− x2)
.

The generating series yield that both Ak and Ck are trivial for odd k. Since (2.13) only
holds for k ≥ 4 we still have to account for the cases k = 0 and k = 2. We have dimW0 = 1
and dimW2 = 0. The right-hand side of (2.13), however, yields 0 for k = 0 and −1 for
k = 2. Hence, we obtain the generating series as

∞∑
k=0

dimWk x
k =

x2
(
1 + x2

)
(1− x2)2

−
x2
(
1 + x4

)
(1− x4)(1− x2)

− x2(1 + x6)

(1− x6)(1− x2)
+ x2 + 1

=
1 + x12

(1− x4)(1− x6)
.

Proposition 2.30.

i) Let k ≥ 4 be even. The dimension of W+
k is explicitly given by

dimW+
k =

k

2
− 2−

(⌊
k − 2

4

⌋
+

⌊
k − 2

6

⌋)
.

ii) The generating series of W+
k is given by

∞∑
k=0

dimW+
k xk =

x12

(1− x4)(1− x6)
.

Proof. Since

εS ≡ Sε, εU ≡ U2ε, εU2 ≡ Uε

hold modulo ±1 it follows that |ε acts on the spaces Ak, Ck and Wk. We thus obtain for
even k ≥ 4 from (2.12) that

V +
k = W+

k ⊕A
+
k ⊕ C

+
k

which implies dimension-wise that

dimW+
k = dimV +

k − dimA+
k − dimC+

k . (2.14)

We can, again, compute the Hilbert-Poincaré series of V +
k , A+

k and C+
k with Molien’s

theorem A.12 since the groups generated by {ε}, {ε, S} and {ε, U} are finite respectively.
This yields

dimV +
k =

k

2
dimA+

k = 1 +

⌊
k − 2

4

⌋
dimC+

k = 1 +

⌊
k − 2

6

⌋

15



2. Period polynomials

where the generating series are given by

∞∑
k=0

dimV +
k xk =

x2

(1− x2)(1− x)
,

∞∑
k=0

dimA+
k x

k =
x2

(1− x4)(1− x2)
,

∞∑
k=0

dimC+
k xk =

x2

(1− x6)(1− x2)
.

Now i) follows immediately from (2.14) and the respective dimensions.

For ii) we first note that V +
k is, again, non-trivial for odd k. So we observe that

∞∑
k=0
k even

dimV +
k xk =

x2

(1− x2)2
.

By adjusting for the k = 2 case in (2.14) we obtain

∞∑
k=0

dimW+
k xk =

x2

(1− x2)2
− x2

(1− x4)(1− x2)
− x2

(1− x6)(1− x2)
+ x2

=
x12

(1− x4)(1− x6)
.

Corollary 2.31.

i) Let k ≥ 4 be even. The dimension of W−k is explicitly given by

dimW−k =
k

2
− 1−

(⌊
k − 2

4

⌋
+

⌊
k − 2

6

⌋)
.

ii) The generating series of W−k is given by

∞∑
k=0

dimW−k xk =
1

(1− x4)(1− x6)
.

Proof. Let k ≥ 4 be even. Since |ε acts on Wk we also have the decomposition

Wk = W+
k ⊕W

−
k .

Propositions 2.29 and 2.30 therefore yield

dimW−k = dimWk − dimW+
k =

k

2
− 1−

(⌊
k − 2

4

⌋
+

⌊
k − 2

6

⌋)
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2.5. Applications 1: Modular forms

and

∞∑
k=0

dimW−k xk =
1 + x12

(1− x4)(1− x6)
− x12

(1− x4)(1− x6)

=
1

(1− x4)(1− x6)
.

Remark 2.32. Since W+
k = {0} and W−k = Q, Proposition 2.30 and Corollary 2.31 yield

in particular for all even k ∈ N0 with k 6= 2 that

dimW+
k = dimW−k − 1.

By Proposition 2.17 we also have

dimW odd
k = dimW ev

k − 1.

The dimensions of Wk, W+
k and W−k for small values of k can be found in table 1.

2.5. Applications 1: Modular forms

We denote the upper complex half plane by

H := {z ∈ C | im(z) > 0}.

Definition 2.33. Let k ∈ N be an integer. A modular form of weight k (w. r. t. SL2(Z)) is
a holomorphic function f : H→ C satisfying for all γ =

(
a b
c d

)
∈ SL2(Z) and z ∈ H that

f(z) = (cz + d)−kf

(
az + b

cz + d

)
(2.15)

with Fourier series expansion
f(z) =

∑
n≥0

anq
n (2.16)

where q = e2πiz. Furthermore, a modular form f of weight k is called a cusp form of weight
k if the constant coefficient a0 in (2.16) vanishes.

We denote the space of modular forms of weight k by Mk and the space of cusp forms of
weight k by Sk.

Remark 2.34. For odd k we have Mk = {0} since condition (2.15) implies for γ = −1
that all f ∈Mk satisfy

f(z) = (−1)−kf(z).

17



2. Period polynomials

Definition 2.35. Let f ∈ Sk. Then

rf (x) :=

∫ i∞

0
f(z)(z − x)k−2 dz

is called the period polynomial of f .

Definition 2.36. For f ∈ Sk we call

rn(f) :=

∫ i∞

0
f(z)zn dz

the nth period of f .

Proposition 2.37. Definition 2.35 actually yields a polynomial of degree k − 2. To be
precise, for f ∈ Sk we have

rf (x) =

k−2∑
n=0

(−1)n
(
k − 2

n

)
rn(f)xk−2−n ∈ C[x].

Proof. By Remark 2.34 we assume without loss of generality that k is even. We then have

rf (x) =

∫ i∞

0
f(z)(z − x)k−2 dz

=
k−2∑
n=0

(
k − 2

n

)∫ i∞

0
f(z)zn(−x)k−2−n dz

=
k−2∑
n=0

(−1)n
(
k − 2

n

)
rn(f)xk−2−n.

Example 2.38. For z ∈ H let

∆(z) = q ·
∞∏
n=1

(1− qn)24 = q − 24 q2 + 252 q3 ∓ . . .

Then ∆ is a cusp form of weight 12. Using the decomposition Vk = V +
k ⊕ V

−
k from Remark

2.7, we have

r+
∆ = ω+

∆ · r
odd
∆

r−∆ = ω−∆ ·
(

36

691
p12 − rev∆

)
with p12, rev∆ and rodd

∆ from Example 2.16 and complex constants

ω+
∆ = 0.00926927 . . . and ω−∆ = i · 0.114379 . . .

For more details, we refer to [Zag91].
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2.5. Applications 1: Modular forms

Theorem 2.40 below states a fundamental correspondence between cusp forms and their
respective period polynomials. They can be described as either uni- or bivariate polynomi-
als.

Remark 2.39. There is a natural bijection

Φ:
{
f ∈ Q[x] | deg(f) ≤ k − 2

} ∼−→
{
F ∈ Q[x, y] | F homogeneous, deg(F ) = k − 2

}
given by

Φ(f) = yk−2 · f
(
x

y

)
Φ−1(F ) = F (x, 1).

The Eichler–Shimura–Manin theory gives an important correspondence between the space of
cusp forms Sk and the spaces W ev

k and W odd
k . Using the decomposition Wk = W ev

k ⊕W odd
k

and the notation from Remark 2.7, we write p = pev + podd for p ∈Wk. We will state the
theorem without giving a proof. For more details, we refer to [Zag00] and [MR05].

Theorem 2.40 (Eichler–Shimura–Manin). The maps

rodd : Sk →W odd
k ⊗ C

f 7→ rodd
f

and

rev : Sk →W ev
k

/
(Q · pk)⊗ C

f 7→ revf

with pk = xk−2 − yk−2 are isomorphisms of vector spaces.

The proof of Theorem 2.40 makes use of a Hermitian scalar product on Sk that has a
connection to the pairing on Vk. For f, g ∈ Sk the Petersson scalar product is given by

〈f, g〉 :=

∫
F
f(z)g(z)yk

dx dy

y2

where z = x + iy and F = {z ∈ H | |Re(z)| ≤ 1
2 , |z| ≥ 1} is the fundamental domain for

SL2(Z) on H. Now consider the natural extension of the pairing 〈·, ·〉 on V to a Hermitian
form on C[x, y] by applying the complex conjugation to the second argument. We then
have for f, g ∈ Sk that

〈f, g〉 = ck ·
〈
rf
∣∣T − T−1 , rg

〉
where ck ∈ C is a complex constant depending on the weight k.
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2. Period polynomials

Remark 2.41. Zagier shows in [Zag91, p. 453] that the polynomial pk = xk−2 − yk−2 can
be naturally considered as the even period polynomial of the Eisenstein series

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn, q = e2πiz

with the (k − 1)th divisor sum
σk−1(n) =

∑
d|n

dk−1

and the kth Bernoulli number given by

∞∑
k=0

Bk
k!
xk =

x

ex − 1
.

Remark 2.42. The generating series of Sk is known to be

∞∑
k=0

dimSk x
k =

x12

(1− x4)(1− x6)
.

Note that this coincides with the series of W+
k = W odd

k from Proposition 2.30. By Remark
2.32 we further obtain from Theorem 2.40 for even k ≥ 4 that dimWk = 2 · dimSk + 1. We
have

x4

1− x2
=

∞∑
k=4
k even

xk

and the generating series of Wk from Proposition 2.29 can indeed be computed after
accounting for dimW0 = 1 as

2x12

(1− x4)(1− x6)
+

x4

1− x2
+ 1 =

1 + x12

(1− x4)(1− x6)
.

2.6. Applications 2: Exotic relations for double zeta values

The theory of multiple zeta values is concerned with real numbers of the form

ζ(s1, . . . , sl) :=
∑

n1>···>nl≥1

1

ns11 , . . . , n
sl
l

where (s1, . . . , sl) ∈ Nl with s1 > 1. In particular, one is interested in relations amongst
them. For example, we have

ζ(3) = ζ(2, 1).

For an introduction to multiple zeta values, see [BGF17].
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2.6. Applications 2: Exotic relations for double zeta values

An application of period polynomials in this theory was studied by Gangl, Kaneko and
Zagier in [GKZ06] to compute Q-linear relations amongst them. Our presentation of their
results follows the notes of a talk by U.Kühn [Küh20].

Consider the generating series of single and double zeta values

Z1(x) =
∑
s≥2

ζ(s) xs−1

Z2(x, y) =
∑
s1≥2
s2≥1

ζ(s1, s2) xs1−1ys2−1.

The multiple zeta values satisfy the double shuffle relations

ζ(s1) · ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2)

=

s1+s2−1∑
r=1

((
r − 1

s1 − 1

)
+

(
r − 1

s2 − 1

))
ζ(r, s1 + s2 − r),

for s1, s2 ≥ 2. Hence

Z2(x, y) + Z2(y, x) +
Z1(x)−Z1(y)

x− y
= Z2(x+ y, x) + Z2(x+ y, y) + ζ(2). (2.17)

By extending our definition of the slash operator to power series in variables x, y we can
rewrite (2.17) as

Z2(x, y) |(T − 1)(1 + ε) =
Z1(x)−Z1(y)

x− y
− ζ(2) (2.18)

since (T − 1)(1 + ε) = T + Tε− 1− ε.

We now extend the non-degenerate pairing 〈·, ·〉 to a duality pairing Q[x, y]×QJx, yK→ Q.
This is still invariant under the SL2(Z) action and allows us to associate relations amongst
multiple zeta values to certain polynomials.

Proposition 2.43. Let k ≥ 4 be even. Assume (2.18) encodes all non-trivial linear relations
of the form ∑

s1+s2=k
s1≥2
s2≥1

λs1,s2ζ(s1, s2) = λkζ(k) (2.19)

with λs1,s2 , λk ∈ Q. Then there exists a f ∈ Vk such that

λkζ(k) =

〈
f(x, y),

Z1(x)−Z1(y)

x− y
− ζ(2)

〉
∑

s1+s2=k
s1≥2
s2≥1

λs1,s2ζ(s1, s2) =
〈
f(x, y)

∣∣(1 + ε)(T−1 − 1) ,Z2(x, y)
〉
.
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2. Period polynomials

Proof. Let k ≥ 4 be even. The coefficient of a fixed monomial xiyj ∈ Vk on both sides of
(2.18) must be equal. This yields a relation∑

s1+s2=k
s1≥2
s2≥1

λi,js1,s2ζ(s1, s2) = ζ(k). (2.20)

By our previous considerations, we obtain (2.20) by applying the linear map
〈
xjyi, ·

〉
to

(2.18). By assumption, any linear relation of the form (2.19) is a linear combination of the
linear relations given by (2.20). We therefore find a f ∈ Vk such that 〈f(x, y), ·〉 applied to
(2.18) gives (2.19), i. e.

λkζ(k) =

〈
f(x, y),

Z1(x)−Z1(y)

x− y
− ζ(2)

〉
∑

s1+s2=k

λs1,s2ζ(s1, s2) = 〈f(x, y),Z2(x, y) |(T − 1)(1 + ε)〉 .

By Proposition 2.27 the pairing 〈·, ·〉 is invariant under the action of GL2(Z) since k is
even. So adjoints are given by inverses. Observe that the summands in (1 + ε)(T−1 − 1) =
T−1 + εT−1 − 1− ε are pairwise inverse to (T − 1)(1 + ε) from above. So the two operators
are adjoints to one another and the claim follows.

Remark 2.44. It is still an open question whether the multiple zeta values satisfy Q-linear
relations that cannot be derived from the algebraic double shuffle relations. So instead
of considering the single and double zeta values, [GKZ06] consider the formal double zeta
space Dk instead. This space is generated by formal symbols Zr,s, Pr,s and Zk that satisfy
the double shuffle relations

Zr,s + Zs,r = Pr,s − Zk for r, s ≥ 2 with r + s = k

k−1∑
r=2

[(
r − 1

j − 1

)
+

(
r − 1

k − j − 1

)]
Zr,k−r = Pj,k−j for 2 ≤ j ≤ k

2

(2.21)

and no other linear relations. So we have

Dk =
{Q-linear combinations of Zk, Zr,s, Pr,s}

〈relations (2.21)〉Q
.

Proposition 2.43 then holds without the additional assumption by replacing ζ(k) with Zk,
ζ(s1, s2) with Zs1,s2 and ζ(s1)ζ(s2) with Ps1,s2 .

Proposition 2.45. If f, f ′ ∈ Vk determine the same relation via applying the linear maps
〈f(x, y), ·〉 and 〈f ′(x, y), ·〉, respectively, to (2.18) then their projections onto V +

k agree.

Proof. Observe that

Z1(x)−Z1(y)

x− y
=
∑
k≥2

ζ(k)
xk−1 − yk−1

x− y
=
∑
k≥2

ζ(k)
k−1∑
r=1

xr−1yk−r−1
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2.6. Applications 2: Exotic relations for double zeta values

is an infinite sum of symmetric polynomials. Now recall the orthogonal decomposition
Vk = V +

k ⊕ V
−
k and the projection π+ onto V +

k from Remark 2.7. So for any f ∈ Vk we
obtain 〈

f(x, y),
Z1(x)−Z1(y)

x− y

〉
=

〈
π+(f)(x, y),

Z1(x)−Z1(y)

x− y

〉
.

For the other side we consider the adjoint operators ∆ = (T − 1)(1 + ε) and ∆∗ =
(1 + ε)(T−1 − 1) from above and obtain that

〈f(x, y),Z2(x, y) |∆〉 = 〈f(x, y) |∆∗ ,Z2(x, y)〉 = 2
〈
π+(f)

∣∣(T−1 − 1) ,Z2(x, y)
〉
.

Now if f, f ′ ∈ Vk give the same relations, then〈
π+(f − f ′)

∣∣(T−1 − 1) ,Z2(x, y)
〉

= 0.

Since the pairing is non-degenerate and ζ(s1, s2) > 0 for all s1 ≥ 2, s2 ≥ 1 this implies that
π+(f − f ′)

∣∣(T−1 − 1) = 0. Hence π+(f − f ′) is invariant under |ε and |T . But this space
is trivial and thus π+(f − f ′) = 0.

Example 2.46. Let k = 4. We consider the symmetric polynomials f1, f2 ∈ V +
4 with

f1(x, y) = x2 + y2 and f2(x, y) = xy. Since〈
f1(x, y),

Z1(x)−Z1(y)

x− y
− ζ(2)

〉
= 2ζ(4)〈

f1(x, y)
∣∣(1 + ε)(T−1 − 1) ,Z2(x, y)

〉
= 2ζ(3, 1) + 2ζ(2, 2)

and 〈
f2(x, y),

Z1(x)−Z1(y)

x− y
− ζ(2)

〉
= −1

2
ζ(4)〈

f2(x, y)
∣∣(1 + ε)(T−1 − 1) ,Z2(x, y)

〉
= −2ζ(3, 1)

Proposition 2.43 yields the relations

ζ(3, 1) + ζ(2, 2) = ζ(4) and 4ζ(3, 1) = ζ(4).

Combining these relations, we further obtain

ζ(2, 2) = 3ζ(3, 1).

Proposition 2.47. Let f ∈W ev
k . Then the relation (2.19) induced by applying the linear

map 〈f |T , ·〉 to (2.18) is symmetric in ζ(ev, ev), i. e. λs1,s2 = λs2,s1 for all even s1, s2 ∈ N.

Proof. Without loss of generality, we assume that k is even since Wk = {0} for odd k.

Recall the decompositions of Vk and the corresponding projections from Remark 2.7. Now
let s1, s2 ∈ N with s1 + s2 = k and s1 ≥ 2. Then〈

xs2−1ys1−1,Z2(x, y)
〉

= λs1,s2ζ(s1, s2)

23



2. Period polynomials

for some λs1,s2 ∈ Q. So for p ∈ Vk we see that

〈p(x, y),Z2(x, y)〉

is symmetric in ζ(ev, ev) if podd ∈ V +
k . Now let f ∈W ev

k and set g := f |T . By our previous
considerations, it suffices to show that (g |∆∗ )odd ∈ V +

k where ∆∗ = (1 + ε)(T−1 − 1) is the
operator from Proposition 2.43.

To show that (g |∆∗ )odd ∈ V +
k we first observe that

2g− = g |(1− ε) = f |(T − Tε) = f

where the last equality holds by assumption since we have f ∈W−k (cf. Proposition 2.17)
and satisfies the refined Lewis equation (Corollary 2.21). Applying πev and πodd to this
identity yields, respectively, that 2 g−,ev = f and g−,odd = 0. Since godd = g+,odd + g−,odd

we further obtain that g+,odd = godd ∈ V +
k . Our goal is to show that (g |∆∗ )odd = −godd

which will imply the claim.

Observe that g−,odd = 0 implies

g |S = g |δε = (gev − godd) |ε = (g+,ev − g−,ev − g+,odd).

Now recall the matrix T ′ = εT ε from Definition 2.18 and note that ST−1 = T ′S. Since S
is self-inverse modulo ±1 and commutes with (1 + ε) we have

g |∆∗ = (g |S ) |S∆∗ =
(
g+,ev − g−,ev − g+,odd

)
|S∆∗

=
(
g+,ev − g+,odd

) ∣∣(1 + ε)S(T−1 − 1) − g−,ev
∣∣(1 + ε)S(T−1 − 1)

= 2
(
g+,ev − g+,odd

) ∣∣S(T−1 − 1)

= 2
(
g+,ev − g+,odd

) ∣∣(T ′ − 1)S

= 2
(
g+,ev − g−,ev − g+,odd

) ∣∣(T ′ − 1)S + 2g−,ev
∣∣(T ′ − 1)S .

By using TST ′ = S and f ∈W ev
k = W−k , we further compute that(

g+,ev − g−,ev − g+,odd
) ∣∣T ′ = g

∣∣ST ′ = f
∣∣TST ′ = f |S = f |δε = −f (2.22)

2 g−,ev
∣∣T ′ = f

∣∣T ′ = −f |Tε = −g |ε = −g+,ev + g−,ev − g+,odd. (2.23)

By combining (2.22) and (2.23) with f = 2 g−,ev and the formula for g |∆∗ from above, we
obtain that

g |∆∗ =
(
−2 f − 2

(
g+,ev − g−,ev − g+,odd

)
− g+,ev + g−,ev − g+,odd − 2 g−,ev

)
|S

=
(
−3 g+,ev − 3 g−,ev + g+,odd

)
|S =

(
−3 gev + godd

)
|S

=
(
−3 gev − godd

)
|ε = −3 gev |ε − godd.

This shows that (g |∆∗ )odd = −godd since gev |ε is even.
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2.7. Applications 3: Quadratic relations and depth 4 generators for ls

Examples 2.48.

i) Consider the polynomial p6(x, y) = x4 − y4 ∈W ev
6 . This yields〈

p6(x, y) |T ,
Z1(x)−Z1(y)

x− y

〉
= 0

〈p6(x, y) |T∆∗ ,Z2(x, y)〉 = ζ(4, 2) + ζ(2, 4)− 3
(
ζ(5, 1) + ζ(3, 3)

)
and we have the relation

3
(
ζ(5, 1) + ζ(3, 3)

)
= ζ(4, 2) + ζ(2, 4).

ii) Consider the polynomial

rev∆ (x, y) = x8y2 − x2y8 − 3
(
x6y4 − x4y6

)
∈W ev

12

from Example 2.16. This yields〈
rev∆ (x, y) |T ,

Z1(x)−Z1(y)

x− y

〉
= − 1

105
ζ(12),

〈rev∆ (x, y) |T∆∗ ,Z2(x, y)〉 =
1

15

(
ζ(8, 4) + ζ(4, 8)

)
+

19

126
ζ(6, 6)

−
(

1

15
ζ(9, 3) +

5

14
ζ(7, 5) +

2

5
ζ(5, 7)

)
and we have the relation

− 1

105
ζ(12) =

1

15

(
ζ(8, 4)+ζ(4, 8)

)
+

19

126
ζ(6, 6)−

(
1

15
ζ(9, 3) +

5

14
ζ(7, 5) +

2

5
ζ(5, 7)

)
.

For the formal double zeta space from Remark 2.44, [GKZ06, Theorem 3] show, in the
formulation of [Küh20], the following theorem.

Theorem 2.49. There is an isomorphism of vector spaces

W ev
k
∼=

〈relations in Dk which are symmetric in Zev,ev〉Q
〈relations in Dk which are symmetric in Zev,ev without Zodd,odd〉Q

.

2.7. Applications 3: Quadratic relations and depth 4 generators for ls

Another occurrence of period polynomials in the theory of multiple zeta values can be found
in the study of the linearized double shuffle Lie algebra ls. In this master thesis, we only
need some fragments of this theory. For more details, we refer to [Bro21] and [Sch15] as
well as to [MT18] for a comparison. We have a decomposition

ls =

∞⊕
k,d=0

lsk,d ⊂
∞∏
d=0

Q[x1, . . . , xd]

where lsk,d contains certain homogeneous polynomials in d variables of degree k − d. In
fact, the pair (ls, { , }), where { , } denotes the Ihara bracket, is a bigraded Lie algebra.
There are two occurrences of period polynomials in the theory of ls.
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2. Period polynomials

1.) The subspace in depth d = 1 is

ls1 =
∞⊕
k=1

Qσ2k+1

where
σ2k+1(x1) = x2k

1 ∈ Q[x1] (2.24)

is an even polynomial and the bracket

{ , } : ls1 × ls1 −→ ls2

is explicitly given for f, g ∈ ls1 by

{f, g}(x1, x2) =
(
f(x1)g(x2)− f(x2)g(x1)

) ∣∣1 + U + U2 . (2.25)

The relations of ls in depth 2 are given by the kernel of { , } : ls1 × ls1 −→ ls2. Note
that the bracket factors through the exterior product ls1 ∧ ls1, i. e. we have a short
exact sequence

0 // ker({ , }) // ls1 ∧ ls1
// ls2

// 0 .

Since ls1 is spanned by polynomials of the form (2.24), we obtain that ls1 ∧ ls1 is
isomorphic to the space that is spanned by homogeneous polynomials of the form

Σ(x1, x2) := σ2k1+1(x1)σ2k2+1(x2)− σ2k1+1(x2)σ2k2+1(x1)

for k1, k2 ∈ N. A non-zero Σ has degree 2(k1 + k2) and we have Σ ∈ ker(1 +S). Since
σ2k+1 is an even polynomial, we observe that

Σ(−x1, x2) = Σ(x1, x2) = Σ(x1,−x2).

We therefore obtain that

Σ ∈
{
f ∈ Vk

∣∣∣ f |1 + S = 0, f |δ = f
}
.

By (2.25), the bracket on ls1 is given by applying the operator
∣∣1 + U + U2 . Hence

we obtain for the weight k component of the kernel that

ker({ , })k ∼= W ev
k .

For example, in weight k = 12 we have the relation (cf. [Bro21, Example 7.2])

rel∆ : 3{σ5, σ7} − {σ3, σ9} = 0

which corresponds to the even period polynomial rev∆ from Example 2.16 of the cusp
form ∆ from Example 2.38 by replacing {σ2a+1, σ2b+1} with x2a

1 x
2b
2 − x2b

1 x
2a
2 .
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2.7. Applications 3: Quadratic relations and depth 4 generators for ls

2.) Let f ∈W ev
k

/ 〈
xk−2 − yk−2

〉
Q be an even period polynomial with f(x, 0) = 0. Then

Brown [Bro21, § 8] associates the element

ef :=
∑
Z/5Z

(f1(y4 − y3, y2 − y1) + (y0 − y1)f0(y2 − y3, y4 − y3))

to it, where we sum over all cyclic permutations of (y0, . . . , y4) 7→ (y1, . . . , y5, y0) with

f0(x, y) =
f(x, y)

xy(x− y)
and f1(x, y) = (x− y)f0(x, y).

Note that f0(x, y) ∈ Q[x, y] since f vanishes at x = 0, y = 0 and x − y = 0. Now
define ēf ∈ Q[x1, . . . , x4] by setting y0 = 0 and yi = x1 + · · ·+xi, for all i ∈ {1, 2, 3, 4}
in ef . Brown has shown that the elements ēf satisfy the linearized double shuffle
relations. An alternative construction for these elements is given by Ecalle in [Eca11]
by using a refinement of 1.).

Conjecturally, the Lie algebra ls is generated by the elements σ2k+1 from above and ēf
from 2.) and all relations are of the form described in 1.). This would imply the Broadhurst-
Kreimer conjecture.
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3. Bi-period polynomials

3. Bi-period polynomials

We now consider a slight generalization of period polynomials in 4 variables. Similar to
chapter 2, we are going to define an action of GL2(Z) first and again consider ker(1 + S) ∩
ker(1 + U + U2). Before doing so, however, we will study the Laplacian operator of a
particular quadratic form. This will give us a new decomposition of the space of polynomials
which will turn out useful for computing the dimension of certain subspaces. Throughout
this chapter we let, again, k ∈ N be an integer with k ≥ 2 unless stated otherwise.

3.1. Bi-slash operator

Definition 3.1. For k ≥ 2 we denote the set of homogeneous polynomials in 4 variables of
degree k − 2 over Q by

Vk := {f = f(x1, x2, y1, y2) ∈ Q[x1, x2, y1, y2] | f homogeneous, deg(f) = k − 2}.

We further set V0 := {0}, V1 := {0} and

V :=
∞⊕
k=0

Vk.

Note that V is a graded vector space with homogeneous components given by Vk.

Lemma 3.2. We have
dimVk =

(
k + 1

3

)
.

Proof. The definition of Vk yields immediately that

∞∑
k=0

dimVk xk =
x2

(1− x)4
.

Note that

(1− x)4 ·

( ∞∑
k=2

(
k + 1

3

)
xk

)
= (x4 − 4x3 + 6x2 − 4x+ 1) ·

( ∞∑
k=2

(
k + 1

3

)
xk

)
= x2

since the first few coefficients are easily checked and a straight forward computation shows
that (

k + 1

3

)
− 4

(
k

3

)
+ 6

(
k − 1

3

)
− 4

(
k − 2

3

)
+

(
k − 3

3

)
= 0.

We thus have
∞∑
k=0

dimVk xk =
x2

(1− x)4
=
∞∑
k=0

(
k + 1

3

)
xk.
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3.1. Bi-slash operator

Definition 3.3. For γ ∈ GL2(Z) we set γ−t :=
(
γ−1

)t and define the bi-slash operator on
the space Vk by

GL2(Z)× Vk −→ Vk

(γ, f) 7−→ f |γ := f
(

(γ · z1)t ,
(
γ−t · z2

)t)
where z1 = (x1, x2)t and z2 = (y1, y2)t.

Remark 3.4. The bi-slash operator on Vk is essentially given by applying the slash operator
from Definition 2.3 twice. It thus follows by a similar calculation as in Proposition 2.4 that
this in fact yields a right group action on Vk.

Lemma 3.5. For even k ∈ N the space Vk is invariant under −1, i. e. for f ∈ Vk we have

f |(−1) = f.

Proof. Note that −1 is self-inverse and fixed under transposing. The proof thus follows
analogously to Lemma 2.5.

For the following definition, we recall the GL2(Z)-matrices ε and δ from (2.2).

Definition 3.6. We denote the eigenspaces of the operator |ε on Vk with eigenvalues 1
and −1, respectively, by

V+
k = {f ∈ Vk | f(x2, x1, y2, y1) = f(x1, x2, y1, y2)}
V−k = {f ∈ Vk | f(x2, x1, y2, y1) = −f(x1, x2, y1, y2)}

and the eigenspaces of the operator |δ on Vk with eigenvalues 1 and −1, respectively, by

Vev
k = {f ∈ Vk | f(−x1, x2,−y1, y2) = f(x1, x2, y1, y2)}

Vodd
k = {f ∈ Vk | f(−x1, x2,−y1, y2) = −f(x1, x2, y1, y2)}.

Furthermore, for a subspace W ⊆ Vk we set W• :=W ∩ V•k for all • ∈ {+,−, ev, odd}.

Remark 3.7.

i) Analogously to Remark 2.7 we have orthogonal decompositions in eigenspaces

Vk = V+
k ⊕ V

−
k and Vk = Vev

k ⊕ Vodd
k

with projections given by

π+ : Vk → V+
k , π− : Vk → V−k ,

f 7→ 1

2
(f + f |ε) f 7→ 1

2
(f − f |ε)

29



3. Bi-period polynomials

and

πev : Vk → Vev
k , πodd : Vk → Vodd

k

f 7→ 1

2
(f + f |δ ) f 7→ 1

2
(f − f |δ ).

We further denote
f• := π•(f)

for all f ∈ Vk and • ∈ {+,−, ev, odd}.

ii) Let k be even. The operators |ε and |δ on Vk commute in this case since εδ ≡ δε
modulo ±1 (cf. Lemma 3.5). This implies that |ε acts on Vev

k and Vodd
k and |δ acts

on V+
k and V−k . Hence we obtain a refined decomposition given by

Vk = V+,ev
k ⊕ V+,odd

k ⊕ V−,evk ⊕ V−,odd
k

where

V+,ev
k := V+

k ∩ V
ev
k , V+,odd

k := V+
k ∩ V

odd
k ,

V−,evk := V−k ∩ V
ev
k , V−,odd

k := V−k ∩ V
odd
k .

Note that the projections π+ and π− commute pairwise with πev and πodd for even k.
These compositions yield projections onto V+,ev

k , V+,odd
k , V−,evk and V−,odd

k which we
denote by

π+,ev := π+ ◦ πev, π+,odd := π+ ◦ πodd,

π−,ev := π− ◦ πev, π−,odd := π− ◦ πodd.

We further denote
f•,◦ := π•,◦(f)

for all f ∈ Vk, • ∈ {+,−} and ◦ ∈ {ev, odd}.

Remark 3.8. Let γ ∈ GL2(Z). Then there are different ways to describe the bi-slash
operator from Definition 3.3.

1. We set

γ̄ =

(
γ 0
0 γ−t

)
and consider the natural analogue of the slash operator from chapter 2, i. e.

GL4(Z)× Vk −→ Vk

(σ, f) 7−→ f
((
σ · z

)t)
where z = (x1, x2, y1, y2)t. Then the bi-slash operator f |γ is given by f

((
γ̄ · z)t

)
.
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3.1. Bi-slash operator

2. Note for γ =

(
a b
c d

)
∈ SL2(Z) that

(x′1, x
′
2, y
′
1, y
′
2) =

(
(γ · z1)t ,

(
γ−t · z2

)t)
= (ax1 + bx2, cx1 + dx2, dy1 − cy2, ay2 − by1)

and (
x′1 x′2
−y′2 y′1

)
=

(
x1 x2

−y2 y1

)
· γt

=

(
ax1 + bx2 cx1 + dx2

−(ay2 − by1) dy1 − cy2

)
.

Now set

Z :=

(
x1 x2

−y2 y1

)
and consider f ∈ Vk as a function on 2× 2-matrices via

f : Z 7−→ f(Z) := f(x1, x2, y1, y2).

This yields
f |γ = f

(
Z · γt) .

Definition 3.9. Let q ∈ V4 be the polynomial given by

q(Z) = det(Z) = x1y1 + x2y2.

The following observation is now trivial.

Proposition 3.10. The polynomial q is invariant under the action of SL2(Z), i. e. for all
γ ∈ SL2(Z) we have

q |γ = q.

Definition 3.11. Let Γ ⊂ GL4(Q) be the group of isometries of q, i. e.

Γ :=
{
γ ∈ GL4(Q) | q((γ · z)t) = q(zt)

}
where z = (x1, x2, y1, y2)t.

Remark 3.12. Since GL4(Q) acts naturally on Vk we obtain an action of Γ on Vk. By
Remark 3.8 we also have an embedding GL2(Z) ↪→ Γ via

γ 7−→
(
γ 0
0 γ−t

)
.
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3. Bi-period polynomials

Example 3.13. Consider the matrices

τ =


1 0 0 0
0 0 0 −1
0 0 1 0
0 −1 0 0

 , ν =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ∈ GL4(Z).

Since q((τ · z)t) = q(zt) and q((ν · z)t) = q(zt) for z = (x1, x2, y1, y2)t we have τ, ν ∈ Γ. By
using the notation of Remark 3.8, we have for f ∈ Vk that

f |τ := f(x1,−y2, y1,−x2) = f(Zt)

and
f |ν := f(x1,−x2, y1,−y2) = f(δZδt).

Remark 3.14. In fact, [Sie36, p. 259] shows that the action of Γ is generated by the
embedded actions

(1,SL2(Z)) ↪→ Γ, (1, γ) 7→
(
f 7→ f(Z · γt)

)
(SL2(Z), 1) ↪→ Γ, (γ, 1) 7→ (f 7→ f(γ · Z))

as well as f |τ and f |ν from Example 3.13.

Remark 3.15. We extend the Γ-action on Vk to an action of the group ring Z[Γ] on Vk
analogously to Definition 2.12.

We will now define the central objects of this chapter and show two basic results.

Definition 3.16. For k ≥ 1 the space of bi-period polynomials is given by

Wk := {f ∈ Vk | f |1 + S = f
∣∣1 + U + U2 = 0}.

We further set W0 := Q.

Lemma 3.17. For odd k we have Wk = {0}.

Proof. Let f ∈ Vk with

f(x1, x2, y1, y2) =
∑

i,j,m,n≥0,
i+j+m+n=k−2

ai,j,m,n x
i
1 x

j
2 y

m
1 yn2 .

Fix some i1, i2, j1, j2 ≥ 0 with i1 + i2 + j1 + j2 = k − 2. Since S−t = S, the coefficient of
xi11 x

i2
2 y

j1
1 y

j2
2 in f |S is given by (−1)i2+j2ai2,i1,j2,j1 . Then f ∈ ker(1 + S) implies

(−1)i2+j2ai2,i1,j2,j1 + ai1,i2,j1,j2 = 0 and (−1)i1+j1ai1,i2,j1,j2 + ai2,i1,j2,j1 = 0.

Since k − 2 is odd, we have (−1)i2+j2 6= (−1)i1+j1 , hence f = 0.
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3.2. A special case of Weitzenböck’s theorem

Recall the spaces W+
k , W

−
k , W

ev
k and Wodd

k from Definition 3.6. Analogously to chapter 2,
we also set W+

0 := {0}, W−0 := Q, Wev
0 := Q and Wodd

0 := {0}.

Note that the proof of Proposition 2.17 only relies on invariance under |−1 and matrix
identities. Hence we obtain the following lemma by a similar proof.

Lemma 3.18. For k ∈ N0 we have

W+
k =Wodd

k and W−k =Wev
k .

3.2. A special case of Weitzenböck’s theorem

Recall the calculation for dim(Wk) in section 2.4. First, we considered the orthogonal
complement of Wk in Vk. We were then able to compute the dimension of that complement
since there are no SL2(Z)-invariant polynomials in Vk. We want to pursue the same
approach to compute the dimension of Wk in the next section. However, we already saw
that q = x1y1 + x2y2 is invariant under the action of SL2(Z). The goal of this section is
therefore to describe the space

Ek :=
{
f ∈ Vk

∣∣ f = f |γ for all γ ∈ SL2(Z)
}
.

Remark 3.19. Since the group SL2(Z) is generated by S and T , the space Ek consists of
all polynomials that are invariant under both |S and |T , i. e.

Ek = ker(1− S) ∩ ker(1− T ).

Note that the space ker(1 − S) is invariant under a finite group. So we can compute its
dimension via Molien’s theorem A.12. The group generated by T , however, is infinite. Our
first goal will therefore be to describe ker(1− T ) more explicitly.

Remark 3.20. For λ ∈ Z we have

T λ =

(
1 λ
0 1

)
.

We thus obtain a group homomorphism

(Z,+) −→ (SL2(Z), ·)
λ 7−→ T λ

and note for f ∈ Q[x1, x2, y1, y2] that

f |T λ = f(x1 + λx2, x2, y1, y2 − λy1).

So by considering λ ∈ C and f ∈ C[x1, x2, y1, y2] instead, we can define an action of the
additive group Ga(C) on V ⊗ C = C[x1, x2, y1, y2] via

λ ∗ f(x1, x2, y1, y2) := f(x1 + λx2, x2, y1, y2 − λy1).
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3. Bi-period polynomials

We further observe that q = x1y1 + x2y2 is invariant under this action since

q(x1 + λx2, x2, y1, y2 − λy1) = (x1 + λx2)y1 + x2(y2 − λy1)

= q(x1, x2, y1, y2) + λ(x2y1 − x2y1) = q(x1, x2, y1, y2).

A theorem by Weitzenböck [Wei32] states that the algebra of Ga(C)-invariant polynomials
in n variables is finitely generated. The following theorem is a special case of this.

Theorem 3.21. We have

C[x1, x2, y1, y2]Ga(C) = C[x1y1 + x2y2, x2, y1].

Proof. This proof follows [FR17, Example 7.4.10]. Since the polynomials x1y1 + x2y2, x2

and y1 are invariant under Ga(C), we immediately obtain that

C[x1y1 + x2y2, x2, y1] ⊆ C[x1, x2, y1, y2]Ga(C).

To show the converse inclusion, let

f(x1, x2, y1, y2) =
∑

i1,i2,j1,j2≥0,
i1+i2+j1+j2=k−2

ai1,i2,j1,j2 x
i1
1 x

i2
2 y

j1
1 y

j2
2 ∈ Vk

with f = λ ∗ f , i. e.

f(x1, x2, y1, y2) = f(x1 + λx2, x2, y1, y2 − λy1).

Differentiating this equation w. r. t. λ and evaluating at λ = 0 yields due to the product
rule

0 =
∑

i1,i2,j1,j2≥0,
i1+i2+j1+j2=k−2

d

dλ
ai1,i2,j1,j2 (x1 + λx2)i1xi22 y

j1
1 (y2 − λy1)j2

∣∣∣
λ=0

=
∑

i1,i2,j1,j2≥0,
i1+i2+j1+j2=k−2

ai1,i2,j1,j2

(
i1 · xi1−1

1 xi2+1
2 yj11 y

j2
2 − j2 · x

i1
1 x

i2
2 y

j1+1
1 yj2−1

2

)

= x2 ·
∂f

∂x1
− y1 ·

∂f

∂y2
.

Now consider the substitutions

X1 = x1y1 + x2y2, X2 = x2, Y1 = y1, Y2 = y2

X ′1 = x1, X ′2 = x2, Y ′1 = y1, Y ′2 = x1y1 + x2y2

and set

p1(X1, X2, Y1, Y2, Y
−1

1 ) := f

(
X1 −X2Y2

Y1
, X2, Y1, Y2

)
∈ C[X1, X2, Y1, Y2, Y

−1
1 ]

p2(X ′1, X
′
2, Y

′
1 , Y

′
2 , X

′−1
2 ) := f

(
X ′1, X

′
2, Y

′
1 ,
Y ′2 −X ′1Y ′1

X ′2

)
∈ C[X ′1, X

′
2, Y

′
1 , Y

′
2 , X

′−1
2 ].
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3.2. A special case of Weitzenböck’s theorem

Note that X1−X2Y2
Y1

= x1 and Y ′2−X′1Y ′1
X′2

= y2. So after resubstitution we have p1, p2 ∈
C[x1, x2, y1, y2] with

p1(x1, x2, y1, y2) = f(x1, x2, y1, y2) = p2(x1, x2, y1, y2). (3.1)

The product rule now implies that

∂p1

∂Y2
=

∑
i1,i2,j1,j2≥0,

i1+i2+j1+j2=k−2

∂

∂Y2
ai1,i2,j1,j2

(
X1 −X2Y2

Y1

)i1
Xi2

2 Y
j1

1 Y j2
2

= −
∑

i1,i2,j1,j2≥0,
i1+i2+j1+j2=k−2

ai1,i2,j1,j2 i1 ·
(
X1 −X2Y2

Y1

)i1−1

Xi2+1
2 Y j1−1

1 Y j2
2

+
∑

i1,i2,j1,j2≥0,
i1+i2+j1+j2=k−2

ai1,i2,j1,j2 j2 ·
(
X1 −X2Y2

Y1

)i1
Xi2

2 Y
j1

1 Y j2−1
2 .

By resubstituting we see that

∂p1

∂Y2
= − 1

y1

(
x2
∂f

x1
− y1

∂f

∂y2

)
= 0.

Similarly, we have
∂p2

∂X ′1
=

1

x2

(
x2

∂f

∂x1
− y1

∂f

∂y2

)
= 0.

This shows p1 ∈ C[X1, X2, Y1, Y
−1

1 ] and p2 ∈ C[X ′2, Y
′

1 , Y
′

2 , X
′−1
2 ]. Since p1 and p2 consist

of finitely many monomials, we find minimal numbers n,m ∈ N0 such that

q1(X1, X2, Y1) := Y n
1 · p1(X1, X2, Y1, Y

−1
1 ) ∈ C[X1, X2, Y1]

q2(X ′2, Y
′

1 , Y
′

2) := (X ′2)m · p2(X ′2, Y
′

1 , Y
′

2 , X
′−1
2 ) ∈ C[X ′2, Y

′
1 , Y

′
2 ].

After resubstituting we have p1 = p2 by (3.1) and hence

xm2 · q1(x1y1 + x2y2, x2, y1) = yn1 · q2(x2, y1, x1y1 + x2y2).

Now assume n > 0. We then obtain for y1 = 0 that q1(x2y2, x2, 0) = 0. In particular, we
have q1(y2, 1, 0) = 0 for x2 = 1. This implies that y1 still divides q1, i. e. we find some
q̃1 ∈ C[x1y1 + x2y2, x2, y1] with y1 · q̃1 = q1. But then

q̃1 = yn−1
1 · p1

contradicts the minimality of n. Hence n = 0 and f ∈ C[x1y1 + x2y2, x2, y1].

Corollary 3.22. Let k ≥ 4 be even. Then the space Ek is spanned by a power of q, i. e.

Ek =
〈
q
k−2
2

〉
Q

where q = x1y1 + x2y2 and the generating series of Ek is given by
∞∑
k=0

dim Ek xk =
x2

1− x2
.
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3. Bi-period polynomials

Proof. The inclusion
〈
q
k−2
2

〉
Q ⊆ Ek is clear.

For the converse inclusion let f ∈ Ek. By Remark 3.19 we have f ∈ Ek if and only if
f ∈ ker(1 − S) and f ∈ ker(1 − T ). Theorem 3.21 implies for the latter condition that
f ∈ Q[x1y1 + x2y2, x2, y1]. But since

(x2) |S = x1 (y1) |S = −y2

the invariance under |S implies f ∈ Q[x1y1+x2y2]. The generating series follows immediately
from the fact that Ek is one-dimensional for even k and trivial for odd k.

3.3. An invariant pairing

As we want to use the same approach to compute the dimension of Wk as we did for Wk in
section 2.4, we need a pairing on Vk that is invariant under the action of SL2(Z) in order
to describe the orthogonal complement of Wk.

Definition 3.23. For (i1, i2, j1, j2), (m1,m2, n1, n2) ∈ N4
0 with we set〈

xi11 x
i2
2 y

j1
1 y

j2
2 , x

m1
1 xm2

2 yn1
1 yn2

2

〉
:=

(−1)i1+j1(
k−2

i1,i2,j1,j2

)δ(i1,i2,j1,j2),(m2,m1,n2,n1)

and linearly extend this to a pairing 〈·, ·〉 on V.

Definition 3.24. For p, q ∈ V we set ∂(p) := p
(
− ∂
∂x2

, ∂
∂x1

,− ∂
∂y2

, ∂
∂y1

)
and

〈p, q〉∂ :=
1

(k − 2)!

(
∂(p)

)
(q)(0).

Lemma 3.25. The pairing 〈·, ·〉∂ is a non-degenerate bilinear form on V.

Proof. Since ∂ is essentially a substitution of variables, we immediately obtain that ∂ is a
linear map on Vk. Hence 〈·, ·〉∂ is linear in the first argument. So without loss of generality
let p = a · xi11 x

i2
2 y

j1
1 y

j2
2 for some a ∈ Q and i1, i2, j1, j2 ∈ N0. Then for a polynomial r ∈ V

of the form
r =

∑
i,j,m,n

bi,j,m,n · xi1x
j
2y
m
1 y

n
2

we have

〈p, r〉∂ =
(−1)i1+j1(

k−2
i1,i2,j1,j2

) · a · bi2,i1,j2,j1 .
Hence 〈·, ·〉∂ is also linear in the second argument. So 〈·, ·〉∂ is a bilinear form.

The form is non-degenerate since for any non-zero P ∈ V let p as above denote one of its
monomials, then for p0 = xi21 x

i1
2 y

j2
1 y

j1
2 we have

〈P, p0〉∂ =
(−1)i1+j1(

k−2
i1,i2,j1,j2

) · a 6= 0.

36



3.3. An invariant pairing

Similarly to Proposition 2.26 we have the following lemma.

Lemma 3.26. The pairings on Vk agree, i. e. we have 〈·, ·〉 = 〈·, ·〉∂.

Proof. By linearity of both pairings it suffices to prove the claim for monomials f ∈ Vk1 and
g ∈ Vk2 . If k1 6= k2 then both pairings vanish. So assume without loss of generality that
f(x1, x2, y1, y2) = xi11 x

i2
2 y

j1
1 y

j2
2 and g(x1, x2, y1, y2) = xm1

1 xm2
2 yn1

1 yn2
2 with i1 + i2 + j1 + j2 =

k − 2 and m1 +m2 + n1 + n2 = k − 2 for some k ≥ 2. Then

〈f, g〉∂ =
(−1)i1+j1

(k − 2)!

(
∂i2

∂xi21

)(
∂i1

∂xi12

)(
∂n2

∂yn2
1

)(
∂n1

∂yn1
2

)
(xm1

1 xm2
2 yn1

1 yn2
2 )

=
(−1)i1+j1

(k − 2)!
(i1)! (i2)! (j1)! (j2)! δ(i1,i2,j1,j2),(m2,m1,n2,n1)

=
(−1)i1+j1(

k−2
i1,i2,j1,j2

)δ(i1,i2,j1,j2),(m2,m1,n2,n1) = 〈f, g〉 .

Theorem 3.27. The pairing 〈·, ·〉 is invariant under the action of SL2(Z), i. e. for all
f, g ∈ Vk and γ ∈ SL2(Z) we have

〈f |γ , g |γ 〉 = 〈f, g〉 . (3.2)

Proof. By linearity of the pairing it suffices to prove the claim for monomials f, g ∈ Vk. So
let f(x1, x2, y1, y2) = xi11 x

i2
2 y

j1
1 y

j2
2 and g(x1, x2, y1, y2) = xm1

1 xm2
2 yn1

1 yn2
2 . Note that (3.2) is

equivalent to
〈f |γ , g〉 =

〈
f, g

∣∣γ−1
〉

since this implies
〈f |γ , g |γ 〉 =

〈
f, g

∣∣γ · γ−1
〉

= 〈f, g〉 .

Since the group SL2(Z) is generated by S and T , it suffices to show that

〈f |S , g〉 =
〈
f, g

∣∣S−1
〉

(3.3)

〈f |T , g〉 =
〈
f, g

∣∣T−1
〉
. (3.4)

We have for the left-hand side of (3.3) that

〈f |S , g〉 =
(−1)k−2(

k−2
i1,i2,j1,j2

)δ(i2,i1,j2,j1),(m2,m1,n2,n1)

and for the right-hand side that〈
f, g |S−1

〉
=

(−1)i1+j1+m2+n2(
k−2

i1,i2,j1,j2

) δ(i1,i2,j1,j2),(m1,m2,n1,n2).

So both sides vanish unless f = g in which case we have i1 + j1 +m2 + n2 = k − 2.
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3. Bi-period polynomials

To compute both sides of (3.4) we first note that

f |T = f(x1 + x2, x2, y1, y2 − y1)

=

 i1∑
l1=0

(
i1
l1

)
xi1−l11 xi2+l1

2

 ·
 j2∑
l2=0

(−1)l2
(
j2
l2

)
yj1+l2

1 yj2−l22


and

g
∣∣T−1 = g(x1 − x2, x2, y1, y1 + y2)

=

 m1∑
l1=0

(−1)l1
(
m1

l1

)
xm1−l1

1 xm2+l2
2

 ·
 n2∑
l2=0

(
n2

l2

)
yn1+l2

1 yn2−l2
2

 .

So we obtain that the left-hand side of (3.4) is

〈f |T , g〉 =
(−1)j1+m2(

k−2
m1,m2,n1,n2

)( i1
m2

)(
j2
n1

)
δ(i1+i2,j1+j2),(m1+m2,n1+n2)

while the right-hand side yields〈
f, g

∣∣T−1
〉

=
(−1)i1+i2+j1+m1(

k−2
i1,i2,j1,j2

) (
m1

i2

)(
n2

j1

)
δ(i1+i2,j1+j2),(m1+m2,n1+n2).

So both sides vanish unless i1 + i2 = m1 +m2 and j1 + j2 = n1 +n2. In this case, i1 ≥ m2 is
equivalent to m1 ≥ i2 and j2 ≥ n1 is equivalent to n2 ≥ j1. Hence the binomial coefficients
on both sides vanish simultaneously. The conditions further imply that

(−1)i1+i2+j1+m1 = (−1)j1+m2 .

The equality of both sides of (3.4) then follows from(
i1
m2

)(
j2
n1

)
(m1)! (m2)! (n1)! (n2)! =

(i1)! (j2)! (m1)! (m2)! (n1)! (n2)!

(i1 −m2)! (m2)! (j2 − n1)! (n1)!

=
(i1)! (j2)! (m1)! (n2)!

(m1 − i2)! (n2 − j1)!

=

(
m1

i2

)(
n2

j1

)
(i1)! (i2)! (j1)! (j2)! .

Remark 3.28. Similar to the second part of Proposition 2.27 it follows analogously that
the pairing 〈·, ·〉 is invariant under the action of GL2(Z) if k is even.

Remark 3.29. The pairing 〈·, ·〉 is not invariant under the action of Γ. E. g., consider
f, g ∈ V8 with f(x1, x2, y1, y2) = x1x

2
2y1y

2
2 and g(x1, x2, y1, y2) = x2

1x2y
2
1y2. We then have

〈f(Z), g(Z)〉 =
1

180
6= 8

45
= 〈f(T · Z), g(T · Z)〉

where f(T · Z) = f((γ · z)t) with

γ =


1 0 0 −1
0 1 1 0
0 0 1 0
0 0 0 1

 ∈ Γ.
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3.4. Dimensions

3.4. Dimensions

Now that we have established an invariant pairing by Theorem 3.27, we are able to compute
the dimension of Wk by considering similar decompositions as we did for Wk in section 2.4.
We recall that W0 = Q (see Definition 3.16) and that W+

0 = {0} and W−0 = Q. We begin
with a definition that will be convenient for denoting the respective dimensions.

Definition 3.30. For λ ∈ R we set

[λ] :=

{
bλc , if λ+ 1

2 < dλe
dλe , if λ+ 1

2 ≥ dλe.

This definition essentially rounds a number λ ∈ R to its closest integer with the convention
that

[
1
2

]
= 1.

Theorem 3.31.

i) Let k ≥ 4 be even. The dimension of Wk is explicitly given by

dimWk =
1

6

(
k + 1

3

)
+ (−1)

k
2
k

4
+

2

3

(
%k · k −

[
k

3

])
+ 1

where

%k =

{
1, if k ≡ 0 mod 3

0, else.

ii) The generating series of Wk is given by

∞∑
k=0

dimWk x
k =

1 + x4 + 6x6 + 10x8 + 6x10 + 15x12 + 10x14 + x16 − 2x18

(1− x4)2(1− x6)2
.

Proof. For even k ≥ 4 the space Vk is invariant under |−1 (Lemma 3.5). The operators |S
and |U thus have order 2 and 3, respectively. Hence analogously to Remark 2.10 we obtain
the decompositions

Vk = Ak ⊕ Bk and Vk = Ck ⊕Dk (3.5)

where

Ak = ker(1− S), Bk = ker(1 + S),

Ck = ker(1− U), Dk = ker(1 + U + U2).

Since the pairing 〈·, ·〉 on Vk is invariant under SL2(Z) by Proposition 3.27 we obtain that
the decompositions (3.5) are in fact orthogonal (cf. Corollary 2.28), i. e.

Ak ⊥ Bk = Vk = Ck ⊥ Dk. (3.6)
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3. Bi-period polynomials

Now Wk = Bk ∩ Dk and (3.6) imply that Wk = (Ak + Ck)⊥. With Ek = Ak ∩ Ck as before,
we obtain

Vk =Wk ⊕Ak/Ek ⊕ Ck/Ek ⊕ Ek. (3.7)

Since Ek is 1-dimensional by Corollary 3.22 this yields dimension-wise that

dimWk = dimVk − dimAk − dim Ck + 1. (3.8)

Since S̄ and Ū generate finite groups (cf. Remark 3.8 for the notation), we can compute
the dimensions of Ak and Ck via Molien’s theorem A.12. This yields

dim(Ak) =
1

2

((
k + 1

3

)
+ (−1)

k
2

+1 · k
2

)
dim(Ck) =

1

3

((
k + 1

3

)
+ 2

[
k

3

]
− %k · 2k

)
where the generating series are given by

∞∑
k=0

dimAk xk =
x2
(
1 + 2x2 + 10x4 + 2x6 + x8

)
(1− x4)2(1− x2)2

∞∑
k=0

dim Ck xk =
x2
(
1 + 2x2 + 2x4 + 14x6 + 2x8 + 2x10 + x12

)
(1− x6)2(1− x2)2

.

Recall that dim(Vk) =
(
k+1

3

)
by Lemma 3.2. We now obtain i) from (3.8) and the respective

dimensions above as this implies

dimWk =
1

6

(
k + 1

3

)
+ (−1)

k
2
k

4
+

2

3

(
%k · k −

[
k

3

])
+ 1.

To show ii) we also use (3.8). Recall from the proof of Lemma 3.2 that the generating series
of Vk is given by

∞∑
k=0

dimVk xk =
x2

(1− x)4
.

Note that Vk is non-trivial for odd k. However, since (3.8) only holds for even k, we first
observe that

∞∑
k=0
k even

dimVk xk =
x2
(
1 + 6x2 + x4

)
(1− x2)4

.

By Corollary 3.22 we have
∞∑
k=0

dim Ek xk =
x2

1− x2
.

Note that (3.8) also holds for k = 2 since W2 is trivial and the right-hand side yields in fact
0 as all spaces are 1-dimensional is this case. So by adjusting for dimW0 = 1 the claim
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3.4. Dimensions

Table 2: Dimensions of Wk, W±k and Lk for k ∈ {3, . . . , 14}.3
k 3 4 5 6 7 8 9 10 11 12 13 14

dimWk 0 3 0 8 0 15 0 24 0 57 0 70

dimW+
k 0 1 0 3 0 6 0 10 0 26 0 32

dimW−k 0 2 0 5 0 9 0 14 0 31 0 38

dimLk 2 3 6 8 12 15 20 24 30 57 42 70

follows from
∞∑
k=0

dimWk x
k =

x2
(
1 + 6x2 + x4

)
(1− x2)4

−
x2
(
1 + 2x2 + 10x4 + 2x6 + x8

)
(1− x4)2(1− x2)2

−
x2
(
1 + 2x2 + 2x4 + 14x6 + 2x8 + 2x10 + x12

)
(1− x6)2(1− x2)2

+
x2

1− x2
+ 1

=
1 + x4 + 6x6 + 10x8 + 6x10 + 15x12 + 10x14 + x16 − 2x18

(1− x4)2(1− x6)2
.

Proposition 3.32.

i) Let k ≥ 4 be even. The dimension of W+
k is explicitly given by

dimW+
k =

(
k + 1

3

)(
k − 4

4(k − 1)
− 1

6

)
+
k

2

(
1 +

⌊
k

4

⌋)
+

2

3

[
k

3

]
− %+

k + 1

where

%+
k =


k
2 , if k ≡ 0 mod 3

5 ·
[
k
6

]
− 2, if k ≡ 1 mod 3

5 ·
[
k
6

]
+ 2, if k ≡ 2 mod 3.

ii) The generating series of W+
k is given by

∞∑
k=0

dimW+
k xk =

x4
(
1 + 3x2 + 4x4 + 2x6 + 9x8 + 7x10 + x12 − 2x14 − x16

)
(1− x4)2(1− x6)2

.

Proof. Recall from Remark 3.7 that we have decompositions

Vk = V+
k ⊕ V

−
k and Vk = Vev

k ⊕ Vodd
k .

The operator |ε acts on the spaces Wk, Ak, Ck and Ek since the identities εS ≡ Sε,
εU ≡ U2ε and εU2 ≡ Uε hold modulo ±1. Since ε is diagonalizable, we obtain splittings in

3The source code that was used to compute these dimensions can be found in appendix C.2.
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3. Bi-period polynomials

the eigenspaces with eigenvalues 1 and −1, respectively. Corollary 3.22 yields E+
k = Ek and

E−k = {0}. We thus obtain by (3.7) that

V+
k =W+

k ⊕A
+
k /Ek ⊕ C

+
k /Ek ⊕ Ek.

Since dim Ek = 1 this yields dimension-wise that

dimW+
k = dimV+

k − dimA+
k − dim C+

k + 1. (3.9)

We can compute the generating series of V+
k , A

+
k and C+

k with Molien’s theorem A.12 since
the groups generated by {ε̄}, {ε̄, S̄} and {ε̄, Ū} are finite, respectively. This yields for even
k ≥ 4 that

dimV+
k =

1

2

((
k + 1

3

)
+
k

2

)
dimA+

k =
1

2

(
k(k2 + 1)(k + 1)

6
− k

⌊
k

4

⌋)

dim C+
k =

1

6

((
k + 1

3

)
− 4

[
k

3

]
− 3

2
k

)
+ %+

k

where the generating series are given by
∞∑
k=0

dimV+
k xk =

x2
(
1 + x2

)
(1− x2)2(1− x)2

∞∑
k=0

dimA+
k x

k =
x2
(
1 + x2 + 4x4 + x6 + x8

)
(1− x4)2(1− x2)2

∞∑
k=0

dim C+
k x

k =
x2
(
1 + x2 + x4 + 6x6 + x8 + x10 + x12

)
(1− x6)2(1− x2)2

.

Now i) follows from (3.9) and the respective dimensions since

1

2

((
k + 1

3

)
−
k(k2 + 1)(k + 1)

6

)
=

(
k + 1

3

)
k − 4

4(k − 1)
.

For ii) we first note that V+
k is non-trivial for odd k. So we first observe that

∞∑
k=0
k even

dimV+
k xk =

x2
(
1 + x2

)2
(1− x2)4

.

By using the generating series of Ek from Corollary 3.22 we thus obtain from (3.9) that
∞∑
k=0

dimW+
k xk =

x2
(
1 + x2

)2
(1− x2)4

−
x2
(
1 + x2 + 4x4 + x6 + x8

)
(1− x4)2(1− x2)2

−
x2
(
1 + x2 + x4 + 6x6 + x8 + x10 + x12

)
(1− x6)2(1− x2)2

+
x2

1− x2

=
x4
(
1 + 3x2 + 4x4 + 2x6 + 9x8 + 7x10 + x12 − 2x14 − x16

)
(1− x4)2(1− x6)2

.
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3.4. Dimensions

Corollary 3.33.

i) Let k ≥ 4 be even. The dimension of W−k is explicitly given by

dimW−k =

(
k + 1

3

)(
1

3
− k − 4

4(k − 1)

)
− k

4

(
2

[
k

4

]
+ 1

)
− 4

3

[
k

3

]
+ %k

2k

3
+ %+

k

where

%k =

{
1, if k ≡ 0 mod 3

0, else
and

%+
k =


k
2 , if k ≡ 0 mod 3

5 ·
[
k
6

]
− 2, if k ≡ 1 mod 3

5 ·
[
k
6

]
+ 2, if k ≡ 2 mod 3.

ii) The generating series of W−k is given by

∞∑
k=0

dimW−k xk =
1 + 3x6 + 6x8 + 4x10 + 6x12 + 3x14 + x20

(1− x4)2(1− x6)2
.

Proof. In the proof of Proposition 3.32 we saw that |ε acts on Wk. We thus obtain a
decomposition in eigenspaces with eigenvalues 1 and −1, respectively, i. e.

Wk =W+
k ⊕W

−
k .

Theorem 3.31 and Proposition 3.32 therefore yield for even k ≥ 4 that

dimW−k = dimWk − dimW+
k

=

(
k + 1

3

)(
1

3
− k − 4

4(k − 1)

)
− k

4

(
2

[
k

4

]
+ 1

)
− 4

3

[
k

3

]
+ %k

2k

3
+ %+

k

and
∞∑
k=0

dimW−k xk =

∞∑
k=0

dimWk x
k −

∞∑
k=0

dimW+
k xk

=
1 + x4 + 6x6 + 10x8 + 6x10 + 15x12 + 10x14 + x16 − 2x18

(1− x4)2(1− x6)2

−
x4
(
1 + 3x2 + 4x4 + 2x6 + 9x8 + 7x10 + x12 − 2x14 − x16

)
(1− x4)2(1− x6)2

=
1 + 3x6 + 6x8 + 4x10 + 6x12 + 3x14 + x20

(1− x4)2(1− x6)2
.

The dimensions of Wk, W+
k and W−k for small values of k can be found in table 2.
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3. Bi-period polynomials

3.5. Laplacian operator

After the previous discussions were analogous to chapter 2 for the most part, we are
now going to introduce the Laplacian operator associated with the quadratic form q from
Definition 3.9. The idea of considering this operator was proposed by D. Zagier in a private
conversation with U.Kühn.

Definition 3.34. We set the Laplacian operator (associated with q) on V to be

∆ :=
∂2

∂x1∂y1
+

∂2

∂x2∂y2
.

Remark 3.35. The Laplacian maps homogeneous polynomials to homogeneous polynomials.
So for all k ∈ N, k ≥ 2, we have a linear map

∆|Vk : Vk → Vk−2

and we write ker(∆)k := ker(∆) ∩ Vk.

Lemma 3.36. There is a decomposition

Vk = ker(∆)k ⊕ (x1y1 + x2y2) · Vk−2.

Proof. Let p, q, r ∈ V. First note that ∂(qr) = ∂(q)∂(r) = ∂(r)∂(q). This is immediate if
we think of ∂ as a formal substitution of variables. We thus have

(k − 2)! 〈qr, p〉 = ∂(qr)(p)(0) = ∂(r)(∂(q)(p))(0) = (k − 2)! 〈r, ∂(q)p〉 .

Hence applying ∂(q) is adjoint to multiplication with q. In particular, for q(x1, x2, y1, y2) =
x1y1 + x2y2, r ∈ Vk−2 and p ∈ Vk we have that the kernel of ∂(q) in Vk is the orthogonal
complement to q · Vk−2. The claimed decomposition follows since ∆ = ∂(q).

Corollary 3.37. We have
dim(∆)k = (k − 1)2.

Proof. Lemma 3.36 yields that

dim(∆)k = dim(Vk)− dim(Vk−2)

and by Lemma 3.2 we have dim(Vk) =
(
k+1

3

)
. Hence

dim(∆)k =

(
k + 1

3

)
−
(
k − 1

3

)
= (k − 1) · (k + 1)k − (k − 2)(k − 3)

6

= (k − 1) · 6k − 6

6
= (k − 1)2.
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3.5. Laplacian operator

Lemma 3.38. Let a, b, c, d ∈ C be complex numbers. Then for all k ∈ N we have

∆
(

(−bdx1 + bcx2 + acy1 + ady2)k
)

= 0.

Proof. For r = −bdx1 + bcx2 + acy1 + ady2 the multinomial theorem yields

rk =
∑

i+j+m+n=k

(
k

i, j,m, n

)
(−1)i (bdx1)i (bcx2)j (acy1)m (ady2)n.

Now fix some i1, i2, j1, j2 ∈ N0. The coefficient of xi11 x
i2
2 y

j1
1 y

j2
2 in ∆(rk) is then given by(

k

i1, i2, j1, j2

)
(−1)i1 (bd)i1 (bc)i2 (ac)j1 (ad)j2

(
− (bd)(ac) + (bc)(ad)

)
= 0.

Remark 3.39. For i1, i2, j1, j2 ∈ N0 with i1 + i2 = j1 + j2 we consider the system of linear
equations

i1 = m1 +m2, i2 = n1 + n2, j1 = m1 + n2, j2 = m2 + n1 (3.10)

with m1,m2, n1, n2 ∈ N0. Since this yields

i1 = j1 + j2 − i2, i2 = j1 + j2 − i1, j1 = i1 + i2 − j2, j2 = i1 + i2 − j1

the solution has one degree of freedom. A solution (m1,m2, n1, n2) to (3.10) is given by
(j1, i1 − j1, i2, 0) if i1 ≥ j1
(i1 − j2, j2, 0, i2) if i1 ≥ j2
(0, i1, i2 − j1, j1) if i2 ≥ j1
(i1, 0, j2, i2 − j2) if i2 ≥ j2

Furthermore, if (m1,m2, n1, n2) solves (3.10), then (m1 − λ,m2 + λ, n1 − λ, n2 + λ) ∈ N4
0

is a solution for all suitable λ ∈ Z.

Lemma 3.40. The map

ϕ : Vk −→ Vk ⊗ Vk
f(x1, x2, y1, y2) 7−→ f(ac, ad,−bd, bc)

is well-defined.

Proof. Since ϕ is linear, it suffices to show the claim for monomials. Let xi11 x
i2
2 y

j1
1 y

j2
2 ∈ Vk

then
ϕ(xi11 x

i2
2 y

j1
1 y

j2
2 ) = (−1)j1 ai1+i2bj1+j2 · ci1+j2di2+j1 ∈ Vk ⊗ Vk

which is clear if we identify Vk ⊗ Vk with the V-subspaces of bi-homogeneous polynomials
in 4 variables, i. e.

〈f · g | f ∈ Q[a, b], g ∈ Q[c, d] homogeneous monomials,deg(f) = deg(g) = k − 2〉Q.
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3. Bi-period polynomials

Remark 3.41. Using the description

f(x1, x2, y1, y2) = f

((
x1 x2

−y2 y1

))
from Remark 3.8, we get

ϕ(f) = f

((
a
b

)(
c d

))
,

i. e. we evaluate f at a rank 1 matrix.

Theorem 3.42. The restriction ϕ|ker(∆)k : ker(∆)k → Vk ⊗ Vk of the map ϕ from Lemma
3.40 is an isomorphism of vector spaces, i. e.

ker(∆)k ∼= Vk ⊗ Vk.

The inverse map is given by

ψ : Vk ⊗ Vk −→ ker(∆)k

f(a, b; c, d) 7−→ (−1)k

(k − 2)!

〈
f(a, b; c, d), r(a, b, c, d)k−2

〉
where r(a, b, c, d) = −bdx1 + bcx2 + acy1 + ady2 ∈ (Vk ⊗ Vk)⊗ Vk.

Proof. Let ϕ : Vk −→ Vk⊗Vk be the linear map from Lemma 3.40. Since ϕ(x1y1 +x2y2) = 0
the decomposition from Lemma 3.36 implies that ϕ can naturally be considered as a map
ker(∆)k −→ Vk ⊗ Vk instead.

To show that the map ψ is well-defined, let r = −bdx1 + bcx2 +acy1 +ady2 ∈ (Vk⊗Vk)⊗Vk
and observe that for f(a, b; c, d) ∈ Vk ⊗ Vk we have

∆
(〈
f(a, b; c, d), r(a, b, c, d)k−2

〉
∂

)
= ∆

(
1

(k − 2)!
∂(f)(rk−2)

∣∣∣
(a,b,c,d)=(0,0,0,0)

)
=

1

(k − 2)!
∂(f)

(
∆
(
rk−2

))∣∣∣
(a,b,c,d)=(0,0,0,0)

3.38
= 0.

We first show ϕ ◦ψ = idVk⊗Vk . Let f(a, b; c, d) = ai1bi2 · cj1dj2 with i1 + i2 = k− 2 = j1 + j2
and assume without loss of generality that i1 ≥ j1. We then have

ψ(f) =
(−1)k

(k − 2)!

〈
f(a, b; c, d), r(a, b, c, d)k−2

〉
∂

=
(−1)i2+j1

(k − 2)!2

(
∂i2

∂ai2
∂i1

∂bi1
∂j2

∂cj2
∂j1

∂dj1

)
( ∑

m1,m2,n1,n2≥0,
m1+m2+n1+n2=k−2

(−1)m1

(
k − 2

m1,m2, n1, n2

)
an1+n2bm1+m2cm2+n1dm1+n2xm1

1 xm2
2 yn1

1 yn2
2

)

=

min(i2,j1)∑
λ=0

(−1)i2−λ

(k − 2)!2

(
k − 2

j1 − λ, i1 − j1 + λ, i2 − λ, λ

)
(i1)!(i2)!(j1)!(j2)!xj1−λ1 xi1−j1+λ

2 yi2−λ1 yλ2
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3.5. Laplacian operator

where the last equality follows from Remark 3.39. Applying ϕ to this yields

ϕ(ψ(f)) =

min(i2,j1)∑
λ=0

1

(k − 2)!2

(
k − 2

j1 − λ, i1 − j1 + λ, i2 − λ, λ

)
(i1)!(i2)!(j1)!(j2)!ai1bi2cj1dj2

= ai1bi2cj1dj2

where the last equality holds follows from

min(i2,j1)∑
λ=0

1

(k − 2)!2

(
k − 2

j1 − λ, i1 − j1 + λ, i2 − λ, λ

)
(i1)!(i2)!(j1)!(j2)!

=

min(i2,j1)∑
λ=0

(i1)!(i2)!

(j1 − λ)!(i1 − j1 + λ)!(i2 − λ)!λ!

(
k − 2

j1

)−1

=

(
min(i2,j1)∑
λ=0

(
i2
λ

)(
i1

j1 − λ

))(
k − 2

j1

)−1

= 1

since i1 = k − 2− i2 and the Chu–Vandermonde identity yields for K,M,N ∈ N0 that

min(M,K)∑
λ=0

(
M

λ

)(
N −M
K − λ

)
=

(
N

K

)
.

Note that ker(∆)k and Vk ⊗ Vk are finite-dimensional. It thus suffices to show that their
dimensions agree. We have dimVk = k − 1 by Remark 2.2, hence dim(Vk ⊗ Vk) = (k − 1)2

and Corollary 3.37 yields that dim(ker(∆)k) = (k − 1)2.

Lemma 3.43. The Laplacian operator commutes with the action of Γ, i. e. for f ∈ Vk and
γ ∈ Γ we have

∆(f |γ ) = ∆(f) |γ . (3.11)

Proof. Since the Laplacian is linear, assume without loss of generality that f = xi11 x
i2
2 y

j1
1 y

j2
2 .

By Remark 3.14 it suffices to show that (3.11) holds for all γ ∈ Γ such that

f |γ = f(γ1 · Z · γt
2)

with (γ1, γ2) ∈ {(1, S), (S, 1), (1, T ), (T, 1)} and for γ ∈ {τ, ν} with τ and ν from Example
3.13. The respective actions yield

f(Z · St) = f(−x2, x1,−y2, y1)

f(S · Z) = f(y2,−y1, x2,−x1)

f(Z · T t) = f(x1 + x2, x2, y1, y2 − y1)

f(T · Z) = f(x1 − y2, x2 + y1, y1, y2)

f |τ = f(x1,−y2, y1,−x2)

f |ν = f(x1,−x2, y1,−y2)
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3. Bi-period polynomials

and we have
∆(f) = i1j1 x

i1−1
1 xi22 y

j1−1
1 yj22 + i2j2 x

i1
1 x

i2−1
2 yj11 y

j2−1
2 . (3.12)

Let (γ1, γ2) = (1, S). It is straight forward to verify that both sides of (3.11) yield

i1j1 x
i2
1 (−x2)i1−1yj21 (−y2)j1−1 + i2j2 x

i2−1
1 (−x2)i1yj2−1

1 (−y2)j1 .

Let (γ1, γ2) = (S, 1). Then both sides of (3.11) are equal to

i1j1 (−x1)j2 x2
j1−1 (−y1)i2 y2

i1−1 + i2j2 (−x1)j2−1 x2
j1 (−y1)i2−1 y2

i1 .

Let (γ1, γ2) = (1, T ). Since

∆((x1 + x2)i1(y2 − y1)j2) = 0

we obtain by the product rule that

∆(f |γ ) = ∆((x1 + x2)i1xi22 y
j1
1 (y2 − y1)j2)

= i1j1 (x1 + x2)i1−1xi22 y
j1−1
1 (y2 − y1)j2 + i2j2 (x1 + x2)i1xi2−1

2 yj11 (y2 − y1)j2−1

= ∆(f) |γ

where the last equality follows from (3.12).

Let (γ1, γ2) = (T, 1). Since

∆((x1 − y2)i1(x2 + y1)i2) = 0

we have by the product rule that

∆(f |γ ) = ∆((x1 − y2)i1(x2 + y1)i2yj11 y
j2
2 )

= i1j1 (x1 − y2)i1−1(x2 + y1)i2y1
j1−1y2

j2 + i2j2 (x1 − y2)i1(x2 + y1)i2−1y1
j1y2

j2−1

= ∆(f) |γ

where the last equality follows, again, from (3.12).

Let γ = τ . It is straight forward to verify that both sides of (3.11) yield

i1j1 x
i1−1
1 (−x2)j2yj1−1

1 (−y2)i2 + i2j2 x
i1
1 (−x2)j2−1yj11 (−y2)i2−1.

Let γ = ν. Then both sides of (3.11) are equal to

i1j1 x1
i1−1 (−x2)i2 y1

j1−1 (−y2)j2 + i2j2 x1
i1 (−x2)i2−1 y1

j1 (−y2)j2−1 .

This finishes the proof.

We can now use our previous results to gain new insights on the space of bi-period
polynomials. In particular, we obtain the following decomposition forWk which is analogue
to the decomposition of Vk from Lemma 3.36.
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3.5. Laplacian operator

Proposition 3.44. Let k ≥ 4 be even. Then there is a decomposition

Wk = ker (∆|Wk
)⊕ (x1y1 + x2y2) · Wk−2.

Proof. Let f ∈ Wk. The decomposition from Lemma 3.36 yields f = f1 + q · f2 with
unique f1 ∈ ker(∆)k, f2 ∈ Vk−2 and q(x1, x2, y1, y2) = x1y1 + x2y2. We need to show that
f1 ∈ ker (∆|Wk

) and f2 ∈ Wk−2. Since q is invariant under the bi-slash operator and ∆
commutes with |S and |U (Lemma 3.43) we have

0 = f |1 + S = (f1 + q · f2) |1 + S . (3.13)

Applying ∆ yields

0 = ∆ ((q · f2) |1 + S ) = ∆ (q · (f2 |1 + S )) .

But ker(∆)k ∩ q · Vk−2 = {0} which implies f2 ∈ ker(1 +S). An analogue calculation shows
f2 ∈ ker(1+U +U2), hence f2 ∈ Wk−2. Now (3.13) shows immediately that f1 ∈ ker(1+S)
and analogously that f1 ∈ ker(1 + U + U2), hence f1 ∈ ker(∆|Wk

).

Theorem 3.45. Let k ≥ 4 be even. We then have

ker(∆|Wk
) ∼= Vk ⊗Wk.

Proof. By Theorem 3.42 we have

ker(∆)k ∼= Vk ⊗ Vk = ϕ(Vk).

For f ∈ Vk and γ ∈ GL2(Z) we have by Remark 3.8 that

ϕ(f |γ ) = f

((
a
b

)((
c d

)
· γt
))

.

This implies for ϕ(f) = g1 ⊗ g2 that

ϕ(f |1 + S ) = 0 ⇐⇒ g2 |1 + S = 0

and similarly for
∣∣1 + U + U2 . Hence

ker(∆|Wk
) ∼= Vk ⊗Wk.

Combining Proposition 3.44 and Theorem 3.45 lets us compute the dimension of Wk

recursively. In particular, the dimension formula is equal to the formula from Theorem
3.31.
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3. Bi-period polynomials

Corollary 3.46.

i) Let k ≥ 4 be even. The dimension of Wk is explicitly given by

dimWk =

(
k

3

)
− k − 2

2
− 2

k∑
n=4,
n even

(⌊
n− 2

4

⌋
+

⌊
n− 2

6

⌋)
(n− 1).

ii) The generating series of Wk is given by
∞∑
k=0

dimWk x
k = 1 +

x2

1− x2
· d

dx

( ∞∑
k=1

dimWk x
k−1
)
.

Proof. Since W2 = {0} we obtain from Proposition 3.44 that
∞∑
k=1

dimWk x
k =

1

1− x2

∞∑
k=1

dim(ker(∆|Wk
)) xk. (3.14)

Now let k ≥ 4 be even. For claim i) we recall from Proposition 2.29 that

dimWk = k − 3− 2

(⌊
k − 2

4

⌋
+

⌊
k − 2

6

⌋)
.

Hence Theorem 3.45 yields

dim(ker(∆|Wk
)) =

(
k − 3− 2

(⌊
k − 2

4

⌋
+

⌊
k − 2

6

⌋))
· (k − 1)

= (k − 2)2 − 1− 2

(⌊
k − 2

4

⌋
+

⌊
k − 2

6

⌋)
(k − 1).

We then obtain by using (3.14) that

dimWk =
k∑

n=4,
n even

(n− 2)2 − 1− 2

(⌊
n− 2

4

⌋
+

⌊
n− 2

6

⌋)
(n− 1)

=

(
k

3

)
− k − 2

2
− 2

k∑
n=4,
n even

(⌊
n− 2

4

⌋
+

⌊
n− 2

6

⌋)
(n− 1).

For claim ii) we recall from Remark 2.2 that dimVk = k − 1. By Theorem 3.45 we further
have ker(∆|Wk

) ∼= Vk ⊗Wk. Hence
∞∑
k=1

dim(ker(∆|Wk
)) xk =

∞∑
k=1

dimVk · dimWk x
k

= x2 ·
∞∑
k=1

(k − 1) dimWk x
k−2

= x2 · d

dx

( ∞∑
k=1

dimWk x
k−1
)
.
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3.5. Laplacian operator

Now with dimW0 = 1 we obtain from (3.14) that

∞∑
k=0

dimWk x
k = 1 +

1

1− x2

∞∑
k=1

dim(ker(∆|Wk
)) xk

= 1 +
x2

1− x2
· d

dx

( ∞∑
k=1

dimWk x
k−1
)
.

Remark 3.47. Recall from Proposition 2.29 that the generating series of Wk is given by

∞∑
k=0

dimWk x
k =

1 + x12

(1− x4)(1− x6)

and therefore
∞∑
k=1

dimWk x
k−1 =

1

x

(
1 + x12

(1− x4)(1− x6)
− 1

)
.

So Corollary 3.46 yields that

∞∑
k=0

dimWk x
k = 1 +

x2

1− x2
· d

dx

(
1 + x12

x(1− x4)(1− x6)
− 1

x

)
=

1 + x4 + 6x6 + 10x8 + 6x10 + 15x12 + 10x14 + x16 − 2x18

(1− x4)2(1− x6)2
.

Note that this indeed coincides with the generating series of Wk from Theorem 3.31.

We now consider an analogue of the Lewis space from Definition 2.18.

Definition 3.48. We denote the kernel of the operator 1− T − T ′ by

Lk := ker(1− T − T ′) ⊆ Vk.

Lemma 3.49. Let k ≥ 4 be even. Then there is an isomorphism of vector spaces

Wk
∼= Lk.

Proof. The proof of Proposition 3.44 also yields that

Lk = ker(∆|Lk)⊕ (x1y1 + x2y2) · Lk−2 (3.15)

and the proof of Theorem 3.45 also shows that

ker(∆|Lk) ∼= Vk ⊗ Lk. (3.16)
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3. Bi-period polynomials

We therefore obtain that

Lk =
(3.15)

k−4⊕
i=0,
i even

ker(∆|Lk−i) ∼=
(3.16)

k−4⊕
i=0,
i even

Vk−i ⊗ Lk−i

=
2.19

k−4⊕
i=0,
i even

Vk−i ⊗Wk−i ∼=
3.45

k−4⊕
i=0,
i even

ker(∆|Wk−i) =
3.44
Wk.

Remark 3.50. Observe that we have Wk ⊆ Lk. For f ∈ Wk we have f |1 + S = 0 and
f
∣∣1 + U + U2 = 0. By subtracting the latter from the first equation we obtain

f
∣∣S − U − U2 = 0

and applying |S yields
f
∣∣1− T − T ′ = 0.

This shows that the isomorphism in Lemma 3.49 is in fact an equality of vector spaces, i. e.

Wk = Lk.

Corollary 3.51. Let k ≥ 4 be even. Then

W±k = ker(1− T ∓ Tε).

Proof. Follows analogously to Corollary 2.21.

We conclude this section by considering another subspace of Vk and use the Laplacian ∆ to
describe this space in terms of even and odd period polynomials.

Definition 3.52. For even k ≥ 4 we set

Wτ
k := {f ∈ Wk | f(Z) = f(Zt)}
Wν
k := {f ∈ Wk | f(Z) = f(δZδt)}

Wτ,ν
k := {f ∈ Wk | f(Z) = f(Zt) = f(δZδt)}

where Z =

(
x1 x2

−y2 y1

)
(cf. Remark 3.8).

Recall from Example 3.13 that f(Zt) and f(δZδt) are given by the action of |τ and |ν ,
respectively.

52



3.5. Laplacian operator

Proposition 3.53. Let k ≥ 4 be even.

i) There is a decomposition

Wτ
k = ker(∆|Wτ

k
)⊕ (x1y1 + x2y2) · Wτ

k−2.

ii) There is a decomposition

Wν
k = ker(∆|Wν

k
)⊕ (x1y1 + x2y2) · Wν

k−2.

iii) There is a decomposition

Wτ,ν
k = ker(∆|Wτ,ν

k
)⊕ (x1y1 + x2y2) · Wτ,ν

k−2.

Proof. With q(x1, x2, y1, y2) = x1y1 + x2y2 we have Wk = ker(∆|Wk
)⊕ q · Wk−2 by Propo-

sition 3.44. So for each f ∈ Wk we obtain unique f1 ∈ ker(∆|Wk
) and f2 ∈ Wk−2 with

f = f1 + q · f2. (3.17)

For claim i) let f ∈ Wτ
k . Applying |τ to (3.17) yields

f |τ = f1 |τ + (q · f2) |τ . (3.18)

Recall that the action of τ commutes with the Laplacian by Lemma 3.43. So applying ∆
to (3.17) yields

∆(f) = ∆(q · f2)

while applying ∆ to (3.18) yields

∆(f |τ ) = ∆((q · f2) |τ ).

Since f = f |τ and q = q |τ we thus obtain

∆(q · f2) = ∆(q · (f2 |τ )).

Hence q · (f2 − f2 |τ ) ∈ ker(∆|Wk
) ∩ q · Wk−2. But this space is trivial, hence

q · (f2 − f2 |τ ) = 0

which shows f2 = f2 |τ . Now applying |τ to (3.17) immediately yields f1 = f1 |τ . Hence
f1 ∈ ker(∆|Wτ

k
) and f2 ∈ Wτ

k−2 which proves the first claim.

For claim ii) let f ∈ Wν
k . Note that Lemma 3.43 also holds for ν. So by replacing τ

with ν in the proof of part i), we similarly obtain that ∆(q · f2) = ∆(q · (f2 |ν )). Hence
q · (f2 − f2 |ν ) ∈ ker(∆|Wk

) ∩ q · Wk−2 = {0}. This shows f2 = f2 |ν . Applying ν to (3.17)
then implies f1 = f1 |ν which proves the second claim.

The statements i) and ii) directly imply claim iii).
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3. Bi-period polynomials

Theorem 3.54. Let k ≥ 4 be even.

i) We have

ker
(
∆|Wτ

k

) ∼= 〈f(a, b)⊗ g(c, d) + g(a, b)⊗ f(c, d) | f, g ∈Wk〉Q .

ii) We have
ker
(
∆|Wν

k

) ∼= (V ev
k ⊗W ev

k

)
⊕
(
V odd
k ⊗W odd

k

)
.

iii) We have

ker
(
∆|Wτ,ν

k

) ∼= 〈f(a, b)⊗ g(c, d) + g(a, b)⊗ f(c, d) | f, g ∈W ev
k or f, g ∈W odd

k

〉
Q
.

Proof. Recall the map ϕ : Vk → Vk ⊗ Vk from Lemma 3.40 which is given by

ϕ(f(x1, x2, y1, y2)) = f(ac, ad,−bd, bc).

The restriction to ϕ|ker(∆)k yields an isomorphism ker(∆)k ∼= Vk ⊗Vk by Theorem 3.42. We
further used this map in Theorem 3.45 to show that ker(∆|Wk

) ∼= Vk ⊗Wk. Let f ∈ Wk.
We then find g1 ∈ Vk and g2 ∈Wk such that ϕ(f) = g1(a, b)⊗ g2(c, d).

For claim i) assume f ∈ Wτ
k . Recall that f |τ = f(Zt). By Remark 3.41 we have

ϕ(f |τ ) = f

((
c
d

)(
a b

))
and therefore

g1 ⊗ g2 = ϕ(f) = ϕ(f |τ ) = g2 ⊗ g1.

We observe that f ∈ Wk then implies that g1 ∈Wk (cf. proof of Theorem 3.45) and since
g1 ⊗ g2 = g2 ⊗ g1, the claim follows.

For claim ii) assume f ∈ Wν
k . Recall that f |ν = f(δZδt). Since δt = δ we obtain by

Remarks 3.8 and 3.41 that

ϕ(f |ν ) = f

(
δ

(
a
b

)((
c d

)
δ
))

.

Hence
g1 ⊗ g2 = ϕ(f) = ϕ(f |ν ) = g1 |δ ⊗ g2 |δ

where gi |δ , i = 1, 2, denotes the slash operator from chapter 2. We thus have

Wν
k
∼=
{
g1 ⊗ g2 ∈ Vk ⊗Wk

∣∣ g1 |δ ⊗ g2 |δ = g1 ⊗ g2

}
∼=
(
V ev
k ⊗W ev

k

)
⊕
(
V odd
k ⊗W odd

k

)
.

The statements i) and ii) now directly imply iii).
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Corollary 3.55. We have

∞∑
k=4,
k even

dimWτ,ν
k xk =

1

1− x2

∞∑
k=4,
k even

dim(ker(∆|Wτ,ν
k

)) xk

which yields for all even k ≥ 4 that

dimWτ,ν
k =

k∑
n=4,
n even

dim(W ev
n )2.

Proof. The first statement follows immediately from part iii) of Proposition 3.53. So it
suffices to show that

dim(ker(∆|Wτ,ν
k

)) = dim(W ev
k )2.

Using the basis for ker(∆|Wτ,ν
k

) from part iii) of Theorem 3.54 we observe for f, g ∈W odd
k

that there are (
dim(W odd

k ) + 1

2

)
ways of choosing (possibly equal) f, g ∈W odd

k . For f, g ∈W ev
k we similarly have(

dim(W ev
k ) + 1

2

)
ways of choosing f, g ∈W ev

k . By Remark 2.32 we have dim(W ev
k ) = dim(W odd

k ) + 1. Hence

dim(ker(∆|Wτ,ν
k

)) =

(
dim(W ev

k )

2

)
+

(
dim(W ev

k ) + 1

2

)
=

(dim(W ev
k ))(dim(W ev

k )− 1) + (dim(W ev
k ) + 1)(dim(W ev

k ))

2

= dim(W ev
k ) ·

2 dim(W ev
k )

2
= dim(W ev

k )2.

3.6. Applications 1: Exotic relations for double q-zeta values

The theory of multiple q-zeta values is concerned with q-analogues of multiple zeta values,
i. e. q-series ζq such that we retrieve multiple zeta values by taking the limit as q → 1 .

In general, we consider for s1 ≥ 1, s2, . . . , sl ≥ 0 and polynomials Q1(t) ∈ tQ[t] and
Q2, . . . , Ql(t) ∈ Q[t] the power series

ζq(s1, . . . , sl;Q1, . . . , Ql) =
∑

n1>···>nl>0

Q1(qn1) . . . Ql(q
nl)

(1− qn1)s−1 . . . (1− qnl)sl
∈ QJqK.
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3. Bi-period polynomials

We leave out some technical details but remark that multiplying by (1 − q)s1+···+sl and
then taking the limit as q → 1 yields the multiple zeta value ζ(s1, . . . , sl) as long as s1 ≥ 2
and s2, . . . , sl ≥ 1. Now consider

Zq := spanQ{ζq(s1, . . . , sl;Q1, . . . , Ql) | l ≥ 0,deg(Qj) ≤ sj}

where we set ζq(∅; ∅) = 1.

The vector space Zq has different spanning sets. For details on this topic as well as an
overview over some of the common spanning sets we refer to [BK20], [Zha20], [Bac20] and
[Bri21]. We will use combinatorial multiple Eisenstein series as a spanning set. For r ≥ 1,
k1, . . . , kr ≥ 1 and d1, . . . , dr ≥ 0 we denote the combinatorial multiple Eisenstein series in
depth r by

G

(
k1, . . . , kr
d1, . . . , dr

)
∈ QJqK.

For k1 ≥ d1 + 2 and ki ≥ di + 1, i = 2, . . . , r, we have

lim
q→1

(1− q)k1+···+krG

(
k1, . . . , kr
d1, . . . , dr

)
= ζ(k1 − d1, . . . , kr − dr).

For further details on this we refer to [BB22].

Recall our discussion in section 2.6. In Propositions 2.43 and 2.47 we used the non-degenerate
pairing to obtain that certain Q-linear relations amongst single and double zeta values can
be computed by applying the linear map 〈f, ·〉 to an identity of generating series for single
and double zeta values. We will pursue a similar approach in this section.

Consider the generating series of combinatorial multiple Eisenstein series in depth 1 and 2
which are given by

G1

(
x
y

)
=
∑
k≥1
d≥0

G

(
k
d

)
xk−1 y

d

d!
,

G2

(
x1, x2

y1, y2

)
=

∑
k1,k2≥1
d1,d2≥0

G

(
k1, k2

d1, d2

)
xk1−1

1 xk2−1
2

yd11

d1!

yd22

d2!
.

In [BB22, Proposition 6.7] it is shown that the combinatorial multiple Eisenstein series
satisfy an analogue of the double shuffle relation from section 2.6, i. e.

G

(
k1

d1

)
·G
(
k2

d2

)
= G

(
k1, k2

d1, k2

)
+G

(
k2, k1

d2, d1

)
+G

(
k1 + k2

d1 + d2

)
=

∑
l1+l2=k1+k2
e1+e2=d1+d2
l1,l2≥1,e1,e2≥0

((
l1 − 1

k1 − 1

)(
d1

e1

)
(−1)d1−e1 +

(
l1 − 1

k2 − 1

)(
d2

e1

)
(−1)d2−e1

)
G

(
l1, l2
e1, e2

)

+
d1!d2!

(d1 + d2 + 1)!

(
k1 + k2 − 2

k1 − 1

)
G

(
k1 + k2 − 1
d1 + d2 + 1

)
.

(3.19)
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Similar to the double shuffle relations in (2.17), by setting

R∗
(
x1, x2

y1, y2

)
:=

G1

(
x1

y1 + y2

)
−G1

(
x2

y1 + y2

)
x1 − x2

,

R�
(
x1, x2

y1, y2

)
:=

G1

(
x1 + x2

y1

)
−G1

(
x1 + x2

y2

)
y1 − y2

we can rewrite (3.19) as

G1

(
x1

y1

)
·G1

(
x2

y2

)
= G2

(
x1, x2

y1, y2

)
+ G2

(
x2, x1

y2, y1

)
+ R∗

(
x1, x2

y1, y2

)
= G2

(
x1 + x2, x2

y1, y2 − y1

)
+ G2

(
x1 + x2, x1

y2, y1 − y2

)
+ R�

(
x1, x2

y1, y2

)
.

(3.20)

By extending the bi-slash operator to power series in variables x1, x2, y1, y2, we can rewrite
the second identity in (3.20) as

G2 |(T − 1)(1 + ε) = R∗
(
x1, x2

y1, y2

)
−R�

(
x1, x2

y1, y2

)
. (3.21)

We cannot expect, similar to Proposition 2.43, that (3.21) encodes all non-trivial linear
relations amongst combinatorial multiple Eisenstein series since the generating series G1

and G2 are also invariant under the swap-involution (see [BB22, Theorem 6.5]), i. e.

G1

(
x

y

)
=

(
y

x

)
, G2

(
x1, x2

y1, y2

)
= G2

(
y1 + y2, y1

x2, x1 − x2

)
.

Therefore, we consider the formal double Eisenstein space. This space was introduced by
[BBK20] and [BKM21] in an attempt of generalizing the work of [GKZ06]. We also refer to
[Bac21] for further details.

Definition 3.56. For an integer K ≥ 1, the formal double Eisenstein space of weight K is

EK =

〈
Z

(
k
d

)
, Z

(
k1, k2

d1, d2

)
, P

(
k1, k2

d1, d2

) ∣∣∣∣ k+d=k1+k2+d1+d2=K
k,k1,k2≥1,d,d1,d2≥0

〉
Q

/
(3.22)

where we divide out the following relations

P

(
k1, k2

d1, d2

)
= Z

(
k1, k2

d1, k2

)
+ Z

(
k2, k1

d2, d1

)
+ Z

(
k1 + k2

d1 + d2

)
=

∑
l1+l2=k1+k2
e1+e2=d1+d2
l1,l2≥1,e1,e2≥0

((
l1 − 1

k1 − 1

)(
d1

e1

)
(−1)d1−e1 +

(
l1 − 1

k2 − 1

)(
d2

e1

)
(−1)d2−e1

)
Z

(
l1, l2
e1, e2

)

+
d1!d2!

(d1 + d2 + 1)!

(
k1 + k2 − 2

k1 − 1

)
Z

(
k1 + k2 − 1
d1 + d2 + 1

)
.

(3.22)
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3. Bi-period polynomials

We also consider the generating series

Z1

(
x
y

)
=
∑
k≥1
d≥0

Z

(
k
d

)
xk−1 y

d

d!
,

Z2

(
x1, x2

y1, y2

)
=

∑
k1,k2≥1
d1,d2≥0

Z

(
k1, k2

d1, d2

)
xk1−1

1 xk2−1
2

yd11

d1!

yd22

d2!
,

P

(
x1, x2

y1, y2

)
=

∑
k1,k2≥1
d1,d2≥0

P

(
k1, k2

d1, d2

)
xk1−1

1 xk2−1
2

yd11

d1!

yd22

d2!
.

We can then rewrite the defining relations (3.22) for EK analogously to above as

P

(
x1, x2

y1, y2

)
= Z2

(
x1, x2

y1, y2

)
+ Z2

(
x2, x1

y2, y1

)
+ R∗f

(
x1, x2

y1, y2

)
= Z2

(
x1 + x2, x2

y1, y2 − y1

)
+ Z2

(
x1 + x2, x1

y2, y1 − y2

)
+ R�f

(
x1, x2

y1, y2

) (3.23)

where

R∗f

(
x1, x2

y1, y2

)
:=

Z1

(
x1

y1 + y2

)
− Z1

(
x2

y1 + y2

)
x1 − x2

,

R�f

(
x1, x2

y1, y2

)
:=

Z1

(
x1 + x2

y1

)
− Z1

(
x1 + x2

y2

)
y1 − y2

.

Now rewrite the second identity in (3.23) as

Z2 |(T − 1)(1 + ε) = R∗f

(
x1, x2

y1, y2

)
−R�f

(
x1, x2

y1, y2

)
. (3.24)

By extending the non-degenerate pairing 〈·, ·〉 to a duality pairing Q[x1, x2, y1, y2] ×
QJx1, x2, y1, y2K −→ Q, we have the following statement which is analogue to Proposi-
tion 2.43.

Proposition 3.57. Let K ≥ 4 be even. Then for all non-trivial linear relations of the form

∑
k1+k2+d1+d2=K

k1,k2≥1
d1,d2≥0

λk1,k2
d1,d2

Z

(
k1, k2

d1, d2

)
=

∑
k+d=K
k≥1,d≥0

λk
d
Z

(
k
d

)
(3.25)

58



3.6. Applications 1: Exotic relations for double q-zeta values

with λk1,k2
d1,d2

, λk
d
∈ Q there exists a f ∈ Vk such that

∑
k+d=K
k≥1,d≥0

λk
d
Z

(
k
d

)
=

〈
f(x1, x2, y1, y2),R∗f

(
x1, x2

y1, y2

)
−R�f

(
x1, x2

y1, y2

)〉
∑

k1+k2+d1+d2=K
k1,k2≥1
d1,d2≥0

λk1,k2
d1,d2

Z

(
k1, k2

d1, d2

)
=

〈
f(x1, x2, y1, y2)

∣∣(1 + ε)(T−1 − 1) ,Z2

(
x1, x2

y1, y2

)〉
.

The proof of Proposition 3.57 follows analogously to the proof of Proposition 2.43 since
we only used properties of the group ring and the pairing 〈·, ·〉 which are still true in this
case.

Analogue to section 2.6, we write ∆∗ = (1 + ε)(T−1 − 1).

Example 3.58. Consider the polynomial q(x1, x2, y1, y2) = x1y1 + x2y2 from Definition
3.9. By applying the linear map 〈q(x1, x2, y1, y2), ·〉 to (3.21) we have

〈q,R∗ −R�〉 =
1

2

(
G

(
3
1

)
−G

(
2
2

))
〈q |∆∗ ,G2〉 = 0

where the last equality follows from q |∆∗ = 0. Hence we obtain the relation

G

(
3
1

)
= G

(
2
2

)
.

Proposition 3.59. If f, f ′ ∈ VK determine the same relation via applying the linear maps
〈f(x1, x2, y1, y2), ·〉 and 〈f ′(x1, x2, y1, y2), ·〉, respectively, to (3.24) then their projections
onto V+

K differ by a multiple of q
K−2

2 .

Proof. Recall the proof of Proposition 2.45. Analogously we obtain that π+(f − f ′) is
invariant under |ε and |T . This vector space is spanned by q

K−2
2 by Theorem 3.21 and

since (x2) |ε = x1 and (y1) |ε = y2.

Example 3.60. Let K = 4. We consider the symmetric polynomials f1, f2 ∈ V+
4 with

f1(x1, x2, y1, y2) = x2
1 + x2

2 + y2
1 + y2

2 and f2(x1, x2, y1, y2) = x1y2 + x2y1. Since

〈f1,R
∗ −R�〉 = 2G

(
4

0

)
− 2G

(
3

1

)
+G

(
2

2

)
− 1

3
G

(
1

3

)
〈f1 |∆∗ ,G2〉 = 2G

(
3, 1

0, 0

)
+ 2G

(
2, 2

0, 0

)
− 2G

(
1, 1

1, 1

)
+G

(
1, 1

0, 2

)
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and

〈f2,R
∗ −R�〉 = −G

(
3

1

)
+

1

2
G

(
2

2

)
〈f2 |∆∗ ,G2〉 = G

(
2, 1

0, 1

)
−G

(
2, 1

1, 0

)
+G

(
1, 2

0, 1

)
we obtain the relations

2G

(
4

0

)
− 2G

(
3

1

)
+G

(
2

2

)
− 1

3
G

(
1

3

)
= 2G

(
3, 1

0, 0

)
+ 2G

(
2, 2

0, 0

)
− 2G

(
1, 1

1, 1

)
+G

(
1, 1

0, 2

)
and

−2G

(
3

1

)
+G

(
2

2

)
= 2G

(
2, 1

0, 1

)
− 2G

(
2, 1

1, 0

)
+ 2G

(
1, 2

0, 1

)
.

Combining these relations, we further yields that

2G

(
4

0

)
− 1

3
G

(
1

3

)
= 2G

(
3, 1

0, 0

)
+ 2G

(
2, 2

0, 0

)
+ 2G

(
2, 1

1, 0

)
− 2G

(
2, 1

0, 1

)
− 2G

(
1, 2

0, 1

)
− 2G

(
1, 1

1, 1

)
+G

(
1, 1

0, 2

)
.

Notation. We say that a relation of the form (3.25)

• is symmetric in Z(ev, ev) if k1 + d1 and k2 + d2 even implies that

λk1,k2
d1,d2

= λk2,k1
d2,d1

• contains no Z(odd, odd) terms if k1 + d1 and k2 + d2 odd implies that

λk1,k2
d1,d2

= 0.

Proposition 3.61. Let f ∈ Wev
k . Then the relation (3.25) induced by applying the linear

map 〈f |T , ·〉 to (3.24) is symmetric in Z(ev, ev).

Proof. Follows analogously to the proof of Proposition 2.47.

Example 3.62. We consider the generic polynomial in Wev
6 for a1, . . . , a5 ∈ Q given by

p(x1, x2, y1, y2) = a1 f1(x1, x2, y1, y2) + a2 f2(x1, x2, y1, y2) + a3 f3(x1, x2, y1, y2)

+ a4 f4(x1, x2, y1, y2) + a5 f5(x1, x2, y1, y2)
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where

f1(x1, x2, y1, y2) = x4
1 − x4

2, f2(x1, x2, y1, y2) = x3
1y1 − x1x

2
2y1 + x2

1x2y2 − x3
2y2,

f3(x1, x2, y1, y2) = x2
2y

2
1 − x2

1y
2
2, f4(x1, x2, y1, y2) = x1y

3
1 + x2y

2
1y2 − x1y1y

2
2 − x2y

3
2

f5(x1, x2, y1, y2) = y4
1 − y4

2

is a basis of Wev
6 . We then have

〈p |T ,R∗ −R�〉 = a1G

(
5

1

)
+
a2 − a3

4
G

(
4

2

)
−
(a3

36
+
a4

4

)
G

(
3

3

)
+
(a4

36
− 5a5

8

)
G

(
2

4

)
+
a5

30
G

(
1

5

) (3.26)

and

〈p |T∆∗ ,G2〉 = a1

(
−3G

(
5, 1

0, 0

)
+G

(
4, 2

0, 0

)
− 3G

(
3, 3

0, 0

)
+G

(
2, 4

0, 0

))
+ a2

(
−3

4
G

(
4, 1

1, 0

)
+

1

6
G

(
3, 2

1, 0

)
− 1

4
G

(
3, 2

0, 1

)
+

1

6
G

(
2, 3

0, 1

))
+ a3

(
1

4
G

(
3, 1

2, 0

)
+

1

6
G

(
3, 1

1, 1

)
+

1

4
G

(
3, 1

0, 2

)
− 1

12
G

(
2, 2

2, 0

)
− 1

2
G

(
2, 2

1, 1

)
− 1

12
G

(
2, 2

0, 2

)
+

1

6
G

(
1, 3

1, 1

)
+

1

4
G

(
1, 3

0, 2

))
+ a4

(
1

12
G

(
2, 1

2, 1

)
+

1

8
G

(
2, 1

1, 2

)
+

1

12
G

(
1, 2

1, 2

)
+

1

8
G

(
1, 2

0, 3

))
+ a5

(
1

6
G

(
1, 1

3, 1

)
+

3

4
G

(
1, 1

2, 2

)
+

1

6
G

(
1, 1

1, 3

)
+

1

8
G

(
1, 1

0, 4

))
.

(3.27)

For any choice of a1, . . . , a5 ∈ Q, this yields a relation between the right-hand sides of (3.26)
and (3.27) that is symmetric in Z(ev, ev).

Relations that are symmetric in Z(ev, ev) that arise from applying the linear map 〈f, ·〉, for
some f ∈ VK , to (3.24) modulo such relations that contain no Z(odd, odd) are isomorphic
to Wev

K . Analogously to Theorem 2.49 we obtain the following theorem.

Theorem 3.63. There is a isomorphism of vector spaces

Wev
K
∼=

〈relations in EK which are symmetric in Z(ev, ev)〉Q
〈relations in EK which are symmetric in Z(ev, ev) and contain no Z(odd, odd)〉Q

.

Remark 3.64. In other words, the space of polynomials which give symmetric relations
in Z(ev, ev) is isomorphic to Wev

k ⊕ Uk where f ∈ Uk yields relations via 〈f, ·〉 which are
symmetric in Z(ev, ev) but contain no Z(odd, odd).
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3. Bi-period polynomials

3.7. Applications 2: Quadratic relations in the Lie algebra lbs

Another occurrence of bi-period polynomials in the theory of multiple q-zeta values can
be found in study of the linearized balanced quasi shuffle Lie algebra lbs. In this thesis we
only need fragments of this theory. For more details, we refer to the forthcoming thesis of
A.Burmester [Bur22].

We have a decomposition

lbs =
∞⊕

k,r=0

lbsk,r ⊂
∞∏
r=0

Q[x1, y1, . . . , xr, yr]

where lbsk,r contains certain homogeneous polynomials in r variables of degree k − r. In
fact, the pair (lbs, { , }), where { , } can considered as a generalization of the Ihara bracket,
is a bigraded Lie algebra. There are two occurrences of period polynomials in the theory of
lbs.

1.) The subspace in depth r = 1 is

lbs1 =
⊕
r≥1
s≥0

r+s odd

Q · ξ( rs )

where
ξ( rs )(x, y) = xr−1ys + xsyr−1, r + s odd, (3.28)

are even polynomials and the Lie bracket

{ , } : lbs1 × lbs1 −→ lbs2

is explicitly given for f, g ∈ lbs1 by

{f, g}(x1, x2, y1, y2) =
(
f(x1, y1)g(x2, y2)− f(x2, y2)g(x1, y1)

) ∣∣1 + U + U2 . (3.29)

The relations of lbs in depth 2 are given by the kernel of { , } : lbs1 × lbs1 −→ lbs2.
We remark that the bracket factors through the exterior product lbs1 ∧ lbs1, i. e. we
have a short exact sequence

0 // ker({ , }) // lbs1 ∧ lbs1
// lbs2

// 0 .

Since lbs1 is spanned by polynomials of the form (3.28), we obtain that lbs1 ∧ lbs1 is
isomorphic to the space that is spanned by homogeneous polynomials of the form

Ξ

(
x1, x2

y1, y2

)
:= ξ( r1s1 )(x1, y1)ξ( r2s2 )(x2, y2)− ξ( r1s1 )(x2, y2)ξ( r2s2 )(x1, y1)

with r1, r2, s1, s2 odd. A non-zero Ξ has degree K − 2 where K = r1 + r2 + s1 + s2 is
even. We have Ξ ∈ ker(1 + S) and since ξ( rs ) is an even polynomial, we observe that

Ξ

(
−x1, x2

−y1, y2

)
= Ξ

(
x1, x2

y1, y2

)
= Ξ

(
x1,−x2

y1,−y2

)
. (3.30)

62



3.7. Applications 2: Quadratic relations in the Lie algebra lbs

Since ξ( rs )(x, y) = ξ( rs )(y, x) we further have

Ξ

(
x1, y2

y1, x2

)
= Ξ

(
x1, x2

y1, y2

)
= Ξ

(
y1, x2

x1, y2

)
. (3.31)

Now we can deduce from (3.30) and (3.31) that

Ξ = Ξ |ν = Ξ

(
x1,−x2

y1,−y2

)
(3.32)

and

Ξ = Ξ |τ = Ξ

(
x1,−y2

y1,−x2

)
. (3.33)

On the other hand, the identities (3.30) and (3.31) also follow from (3.32) and (3.33)
since Ξ ∈ ker(1 + S) and the degree of Ξ is even. So we obtain that

Ξ ∈
{
f ∈ VK

∣∣∣ f |1 + S = 0, f |ν = f |τ = f
}
.

By (3.29), the bracket on lbs1 is given by applying the operator
∣∣1 + U + U2 . Hence

we obtain for the weight K component of the kernel that

ker({ , })K ∼=
{

Ξ ∈ WK

∣∣ Ξ = Ξ |τ , Ξ = Ξ |ν
}

=Wτ,ν
K .

Now Corollary 3.55 yields for even K ≥ 4 that

dim(ker({ , })K) = dimWτ,ν
K =

K∑
n=4,
n even

dim(Mn)2

with dim(MK) = dim(W−K ) where MK denotes the space of modular forms of weight
K (cf. section 2.5).

2.) Recall the discussion on generators in depth 4 from section 2.7. Ecalle’s construction
of these elements can be extended to construct generators in depth 4 for lbs. The
explicit construction, however, is too extensive for this thesis, so we refer to [Bur22]
for details. But we mention that the number of these generators is essentially given
by dim(SK)2 where SK is the space of cusp forms of weight K (cf. section 2.5).

Conjecturally, the Lie algebra lbs is generated by the elements ξ( rs ) from part 1.) and the
generators in depth 4 we mentioned in part 2.). All relations are expected to be in depth 2
and 5. This would imply the dimension conjecture for Zq by Bachmann–Kühn [BK20].
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4. Representation theory for SL2(C)

4. Representation theory for SL2(C)

This section follows [Hal15]. Throughout the section we let n ∈ N be an arbitrary natural
number with n ≥ 2 (unless stated otherwise).

Representation theory is mainly about describing algebraic structures, e. g. finite groups, Lie
groups and Lie algebras, as linear transformations of vector spaces. Since we are interested
in finite-dimensional representations of the group SL2(C), we will focus on the theory of
matrix Lie groups and restrict the discussion to finite-dimensional representations.

4.1. Matrix Lie groups and Lie algebras

We begin our discussion by defining some fundamental concepts.

Definition 4.1. A matrix Lie group is a subgroup G ⊆ GLn(C) that is closed in GLn(C),
i. e. if a sequence in G converges entrywise to some matrix A ∈ GLn(C) then A ∈ G.

Examples 4.2.

• The special linear group

SLn(C) = {A ∈Mn(C) | det(A) = 1}

is a matrix Lie group. In fact, SLn(C) is closed under limits since the determinant is
a continuous function.

• Let V be a finite-dimensional C-vector space. By choosing a basis for V , we can
identify the group of invertible linear transformations of V , denoted GL(V ), with
GLn(C) where n = dimC(V ). Note that the induced topology on GL(V ), however, is
independent of the choice of basis. Hence, GL(V ) has a matrix Lie group structure.

Definition 4.3. A finite-dimensional complex Lie algebra is a finite-dimensional C-vector
space g equipped with a map [·, ·] : g× g→ g, called bracket, such that [·, ·]

1. is bilinear,

2. is skew-symmetric, i. e. [X,Y ] = − [Y,X] for all X,Y ∈ g and

3. satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for all X,Y, Z ∈ g.

A well-known example for Lie algebras are associative algebras.
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4.1. Matrix Lie groups and Lie algebras

Proposition 4.4. For an associative algebra A define

[X,Y ] := XY − Y X

for all X,Y ∈ A. This yields a Lie algebra structure on A.

Remark 4.5. The bracket from Proposition 4.4 is called commutator bracket. The properties
of a Lie algebra are immediate to verify. The associativity of the algebra is essential for the
Jacobi identity to hold.

Example 4.6. Let V be a finite-dimensional C-vector space. The space of endomorphisms
on V , denoted End(V ), is an associative C-algebra. Hence we obtain a Lie algebra by
Proposition 4.4. To emphasize this Lie algebra structure we write

gl(V ) := End(V ).

We now introduce an important map in the theory of matrix Lie groups. We therefore set
X0 = 1 for all X ∈Mn(C).

Lemma 4.7. Let X ∈Mn(C) be a square matrix. Then the series

∞∑
m=0

Xm

m!

converges absolutely.

Proof. Consider the Hilbert-Schmidt norm

‖X‖ =

 ∑
1≤i,j≤n

|Xij |2
 1

2

which satisfies ‖XY ‖ ≤ ‖X‖ ‖Y ‖ for all X,Y ∈ Mn(C) due to the Cauchy-Schwarz
inequality. For m ∈ N we thus have ‖Xm‖ ≤ ‖X‖m and hence

∞∑
m=0

∥∥∥∥Xm

m!

∥∥∥∥ ≤ ∞∑
m=0

‖X‖m

m!
<∞.

Definition 4.8. For X ∈Mn(C) we define the exponential of X by

eX :=
∞∑
m=0

Xm

m!
.

Lemma 4.9. Let X,Y ∈Mn(C) be commuting matrices, i. e. XY = Y X. We then have

eX+Y = eXeY = eY eX .
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4. Representation theory for SL2(C)

Proof. If X and Y commute we have

(X + Y )m =
m∑
i=0

(
m

i

)
XiY m−i.

Since the series converge absolutely, we have on the other hand

eXeY =

∞∑
m=0

1

m!

m∑
i=0

(
m

i

)
XiY m−i = eY eX

which implies the claim.

Corollary 4.10. For X ∈Mn(C) we have eX ∈ GLn(C) with inverse given by e−X .

Lemma 4.11 ([Hal15, Theorem 2.12]). For any X ∈Mn(C) we have

det(eX) = etrace(X).

Given a matrix Lie group G, the matrix exponential allows us to associate a Lie algebra to
it. For details, including a proof that this is in fact a Lie algebra, see [Hal15, Section 3.3].

Definition 4.12. Let G be a matrix Lie group. The Lie algebra of G is then given by

g =
{
X ∈Mn(C)

∣∣ for all t ∈ R : etX ∈ G
}

equipped with the commutator bracket [X,Y ] = XY − Y X for X,Y ∈ g.

Example 4.13. Consider the matrix Lie group SLn(C) from Example 4.2. For X ∈Mn(C)
we have det(eX) = etrace(X) by Lemma 4.11. So if etX ∈ SLn(C) for all t ∈ R we have

et·trace(X) = 1.

Taking the first derivative w. r. t. t and evaluating in t = 0 on both sides yields

trace(X) = 0.

The Lie algebra of SLn(C) is thus given by

sln(C) := {X ∈Mn(C) | trace(X) = 0}.
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4.2. Simple connectedness of SL2(C)

Note that matrix Lie groups inherit a subspace topology of the standard topology on
Mn(C) ∼= Cn2 . This allows for a topological approach to matrix Lie groups. The topological
properties connectedness and simple connectedness will turn out to be of particular interest
for our discussion on representations of matrix Lie groups and their Lie algebras in section
4.3. In Propositions 4.31 and 4.32 we will see that the irreducible representations of simply
connected matrix Lie groups are determined by their Lie algebra. This is useful since the
irreducible representations of sl2(C) can be computed with basic linear algebra.

Definition 4.14. A matrix Lie group G is

• connected if G = G1 ∪G2 for disjoint open sets G1, G2 ⊂ G implies that G1 = ∅ or
G2 = ∅,

• path connected if for all A,B ∈ G there is a continuous function γ : [0, 1]→ G with
γ(0) = A and γ(1) = B. We say that γ is a path from A to B.

Remark 4.15. The property of being path connected defines an equivalence relation on G.
To show that a space is path connected, it thus suffices to check if all points are connected
to one fixed point in the space. Another well-known topological fact is that path connected
spaces are connected. In fact, a matrix Lie group is connected if and only if it is path
connected. See [Hal15, Section 3.8] for more details on this.

Lemma 4.16. The matrix Lie group SLn(C) is path connected.

Proof. Let A ∈ SLn(C) be an arbitrary matrix. Since all complex square matrices are
triangularisable we find P ∈ GLn(C) and an upper triangular matrix B such that A =
PBP−1. We denote the values on the diagonal of B by λ1, . . . , λn. Since A ∈ SLn(C)
we have λ1 · · ·λn = 1. Set D = diag(λ1, . . . , λn). Then B is path connected to D
(e. g., obtain a path by multiplying each entry of B except for the diagonal by t ∈ [0, 1]),
thus A is path connected to PDP−1. Now since the multiplicative group C× is path
connected, we find paths γi(t), t ∈ [0, 1], from λi to 1 for each i ∈ {1, . . . , n− 1} and set
γn(t) = (γ1(t) · · · γn−1(t))−1. This yields a path from PDP−1 to the identity via

γ(t) := P · diag(γ1(t), . . . , γn(t)) · P−1.

This path indeed lies in SLn(C) since for any t ∈ [0, 1] we have

det(γ(t)) = det(P ) · γ1(t) · · · γn(t) · det(P )−1 = 1.

Definition 4.17. Let G be a matrix Lie group. A loop in G is a path γ : [0, 1]→ G with
γ(0) = γ(1). The group G is simply connected if it is path connected and every loop in G
is contractible, i. e. there is a continuous map H : [0, 1]2 → G, called homotopy, such that
for all s, t ∈ [0, 1] we have

H(s, 0) = H(s, 1), H(0, t) = γ(t) and H(1, t) = H(1, 0).
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Some interesting examples for simply connected spaces are given by spheres. The unit circle
S1 ⊂ R2, however, is a loop itself and thus not simply connected. For further details as
well as a proof of the following lemma we refer to [Man15, Section 11.4].

Lemma 4.18. The unit n-sphere

Sn := {x ∈ Rn+1 | ‖x‖ = 1}

with standard norm ‖·‖ is simply connected for all n ≥ 2.

Definition 4.19. A homeomorphism is a continuous and bijective map between topological
spaces such that the inverse map is also continuous. Two spaces are homeomorphic if there
exists a homeomorphism between them.

Remark 4.20. Homeomorphic spaces satisfy the same topological properties. This follows
essentially from the definition. In particular, two homeomorphic spaces are simply connected
if and only if either of the spaces is simply connected.

Definition 4.21. Let n ∈ N. The special unitary group of degree n is given by

SU(n) := {A ∈Mn(C) | det(A) = 1, A∗ = A−1}

where A∗ := At is the adjoint matrix to A.

Lemma 4.22. The group SU(2) is simply connected.

Proof. It suffices to show that

SU(2) =

{(
α −β̄
β ᾱ

)
∈M2(C)

∣∣∣∣ |α|2 + |β|2 = 1

}
since C ∼= R2 then implies that SU(2) is homeomorphic to S3 and hence simply connected
by Lemma 4.18 and Remark 4.20. An explicit homeomorphism SU(2) −→ S3 is then given
by (

α −β̄
β ᾱ

)
7−→ (Re(α), Im(α),Re(β), Im(β)) .

For α, β ∈ C with |α|2 + |β|2 = 1, it is straight forward to verify that
(
α −β̄
β ᾱ

)
has

determinant 1 with inverse given by the adjoint matrix.

Now let A ∈ SU(2) be an arbitrary matrix and write

A =

(
a b
c d

)
.

We then have A∗ = A−1, i. e. (
ā c̄
b̄ d̄

)
=

(
d −b
−c a

)
which implies d = ā and b = −c̄. By setting α := a and β := c we obtain that A is of the
claimed form. Now det(A) = 1 implies that |α|2 + |β|2 = 1.
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Definition 4.23. Let X be a topological space. A subspace Y ⊂ X is a deformation
retract of X if there is a continuous map R : X × [0, 1] −→ X such that

R(x, 0) = x, R(x, 1) ∈ Y, R(y, t) = y

for all x ∈ X, y ∈ Y and t ∈ [0, 1]. The map R is a deformation of X into Y .

Lemma 4.24. The matrix Lie group SL2(C) is simply connected.

Proof. By Lemma 4.24 we only need to show that loops in SL2(C) are contractible. To do
that, we show that SU(2) is a deformation retract of SL2(C). This is sufficient, since any
loop in SL2(C) can then be continuously mapped into the simply connected space SU(2).

To obtain a deformation of SL2(C) into SU(2) we use the Gram-Schmidt process. We
therefore consider the projection operator proju(v) := 〈u,v〉

〈u,u〉 · u for u, v ∈ C2 with the
standard scalar product 〈·, ·〉 and write A = (a1, a2) with column vectors a1, a2 ∈ C2. Now
consider the continuous maps

rt : SL2(C) −→ SL2(C), A 7→ (a1, a2 − t · proja1(a2))

pt : SL2(C) −→ SL2(C), A 7→
(

a1

‖a1‖t
, ‖a1‖t ·

(
a2 − proja1(a2)

))
for all t ∈ [0, 1]. To see that rt(A) ∈ SL2(C) note that elementary column operations do
not change the determinant. Now set

R : SL2(C)× [0, 1] −→ SL2(C)

(A, t) 7−→

{
r2t(A), t < 1

2

p2t−1(A), t ≥ 1
2 .

We claim that R is a deformation of SL2(C) into SU(2). First note that r1(A) = p0(A)
and r0 = idSL2(C). If A ∈ SU(2) then 〈a1, a2〉 = 0 and ‖a1‖ = 1, hence R(A, t) = A for all
t ∈ [0, 1]. To prove that

R(A, 1) =

(
a1

‖a1‖
, ‖a1‖ ·

(
a2 − proja1(a2)

))
is unitary for all A ∈ SL2(C), it suffices to show that the column vectors yield an orthonormal
basis of C2. The vectors are orthogonal since〈

a1

‖a1‖
, ‖a1‖ ·

(
a2 − proja1(a2)

)〉
=
〈
a1, a2 − proja1(a2)

〉
= 〈a1, a2〉 −

〈a1, a2〉
〈a1, a1〉

〈a1, a1〉 = 0.

And since the vectors are orthogonal, the determinant is 1 and a1
‖a1‖ is normalized, we also

obtain that the second vector has norm 1.
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4.3. Representations of matrix Lie groups and Lie algebras

Definitions 4.25.

• Let G and H be matrix Lie groups. A continuous group homomorphism Π: G→ H
is called Lie group homomorphism.

• Let g and h be Lie algebras. A Lie algebra homomorphism is a linear map π : g→ h
such that

π ([X,Y ]) = [π(X), π(Y )]

for all X,Y ∈ g.

Definition 4.26. Let V be a finite-dimensional C-vector space.

• Let G be a matrix Lie group. A Lie group homomorphism

Π: G→ GL(V )

is called a (finite-dimensional) representation of G.

• Let g be a Lie algebra. A Lie algebra homomorphism

π : g→ gl(V )

is called a (finite-dimensional) representation of g.

In either case, the dimension of V is called the dimension of the representation.

Definition 4.27. Let V1, . . . , Vn be finite-dimensional C-vector spaces.

• Let G be a matrix Lie group and Π1, . . . ,Πn be representations of G acting on
V1, . . . , Vn, respectively. The direct sum of Π1, . . . ,Πn is given by

Π1 ⊕ · · · ⊕Πn : G −→ GL(V1 ⊕ · · · ⊕ Vn)

A 7−→ ((v1, . . . , vn) 7→ (Π1(A)v1, . . . ,Πn(A)vn)) .

• Let g be a Lie algebra and π1, . . . , πn be representations of g acting on V1, . . . , Vn,
respectively. The direct sum of π1, . . . , πn is given by

π1 ⊕ · · · ⊕ πn : g −→ gl(V1 ⊕ · · · ⊕ Vn)

X 7−→ ((v1, . . . , vn) 7→ (π1(X)v1, . . . , πn(X)vn)) .

It follows immediately from the definition that the direct sum of representations is again a
representation.

70



4.3. Representations of matrix Lie groups and Lie algebras

Example 4.28. The slash operator from Definition 2.3 can be thought of as a representation
of SL2(C).4 Let Π: SL2(C)→ GL(Vk) denote the slash operator. Then the bi-slash operator
from Definition 3.3 is a direct sum of two slash operators, namely

Π(γ)⊕Π(γ−t).

Definitions 4.29.

• LetG be a matrix Lie group and Π: G→ GL(V ) be a finite-dimensional representation
of G. A subspace W ⊆ V is called invariant if

Π(A)(w) ∈W for all A ∈ G,w ∈W.

• Let g be a Lie algebra and π : g→ gl(V ) be a finite-dimensional representation of g.
A subspace W ⊆ V is called invariant if

π(X)(w) ∈W for all X ∈ g, w ∈W.

Furthermore, a proper subspace W $ V is nontrivial if W 6= {0}. A representation of a
Lie algebra or matrix Lie group, respectively, is irreducible if it has no nontrivial invariant
subspaces.

Proposition 4.30 ([Hal15, Proposition 4.4]). Let G be a matrix Lie group with Lie algebra
g, V be a finite-dimensional C-vector space and Π: G→ GL(V ) be a representation of G.
Then there is a unique representation π : g→ gl(V ) such that

Π(eX) = eπ(X)

for all X ∈ g. The representation π can be explicitly computed as

π(X) =
d

dt
Π(etX)

∣∣∣∣
t=0

.

For a representation Π of a matrix Lie group we call the Lie algebra representation π from
Proposition 4.30 the associated representation to Π. The following proposition gives strong
connections between associated representations for connected matrix Lie groups.

Proposition 4.31 ([Hal15, Proposition 4.5]). Let G be a connected matrix Lie group with
Lie algebra g.

1. Let Π be a representation of G and π the associated representation of g. Then Π is
irreducible if and only if π is irreducible.

4One needs to replace γ · z with γ−1 · z in the definition since representations naturally induce left instead
of right actions. See Definition 4.35 and Lemma 4.36 for details.
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4. Representation theory for SL2(C)

2. Let Π1 and Π2 be representations of G and let π1 and π2 be the associated Lie
algebra representations. Then π1 and π2 are isomorphic if and only if Π1 and Π2 are
isomorphic.

By Proposition 4.30 we can always associate a Lie algebra representation to a given Lie
group representation. On the other hand, it is in general not possible to associate a Lie
group representation to a given Lie algebra representation. The following proposition,
however, states that this works if the matrix Lie group is simply connected.

Proposition 4.32 ([Hal15, Theorem 5.6]). Let G and H be matrix Lie groups with Lie
algebras g and h, respectively, and let π : g→ h be a Lie algebra homomorphism. If G is
simply connected, there exists a unique Lie group homomorphism Π: G→ H such that

Π
(
eX
)

= eπ(X) for all X ∈ g.

We now established some connections between representations of Lie groups and of the
associated Lie algebras. In addition to that, we want also to describe connections between
different representations of the same Lie group or Lie algebra. We therefore consider the
following definition.

Definition 4.33. Let V and W be a finite-dimensional C-vector spaces.

• Let G be a matrix Lie group, Π1 : G→ GL(V ) and Π2 : G→ GL(W ) be representa-
tions of G. A linear map φ : V →W such that

φ(Π1(A)(v)) = Π2(A)(φ(v)) for all A ∈ G, v ∈ V

is called an intertwining map.

• Let g be a Lie algebra, π1 : g→ gl(V ) and π2 : g→ gl(W ) be representations of g. A
linear map φ : V →W such that

φ(π1(X)(v)) = π2(X)(φ(v)) for all X ∈ g, v ∈ V

is called an intertwining map.

In either case, an isomorphism of representations is an intertwining map φ that is a vector
space isomorphism. If there exists such an isomorphism, the representations are isomorphic.

4.4. Finite-dimensional irreducible representations of SL2(C)

In this section we want to characterize the irreducible representations of SL2(C) up to
isomorphism. To do so, we will first define a n-dimensional representation of SL2(C) for
each n ∈ N. To show the irreducibility of these representations, we first use Proposition 4.30
to compute the associated representations of sl2(C). Since SL2(C) is simply connected by
Lemma 4.24, it then suffices by Proposition 4.31 to show that the associated representations
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of sl2(C) are irreducible. To characterize the irreducible representations, we will finally show
in Theorem 4.43 that irreducible representations of sl2(C) are uniquely determined (up
to isomorphism) by their dimension. This will be sufficient for SL2(C) due to Proposition
4.31.

Remark 4.34. For n ≥ 2, we denote the space of homogeneous polynomials of degree
n− 2 over C by

Vn,C = {f = f(x, y) ∈ C[x, y] | f homogeneous, deg(f) = n− 2}.

Definition 4.35. We define Πn : SL2(C)→ GL(Vn+1,C) which acts on f ∈ Vn+1,C via

A 7→
(
f 7→ f

(
(A−1 · z)t

))
where z = (x, y)t.

Lemma 4.36. The map Πn is an n-dimensional representation of SL2(C).

Proof. By Remark 2.2 we have dim(Vn+1,C) = n. Let A,B ∈ SL2(C) and f ∈ Vn+1,C. Note
that f(A−1 · z) is again a homogeneous polynomial of degree n− 1 (cf. Proposition 2.4).
And since

Πn(A)(Πn(B)(f)) = Πn(B)(f((A−1 · z)t)) = f
(
((B−1A−1 · z)t)

)
= f

(
((AB)−1 · z)t

)
= Πn(AB)(f)

the map Πn is in fact a group homomorphism.

Remark 4.37. We denote the associated representation to Πn from Proposition 4.30 by
πn : sl2(C)→ gl(Vn+1,C). For some X ∈ sl2(C) this representation acts on f ∈ Vn+1,C via

πn(X)f(z) =
d

dt
f
(
e−tX · z

)∣∣∣∣
t=0

. (4.1)

In order to work with πn, we will first describe the action (4.1) more explicitly.

Lemma 4.38. For X ∈ sl2(C) with

X =

(
a b
c d

)
the action of πn(X) is given by

πn(X) = − ∂

∂x
· (ax+ by)− ∂

∂y
· (cx+ dy).
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4. Representation theory for SL2(C)

Proof. Consider the curve z(t) = e−tX · z and denote the coordinates by z(t) = (x(t), y(t)).
Since each entry (etX)i,j is given by a absolutely convergent power series in t we can compute
the derivative term by term, hence

d

dt
e−tX =

∞∑
m=0

d

dt
tm

(−X)m

m!
=

∞∑
m=1

tm−1 (−X)m

(m− 1)!
= (−X) ·

∞∑
m=0

(−tX)m

m!
= (−X) · e−tX .

This yields
d

dt
z(t)

∣∣∣∣
t=0

= −X · z.

For some f ∈ Vn+1,C the chain rule now implies that

πn(X)f =
d

dt
f(z(t))

∣∣∣∣
t=0

=
∂f

∂x

dx

dt

∣∣∣∣
t=0

+
∂f

∂y

dy

dt

∣∣∣∣
t=0

= −∂f
∂x
· (ax+ by)− ∂f

∂y
· (cx+dy).

Our next goal is to show that each πn is irreducible. We will therefore make use of the
vector space structure on sl2(C). Recall from Example 4.13 that the underlying set of sl2(C)
consists of 2× 2-matrices with vanishing trace. A basis is thus given by

H :=

(
1 0
0 −1

)
, X :=

(
0 1
0 0

)
, Y :=

(
0 0
1 0

)
.

The commutator bracket on sl2(C) yields the relations

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H. (4.2)

Lemma 4.38 then yields

πn(H) = −x ∂
∂x

+ y
∂

∂y

πn(X) = −y ∂
∂x

πn(Y ) = −x ∂
∂y

Now recall the standard basis on Vn+1,C from Remark 2.2 of the form xn−1−iyi for i ∈
{0, . . . , n− 1}. By applying the operators above to this basis we obtain

πn(H)(xn−1−iyi) = (−n+ 1 + 2i) · xn−1−iyi (4.3)

πn(X)(xn−1−iyi) = −(n− 1− i) · xn−i−2yi+1 (4.4)

πn(Y )(xn−1−iyi) = −i · xn−iyi−1. (4.5)

In particular, (4.3) shows that each basis element xn−1−iyi is an eigenvector for πn(H) with
eigenvalue (−n+ 1 + 2i). The operators πn(X) and πn(Y ) shift the exponent up or down
by 1, respectively. We are now ready to prove the irreducibility of πn.
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Proposition 4.39. The representation πn is irreducible.

Proof. Let W ⊆ Vn+1,C be an invariant subspace with W 6= {0}. It suffices to show that
W = Vn+1,C. Now let f ∈W be a non-zero element with

f(x, y) = a0x
n−1 + a1x

n−2y + · · ·+ an−1y
n−1

for some ai ∈ C.

Since f 6= 0 there exists some i0 = min{i ∈ {0, . . . , n− 1} | ai 6= 0}. Applying πn(X)n−1−i0

to f yields by (4.4) a non-zero multiple of yn−1. This is because n− 1− i vanishes if and
only if i = n− 1 but if i0 = n− 1 we already have f = an−1y

n−1 with an−1 6= 0. Since W
is assumed to be invariant, we thus have yn−1 ∈W .

Now for all i ∈ {1, . . . , n− 1} we obtain by (4.5) that πn(Y )i(yn−1) is a non-zero multiple
of xiyn−1−i. The invariance of W again yields that xiyn−1−i ∈ W . Since W ⊆ Vn+1,C
therefore contains a basis of Vn+1,C, we have W = Vn+1,C and the proof follows.

Our next and final goal for this section is to show that any given irreducible representation
of sl2(C) is isomorphic to some πn. From now on, let π : sl2(C)→ gl(V ) be an arbitrary
n-dimensional irreducible representation of sl2(C). We will first prove two lemmas that will
be needed to prove Theorem 4.43.

Lemma 4.40. Let u ∈ V be an eigenvector of π(H) with eigenvalue λ ∈ C. We then have

π(H)π(X)u = (λ+ 2) · π(X)u

π(H)π(Y )u = (λ− 2) · π(Y )u.

Proof. Since π is a Lie algebra homomorphism we have due to (4.2) that

[π(H), π(X)] = π([H,X]) = 2π(X)

[π(H), π(Y )] = π([H,Y ]) = −2π(Y ).

Hence

π(H)π(X)u = π(X)π(H)u+ 2π(X)u = (λ+ 2) · π(X)u

π(H)π(Y )u = π(Y )π(H)u− 2π(Y )u = (λ− 2) · π(Y )u.

Remark 4.41. Note that Lemma 4.40 implies that π(X)u and π(Y )u are eigenvectors of
π(H), unless they vanish, with eigenvalues λ+ 2 and λ− 2, respectively.

Lemma 4.42. Let u ∈ V be an eigenvector of π(H) with eigenvalue λ ∈ C, N ∈ N0 such
that u0 := π(X)Nu 6= 0 but π(X)N+1u = 0 and set uk := π(Y )ku0 for all k ≥ 1. We then
have for all k ≥ 1 that

π(X)uk = k
(
(λ+ 2N)− (k − 1)

)
uk−1. (4.6)
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4. Representation theory for SL2(C)

Proof. For λ̃ = λ+ 2N we obtain by applying Lemma 4.40 repeatedly that

π(H)u0 = λ̃u0

and

π(H)uk = (λ̃− 2k)uk.

Now observe that (4.2) yields [π(X), π(Y )] = π(H) and thus

π(X)π(Y ) = π(H) + π(Y )π(X).

We now prove (4.6) by induction on k.

The claimed identity holds for k = 1 since

π(X)u1 = π(X)π(Y )u0 = (π(H) + π(Y )π(X))u0 = π(H)u0 = λ̃u0.

Now assume (4.6) holds for some k ≥ 1. We then have

π(X)uk+1 = π(X)π(Y )uk = (π(H) + π(Y )π(X))uk
IH
= π(H)uk + k

(
λ̃− (k − 1)

)
π(Y )uk−1

= (λ̃− 2k)uk + k
(
λ̃− (k − 1)

)
uk

= (k + 1)
(
λ̃− k)uk.

Theorem 4.43. Let π be an irreducible representation of sl2(C). Then π is isomorphic to
πn from (4.1) for some n ∈ N.

Proof. Let π act on the finite-dimensional vector space V . Since C is algebraically closed
the operator π(H) has an eigenvector u and we denote the corresponding eigenvalue by λ.
By Lemma 4.40 we have

π(H)π(X)ku = (λ+ 2k) · π(X)ku

for all k ∈ N. Since V is finite-dimensional, the operator π(H) only has finitely many
eigenvalues. So we have π(X)ku = 0 for almost all k ∈ N. But since π(H)u does not vanish,
we find in particular some N ≥ 0 such that

π(X)Nu 6= 0 and π(X)N+1u = 0.

We denote u0 := π(X)Nu and have π(H)u0 = (λ+ 2N) · u0. Now define uk := π(Y )ku0 for
all k ≥ 0. Applying Lemma 4.40 to the eigenvector u0 of π(H) yields that

π(H)uk = (λ+ 2N − 2k)uk.

Again, since π(H) only has finitely many eigenvalues we find someM ∈ N0 such that uk 6= 0
for all k ≤M but uM+1 = 0. By Lemma 4.42 we now have

0 = π(X)uM+1 = (M + 1)(λ+ 2N −M)uM .
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4.4. Finite-dimensional irreducible representations of SL2(C)

Since M + 1 > 0 we obtain λ + 2N = M . So in conclusion, we have non-zero vectors
u0, . . . , uM with

π(H)uk = (M − 2k)uk for all k ≤M

π(Y )uk =

{
uk+1, if k < M

0, if k = M

π(X)uk =

{
k(M − (k − 1))uk−1, if k > 0

0, if k = 0

(4.7)

Now consider the span V ′ of u0, . . . , uM . Since they are eigenvectors of π(H) with distinct
eigenvalues, they are linearly independent. So we have dimV ′ = M + 1 and clearly V ′ ⊆ V .
But V ′ is invariant under π(H), π(X) and π(Y ). Since H,X, Y is a basis for sl2(C), the
space is in fact an invariant subspace of V . This yields by our assumption that V ′ = V .

So if π1 and π2 are any irreducible representations acting on vector spaces V1 and V2 with
dim(V1) = n = dim(V2) then we find bases {u0, . . . , un−1} and {v0, . . . , vn−1} for V1 and
V2, respectively. Since both representations are uniquely described by (4.7) w. r. t. their
respective basis, we obtain an isomorphism between π1 and π2 via ui 7→ vi.

Combining Proposition 4.39 and Theorem 4.43 implies that there is (up to isomorphism)
exactly one n-dimensional irreducible representation of sl2(C) for each n ∈ N. This also
follows for the irreducible representations of SL2(C) by Proposition 4.31. In particular, any
(finite-dimensional) irreducible representation of SL2(C) is isomorphic to Πn from Definition
4.35 for some n ∈ N.
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5. Generalized period polynomials

5. Generalized period polynomials

In this chapter, we introduce multivariate extensions of period polynomials. To define an
analogue of the slash operator, we use the irreducible n-dimensional representation Πn from
Definition 4.35. We generally proceed similarly to chapters 2 and 3. After defining the
space of generalized period polynomials W (n)

k in section 5.1 we will discuss the analogue of
the Lewis space in section 5.2. We conjecture that the spaces agree in all cases where W (n)

k

is non-trivial. This conjecture could not be proven in the scope of this master thesis as it
remains unclear how to describe the space E(n)

k of SL2(Z)-invariant polynomials. In section
5.3 we introduce a non-degenerate pairing on the space of homogeneous polynomials in n
variables. This pairing can be seen as a natural generalization of the pairing from section
2.3. We will prove that this pairing is invariant under the action of SL2(Z) (Theorem 5.21).
In section 5.4 we attempt to compute the dimension of W (n)

k similarly to sections 2.4 and
3.4. However, we can only provide a dimension formula that depends on the dimension of
E

(n)
k .

5.1. Slash operator

Definition 5.1. For n, k ∈ N with k ≥ n we denote the space of homogeneous polynomials
in n variables by

V
(n)
k := {f = f(x1, . . . , xn) ∈ Q[x1, . . . , xn] | f homogeneous,deg(f) = k − n} .

If k and n are clear from the context, we also use the shorthand notation d = k − n.

Remark 5.2. Note that Vk = V
(2)
k and Vk = V

(4)
k+2.

Lemma 5.3. For k ≥ n we have

dimV
(n)
k =

(
k − 1

n− 1

)
.

Proof. Observe that a basis for V (n)
k is given by{

xi11 · · ·x
in
n

∣∣∣ (i1, . . . , in) ∈ Nn0 , i1 + · · ·+ in = k − n
}
.

We can use the combinatorial method of stars and bars to count the number of basis vectors.
Each tuple (i1, . . . , in) ∈ Nn0 with i1 + · · ·+ in = k − n can be uniquely depicted by placing
n− 1 bars ( | ) amongst k − n stars (?) via

? · · · ?︸ ︷︷ ︸
i1

| ? · · · ?︸ ︷︷ ︸
i2

| · · · | ? · · · ?︸ ︷︷ ︸
in

. (5.1)
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Since there are k− n stars it is clear that i1 + · · ·+ in = k− n and by possibly placing bars
at the beginning, the end and next to one another we also have (i1, . . . , in) ∈ Nn0 . Observe
that (5.1) contains a total of k − 1 objects. Hence the number of possible arrangements is
given by

(
k−1
n−1

)
.

Corollary 5.4. Since (
k − 1

n− 1

)
=

(
k − 1

k − n

)
there is an isomorphism of vector spaces

V
(n)
k
∼= V

(k−n+1)
k .

To define an analogue of the slash operator from Definition 2.3, we use the irreducible
representations Πn from Definition 4.35 and consider the inclusion SL2(Z) ↪→ SL2(C).
Since representations naturally induce left group actions, we will instead consider the
corresponding right action. So for γ ∈ SL2(Z) this right action is given by Πn(γ−1), i. e.

γ 7→
(
f(x, y) 7→ f

((
γ · ( xy )

)t))
where f ∈ Vn+1,C.

Definition 5.5. For γ ∈ SL2(Z) we denote the transformation matrix of Πn(γ−1) ∈ GLn(Q)
by γ̃(n). If n is clear from the context, we may omit the superscript.

Example 5.6. For n = 6 we have

S̃ =



0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0

 and Ũ =



1 −5 10 −10 5 −1
1 −4 6 −4 1 0
1 −3 3 −1 0 0
1 −2 1 0 0 0
1 −1 0 0 0 0
1 0 0 0 0 0

 .

The source code that was used to compute these matrices can be found in appendix C.3.

Definition 5.7. We define the slash operator on the space V (n)
k by

SL2(Z)× V (n)
k −→ V

(n)
k

(γ, f) 7−→ f |γ̃ := f
(
(γ̃ · z)t

)
where z = (x1, . . . , xn)t.
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Recall from Lemmas 2.5 and 3.5 that homogeneous polynomials are invariant under the
action of |−1 in all cases where the space of (bi-)period polynomials is non-trivial. The
following lemma specifies the cases for which V (n)

k is invariant under |−1 . We will later see
that these are again the non-trivial cases we will be interested in (see Lemma 5.12).

Lemma 5.8. For n, k ∈ N with k ≥ n such that n even implies that k is even, the space
V

(n)
k is invariant under |−1 , i. e. for f ∈ V (n)

k we have

f |(−1) = f.

Proof. For f ∈ V (n)
k we write

f =
∑

α1,...,αn≥0,
α1+···+αn=d

aα1,...,αnx
α1
1 · · ·x

αn
n ∈ V

(n)
k . (5.2)

Since
Πn(− id2) = (−1)n+1 idn

acts trivially for odd n, this case is clear. If n is even, then k is even by assumption. In
this case, the degree d = k − n is even and we have

f |(−1) =
∑

α1,...,αn≥0,
α1+···+αn=d

aα1,...,αn(−x1)α1 · · · (−xn)αn = (−1)d · f = f.

Remark 5.9. In chapters 2 and 3 we considered an action of the general linear group
GL2(Z) instead of SL2(Z). Note that Definition 5.5 also allows us to compute actions of
GL2(Z)-matrices.
We therefore extend the SL2(Z)-action on V (n)

k first to an action of GL2(Z) and then to an
action of the group ring Z[GL2(Z)] on V (n)

k analogously to Definition 2.12.

Definition 5.10. We denote the eigenspaces of the operator |ε̃ on V (n)
k with eigenvalues 1

and −1, respectively, by

V
(n),+
k :=

{
f ∈ V (n)

k

∣∣∣ f |ε̃ = f
}

and V
(n),−
k :=

{
f ∈ V (n)

k

∣∣∣ f |ε̃ = −f
}

and the eigenspaces of the operator
∣∣∣δ̃ on V (n)

k with eigenvalues 1 and −1, respectively, by

V
(n),ev
k :=

{
f ∈ V (n)

k

∣∣∣ f ∣∣∣δ̃ = f
}

and V
(n),odd
k :=

{
f ∈ V (n)

k

∣∣∣ f ∣∣∣δ̃ = −f
}
.

Furthermore, for a subspace W ⊆ V (n)
k we set W • := W ∩ V (n),•

k for all • ∈ {+,−, ev, odd}.

Definition 5.11. The space of generalized period polynomials is given by

W
(n)
k :=

{
f ∈ V (n)

k

∣∣∣ f ∣∣∣1 + S̃ = f
∣∣∣1 + Ũ + Ũ2 = 0

}
.
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Table 3: Dimensions of L(n)
k . Cases where W (n)

k = {0} (i. e. n even and k odd) are typeset
in gray.5

n k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1

3 − 1 1 2 2 5 3 8 6 11 9 16 12 21 17

4 − − 1 2 3 4 6 14 10 24 15 48 21

5 − − − 1 2 4 11 19 30 53 77 111

6 − − − − 1 5 6 19 20 80 49

7 − − − − − 1 3 14 30 80 143

8 − − − − − − 1 8 10 53 49

9 − − − − − − − 1 6 24 77

10 − − − − − − − − 1 11 15 111

11 − − − − − − − − − 3 9 48

Lemma 5.12. For even n and odd k we have W (n)
k = {0}.

Proof. Let f ∈ V (n)
k as in (5.2). Then f ∈ ker(1 + S̃) implies for all coefficients that

aα1,...,αn + aαn,...,α1 = 0 and aα1,...,αn = aαn,...,α1 .

Hence f = 0.

5.2. Generalized Lewis space

Definition 5.13. We denote the kernel of the operator 1− T̃ − T̃ ′ by

L
(n)
k := ker(1− T̃ − T̃ ′) ⊆ V (n)

k

and refer to it as the generalized Lewis space.

We know from Proposition 2.19 that W (2)
k = L

(2)
k for even k. We now want to work out for

what kind of pairs (n, k) ∈ N2 we also have

W
(n)
k = L

(n)
k . (5.3)

5The source code that was used to compute these dimensions can be found in appendix C.4.
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Remark 5.14. Recall that we have W (n)
k = {0} for even n and odd k (Lemma 5.12).

However, the space L(n)
k is non-trivial in this case. E. g., the polynomial f = xd1−xdn ∈ V

(n)
k

suffices f |1− T̃ − T̃ ′ = 0 since

f
∣∣∣1− T̃ − T̃ ′ = xd1−xdn−

( n∑
i=1

(
n− 1

i− 1

)
xi

)d
− xdn

−
xd1 −

(
n∑
i=1

(
n− 1

i− 1

)
xi

)d = 0.

Apart from the exception in Remark 5.14, the identity (5.3) seems to hold.

Conjecture 5.15. For n, k ∈ N with k ≥ n and such that n even implies that k is even we
have

W
(n)
k = L

(n)
k .

Remark 5.16. Conjecture 5.15 has been tested for all cases in table 3. The symmetry
along the columns follows from Remark 5.4.

One of the inclusions stated in Conjecture 5.15 holds for all n, k ∈ N with k ≥ n.

Lemma 5.17. For n, k ∈ N with k ≥ n we have

W
(n)
k ⊆ L(n)

k .

Proof. Let f ∈W (n)
k . Then

0 = f |S̃ − Ũ − Ũ2|S̃ = f |(−1)− (−T̃ )− (−T̃ ′)
= f |(−1)|1− T̃ − T̃ ′.

The proof of Lemma 5.8 shows more generally that f |(−1) = ±f . So f ∈ L(n)
k .

In the well-known case for n = 2, the other inclusion of Conjecture 5.15 makes usually use
of the fact that non-trivial polynomials are not invariant under the action of SL2(Z) in this
case. However, this is no longer true in general for polynomials in multiple variables.

Example 5.18. For f(x1, x2, x3) = x2
2 − x1x3 ∈ V (3)

5 we have

f
∣∣∣S̃(3) = f, f

∣∣∣Ũ (3) = f and f
∣∣∣T̃ (3) = f.
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5.3. An invariant pairing

We recall the pairing on V (2)
k from Definition 2.23 which is SL2(Z)-invariant (Proposition

2.27). In this section, we discuss a generalization of this pairing for each n ∈ N, n ≥ 2, on
the spaces V (n)

k . By a slight abuse of notation, we also denote these pairings by 〈·, ·〉. This
is not ambiguous as the generalized version will coincide with the previous pairing for the
case n = 2.

Definition 5.19. We define a pairing on monomials in V (n)
k by〈

xα1
1 · · ·x

αn
n , xβ11 · · ·x

βn
n

〉
:=

(−1)
∑n
i=1 i·αi(

α1+···+αn
α1,...,αn

)
·
∏n
i=1

(
n−1
i−1

)αi · δ(α1,...,αn),(βn,...,β1) (5.4)

and extend this linearly to a pairing on V (n)
k .

Remark 5.20. The additional factor Πn
i=1

(
n−1
i−1

)−αi is essential for the desired invariance
property, as we will see in the proof of Theorem 5.21. We will have a further discussion on
this at the end of this section.

Using the inclusion morphism SL2(Z) ↪→ SL2(C), we obtain an induced action of SL2(Z)

on V (n)
k .

Theorem 5.21. The pairing from Definition 5.19 is invariant under the action of SL2(Z),
i. e. for all f, g ∈ V (n)

k and γ ∈ SL2(Z) we have

〈f |γ̃ , g |γ̃ 〉 = 〈f, g〉 .

In order to prove Theorem 5.21, it suffices to show that it is invariant under actions of the
SL2(Z)-generators S and T for monomials f, g ∈ V (n)

k . To do so, we will introduce some
further notation and lemmas first.

Definition 5.22. Let m ∈ N be a natural number. We denote the set of its weak composi-
tions of length ` for some ` ∈ N by

P`(m) := {(a1, . . . , a`) ∈ N`0 | a1 + · · ·+ a` = m}.

For a multi index β = (β1, . . . , βn) ∈ Nn0 we set

P(β) := P1(β1)× · · · × Pn(βn).

We call m ∈ P(β) a weak composition of β and write m(i) = (m
(i)
1 , . . . ,m

(i)
i ) ∈ Pi(βi) for

the ith entry in m.

Further, let α = (α1, . . . , αn) ∈ Nn0 be another multi index. We set

Pα(β) :=
{
m ∈ P(β)

∣∣∣ ∀i ∈ {1, . . . , n} :
n∑
j=i

m
(j)
i = αi

}
and call m ∈ Pα(β) an admissible weak composition of β with respect to α.
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Example 5.23. For α = (2, 2, 4, 1) and β = (0, 3, 3, 3) we have

Pα(β) =
{(

(0), (2, 1), (0, 1, 2), (0, 0, 2, 1)
)
,
(
(0), (2, 1), (0, 0, 3), (0, 1, 1, 1)

)
,(

(0), (1, 2), (1, 0, 2), (0, 0, 2, 1)
)
,
(
(0), (1, 2), (0, 0, 3), (1, 0, 1, 1)

)}
.

Notation. Let n ∈ N and α =
(
α1, . . . , αn

)
∈ Nn0 be a multi index. We then denote its

inverted multi index by
ᾱ :=

(
αn, . . . , α1

)
∈ Nn0 .

Lemma 5.24. Let n ∈ N and α, β ∈ Nn0 be multi indices. Then there is a bijection between
Pα(β̄) and Pβ(ᾱ).

Proof. If both sets are empty, the claim is trivial. So assume without loss of generality that
Pα(β̄) 6= ∅. By symmetry, it suffices to show that there is an injective map ϕ : Pα(β̄) −→
Pβ(ᾱ). For m =

(
m(1), . . . ,m(n)

)
∈ Pα(β̄) define

p
(j)
i := m

(n+1−i)
n+1−j ∀ 1 ≤ i ≤ j ≤ n (5.5)

and set
ϕ
((
m(1), . . . ,m(n)

))
:=
(
p(1), . . . , p(n)

)
.

Since (5.5) also yields the inverse relation m(j)
i = p

(n+1−i)
n+1−j , the map ϕ is injective. So it

suffices to show that this defines a map Pα(β̄) −→ Pβ(ᾱ).

For i ∈ {1, . . . , n} the ith entry in ϕ(m) is given by

p(i) =
(
m

(n)
n+1−i, . . . ,m

(n+1−i)
n+1−i

)
.

So the ith entry is indeed of length i. Now, since m is an admissible weak composition of β̄
w. r. t. α we have for all i ∈ {1, . . . , n} that

m
(i)
1 + · · ·+m

(i)
i = βn+1−i (5.6)

and

m
(i)
i + · · ·+m

(n)
i = αi. (5.7)

This implies that

p
(i)
i + · · ·+ p

(n)
i = m

(n+1−i)
1 + · · ·+m

(n+1−i)
n+1−i

(5.6)
= βi

and

p
(i)
1 + · · ·+ p

(i)
i = m

(n+1−i)
n+1−i + · · ·+m

(n)
n+1−i

(5.7)
= αn+1−i

which shows ϕ(m) ∈ Pβ(ᾱ).
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Lemma 5.25. Let α, β ∈ Nn0 be multi indices such that |α| = |β|. Then the coefficient of
xβ11 · · ·x

βn
n in xα1

1 · · ·x
αn
1

∣∣∣T̃ (n) is given by

∑
m∈Pα(β)

n∏
i=1

(
αi

m
(i)
i , . . . ,m

(n)
i

)
·
n∏
j=i

(
n− i
j − i

)m(j)
i

.

Proof. Since

xα1
1 . . . xαnn

∣∣∣T̃ (n) =
n∏
i=1

 n∑
j=i

(
n− i
j − i

)
xj

αi

, (5.8)

each summand corresponds to a choice from the n factors in (5.8). For j ∈ {1, . . . , n} there
are precisely the first j factors that contain xj . Let m(j) =

(
m

(j)
1 , . . . ,m

(j)
j

)
be a weak

composition of βj , i. e. m
(j)
1 + · · ·+m

(j)
j = βj and m

(j)
i ∈ {0, . . . , βj} for all i ∈ {1, . . . , j}.

This choice of m(j) yields exactly one possible way to obtain the factor xβjj in (5.8).

Now fix a weak composition m =
(
m(1), . . . ,m(n)

)
for β such that xj is chosen m

(j)
i times

from the ith factor in (5.8). For i ∈ {1, . . . , n} there are thus(
αi

m
(i)
i , . . . ,m

(n)
i

)
possible ways to choose the respective number of factors from the ith factor in (5.8). Note
that this multinomial coefficient vanishes, unless m(i)

i + · · ·+m
(n)
i = αi. It therefore suffices

to restrict the weak compositions of β to admissible weak compositions w. r. t. α. Finally,
the factor

n∏
j=i

(
n− i
j − i

)m(j)
i

accounts for the respective coefficients of xi, . . . , xn from (5.8). Hence summing over all
admissible weak compositions of β w. r. t. α yields the desired coefficient.

Corollary 5.26. Let α, β ∈ Nn0 be multi indices such that |α| = |β|. Then the coefficient
of xβ11 · · ·x

βn
n in xα1

1 · · ·xαnn
∣∣∣T̃−1 is given by

(−1)
∑n
i=1 i·(αi+βi)

∑
m∈Pα(β)

n∏
i=1

(
αi

m
(i)
i , . . . ,m

(n)
i

)
·
n∏
j=i

(
n− i
j − i

)m(j)
i

.

Proof. Since

xα1
1 . . . xαnn

∣∣∣T̃−1 =

n∏
i=1

 n∑
j=i

(−1)i+j
(
n− i
j − i

)
xj

αi

,
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Lemma 5.25 yields that

∑
m∈Pα(β)

n∏
i=1

(
αi

m
(i)
i , . . . ,m

(n)
i

)
·
n∏
j=i

(
(−1)i+j ·

(
n− i
j − i

))m(j)
i

. (5.9)

The sign of each summand in (5.9) is given by

n∑
i=1

n∑
j=i

(i+ j) ·m(j)
i =

n∑
i=1

i ·
n∑
j=i

m
(j)
i +

n∑
j=1

j ·
j∑
i=1

m
(j)
i

=
n∑
i=1

i · αi +
n∑
j=1

j · βj

=
n∑
i=1

i · (αi + βi).

We are now able to prove Theorem 5.21.

Proof of Theorem 5.21. Since the group SL2(Z) is generated by S and T , it suffices to show〈
xα1

1 · · ·x
αn
n

∣∣∣S̃ , xβ11 · · ·x
βn
n

〉
=
〈
xα1

1 · · ·x
αn
n , xβ11 · · ·x

βn
n

∣∣∣S̃−1
〉

(5.10)

and 〈
xα1

1 · · ·x
αn
n

∣∣∣T̃ , xβ11 · · ·x
βn
n

〉
=
〈
xα1

1 · · ·x
αn
n , xβ11 · · ·x

βn
n

∣∣∣T̃−1
〉
. (5.11)

The left-hand side of (5.10) is

(−1)
∑n
i=1(i+1)·αn+1−i

〈
xαn1 · · ·x

α1
n , x

β1
1 · · ·x

βn
n

〉
(5.12a)

while the right-hand side is

(−1)
∑n
i=1(i+1)·βi

〈
xα1

1 · · ·x
αn
n , xβn1 · · ·x

β1
n

〉
. (5.12b)

Both (5.12a) and (5.12b) vanish unless α = β. If α = β, then (5.12a) is

(−1)
∑n
i=1(i+1)·αn+1−i+i·αn+1−i(

α1+···+αn
α1,...,αn

)∏n
i=1

(
n−1
i−1

)αn+1−i =
(−1)α1+···+αn(

α1+···+αn
α1,...,αn

)∏n
i=1

(
n−1
i−1

)αi
and (5.12b) is

(−1)
∑n
i=1(i+1)·αi+i·αi(

α1+···+αn
α1,...,αn

)∏n
i=1

(
n−1
i−1

)αi =
(−1)α1+···+αn(

α1+···+αn
α1,...,αn

)∏n
i=1

(
n−1
i−1

)αi .
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The left-hand side of (5.11) is due to Lemma 5.25 and the Kronecker delta in (5.4) given by

(−1)
∑n
i=1 i·βn+1−i(

β1+···+βn
β1,...,βn

)
·
∏n
i=1

(
n−1
i−1

)βn+1−i

∑
m∈Pα(β̄)

n∏
i=1

(
αi

m
(i)
i , . . . ,m

(n)
i

)
·
n∏
j=i

(
n− i
j − i

)m(j)
i

=
(−1)(n+1)·d+

∑n
i=1 i·βi

|β|! ·
∏n
i=1

(
n−1
i−1

)βn+1−i
α1! · · ·αn! · β1! · · ·βn!

∑
m∈Pα(β̄)

n∏
i=1

n∏
j=i

(
n−i
j−i
)m(j)

i

m
(j)
i !

while the right-hand side of (5.11) is due to Corollary 5.26 given by

(−1)
∑n
i=1 i·(αi+αn+1−i+βi)(

α1+···+αn
α1,...,αn

)
·
∏n
i=1

(
n−1
i−1

)αi ∑
m∈Pβ(ᾱ)

n∏
i=1

(
βi

m
(i)
i , . . . ,m

(n)
i

)
·
n∏
j=i

(
n− i
j − i

)m(j)
i

=
(−1)(n+1)·d+

∑n
i=1 i·βi

|α|! ·
∏n
i=1

(
n−1
i−1

)αi · α1! · · ·αn! · β1! · · ·βn!
∑

m∈Pβ(ᾱ)

n∏
i=1

n∏
j=i

(
n−i
j−i
)m(j)

i

m
(j)
i !

.

We have

n∏
j=1

(
n− 1

j − 1

)−βn+1−j ∑
m∈Pα(β̄)

n∏
i=1

n∏
j=i

(
n−i
j−i
)m(j)

i

m
(j)
i !

=
∑

m∈Pα(β̄)

n∏
i=2

n∏
j=i

((
n−i
j−i
)(

n−1
j−1

))m
(j)
i (

m
(j)
i !
)−1

and similarly for the sum over Pβ(ᾱ) since
∏n
i=1

(
n−1
i−1

)αi
=
∏n
i=1

(
n−1
i−1

)αn+1−i . To prove the
claimed equality, we use the bijection between Pβ(ᾱ) and Pα(β̄) from Lemma 5.24. So
for every p ∈ Pβ(ᾱ) there is a m ∈ Pα(β̄) such that m(j)

i = p
(n+1−i)
n+1−j and vise versa for

all 1 ≤ i ≤ j ≤ n. Now fix some m ∈ Pα(β̄) and let p ∈ Pβ(ᾱ) denote its corresponding
admissible weak composition. We then have

n∏
i=2

n∏
j=i

((
n−i
j−i
)(

n−1
j−1

))m
(j)
i (

m
(j)
i !
)−1

=

n∏
i=2

n∏
j=i

(
(n− i)!(j − 1)!

(n− 1)!(j − i)!

)m(j)
i (

m
(j)
i !
)−1

=

n∏
i=2

n∏
j=i

(
(n− i)!(j − 1)!

(n− 1)!(j − i)!

)p(n+1−i)
n+1−j (

p
(n+1−i)
n+1−j !

)−1

which coincides with the respective summand of p ∈ Pβ(ᾱ) in the second sum since

(n− i)!(j − 1)!

(n− 1)!(j − i)!
is invariant under the substitution (i, j) 7→ (n + 1 − j, n + 1 − i). Hence the sums agree
summand-wise and are thus equal as claimed. This finishes the proof.

We conclude this section with a discussion on the alternative Definition 2.25 of 〈·, ·〉 on
V

(2)
k in terms of partial derivatives. We will first give a generalized definition for all n ∈ N

on the spaces V (n)
k and then compare it to the pairing from Definition 5.19. Recall the

shorthand notation d = k − n.
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Definition 5.27. For f, g ∈ V (n)
k we set

〈f, g〉′ := 1

d!
· f
(
− ∂

∂xn
, . . . , (−1)i

∂

∂xn+1−i
, . . . , (−1)n

∂

∂x1

)(
g(x1, . . . , xn)

)
.

The pairing on V (n)
k from Definition 5.27 no longer has the desired invariance property for

n > 2.

Example 5.28. We consider f, g ∈ V (3)
9 with f(x1, x2, x3) = x2

1x2x
3
3 and g(x1, x2, x3) =

x3
1x

2
2x3. Then we have

〈f, g〉′ = 0 and
〈
f
∣∣∣T̃ , g

∣∣∣T̃ 〉′ = 1

30
.

However, for monomials f, g ∈ V (n)
k the pairings on V (n)

k agree up to a factor.

Proposition 5.29. Let f(x1, . . . , xn) = xα1
1 · · ·xαnn and g(x1, . . . , xn) = xβ11 · · ·x

βn
n be

monomials in V (n)
k . Then

n∏
i=1

(
n− 1

i− 1

)αi
· 〈f, g〉 = 〈f, g〉′ .

Proof. Note that both pairings vanish unless αi = βn+1−i for all i ∈ {1, . . . , n}. In this case

n∏
i=1

(
n− 1

i− 1

)αi
〈f, g〉 = (−1)

∑n
i=1 i·αi · α1! · · ·αn!

d!

= 〈f, g〉′ .

This implies together with Theorem 5.21 that there is a slight modification of 〈·, ·〉′ that
makes the pairing invariant.

Corollary 5.30. Let f, g ∈ V (n)
k be monomials as in Proposition 5.29. Setting

〈f, g〉′′ :=
n∏
i=1

(
n− 1

i− 1

)−αi
〈f, g〉′

and extending this linearly yields a pairing on V (n)
k that coincides with 〈·, ·〉 from Definition

5.19 and is thus invariant under the action of SL2(Z).
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5.4. Dimensions

Now let n, k ∈ N with k ≥ n and such that n even implies that k is even. The SL2(Z)-action
on V (n)

k is invariant under |−1 in this case (see Lemma 5.8). We thus have

V
(n)
k = A

(n)
k ⊕B

(n)
k and V

(n)
k = C

(n)
k ⊕D(n)

k (5.13)

where

A
(n)
k = ker(1− S̃) = im(1 + S̃), B

(n)
k = ker(1 + S̃) = im(1− S̃)

and

C
(n)
k = ker(1− Ũ) = im(1 + Ũ + Ũ2), D

(n)
k = ker(1 + Ũ + Ũ2) = im(2− Ũ − Ũ2).

We have by definition that W (n)
k = B

(n)
k ∩D(n)

k . The splittings in (5.13) are orthogonal by
Theorem 5.21 (cf. Corollary 2.28), hence W (n)

k =
(
A

(n)
k + C

(n)
k

)⊥. However, the space

E
(n)
k := A

(n)
k ∩ C

(n)
k

is non-trivial in general (see Example 5.18). We therefore obtain

V
(n)
k = A

(n)
k /E

(n)
k ⊕ C(n)

k /E
(n)
k ⊕ E(n)

k ⊕W (n)
k

which implies dimension-wise that

dimW
(n)
k = dimV

(n)
k − dimA

(n)
k − dimC

(n)
k + dimE

(n)
k . (5.14)

We have dim(V
(n)
k ) =

(
k−1
n−1

)
by Lemma 5.3. Since the spaces A(n)

k and C(n)
k are invariant

under the finite groups generated by S̃ and Ũ , respectively, their dimensions can be computed
via Molien’s theorem A.12. We therefore introduce some further notation.

Notation 5.31. Let M ∈ GL2(Z). We denote

• the algebra of M̃ (n)-invariant polynomials in n variables over Q by

Q[x1, . . . , xn]M̃ :=
{
f ∈ Q[x1, . . . , xn]

∣∣∣ f ∣∣∣M̃ = f
}
,

• the space of homogeneous polynomials of degree k inQ[x1, . . . , xn]M̃ byQ[x1, . . . , xn]M̃k
and

• the Hilbert-Poincaré series of Q[x1, . . . , xn]M̃ by P (n)
M (x), i. e.

P
(n)
M (x) =

∞∑
k=0

dimQ

(
Q[x1, . . . , xn]M̃k

)
xk.
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Proposition 5.32. Let n, k ∈ N with n ≥ 2 and k ≥ n.

i) For even n and odd k we have dimA
(n)
k = dimC

(n)
k = 0. Otherwise we have

dimA
(n)
k =

1

2

((
k − 1

n− 1

)
+ an,k ·

([k
2

]
− 1[

n
2

]
− 1

))

dimC
(n)
k =

1

3

((
k − 1

n− 1

)
+ cn,k · 2

([k+1
3

]
− 1[

n+1
3

]
− 1

))
where

an,k =

{
(−1)

k−n
2 , n even

(−1)
n−1
2
·(k+1), n odd

cn,k =


ω2k+ωk+1

3 , n ≡ 0 mod 3

1, n ≡ 1 mod 3⌈
k
3

⌉
−
⌊
k
3

⌋
+
⌊
k+1

3

⌋
−
⌈
k+1

3

⌉
, n ≡ 2 mod 3

and ω = e
2πi
3 is a third root of unity.

ii) For even n the generating series of A(n)
k and C(n)

k are given by

∞∑
k=0

dimA
(n)
k xk = xn

(1 + x)n(1 + x2)
n
2 + (1− x)n(1 + x2)

n
2 + 2(1− x)n(1 + x)n

4(1− x4)
n
2 (1− x2)

n
2

∞∑
k=0

dimC
(n)
k xk =

xn

6(1− x6)[
n
3 ](1− x2)n−[n3 ]

·
(

(1 + x)n(1 + x+ x2)[
n
3 ](1− x+ x2)[

n
3 ]

+ (1− x)n(1 + x+ x2)[
n
3 ](1− x+ x2)[

n
3 ]

+ 2(1− x)2[n3 ](1 + x)n(1− x+ x2)[
n
3 ]

+ 2(1− x)n(1 + x)2[n3 ](1 + x+ x2)[
n
3 ]
)
.

For odd n the generating series of A(n)
k and C(n)

k are given by

∞∑
k=0

dimA
(n)
k xk = xn · (1 + x)2[n4 ] + (1− x)2[n4 ]

2(1− x2)2[n4 ](1− x)n−2[n4 ]

∞∑
k=0

dimC
(n)
k xk = xn · (1 + x+ x2)[

n
3 ] + 2(1− x)2[n3 ]

(1− x3)[
n
3 ](1− x)n−[n3 ]

.

Proof. The respective Hilbert-Poincaré series are computed in appendix B. The claimed
identities in ii) follow from expanding the respective rational functions and multiplying by
xn to account for the degree k − n.
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For even n we observe that the numerator and denominator of the generating series from ii)
are even polynomials. We thus obtain that A(n)

k and C(n)
k are trivial in this case for odd k.

To prove i), we will consider each of the remaining cases.

We first consider A(n)
k . For even n appendix B.1 immediately yields that

P
(n)
S (x) =

1

2

∞∑
k=0,
k even

((
k + n− 1

k

)
+ (−1)

k
2

(k
2 + n

2 − 1
k
2

))
xk. (5.15)

For odd n we have

P
(n)
S (x) =

1

2

 ∞∑
k=0

(
k + n− 1

k

)
xk +

∞∑
k=0,
k even

(k
2 + 2

[
n
4

]
− 1

k
2

)
xk · 1

(1− x)n−4[n4 ]

 .

Since n− 4
[
n
4

]
= (−1)

n−1
2 for odd n, we consider the residue class of n modulo 4.

First assume n ≡ 1 mod 4. We then have n− 4
[
n
4

]
= 1 and hence

1

(1− x)n−4[n4 ]
=
∞∑
k=0

xk.

We thus obtain

∞∑
k=0,
k even

(k
2 + 2

[
n
4

]
− 1

k
2

)
xk · 1

(1− x)n−4[n4 ]
=
∞∑
k=0

 k∑
i=0,
i even

( i
2 + 2

[
n
4

]
− 1

i
2

)xk

=

∞∑
k=0

b
k
2c∑
i=0

(
i+ 2

[
n
4

]
− 1

i

)xk

=
∞∑
k=0

(⌊k
2

⌋
+ 2

[
n
4

]⌊
k
2

⌋ )
xk

where the last equality follows from the so-called hockey-stick identity

K∑
i=0

(
N + i

i

)
=

(
K +N + 1

K

)
(5.16)

for N,K ∈ N. So we have

P
(n)
S (x) =

1

2

∞∑
k=0

((
k + n− 1

k

)
+

(⌊k
2

⌋
+ 2

[
n
4

]⌊
k
2

⌋ ))
xk. (5.17)
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Now assume n ≡ 3 mod 4. We then have n− 4
[
n
4

]
= −1 and hence

1

(1− x)n−4[n4 ]
= 1− x.

Since
∞∑
k=0,
k even

(k
2 + 2

[
n
4

]
− 1

k
2

)
xk · (1− x) =

∞∑
k=0

(−1)k
(⌊k

2

⌋
+ 2

[
n
4

]
− 1⌊

k
2

⌋ )
xk

we have

P
(n)
S (x) =

1

2

∞∑
k=0

((
k + n− 1

k

)
+ (−1)k

(⌊k
2

⌋
+ 2

[
n
4

]
− 1⌊

k
2

⌋ ))
xk. (5.18)

We now consider C(n)
k . First assume n is even. Appendix B.2 yields that

P
(n)
U (x) =

1

3

( ∞∑
k=0,
k even

(
k + n− 1

k

)
xk +

∞∑
k=0,
3|k

(k
3 +

[
n
3

]
− 1

k
3

)
xk · 1

(1− x)n−3[n3 ]

+
∞∑
k=0,
3|k

(−1)k
(k

3 +
[
n
3

]
− 1

k
3

)
xk · 1

(1 + x)n−3[n3 ]

)
.

(5.19)

Note that n − 3
[
n
3

]
= {m ∈ {−1, 0, 1} | m ≡ n mod 3}. So if we further have n ≡ 0

mod 6 then (5.19) yields

P
(n)
U (x) =

1

3

( ∞∑
k=0,
k even

(
k + n− 1

k

)
xk + 2

∞∑
k=0,
6|k

(k
3 + n

3 − 1
k
3

)
xk

)
. (5.20)

Now assume n ≡ 4 mod 6. Then

1

(1− x)n−3[n3 ]
=
∞∑
k=0

xk,
1

(1 + x)n−3[n3 ]
=
∞∑
k=0

(−1)kxk

and hence (5.19) yields

P
(n)
U (x) =

1

3

( ∞∑
k=0,
k even

(
k + n− 1

k

)
xk +

∞∑
k=0

(
k∑

i=0,
3|i

( i
3 +

[
n
3

]
− 1

i
3

))
xk

+

∞∑
k=0

(−1)k

(
k∑

i=0,
3|i

( i
3 +

[
n
3

]
− 1

i
3

))
xk

)

(5.16)
=

1

3

∞∑
k=0,
k even

((
k + n− 1

k

)
+ 2

(⌊k
3

⌋
+
[
n
3

]⌊
k
3

⌋ ))
xk. (5.21)
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Now let n ≡ 2 mod 6. Then (5.19) yields

P
(n)
U (x) =

1

3

 ∞∑
k=0,
k even

(
k + n− 1

k

)
xk + 2

( ∞∑
k=0,
6|k

(k
3 +

[
n
3

]
− 1

k
3

)
xk −

(k
3 +

[
n
3

]
k
3 + 1

)
xk+4

) .

(5.22)

Now assume n is odd. Then appendix B.2 yields that

P
(n)
U (x) =

1

3

( ∞∑
k=0

(
k + n− 1

k

)
xk +

∞∑
k=0,
3|k

(k
3 +

[
n
3

]
− 1

k
3

)
xk · 2

(1− x)n−3[n3 ]

)
. (5.23)

We consider the remaining residue classes of n modulo 6. First assume n ≡ 3 mod 6. Then
(5.23) yields

P
(n)
U (x) =

1

3

( ∞∑
k=0

(
k + n− 1

k

)
xk + 2

∞∑
k=0,
3|k

(k
3 + n

3 − 1
k
3

)
xk

)
. (5.24)

Now assume n ≡ 1 mod 6. Then (5.23) yields that

P
(n)
U (x) =

1

3

( ∞∑
k=0

(
k + n− 1

k

)
xk +

∞∑
k=0,
3|k

(k
3 +

[
n
3

]
− 1

k
3

)
xk · 2

(1− x)

)

=
1

3

( ∞∑
k=0

(
k + n− 1

k

)
xk + 2

∞∑
k=0

(
k∑

i=0,
3|i

(⌊ i
3

⌋
+
[
n
3

]
− 1⌊

i
3

⌋ ))
xk

)

(5.16)
=

1

3

( ∞∑
k=0

(
k + n− 1

k

)
xk + 2

∞∑
k=0

(⌊k
3

⌋
+
[
n
3

]⌊
k
3

⌋ )
xk

)
. (5.25)

Lastly, assume n ≡ 5 mod 6. Then (5.23) yields

P
(n)
U (x) =

1

3

( ∞∑
k=0

(
k + n− 1

k

)
xk + 2

∞∑
k=0,
3|k

(k
3 +

[
n
3

]
− 1

k
3

)
xk · (1− x)

)

=
1

3

( ∞∑
k=0

(
k + n− 1

k

)
xk + 2

∞∑
k=0,
3|k

(k
3 +

[
n
3

]
− 1

k
3

)
(xk − xk+1)

)
. (5.26)

To conclude the proof, note that the spaces A(n)
k and C(n)

k contain polynomials of degree
k − n. Hence i) follows by considering the coefficient of xk−n in (5.15), (5.17) and (5.18)
for dimA

(n)
k as well as in (5.20), (5.21), (5.22), (5.24), (5.25) and (5.26) for dimC

(n)
k .
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5. Generalized period polynomials

In order to use (5.14) to compute the dimension of W (n)
k we still need the dimension of

E
(n)
k = A

(n)
k ∩ C(n)

k . Recall the analogue spaces from sections 2.4 and 3.4. In the case
of period polynomials, this space is trivial. In the case of bi-period polynomials, the key
argument was a special case of Weitzenböck’s Theorem 3.21 which showed that the algebra
of |T -invariant polynomials is finitely generated. In the proof, we considered the action of
T as a differential operator. This derivation was given on Q[x1, x2, y1, y2] as

dbi := x2 ·
∂

∂x1
− y1 ·

∂

∂y2
.

The algebra of invariants is then equal to the kernel of this derivation. By considering the
restriction to V3, we obtain an endomorphism with transformation matrix

0 0 0 0
1 0 0 0
0 0 0 −1
0 0 0 0

 .

The Jordan form of this is given by 
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

This is interesting in light of the following theorem by Tyc. For a proof of this theorem we
refer to the original paper.

Theorem 5.33 ([Tyc98]). Let A = C[x1, . . . , xn] and let d: A→ A be a non-zero locally
nilpotent derivation such that d(W ) ⊆W with W = Cx1 + · · ·+ Cxn. Then ker(d) is

1. a Gorenstein ring and

2. a polynomial algebra if and only if W = W0 ⊕W ′ for some subspaces W0,W
′ ⊂W

such that d(W0) = 0, d(W ′) ⊂ W ′ and the Jordan matrix of the endomorphism
d|W ′ : W ′ →W ′ is one of the following

(
0 1
0 0

)
,

0 1 0
0 0 1
0 0 0

 ,


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

Note that Jordan form corresponding to the derivation dbi coincides with the last matrix
from Theorem 5.33. However, this is not the case in this more general setting.

Corollary 5.34. The ring of invariants C[x1, . . . , xn]T̃ is a polynomial algebra if and only
if n ≤ 3.
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Proof. For n ≥ 2 and λ ∈ R we consider the matrix(
T̃ (n)

)λ
=

((
n− i
j − i

)
λj−i

)
i,j=1,...,n

.

Now let f ∈ V (n)
k for some k ≥ n. Then

d

dλ

(
f
∣∣∣T̃ λ )∣∣∣

λ=0
=

d

dλ
f

 n∑
j=1

(
n− 1

j − 1

)
λj−1xj , . . . , xn

∣∣∣
λ=0

=
n−1∑
i=1

(n− i) · xi+1 ·
∂f

∂xi

where the last equality follows from the product rule and the fact that after evaluating the
expression at λ = 0 only one summand remains in each entry.

Now, if f is invariant under T , we obtain that

dn :=
n−1∑
i=1

(n− i) · xi+1 ·
∂f

∂xi
= 0

so we can identify C[x1, . . . , xn]T̃ with ker(dn). However, the transformation matrix of dn
is given by 

0 0 . . . 0 0
n− 1 0 . . . 0 0

0 n− 2 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


and the entries of the Jordan form are 0 everywhere except for the superdiagonal, i. e.

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 .

Now letW = Cx1 + · · ·+Cxn and consider a decompositionW = W0⊕W ′ with dn(W0) = 0
and d(W ′) ⊂ W ′. The kernel of dn|W is one-dimensional with dn(xn) = 0. And since
dn(xi) is a multiple of xi+1 for all i ∈ {1, . . . , n − 1}, the condition d(W ′) ⊂ W ′ implies
that W ′ = W and W0 is trivial. The proof now follows from the second part of Theorem
5.33.

By Corollary 5.34 it seems to be more complicated to find the generating series for E(n)
k

if n ≥ 4 compared to the space Ek from section 3.2. Unfortunately, it was not possible to
compute the dimensions of E(n)

k within the scope of this thesis.
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A. Representation theory of the dihedral group of order 6

A. Representation theory of the dihedral group of order 6

As an example for a discussion on representation theory and isotypical decompositions we
consider the dihedral group D6. Geometrically, this group describes the isometries of a
regular triangle. Algebraically, the group is given by the presentation

D6 =
〈
r, s

∣∣ r3, s2, (sr)2
〉

(A.1)

where r and s correspond to a rotation of 120° and a reflection, respectively. We have by
(A.1) that |D6| = 6.

For the following discussion, we will first introduce some fundamental notions and statements.
The statements, however, will not be proven for the sake of simplicity. For the proofs as
well as more details on the subject see, e. g., [FH13], [Ser+77], [Pan06] and [Tel05].

Throughout this discussion, let F be an algebraically closed field of characteristic 0, V a
n-dimensional F-vector space and G ⊂ GL(V ) be a finite group.

Definition A.1. We define a representation of G, invariant subspaces of a representation
and irreducible representations of G analogously to Definitions 4.26 and 4.29, respectively.

Definition A.2. Let ρ : G→ GL(V ) be a representation of G. The character of ρ is given
by χρ : G → F, g 7→ trace(ρ(g)). The character χρ is irreducible if ρ is irreducible. We
denote the set of irreducible characters of G by X(G). If G is clear from the context we
write X instead.

Proposition A.3. The number of conjugacy classes in G equals |X|.

Lemma A.4. Let ρ : G → GL(V ) be a representation of G and W ⊂ V an invariant
subspace. Then there is an invariant subspace W ′ ⊂ V such that

V = W ⊕W ′.

Definition A.5. Let ρ : G → GL(V ) and η : G → GL(W ) be representations of G. A
linear map φ : V →W such that

φ
(
ρ(g)(v)

)
= η(g)(φ(v))

for all g ∈ G, v ∈ V is called an intertwining map.

Lemma A.6 (Schur’s lemma). Let ρ : G → GL(V ) and η : G → GL(W ) be irreducible
representations of G and let φ : V →W be an intertwining map. Then

1. φ is either an isomorphism or φ ≡ 0 and

2. if V ∼= W , then φ is a homothety.
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By Lemmas A.4 and A.6 we obtain the following corollary.

Corollary A.7. Let ρ : G→ GL(V ) be a representation of G. Then there exists a unique
decomposition

V =
⊕
χ∈X

Vχ (A.2)

where, for each χ ∈ X, Vχ = T
⊕kχ
χ such that the representation ρχ : G → GL(Tχ) is

irreducible and kχ ∈ N0.

Definition A.8. The decomposition (A.2) is called isotypical decomposition and the spaces
Vχ are isotypical components. To emphasize the group G, we also write V G

χ instead of Vχ.

We now set R := F[x1, . . . , xn] and denote the subalgebra of G-invariant polynomials by

RG = {f ∈ R | for all M ∈ G : M(f) = f}

where the G-action on R is induced by the action on V , i. e.

M(f) := f

(
M ·

( x1
...
xn

))t

.

Proposition A.9 ([Hil90]). The algebra RG is finitely generated. The generators have
bounded degree of ≤ |G|.

Since R is infinite-dimensional, we consider the grading

R =

∞⊕
k=0

Rk

where Rk = {f ∈ R | f homogeneous,deg(f) = k}. Note that the spaces Rk, called
homogeneous components, are finite-dimensional. Our previous discussion thus applies to
the homogeneous components of R.

Remark A.10. Since the G-action is degree preserving, we obtain a grading on RG where
the homogeneous components are given by

(
RG
)
k

:= RG ∩Rk for all k ∈ N0. For χ ∈ X
we further set

(
RGχ )k := RGχ ∩ Rk for all k ∈ N0. We thus obtain that RGχ is a graded

RG-module since RG ·RGχ ⊆ RGχ .

Definition A.11. For an irreducible character χ ∈ X we call

FG,χ(x) := χ(1)−1
∞∑
k=0

dimF
(
(RGχ )k

)
xk

the Molien series of (G,χ).
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A. Representation theory of the dihedral group of order 6

Theorem A.12 (Molien). Let χ ∈ X be an irreducible character, then

FG,χ(x) =
1

|G|
∑
M∈G

χ(M)

det(1− xM)
.

In order to compute isotypical decompositions for D6, we first specify the irreducible
representations of D6. Since D6 contains 3 conjugacy classes, we have |X| = 3. In fact, the
1-dimensional irreducible representations of D6 are given by

ρ1(g) = 1 for all g ∈ D6

ρ2(g) = (−1)ord(g)+1 for all g ∈ D6.

The 2-dimensional irreducible representation ρ3 : D6 → GL(C2) can be described on the
generators r and s by

ρ3(r) =

(
ω 0
0 ω2

)
and ρ3(s) =

(
0 1
1 0

)
where ω = e

2πi
3 is a third root of unity. Note that the eigenvalues are {ω, ω2} and {±1},

respectively.

Computing the corresponding characters yields χi(g) = ρi(g) for all g ∈ D6 and i ∈ {1, 2}
as well as

χ3(g) =


2, g = 1

−1, g ∈ {r, r2}
0, g ∈ {s, rs, r2s}

Now, let π : D6 → GL(V ) be an arbitrary representation of D6. Since π(r) is diagonalizable
we obtain the decomposition

V = V1 ⊕ Vω ⊕ Vω2

where Vλ is the eigenspace of π(r) to the eigenvalue λ ∈
{

1, ω, ω2
}
. The transformation

π(s) preserves V1 since srs−1 = r−1. The space V1 therefore decomposes into a direct sum
of copies of the irreducible representations ρ1 and ρ2 from above. For the remaining spaces
Vω and Vω2 we observe that π(s) is a self-inverse isomorphism Vω → Vω2 . By choosing a
basis e1, . . . , en for Vω, we obtain a basis e′1, . . . , e′n for Vω2 where e′i = π(s)(ei). Hence π(s)
acts on Cei⊕Ce′i as ( 0 1

1 0 ) and π(r) acts as
(
ω 0
0 ω2

)
. This yields a decomposition of Vω⊕Vω2

in n copies of the 2-dimensional representation ρ3.

As an explicit example, let R = C[X,Y ]. The isotypical decomposition

Rk =
(
RD6
χ1

)
k
⊕
(
RD6
χ2

)
k
⊕
(
RD6
χ3

)
k

for k ∈ N is then given by(
RD6
χ1

)
k

= 〈f ∈ Rk |M(f) = f for all M ∈ D6〉C(
RD6
χ2

)
k

= 〈f ∈ Rk | r(f) = f, s(f) = −f〉C(
RD6
χ3

)
k

=
〈
(f, g) ∈ R2

k

∣∣ r(f) = ωf, r(g) = ω2g, s(f) = g, s(g) = f
〉
C .
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By Proposition A.9 RG is a finitely generated C-algebra with generators of degree ≤ 6.
Hence it suffices to compute the isotypical components

(
RD6
χ1

)
k
for k ∈ {0, . . . , 6}. This

yields
RD6
χ1

= C[XY,X3 + Y 3].

We further have by Remark A.10 that RD6
χ2

and RD6
χ3

are finitely generated RD6-modules.
Explicitly, we have

RD6
χ2

= RD6 ·
(
X3 − Y 3

)
RD6
χ3

= RD6X ⊕RD6Y ⊕RD6X2 ⊕RD6Y 2.

The respective Molien series can now be computed with Molien’s theorem A.12, hence

FD6,χ1(x) :=
∞∑
k=0

dimC
(
RD6
χ1

)
k
xk =

1

x5 − x3 − x2 + 1

FD6,χ2(x) :=
∞∑
k=0

dimC
(
RD6
χ2

)
k
xk = x3 · FD6,χ1(x)

FD6,χ3(x) :=
∞∑
k=0

dimC
(
RD6
χ3

)
k
xk = (x+ x2) · FD6,χ1(x).

This concludes our discussion.

B. Hilbert-Poincaré series of the spaces A
(n)
k and C

(n)
k

We denote the Hilbert-Poincaré series by P (n)
S (x) and P (n)

U (x) respectively.

B.1. The space A
(n)
k

For even n, the group generated by S̃(n) is given by {id,− id, S̃,−S̃}. Hence Molien’s
theorem A.12 yields that

P
(n)
S (x) =

1

4

(
1

det(id−x id)
+

1

det(id +x id)
+

1

det(id−xS̃)
+

1

det(id +xS̃)

)
=

1

4

(
1

(1− x)n
+

1

(1 + x)n
+

2

(1 + x2)
n
2

)
=

1

2

∞∑
k=0,
k even

((
k + n− 1

k

)
+ (−1)

k
2

(k
2 + n

2 − 1
k
2

))
xk.
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B. Hilbert-Poincaré series of the spaces A(n)
k and C(n)

k

For odd n, the group generated by S̃(n) is given by {id, S̃}, as S̃2 = id in this case. Hence
Molien’s theorem A.12 yields that

P
(n)
S (x) =

1

2

(
1

det(id−x id)
+

1

det(id−xS̃)

)
=

1

2

(
1

(1− x)n
+

1

(1 + x)2[n4 ](1− x)n−2[n4 ]

)

=
1

2

(
1

(1− x)n
+

1

(1− x2)2[n4 ]
· 1

(1− x)n−4[n4 ]

)

=
1

2

 ∞∑
k=0

(
k + n− 1

k

)
xk +

∞∑
k=0,
k even

(k
2 + 2

[
n
4

]
− 1

k
2

)
xk · 1

(1− x)n−4[n4 ]

 .

B.2. The space C
(n)
k

For even n, the group generated by Ũ (n) is given by {id,− id, Ũ ,−Ũ , Ũ2,−Ũ2}. Hence
Molien’s theorem A.12 yields that

P
(n)
U (x) =

1

6

(
1

det(id−x id)
+

1

det(id +x id)
+

1

det(id−xŨ)

+
1

det(id +xŨ)
+

1

det(id−xŨ2)
+

1

det(id +xŨ2)

)
=

1

6

(
1

(1− x)n
+

2

(1 + x+ x2)[
n
3 ](1− x)n−2[n3 ]

+
1

(1 + x)n
+

2

(1− x+ x2)[
n
3 ](1 + x)n−2[n3 ]

)

=
1

6

(
1

(1− x)n
+

1

(1 + x)n
+

2

(1− x3)[
n
3 ](1− x)n−3[n3 ]

+
2

(1 + x3)[
n
3 ](1 + x)n−3[n3 ]

)

=
1

6

( ∞∑
k=0

(
k + n− 1

k

)
xk +

∞∑
k=0

(−1)k
(
k + n− 1

k

)
xk

+

∞∑
k=0,
3|k

(k
3 +

[
n
3

]
− 1

k
3

)
xk · 2

(1− x)n−3[n3 ]
+

∞∑
k=0,
3|k

(−1)k
(k

3 +
[
n
3

]
− 1

k
3

)
xk · 2

(1 + x)n−3[n3 ]

)

=
1

3

( ∞∑
k=0,
k even

(
k + n− 1

k

)
xk +

∞∑
k=0,
3|k

(k
3 +

[
n
3

]
− 1

k
3

)
xk · 1

(1− x)n−3[n3 ]

+

∞∑
k=0,
3|k

(−1)k
(k

3 +
[
n
3

]
− 1

k
3

)
xk · 1

(1 + x)n−3[n3 ]

)
.
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For odd n, the group generated by Ũ (n) is given by {id, Ũ , Ũ2}, as Ũ3 = id in this case.
Hence Molien’s theorem A.12 yields that

P
(n)
U (x) =

1

3

(
1

det(id−x id)
+

1

det(id−xŨ)
+

1

det(id−xŨ2)

)
=

1

3

(
1

(1− x)n
+

2

(1 + x+ x2)[
n
3 ](1− x)n−2[n3 ]

)

=
1

3

(
1

(1− x)n
+

1

(1− x3)[
n
3 ]
· 2

(1− x)n−3[n3 ]

)

=
1

3

( ∞∑
k=0

(
k + n− 1

k

)
xk +

∞∑
k=0,
3|k

(k
3 +

[
n
3

]
− 1

k
3

)
xk · 2

(1− x)n−3[n3 ]

)
.

C. Source code

The computer based calculations in this thesis were done using the free and open-source
computer algebra system SageMath [The22]. In order to compute period polynomials we
first need to define the respective matrices. Since they are needed in most computations
below, we will state the corresponding code here.

1 S = mat r i x ( [ [ 0 , − 1 ] , [ 1 , 0 ] ] )
2 T = mat r i x ( [ [ 1 , 1 ] , [ 0 , 1 ] ] )
3 U = mat r i x ( [ [ 1 , − 1 ] , [ 1 , 0 ] ] )
4 eps = mat r i x ( [ [ 0 , 1 ] , [ 1 , 0 ] ] )

C.1. Dimension of period polynomials

The following code was used to compute the dimensions of Wk, W±k and Lk in table 1.

1 k = 8
2 P = Po lynomia lR ing (SR , ’ x , y ’ )
3 po l y = 0
4 f o r i i n range ( k−1) :
5 j=k−2− i
6 tmp = var ( "a%d"%( i ) )
7 po l y += tmp∗P . gens ( ) [ 0 ]^ j ∗P . gens ( ) [ 1 ]^ i
8 r e l S = po l y + S . act_on_polynomial ( po l y )
9 r e lU = po l y + U. act_on_polynomial ( po l y ) + (U^2) . act_on_polynomial ( po l y )

10 i nvEps = po l y − eps . act_on_polynomial ( po l y )
11 r e l E p s = po l y + eps . act_on_polynomial ( po l y )
12 r e l L ew i s = po l y − T. act_on_polynomial ( po l y ) −

( eps ∗T∗ eps ) . act_on_polynomial ( po l y )
13 A = mat r i x (ZZ , [ [ r e l . c o e f f i c i e n t ( c o e f f ) f o r c o e f f i n po l y . c o e f f i c i e n t s ( ) ]

f o r r e l i n r e l S . c o e f f i c i e n t s ( ) + r e lU . c o e f f i c i e n t s ( ) ] )
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C. Source code

14 B = mat r i x (ZZ , [ [ r e l . c o e f f i c i e n t ( c o e f f ) f o r c o e f f i n po l y . c o e f f i c i e n t s ( ) ]
f o r r e l i n r e l S . c o e f f i c i e n t s ( ) + r e lU . c o e f f i c i e n t s ( ) +
invEps . c o e f f i c i e n t s ( ) ] )

15 C = mat r i x (ZZ , [ [ r e l . c o e f f i c i e n t ( c o e f f ) f o r c o e f f i n po l y . c o e f f i c i e n t s ( ) ]
f o r r e l i n r e l S . c o e f f i c i e n t s ( ) + r e lU . c o e f f i c i e n t s ( ) +
r e l E p s . c o e f f i c i e n t s ( ) ] )

16 D = mat r i x (ZZ , [ [ r e l . c o e f f i c i e n t ( c o e f f ) f o r c o e f f i n po l y . c o e f f i c i e n t s ( ) ]
f o r r e l i n r e l L ew i s . c o e f f i c i e n t s ( ) ] )

17 p r i n t (A . r i g h t _ n u l l i t y ( ) ,B . r i g h t _ n u l l i t y ( ) ,C . r i g h t _ n u l l i t y ( ) ,D. r i g h t _ n u l l i t y ( ) )

C.2. Dimension of bi-period polynomials

The following code was used to compute the dimensions of Wk, W±k and Lk in table 2.

1 k = 8
2 P = Po lynomia lR ing (SR , ’ x1 , x2 , y1 , y2 ’ )
3 po l y = 0
4 f o r i , y i n enumerate ( s o r t ed ( l i s t ( s e t ( [ prod ( x ) f o r x i n

c a r t e s i a n_p r o du c t_ i t e r a t o r ( [ P . gens ( ) f o r _ i n range ( k−2) ] ) ] ) ) ) [ : : − 1 ] ) :
5 tmp_var = va r ( "a%d"%( i ) )
6 po l y += tmp_var∗y
7 r e l S = po l y + bi_slash_mat (S) . act_on_polynomial ( po l y )
8 r e lU = po l y + bi_slash_mat (U) . act_on_polynomial ( po l y ) +

bi_slash_mat (U^2) . act_on_polynomial ( po l y )
9 i nvEps = po l y − bi_slash_mat ( eps ) . act_on_polynomial ( po l y )

10 r e l E p s = po l y + bi_slash_mat ( eps ) . act_on_polynomial ( po l y )
11 r e l L ew i s = po l y − bi_slash_mat (T) . act_on_polynomial ( po l y ) −

bi_slash_mat ( eps ∗T∗ eps ) . act_on_polynomial ( po l y )
12 A = mat r i x (ZZ , [ [ r e l . c o e f f i c i e n t ( c o e f f ) f o r c o e f f i n po l y . c o e f f i c i e n t s ( ) ]

f o r r e l i n r e l S . c o e f f i c i e n t s ( ) + r e lU . c o e f f i c i e n t s ( ) ] )
13 B = mat r i x (ZZ , [ [ r e l . c o e f f i c i e n t ( c o e f f ) f o r c o e f f i n po l y . c o e f f i c i e n t s ( ) ]

f o r r e l i n r e l S . c o e f f i c i e n t s ( ) + r e lU . c o e f f i c i e n t s ( ) +
invEps . c o e f f i c i e n t s ( ) ] )

14 C = mat r i x (ZZ , [ [ r e l . c o e f f i c i e n t ( c o e f f ) f o r c o e f f i n po l y . c o e f f i c i e n t s ( ) ]
f o r r e l i n r e l S . c o e f f i c i e n t s ( ) + r e lU . c o e f f i c i e n t s ( ) +
r e l E p s . c o e f f i c i e n t s ( ) ] )

15 D = mat r i x (ZZ , [ [ r e l . c o e f f i c i e n t ( c o e f f ) f o r c o e f f i n po l y . c o e f f i c i e n t s ( ) ]
f o r r e l i n r e l L ew i s . c o e f f i c i e n t s ( ) ] )

16 p r i n t (A . r i g h t _ n u l l i t y ( ) ,B . r i g h t _ n u l l i t y ( ) ,C . r i g h t _ n u l l i t y ( ) ,D. r i g h t _ n u l l i t y ( ) )

C.3. Transformation matrices under irreducible representations

The transformation matrices that were introduced in section 5.1 were computed using
SageMath [The22]. As this computation was frequently needed in the code of C.4, we
defined a function to return said matrices. The source code is given below.

1 def trafo_mat (n , mat ) :
2 R.<var1 , var2> = Po lynomia lR ing (QQ)
3 l s t = [ ]
4 f o r i i n range ( n ) :
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5 tmp = var1 ^(n−1− i ) ∗ va r2^ i
6 po l y = mat . act_on_polynomial ( tmp)
7 tmp_lst = [ po l y [ n−1−i , i ] f o r i i n range ( n ) ]
8 l s t . append ( tmp_lst )
9 r e t u r n mat r i x (QQ, l s t )

C.4. Dimension of generalized period polynomials

The dimensions in table 3 have been computed using SageMath [The22]. The source code
for this computation is given below. Note that the occurring function trafo_mat in the
code is defined in appendix C.3.

1 n = 5
2 k = 8
3 P = Po lynomia lR ing (SR , ’ x ’ , n )
4 po l y = 0
5 f o r i , y i n enumerate ( s o r t ed ( l i s t ( s e t ( [ prod ( x ) f o r x i n

c a r t e s i a n_p r o du c t_ i t e r a t o r ( [ P . gens ( ) f o r _ i n range ( k−n ) ] ) ] ) ) ) [ : : − 1 ] ) :
6 tmp_var = va r ( "a%d"%( i ) )
7 po l y += tmp_var∗y
8 r e l S = po l y + trafo_mat (n , S) . act_on_polynomial ( po l y )
9 r e lU = po l y + trafo_mat (n ,U) . act_on_polynomial ( po l y ) +

trafo_mat (n ,U^2) . act_on_polynomial ( po l y )
10 r e l L ew i s = po l y − trafo_mat (n ,T) . act_on_polynomial ( po l y ) −

trafo_mat (n , eps ∗T∗ eps ) . act_on_polynomial ( po l y )
11 A = mat r i x ( [ [ r e l . c o e f f i c i e n t ( c o e f f ) f o r c o e f f i n po l y . c o e f f i c i e n t s ( ) ] f o r

r e l i n r e l S . c o e f f i c i e n t s ( )+r e lU . c o e f f i c i e n t s ( ) ] )
12 B = mat r i x ( [ [ r e l . c o e f f i c i e n t ( c o e f f ) f o r c o e f f i n po l y . c o e f f i c i e n t s ( ) ] f o r

r e l i n r e l L ew i s . c o e f f i c i e n t s ( ) ] )
13 p r i n t (A . r i g h t _ n u l l i t y ( ) ,B . r i g h t _ n u l l i t y ( ) )
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