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1. Introduction

This master thesis covers topics from number theory, commutative algebra and representation
theory. The main objective of this work is to work out and present in an uniform way recent
and mostly not yet published results concerning bi-period polynomials. These results were
presented during the last years in either the Arithmetische Geometrie und Zahlentheorie
Seminar or in courses on multiple zeta values by U. Kiihn at the Universitit Hamburg. This
leads to the question for even more general multivariate period polynomials.

We will mainly study polynomials that satisfy certain relations. In the case of bivariate
polynomials f € Q[x,y], these relations are given by

f(x,y)+f(—y,x) =0

flx,y) + flx —y,2) + f(~y,x —y) = 0. (1.1)

We denote the vector space of all homogeneous polynomials of degree k — 2 that satisfy
by Wy. These period polynomials are classical in the theory of modular forms (see
e.g. |Lan87|, |Zag91|, |[GKZ06|, [PP13] and |[CPZ19]). A theorem by Eichler-Shimura—
Manin shows that the space of modular forms is isomorphic to a certain subspace of period
polynomials. Apart from modular forms, period polynomials also have applications in
the theory of multiple zeta values where they can be used to describe certain Q-linear
relations (see |GKZ06|, [Bro21|, |[Ecall| and [Sch15|). So overall, period polynomials are an
interesting object of research with important applications.

The term period polynomial usually refers to polynomials in one variable or to their
homogeneous analogues, i.e. homogeneous polynomials in two variables. Lately, however,
variants of period polynomials in 4 variables were studied in the context of multiple g-zeta
values (see [BBK20|). We will refer to them as bi-period polynomials in order to distinguish
them from the regular ones. We will see that most statements on period polynomials also
hold for bi-period polynomials.

This leads to the question of whether there is some generalization of period polynomials
in n variables. To generalize the relations (1.1)), we want to define an appropriate right
action of SLy(Z) on the homogeneous spaces of Q[x1,...,z,]. We therefore consider the
irreducible n-dimensional representations of the matrix Lie group SLo(C). Via the inclusion
SL2(Z) C SLa(C) we obtain our desired action. There are currently, however, no applications
of these multivariate extensions of period polynomials known to the author.

This master thesis is organized as follows.

In chapter [2] we will first review the theory of period polynomials. We therefore begin
by defining a right action of the group GL2(Z) on the homogeneous spaces of Q[x,y] in
section We refer to this action as the slash operator. This GLy(Z)-action will be
extended to an action of the group ring Z[GL2(Z)] in section which is then used to
define the space of period polynomials Wy. In section [2.3] we consider a non-degenerate
pairing on the homogeneous spaces of Q[x,y]. This pairing has the useful property of
being invariant under the action of SLo(Z). We use this pairing in section to describe
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the orthogonal complement of Wy. This allows us to compute the dimensions of Wj, as
well as the (anti)symmetric subspaces (w.r.t. swapping = and y). To conclude chapter
we discuss applications of period polynomials to modular forms and multiple zeta values.
In section [2.5] we review some theory of modular forms and emphasize the connections
to period polynomials. In the following sections we then discuss applications of multiple
zeta values. In section [2.6] we begin by reviewing the definition of multiple zeta values.
We use the previously established theory of period polynomials such as the invariant and
non-degenerate pairing to compute linear relations amongst single and double zeta values. In
section we consider the linearized double shuffle Lie algebra [s and describe connections
between period polynomials and conjectural generators and relations of this Lie algebra.

In chapter [3| we review the theory of bi-period polynomials. This discussion is mostly
analogous to the previous chapter to emphasize the similarities to period polynomials. We
also begin in section by defining an action of GLy(Z) on the homogeneous spaces of
Q[z1, z2,y1,y2] and refer to this as the bi-slash operator. We will then use this action to
define the space of bi-period polynomials W;. As the quadratic form ¢ = z1y1 + T2y
will turn out to play a key role in this discussion, we extend the bi-slash operator to
an action of its group of isometries I'. In section [3.2] we will prove a special case of a
theorem by Weitzenbdck for polynomials in 4 variables. This theorem explicitly describes
the finitely generated subalgebra that is invariant under an action of the additive group
G4(C). Similar to before, we will then define a non-degenerate pairing on the homogeneous
spaces of Q[x1,z2,y1,y2] and show that this is invariant under the action of SLy(Z) in
section Both the theorem of Weitzenbdck and the pairing will then be used in section
to compute the dimensions of W, as well as the (anti)symmetric subspaces of W.
Besides the invariant pairing, we also study another interesting structure that interacts well
with both the bi-slash operator and the pairing, namely the differential operator that is
associated to the quadratic form ¢. The study of this Laplacian operator is the content of
section One important implication of this theory is the fact that we obtain recursive
decompositions of the homogeneous spaces. The idea of considering this differential operator
was proposed by D. Zagier in a private conversation with U. Kithn. We conclude chapter
by discussing applications of bi-period polynomials to g-analogues of multiple zeta values.
In section [3.6| we begin by reviewing multiple ¢-zeta values. We consider combinatorial
multiple Eisenstein series as a spanning set for the vector space of multiple g-zeta values.
Similar to section [2.0] we then use bi-period polynomials and established tools such as the
invariant and non-degenerate pairing to obtain relations amongst combinatorial multiple
Eisenstein series. In section we consider the linearized balanced quasi shuffle algebra
[bs. Similar to section [2.7] we use bi-period polynomials to describe conjectural generators
and relations of this Lie algebra. In particular, we use the recursive decomposition that is
induced by the Laplacian operator to compute the dimension of relations in depth 2.

In chapter [4] we review central aspects of the representation theory of the matrix Lie group
SL2(C). The main goal is to describe all finite-dimensional irreducible representations of
SL2(C) (up to isomorphism). To compute the irreducible representations of SLa(C), it turns
out to be more convenient to compute the representations of the corresponding Lie algebra
sl3(C) instead. The established representation theory then tells us that the respective
representations are in one-to-one correspondence. This, however, is only true for simply



connected matrix Lie groups. So after reviewing some fundamental concepts of matrix Lie
groups and Lie algebras in section , we will prove that SLy(C) is simply connected in
section [1.2] In section [£.3] we give some necessary definitions and state some propositions
that will allow us to focus on computing the irreducible representations of sly(C) instead of
SLy(C). Since the proofs of these propositions use concepts that are not relevant for the
rest of this master thesis, we will not prove them but instead refer to respective literature.
We will then compute the finite-dimensional irreducible representations of SLy(C) in section
[4-4] Throughout this chapter, we assume that the reader has basic knowledge of topology.

In chapter[5] we begin in section [5.1] by using the n-dimensional irreducible representation of
SL2(C) from the previous chapter to define an analogue of the slash operator on Q[z1, . .., x,].
As this operator coincides with the slash operator for the case of n = 2, we will also refer to
this as the slash operator. The action of this slash operator is obtained for some v € SLy(Z)
by considering the transformation matrix of the respective representation of y~!. Using
this action, we introduce a generalization of period polynomials in n variables which we
will refer to as generalized period polynomials. In section [5.2| we are then interested in the
question of whether the space of generalized period polynomials W,gn) coincides with the

kernel of a certain operator in the cases where W,En) is non-trivial. Since this Lewis space
has been shown to equal the space of (bi-)period polynomials in the previous chapters, we
expect a similar result here. In fact, empirical evidence suggests that this is true. However,
it was not possible to prove this within the scope of this thesis. In section we proceed by
defining a non-degenerate pairing and prove in Theorem that this pairing is invariant
under the action of SLa(Z). By similar means as before, we then want to use this pairing
in section to compute the dimension of W,gn). However, it turns out that the space of
SLo(Z)-invariant polynomials is not so easy to describe. We thus conclude the discussion

on the dimension of W,gn) with a formula that still depends on the dimension of the space
of invariant polynomials.

This master thesis contains three appendices. In appendix[A]we give an exemplary discussion
on the representation theory of finite groups using the example of the dihedral group of
order 6. This is useful as we are often interested in groups generated by certain matrices of
finite order. An important tool that is repeatedly used is Molien’s theorem. This lets us
compute the Hilbert-Poincaré series of the space of polynomials that are invariant under
the action of a finite group.

In appendix |B| we use Molien’s theorem to compute the Hilbert-Poincaré series for spaces
of polynomials that are invariant under the action of certain matrices. These matrices are
used to define the space of generalized period polynomials.

In appendix [C] we list the source code of some computer based calculations in the context
of this master thesis. The code is written for the free and open-source computer algebra
system SageMath |The22| and is not claiming to be efficient.



2. Period polynomials

2. Period polynomials

In order to define period polynomials, we first need to define an action of the general
linear group of degree 2 over the ring of integers GL2(Z) on bivariate polynomials, the
slash operator. This will be the goal of section 2.1 We will then recall some fundamental
statements of the established theory of period polynomials. In section [2.2| we will define
the space of period polynomials as well as the Lewis space which coincides with the period
polynomials whenever the latter space is non-trivial. We will then define a non-degenerate
pairing on the period polynomials in section 2.3 in order to compute their dimensions in
section Finally, we discuss some applications of period polynomials in sections
and Unless stated otherwise, we let £ € N be an integer with £ > 2.

2.1. GLy(Z)-action via slash operator

Definition 2.1. For k£ > 2 we denote the set of homogeneous polynomials in 2 variables of
degree k — 2 over Q by

Vi ={f = f(z,y) € Q[z,y] | f homogeneous, deg(f) =k — 2} .

We further set V := {0}, V1 := {0} and
V= @ Vk
k=0

Note that V' is a graded vector space with homogeneous components given by Vj.

Remark 2.2. We have dim(V}) = k — 1 since a basis is given by

Definition 2.3. We define the slash operator on the space Vi by

GL2 (Z) X Vk — Vk
(v ) — flv=f((v-2))

where z = (z,y)".
Proposition 2.4. The slash operator yields a right group action on Vi.

Proof. Let f € Vi, and v € GLo(Z). We then have f |y € Vj by the binomial theorem. Let
Y1,72 € GLQ(Z) with

Vi = (ai Zl> for i € {1,2}.

Ci



2.1. GL2(Z)-action via slash operator

Then

(f 1) e = flaoz + bay, cox + day) |m

f(

(a (agx + bay) + bi(cox + day), c1(agz + bay) + di (coz + dgy))
((a1a2 + bicg)z + (arby + bida)y, (azer + codi)z + (bacr + dida)y)
Fl-72) - O

Lemma 2.5. For even k € N the space Vy, is invariant under —1, i.e. for f € Vi we have

fI=1) =7

Proof. For f €V}, we write

Zaz i, k—2— i (21)

Then k — 2 is even and thus

FI(=1) = f(=a,—y) = “zaz Sy = 0

Notation. We consider the SLg(Z)-matrices

() Gy )

as well as the GLa(Z)-matrices

€= (? é) and §= (‘01 2) : (2.2)

Definition 2.6. We denote the eigenspaces of the operator |e on V}, with eigenvalues 1
and —1, respectively, by

V]:r = {f € Vi | f(yvx) = f(xvy)} and Vki = {f € Vi | f(yvx) = _f(xay)}

and the eigenspaces of the operator |§ on Vj, with eigenvalues 1 and —1, respectively, by

Ve ={feVil f(-a.y) = flz.9)} and VU ={feVi|f(-a,y) = —f(z,9)}.

Furthermore, for a subspace W C Vj, we set W*® := W NV} for all e € {+, —, ev,odd}.
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Remark 2.7.

i)

i)

Since € and § are diagonalizable, we obtain decompositions in eigenspaces
Vi=VieV, and V=V o Ve

with projections given by

Tt V= Vi Vi = Vo
For (4 Tle) frer gl = Fle)
and
™. Vi, — V&, 7o v, — VkOdd
1 1
fio 57+ £16) fio 5= F18).

We further denote
o =7rf)
for all f € Vj, and e € {+, —, ev,0dd}.

Let k be even. The operators |e and |6 on Vj commute in this case since €§ = de
modulo £1 (cf. Lemma [2.5)). This implies that |e acts on V& and V¢4 and |§ acts
on V,:“ and V,. Hence we obtain a refined decomposition given by

Vk _ VkJr,ev ® V]:r,odd ® ka,ev ® ka,odd
where

Vk—i-,ev — Vk+ N Vkev’ V;—’Odd — VI:_ N VkOdd,
Vo =V NV, v, = v Ny,
Note that the projections 7+ and 7~ commute pairwise with 7V and 7°99 for even k.

These compositions yield projections onto V', V; odd V, % and Vk_’c’dd which we
denote by

7 =77 o ¥, ghodd . 2+, 7r°dd,
% — 1 o 7Tev, 7r—,odd e 7rodd
We further denote
@0 . _eo0
o2 =n*2(f)

for all f € Vi, e € {+,—} and o € {ev,0dd}.

Projections onto invariant subspaces such as 77 and 7 are generalized in the following
definition.



2.1. GL2(Z)-action via slash operator

Definition 2.8. Let G C GL2(Z) be a finite group. The Reynolds operator of G on Vj, is
given by

thfH@Zfl%

yeG

Lemma 2.9. Let G C GLa(Z) be a finite group. The Reynolds operator of G is a surjective
linear map pg: Vi — VkG where VkG C Vi is the G-invariant subspace.

Proof. The linearity of pg follows immediately from the definition. For surjectivity note
that pg averages over the action of G. Hence pg(f) = f for all f € VkG. Now let 0 € GG
and f € Vi. We then have by standard group theoretical arguments that

1 1 ,
pa<f>|o=@2f|<w>=@2f|v = pa(f). O

~EG Ve
Remark 2.10. Note that the operators |S and |U have order 2 and 3, respectively, with
eigenvalues 1 and {1, w,w?} where w = e Following |Zag00|, we denote

e the eigenspace of |S on Vi with eigenvalue 1 by Ay,

e the eigenspace of |S on Vi with eigenvalue —1 by By,

e the eigenspace of |U on Vj with eigenvalue 1 by C} and

e the sum of the eigenspaces of |U on Vj, with eigenvalues w and w? by Dj,.

We further denote the finite groups generated by S and U by Gg and Gy, respectively. We
then have Ay = im(pgy), Br = ker(pgy), Cr = im(pg,,) and Dy = ker(pg, ). Hence we
obtain the decomposition

Vi. = A, @ By and Vi. = Cr. ® Dy.. (2.3)

Note that we can compute the respective dimensions for all £ € N via Molien’s theorem

[A12] This yields

k—2 k—2
dimA =1+2 {4J and dimCy =142 {GJ . (2.4)

For more details on this, see appendix There is an exemplary discussion on the dihedral group Dg.
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2.2. Group ring action and period polynomials

Definition 2.11. Let G be a group and R be a ring. The set of formal linear combinations

R[G] = Z rg g |79 € R,7g = 0 except for finitely many g € G
geG
equipped with addition

Zagg + Zbgg ::Z(ag+bg)9

geG geG geG

and multiplication

Zagg : Zbgg :Z(ag'bg)g

geG geG geG

is the group ring of G with coefficients in R.
The notion of a group ring lets us extend Definition to the group ring Z[GLa(Z)].

Definition 2.12. For > g1,z "y 7 € Z[GL2(Z)] and f € V), we set

Remark 2.13. We can rewrite the spaces Ay, By, Cr and D, from Remark in terms
of the group ring action as

A =ker(1 - 8) =im(1+9), B =ker(1+S5) =im(1 - 95)
and
Cr=ker(1 —U) =im(1+U +U?), Dyp=ker(1+U+U? =im(2-U —U?).

The respective identities of kernels and images follow immediately via both-way inclusions.
We are now able to define the space of period polynomials.

Definition 2.14. For k > 1 the space of period polynomials is given by
We={feVi|fIl+S=Ff1+U+U*=0}.

For compatibility reasons, we further set Wy := Q (cf. Theorem [2.40)).



2.2. Group ring action and period polynomials

Remark 2.15. For odd k we have Wy, = {0} since for f € V} as in (2.1) f € ker(1 + 5)
implies
a; = ag_2; and a; = —Qg_2—;

for all i € {0,...,k —2}. Hence f = 0.

Example 2.16. For k = 12 we consider

pra(z,y) = 2! -y

r (z,y) = 2y — 2%y® — 3 (%" — 2™y)
T’de (z,y) = 42 — 2527y + 422595 — 25 23y™ + 4.1)°.
dd

Note that pi12 and r%} are simultaneously contained in W,~ and W;Y. Similarly, ro%° is
contained in W]:r and W,g’dd. This is no coincidence as we will see in Proposition

Similar to Definition [2.14) we set W, = {0}, W = Q, W& := Q and W := {0} for

compatibility reasons.

Proposition 2.17. For k € Ny we have

W =W and W, =W

Proof. The claim follows by definition for the case k = 0. Now let £k € N and f € Wj. By
Remark the claim is trivial for odd k. So without loss of generality we assume that k
is even. We need to show that

feker(lFe) <= fe€ker(l+)).
Note that § = €S modulo +1 and € = §S. Now if f € ker(1 F €) then
FHA6 = flees = F(S+e)|S = FI(1+S5—(1Fe)|S =0,
And if f € ker(1 £ ) we have

FIlFe=fLF8S = FI(SFIIS = FIL+S—(1£3)|S =0. =

Definition 2.18. We set 7" = ¢T'e. The action of 1 — T — T" is called the Lewis operator.
The kernel of the Lewis operator

Ly =%er(1-T-T)CV
is the Lewis space.
Proposition 2.19 (|[GKZ06|). Let k > 4 be even. Then

Wi, = Ly. (2.5)
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Table 1: Dimensions of Wy, Wi~ and Ly for k € {3,...,20} |
k 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

dimW, (0 1.0 1.0 1. 0 1. 0 3 0 1 0 3 0 3 0 3

dmWw;/0 o0 0 0 0 00 0 0 1 0 O 0 1 0 1 0 1

dmW, 0 1 0 10 10 1 0 2 0 1 0 2 0 2 0 2

dmlg (12 111111 1 1 3 1 1 1 3 1 3 1 3

Proof. For f € Vi, we have
fl=-T-T'|S=f1+S-1+U+U?. (2.6)

If feker(1—T—1T') then f]1+S5 =f ‘1 + U + U?. This polynomial is then invariant
under both |S and |U and is thus invariant under the slash operator of U - S = —T'. Due to
the invariance under [(—1) (Lemma this implies invariance under |T". Since the only
non-zero |T -invariant polynomials in Vj, are of the form a - y*~2, for some a € Q, we obtain
f € Wy, as y*72 is not invariant under |S. Now if f € W}, then the right-hand side of
vanishes. Applying |S again yields f € ker(1 — 7T — T") since S? = 1 modulo +1. O

Remark 2.20. Equation (2.5)) is called the Lewis equation.

Corollary 2.21. Let k£ > 4 be even. Then

Wi =ker(1 — T ¥ Te). (2.7)

Proof. For f € Vj, assume f|e = £f. Then f |eT'e = £f|Te and hence
fl=TFTe=f1-T-T".
The identities in (2.7)) therefore follow immediately from (2.5]). O

Remark 2.22. Note that the Lewis space Ly is, unlike Wy, non-trivial for odd k. The
respective dimensions for small values of k can be found in table

2.3. An invariant pairing

In order to compute the dimension of W} we construct a direct sum decomposition of Vj
that contains W, as a summand. To do so, we want to compute an orthogonal complement
of Wi in Vi and therefore consider a pairing on the space Vj that is invariant under the
action of SLa(Z).

2The source code that was used to compute these dimensions can be found in appendix

10



2.3. An invariant pairing

Definition 2.23. For r,s,m,n > 1 we set

r—1,s—1 _m—1, n— (_1)T_1
(o tys Tyt = W&m»(mm)

m—1

and linearly extend this to a non-degenerate pairing (-,-) on V.

Example 2.24. We consider f,g € Vg with f(z,y) = 222°y + 1462%y? + 2523y® and
g(z,y) = 82z3y3 + 1122y* 4+ 1329°. Then we have

431

The pairing from Definition [2.23] can also be described in terms of partial derivatives.

Definition 2.25. For f,g € V we set

1 o 0
Proposition 2.26. For f,g € V we have

<fvg> = <fvg>8

Proof. Since both pairings are linear, it suffices to proof the claim for monomials f € Vi,
and g € Vi,. If k; # ko then both pairings vanish. So we assume without loss of generality
that f = 2" 1y~ and g = 2™ 1y"~! for some r,s,m,n > 1 with r + s = k = m +n. Now
both pairings vanish unless » = n and s = m. In this case we have

1=t ot g5t o
<f’ g>8 - ((k‘ _) 2)! <8yr1 81;51> (;ps 1y 1)
(=D =) (s = 1)
B (k—2)!

_1\r—1
= CU ). 0

oy

Considering the inclusion morphism SLy(Z) < GL2(Z), the GLa(Z)-action from Definition
induces an SLg(Z)-action on Vj.

Proposition 2.27. The pairing (-,-) is invariant under the action of SLy(Z), i.e. for
f,g9 € Vi we have

(flv,glv)=(f9) [forally € SLy(Z). (2.8)

Furthermore, if k is even then the pairing (-,-) on Vj is invariant under the action of

GLy(2).

11



2. Period polynomials

Proof. Due to the linearity of (-,-) we assume without loss of generality that f = x"~1y*~!

and g = 2™ 1y"~! for some r,s,m,n > 1 with r + s = k = m + n. Since the group SLy(Z)
is generated by S and T, it suffices to check that (2.8]) holds for for v € {S,7'}. This is
equivalent to showing

(f1S.9)=(fg]5") (2.92)
and
(fIT ,9) = <f,g!T‘1>- (2.9b)
The left-hand side of yields
- s—1, r— m—1, n— )2
<f ‘S ,g> = (_1)T ! <:L‘ ly 1¢$ ly 1> = ((k_)g)é(s,r),(n,m)
m—1
while the right-hand side is
<f ‘S—1> _ (_1)n—1 <xr—1 s—1 _n—1 m—1> _ (_1)n+r—25
y g - Yy y L Yy - (k‘—Q) (s,r),(n,m)'
n—1

Both vanish unless f = g. If f = g both sides equal (71)k—2(k72)*1.
The left-hand side of (2.9b) yields
(fITg9) = ((@+y)y 2™y )

r—1
_ (7" - 1> <Iiyk—2—i’ xm—lyn—1>
R

while the right-hand side is
<f,g ‘T_1> — <xr—1ys—l, (l‘ _ y)m—lyn—1>

m—1
_ Z (m - 1) (—1ym—1-i <$r71ys—17xiyk727i>
1
=0

() - ()

First note that the left-hand side vanishes if and only if n > r and the right-hand side
vanishes if and only if s > m. Since n +m = r 4+ s these conditions are equivalent. Now
assume r > n. This is equivalent to m > s. By using r — n = m — s we obtain that

<7’ - 1) =t (1) (r = Dl(m = Dl(n - 1)!

n—1) (k2 (n—D!(r —n)l(k —2)!
i =D m = D5 — 1))
A P T T

o (m =1\ (=)t

<s—1> =3

12



2.3. An invariant pairing

This proves the first claim.

Now let & be even. Since the group GLo(Z) is generated by {¢,d, T} it suffices to show that

(fle,g) = (f.gle) (2.10a)
and
(flo.9) = {f.91d). (2.10Db)
The left-hand side of (2.10a]) yields
s—1, r— m—1, n— —1)*!
<f |€ 7g> = <.%‘ ly l’x 1y 1> = ((k)g)é(s,r),(n,m)
m—1
while the right-hand side is
-1, s— n—1, m— 1!
<fag |6> = <$r ly 1717 ly 1> = ((k_>2)6(s,r),(n,m)'
n—1

Both sides vanish unless f = ¢g. If f = g then both sides agree since s 4+ r is even by
assumption and therefore s = r mod 2.

The left-hand side of yields

(f10,9) = (=1)"""(f.9)
while the right-hand side is

(f.g18) = (=1)"""(f,9).

Both sides vanish unless » = n and s = m. In this case we have 4+ m is even by assumption,
hence r = m mod 2 and both sides agree. O

Corollary 2.28. Recall the spaces Ay, B, Cr and Dj from Remark We then have
(f,9) =0 for

1. feAg, g € By and

2. feCy, g€ Dy.

Proof. This follows immediately from Proposition since for M € {S,U} we have

where Ag = —1 and Ay = w’ for some i € {1,2}. In particular we have \p; # 1, hence the
claim follows. O

13



2. Period polynomials

2.4. Dimensions

In this section, we compute the dimensions of Wy, W,j and W, by following [Zag00]. We
recall that Wy = Q (see Definition [2.14) and that W, = {0} and W; = Q.

Proposition 2.29.
i) Let k > 4 be even. The dimension of Wy, is explicitly given by

s 7))

it) The generating series of Wy, is given by

> 14 z!?
Edmmﬂ: .
— (1—2%)(1 — 2)

Proof. Let k > 4 be even. Corollary shows that the decompositions ([2.3]) are in fact
orthogonal, i.e.
Ay L By =V, = Cy, L Dy. (2.11)

Now since we have Wy = By N Dy, by definition, the orthogonality in (2.11]) implies that
Wi = (Ag + C’k)L. However, the space A N C} is trivial as we saw in the proof of
Proposition 2.19] We thus obtain Ay + C, = Ay @ Cy, and therefore

Vi =Wi @ A, @ Cy (2.12)
which implies dimension-wise that

For [i)| we use the dimensions of V}, form Remark and the dimensions of A; and C}, from
(2.4). Then ([2.13) implies that

R (et

For [ii)| we first observe that the definition of Vj, immediately yields since Vy = V; = {0} that

2

00 ‘ . .
k=0

Note that V} is non-trivial for odd k. However, since (2.13)) only holds for even k we first

observe that - ) ( 2)
) g 1+
kz:o dim Vk Tr = m

k even

14



2.4. Dimensions

We further obtain the generating series of Ay and Cj via Molien’s theorem which
yields

00 2 6

) v (14 a%)
g dim Cy 2" = 1= 20)(1=a2)
k=0

The generating series yield that both A and Cj are trivial for odd k. Since only
holds for k > 4 we still have to account for the cases £k = 0 and k = 2. We have dim W =1
and dim Wy = 0. The right-hand side of , however, yields 0 for Kk = 0 and —1 for
k = 2. Hence, we obtain the generating series as

> 2% (1+ 2?) 2% (1+2*) 22(1 + z0)
di k_ _ _ 241
kzo MWt =" T o= (A—a9i-a2 O T
1 12
S — O
1 —ah)(1—a%)
Proposition 2.30.
i) Let k > 4 be even. The dimension of W,:' 1s explicitly given by
k k—2 k—2
di F=C_2_(|—= — .
=52 (5] [57))
ii) The generating series of le s given by
0 12
: + .k _ x
Zdlka " = (=21 = 25"
k=0
Proof. Since
€S = Se, U = U, eU? =Ue

hold modulo +1 it follows that |e acts on the spaces Ay, Ck and Wj. We thus obtain for

even k > 4 from (2.12]) that
Vii=wre A eCf

which implies dimension-wise that
dim W, = dim V" — dim 4; — dim C}". (2.14)
We can, again, compute the Hilbert-Poincaré series of V,:r, A;r and C,j with Molien’s

theorem since the groups generated by {¢}, {€, S} and {¢,U} are finite respectively.
This yields

-2 -9
dim V" = g dim A} =1+ V4J dimCf =1+ V6J

15



2. Period polynomials

where the generating series are given by

i.édimv+ k= z”
= k (1—22)(1—x)’
o 2
dim A 2% = x ,
2 A A =
o0 2
dim C; 2% = :c
2 dm et =

Now [1)| follows immediately from (2.14]) and the respective dimensions.

For [ii)| we first note that V,:r is, again, non-trivial for odd k. So we observe that

dim V;* = .
k even

By adjusting for the k = 2 case in ([2.14]) we obtain

idim W ok = v’ — v - v + 22
prt k (1—-22)2 (A—-a2YH(1-22) (1-—25(1—2?)

1612

(=291 o)’

Corollary 2.31.

i) Let k > 4 be even. The dimension of W, is explicitly given by

o -1 (15752

ii) The generating series of W, is given by

1
. — k .
kgzodlm W, x" = (1—304)(1—:156)'

Proof. Let k > 4 be even. Since |e acts on W}, we also have the decomposition
W, =W aW,.
Propositions and therefore yield

k k—2 k—2
dim W~ :dika—dimW,j = 5—1— (\‘4J + LGJ)

16



2.5. Applications 1: Modular forms

and
> _ 14212 z12
dim W, zF = —
kZ:_O k (1—2H(1—2%) (1 —2a)(1— 25
1

T (1 — 251 —a2b) =

Remark 2.32. Since W,j = {0} and W,_ = Q, Proposition and Corollary yield
in particular for all even k£ € Ny with k # 2 that

dim W, = dim W, — 1.
By Proposition [2.17] we also have

dim W = dim WY — 1.

The dimensions of W, W,j and W~ for small values of k can be found in table .

2.5. Applications 1: Modular forms
We denote the upper complex half plane by

H:={z € C|im(z) > 0}.

Definition 2.33. Let £ € N be an integer. A modular form of weight k (w.r.t. SLa(Z)) is
a holomorphic function f: H — C satisfying for all v = (‘cl Z) € SLa(Z) and z € H that

_ az+b
f(z) = (cz+d)7"f (Cz+d> (2.15)
with Fourier series expansion
f(z) = Zanq" (2.16)

n>0

where ¢ = €™, Furthermore, a modular form f of weight k is called a cusp form of weight
k if the constant coefficient ag in (2.16)) vanishes.

We denote the space of modular forms of weight k by M} and the space of cusp forms of

weight k by Sk.

Remark 2.34. For odd k we have M) = {0} since condition (2.15) implies for v = —1
that all f € M}, satisfy

f(z) = (=) f(2).

17



2. Period polynomials

Definition 2.35. Let f € Sx. Then
/ f k 2dZ
is called the period polynomial of f.

Definition 2.36. For f € S we call

the nth period of f.

Proposition 2.37. Definition actually yields a polynomial of degree k — 2. To be
precise, for f € Sk we have

Proof. By Remark [2.34) we assume without loss of generality that k is even. We then have

100

re(x) = ; f(2)(z—z)k2dz
k—2 ;
k; _ 2 100
= ( ) f(2)2"(—z)* 2" dz
n 0
n=0
k—2
k—2
_ (_1)n< >Tn(f) k—2—n n
n
n=0
Example 2.38. For z € H let
H 1—¢)* =¢—24¢>+252¢4° F ...

Then A is a cusp form of weight 12. Using the decomposition Vj = V,;r @V, from Remark
we have

+ _ , + odd
TA= WA TA

_ _ 36
Th=Wp- @pm - A

with pi12, 7% and r°dd from Example and complex constants
wz = 0.00926927 . .. and wy =1-0.114379...

For more details, we refer to |[Zag91|.

18



2.5. Applications 1: Modular forms

Theorem below states a fundamental correspondence between cusp forms and their
respective period polynomials. They can be described as either uni- or bivariate polynomi-
als.

Remark 2.39. There is a natural bijection
®: {f € Qla] | deg(f) <k —2} — {F € Q[z,y] | F homogeneous, deg(F) =k — 2}
given by

w5 =7 (%)
YF) = F(z,1).

The Eichler—-Shimura—Manin theory gives an important correspondence between the space of
cusp forms Sy and the spaces W and W,;’dd. Using the decomposition Wy, = W' @ W,?dd
and the notation from Remark we write p = p® + p°9 for p € W,. We will state the
theorem without giving a proof. For more details, we refer to [Zag00| and [MRO5].

Theorem 2.40 (Eichler-Shimura—Manin). The maps

rodd. g — W,gdd ® C

fe r;’cdd
and
r¢: S, — WEV/(@pk) ®C
[y
with py = "2 — y*=2 are isomorphisms of vector spaces.

The proof of Theorem [2.40] makes use of a Hermitian scalar product on Sy that has a
connection to the pairing on Vj. For f, g € Si the Petersson scalar product is given by

/ (2 kd:rdy

where z = x + iy and F = {z € H | |Re(z)| < 1,|2| > 1} is the fundamental domain for
SL2(Z) on H. Now consider the natural extension of the pairing (-,-) on V to a Hermitian
form on C[z,y] by applying the complex conjugation to the second argument. We then
have for f,g € Si that

(fr9) =cr-(rg|T =T 7g)

where ¢, € C is a complex constant depending on the weight k.
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2. Period polynomials

Remark 2.41. Zagier shows in [Zag91, p. 453] that the polynomial p, = z¥~2 — y*=2 can

be naturally considered as the even period polynomial of the Eisenstein series

2k )
Be(z) =1— 5 op1(n)g", q=e™"

with the (k — 1)th divisor sum

op—1(n) = Z dr!
and the kth Bernoulli number given by
00 % P z

z .
k! er —1
k=0

Remark 2.42. The generating series of Sy is known to be

:1112

kz_odlmSk:): R Trppy

Note that this coincides with the series of W,j = W,‘;dd from Proposition m By Remark
we further obtain from Theorem for even k > 4 that dim W, =2-dim S, +1. We

have
o0
LLA k
1 2 = Z x
— X
k=4

k even

and the generating series of Wj, from Proposition 2.29) can indeed be computed after
accounting for dim Wy =1 as
9 ZE12 334 1 + ZL‘12

=i —20) " T-22 1T i —ab)

2.6. Applications 2: Exotic relations for double zeta values

The theory of multiple zeta values is concerned with real numbers of the form

1
C(Sl,...,sl) = Z 817718[
[

ni>-e>m>1 17

where (s1,...,5) € N! with s; > 1. In particular, one is interested in relations amongst
them. For example, we have

¢(3) =¢(2,1).

For an introduction to multiple zeta values, see [BGF17].
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2.6. Applications 2: Exotic relations for double zeta values

An application of period polynomials in this theory was studied by Gangl, Kaneko and
Zagier in |GKZ06| to compute Q-linear relations amongst them. Our presentation of their
results follows the notes of a talk by U. Kiihn |Kiih20].

Consider the generating series of single and double zeta values

Z(2) = Y ¢(s) 2"

s>2

Zy(z,y) = Y C(s1,89) 2™ 1y
$1>2
so>1

The multiple zeta values satisfy the double shuffle relations

C(s1) - C(s2) = ((s1,82) + (52, 51) + ((s1 + 82)

suisa-l r—1 r—1
= () (L2))ctmrsn,

r=1

for s1, 59 > 2. Hence

Zi(z) - Z1(y)

Zg(x,y)+22(y,$)+ T—y

= Zo(x +y,x) + Z2(z+y,y) + ((2). (2.17)

By extending our definition of the slash operator to power series in variables x,y we can

rewrite (2.17)) as

Zi(x) — 2Z1(y)

()| - +e) = T

—¢(2) (2.18)

since (T —1)(1+e€)=T+Te—1—c¢.

We now extend the non-degenerate pairing (-, -) to a duality pairing Q[z,y] X Q[z,y] — Q.
This is still invariant under the SLy(Z) action and allows us to associate relations amongst
multiple zeta values to certain polynomials.

Proposition 2.43. Let k > 4 be even. Assume (2.18)) encodes all non-trivial linear relations
of the form

D> Aarsal(s1,52) = M (k) (2.19)

s1+so=k
§1>2
so>1

with \s; 55, A\ € Q. Then there exists a f € Vj, such that

A (k) = <f<x,y>, 2@ = 20) <<2>>

T —Y
> Aawllst,82) = (f@y) |1+ (T = 1), Za(z,y)).
81;852%116
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2. Period polynomials

Proof. Let k > 4 be even. The coefficient of a fixed monomial z'y/ € V}, on both sides of
(2.18) must be equal. This yields a relation

> AT L C(s1,82) = ((k). (2.20)
S1+so=k
$1>2
s2>1
By our previous considerations, we obtain (2.20) by applying the linear map <acj Yy, > to
(2.18). By assumption, any linear relation of the form (2.19)) is a linear combination of the
linear relations given by (12.20). We therefore find a f € V}, such that (f(z,y),-) applied to

gives (2:19), i.e.
MC (k) = <f<x,y), Zi(e) = Z1(y) C(2)>

r—y
Z As1,s2<<317$2> - <f<m7y)722(xay) ’(T - 1)(1 + 6)) :

S1+s2=k

By Proposition the pairing (-,-) is invariant under the action of GLy(Z) since k is
even. So adjoints are given by inverses. Observe that the summands in (1 +€)(T~! —1) =
T~1 + €T~ — 1 — € are pairwise inverse to (T — 1)(1 + ¢) from above. So the two operators
are adjoints to one another and the claim follows. O

Remark 2.44. It is still an open question whether the multiple zeta values satisfy Q-linear
relations that cannot be derived from the algebraic double shuffle relations. So instead
of considering the single and double zeta values, [GKZ06| consider the formal double zeta
space Dy, instead. This space is generated by formal symbols Z, 5, P, s and Z;, that satisfy
the double shuffle relations

Zys+ Lsy =Pros— 2y, forr,s>2withr+s=%k

k—1
r—1 r—1 k (2.21)

and no other linear relations. So we have
{Q-linear combinations of Zy, Z, s, P, s}
(relations (2.21))q '

Proposition then holds without the additional assumption by replacing ((k) with Zy,
((s1,s2) with Z, s, and ((s1)((s2) with Py, ,.

Dy =

Proposition 2.45. If f, f' € V), determine the same relation via applying the linear maps
(f(x,y),-) and (f'(x,y),-), respectively, to (2.18|) then their projections onto Vlj agree.

Proof. Observe that

Zl( - k—r—1
= =) (k) =D Ck) D 2"
r=1

k>2 k>2

22



2.6. Applications 2: Exotic relations for double zeta values

is an infinite sum of symmetric polynomials. Now recall the orthogonal decomposition
Vi = V,:r @V, and the projection 7T onto V,: from Remark So for any f € Vi, we

e 20) - 20 20) - 20
1x) — 21y 1&) — 21y
(o) ZEZEOD) () (o, 2200,
r—=y z—y
For the other side we consider the adjoint operators A = (7" — 1)(1 + €) and A* =
(14 ¢€)(T~! — 1) from above and obtain that

<f(33,y),22(33,y) ’A> = <f(I7y) |A* 7ZQ(x7y)> =2 <7T+(f) ’(Til - ]-) 722(x7y)> :

Now if f, f' € V} give the same relations, then

(7 (f = YT = 1), Za(a,y)) = 0.

Since the pairing is non-degenerate and ((s1,s2) > 0 for all s; > 2, s9 > 1 this implies that
mt(f = )T ) = 0. Hence 7t(f — f') is invariant under |e and |T". But this space
is trivial and thus 7+ (f — f/) = 0. O

Example 2.46. Let £ = 4. We consider the symmetric polynomials fi, fo € V4Jr with
fi(z,y) = 2% +y* and fo(z,y) = zy. Since

Z1(x) — Z1(y)

(w0 - () =2

r—y
(filz, ) [+ (T = 1), Za(z,y)) = 2¢(3,1) +2¢(2,2)
and
<f2(x7y) Zl(x; = —*C
(foz,y) |1+ e) (T - x,y)> —2¢(3,1)

Proposition [2.43) yields the relations

¢(3,1) +¢(2,2) =C(4) and 4¢(3,1) = ((4).

Combining these relations, we further obtain
¢(2,2) =3¢(3,1).

Proposition 2.47. Let f € W;Y. Then the relation (2.19) induced by applying the linear
map (f|T ,-) to (2.18)) is symmetric in ((ev,ev), i. €. X, s, = Ngy,s, for all even s1,s9 € N.

Proof. Without loss of generality, we assume that k is even since W, = {0} for odd k.

Recall the decompositions of Vj, and the corresponding projections from Remark 2.7 Now
let 51,82 € N with s1 + so = k and s; > 2. Then

(227 1y 7 22, y)) = Aoy saC(s1, 52)
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2. Period polynomials

for some Ay, 5, € Q. So for p € Vj, we see that

(p(:v,y), ZQ(xa y))

is symmetric in C(ev, ev) if p°dd € V,:r. Now let f € W and set g := f|T". By our previous
considerations, it suffices to show that (g |A*)°dd € V,F where A* = (14 ¢€)(T~! — 1) is the
operator from Proposition [2.43]

To show that (g |A*)°dd € V' we first observe that

29" =gl(l—€¢) =fI(T-Te) = f

where the last equality holds by assumption since we have f € W,~ (Cf Proposition
and satisfies the refined Lewis equation (Corollary - Applylng 7 and 7°99 to thls
identity yields, respectively, that 2¢~® = f and ¢g—°% = 0. Since g°dd = gt-0dd 4 g—0dd
we further obtain that g4 = godd € ¥/ Our goal is to show that (g|A*)odd = —godd
which will imply the claim.

Observe that g~°9 = 0 implies
gl = gloe = (¢ = g**) e = (g7 — g7 — g%,

Now recall the matrix 7" = €T from Definition 2.18 and note that ST~ = T’S. Since S
is self-inverse modulo +1 and commutes with (1 + €) we have

gIA* = (g]S)|SA* = ( +ev_gf,ev_g+,odd) ISA*
= (g =gt a4+ e)S(T—1 —1) =g 1+ 98T - 1)
9 <g+,ev +,odd> \S —1)
=2 (gt — ") (1 - 1)8
(g+,ev —ev g+,odd> |( DS 2 \(T’ —1DS.

By using TST’ = S and f € Wg¥ = W, , we further compute that

(7% — g7 = g" ) [T = g |ST' = f|TST' = IS = floc = ~f (222)

27T = f|T' = —f|Te = —gle = —g** + g~ — g"°. (2.23)

By combining (2.22) and (2.23) with f =2 ¢ and the formula for g|A* from above, we
obtain that

g |A* — (_2 f —9 (g+,ev o gf,ev . g+,odd) _ g+,ev + gf,ev _ g+,odd _ 297,ev) ‘S
— (_3g+,ev _ 39—,ev + g—l—,odd) ’S _ (_3gev _|_godd> |S
— (_3gev o godd) ’6 _ _3gev ’6 o godd_

This shows that (g |A*)°dd = —g°dd gince ¢g* |¢ is even. O
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2.7. Applications 3: Quadratic relations and depth 4 generators for [s

Examples 2.48.

i) Consider the polynomial pg(z,y) = x* — y* € W". This yields
Z -z
<p6(w,y) T, 1(:2 —, 1(y)> =0
(po(w,y) ITA™, Zo(x,y)) = ((4,2) +¢(2,4) = 3(¢(5,1) +<(3,3))

and we have the relation
3(¢(5,1) +¢(3,3)) = ((4,2) +¢(2,4).
ii) Consider the polynomial
r} (@ y) = 2%y — %y =3 (%' —a™y®) e W
from Example This yields

ev Zl(z) - Zl(y)
(@ 220 L,

(rSt (e, 0) [T Za(, ) = 72 (C(8,4) + C(4 8)) FoL(6,6)
1 2
~ (5603 + ¢1.9)+ 266,

and we have the relation

~10602) = T (C(8,4)+C(4,8)) +

19

#5060 (1560.3)+ 6.5+ 26,1 )

For the formal double zeta space from Remark |GKZ06|, Theorem 3| show, in the
formulation of [Kih20|, the following theorem.

Theorem 2.49. There is an isomorphism of vector spaces

(relations in Dy, which are symmetric in Zeyev)Q

(relations in Dy, which are symmetric in Zey ey Without Zogd odd)0

2.7. Applications 3: Quadratic relations and depth 4 generators for Is

Another occurrence of period polynomials in the theory of multiple zeta values can be found
in the study of the linearized double shuffle Lie algebra ls. In this master thesis, we only
need some fragments of this theory. For more details, we refer to [Bro21| and |Sch15| as
well as to [MT18| for a comparison. We have a decomposition

Is = @ [ﬁdeHQxl,...,

k,d=0

where [s;, 4 contains certain homogeneous polynomials in d variables of degree k — d. In
fact, the pair (Is,{, }), where {, } denotes the Ihara bracket, is a bigraded Lie algebra.
There are two occurrences of period polynomials in the theory of Is.
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2. Period polynomials

1.) The subspace in depth d =1 is

26

o0
ls; = @ Q ookt
k=1

where
02k+1(x1) = $%k € Q[:z:l] (2.24)

is an even polynomial and the bracket
{, }2 [51 X [51 — [52
is explicitly given for f,g € ls; by

{f. 9} (@1, 22) = (f(z1)g(w2) — fla2)g(x1)) L+ U+ U>. (2.25)

The relations of [s in depth 2 are given by the kernel of {, }: Is; x [s; —> Is2. Note
that the bracket factors through the exterior product [s; A Isq, i.e. we have a short
exact sequence

O*>ker({, })H[ﬁl/\[51*>[52*>0.

Since Is; is spanned by polynomials of the form ([2.24), we obtain that [s; A Is; is
isomorphic to the space that is spanned by homogeneous polynomials of the form

2(561,562) = J2k1+1($1)02k2+1($2) - 02k1+1($2)02k2+1($1)

for ki, ko € N. A non-zero ¥ has degree 2(k; + k2) and we have ¥ € ker(1+ 5). Since
O9k+1 1S an even polynomial, we observe that

YN(—x1,x9) = X(21, 22) = X(x71, —22).
We therefore obtain that
se{revi|fn+s=o o=}

By (2.25)), the bracket on [s; is given by applying the operator }1 + U 4 U?. Hence
we obtain for the weight & component of the kernel that

ker({, })r = WE".
For example, in weight k& = 12 we have the relation (cf. |Bro21, Example 7.2])
relA: 3{0‘5,0‘7} — {03,0'9} =0

which corresponds to the even period polynomial 7% from Example of the cusp
form A from Example by replacing {02411, 0opi1} with x2922° — 220222,



2.7. Applications 3: Quadratic relations and depth 4 generators for [s

2.) Let f € W,f"/ <xk*2 — yk*2>Q be an even period polynomial with f(x,0) = 0. Then
Brown |Bro21, § 8] associates the element

ey = Z (f1(ya —y3,92 —y1) + (vo — y1) fo(y2 — ¥3,¥1 — ¥3))

7./57.
to it, where we sum over all cyclic permutations of (yg,...,v4) — (y1,---, Y5, Y0) With
f(z,y)
fO(xay) = and fl(wvy) = ($—y)f0($,y)
zy(z —y)

Note that fo(z,y) € Q[z,y] since f vanishes at z =0, y = 0 and x —y = 0. Now
define &; € Q[x1, ..., x4] by setting yo = 0 and y; = x1+-- -+, forall i € {1,2,3,4}
in ef. Brown has shown that the elements €, satisfy the linearized double shuffle
relations. An alternative construction for these elements is given by Ecalle in |Ecall|

by using a refinement of

Conjecturally, the Lie algebra ls is generated by the elements 09;41 from above and &
from [2.)|and all relations are of the form described in This would imply the Broadhurst-

Kreimer conjecture.
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3. Bi-period polynomials

3. Bi-period polynomials

We now consider a slight generalization of period polynomials in 4 variables. Similar to
chapter |2, we are going to define an action of GLy(Z) first and again consider ker(1 + S) N
ker(1 + U + U?). Before doing so, however, we will study the Laplacian operator of a
particular quadratic form. This will give us a new decomposition of the space of polynomials
which will turn out useful for computing the dimension of certain subspaces. Throughout
this chapter we let, again, k € N be an integer with k£ > 2 unless stated otherwise.

3.1. Bi-slash operator

Definition 3.1. For k£ > 2 we denote the set of homogeneous polynomials in 4 variables of
degree k — 2 over Q by

Vi ={f = f(z1,22,y1,y2) € Qlx1,22,91,y2] | f homogeneous, deg(f) = k — 2}.

We further set Vy := {0}, V1 := {0} and
V= @Vk
k=0

Note that V is a graded vector space with homogeneous components given by Vj.

Lemma 3.2. We have

1
dim YV, = <k—; )

Proof. The definition of V;, yields immediately that

2

Zdlka:C (1—30)4

Note that
— (k+1 — (k+1
(1—m)4-<§( ; )xk>—(x4—4x3+6x2—4x+1)~<§< ; )xk>—x2

since the first few coefficients are easily checked and a straight forward computation shows
that k+1 k kE—1 k—2 k—3
+ — — —
—4 —4 = 0.
(3) <3)+6<3) (57 (57

kz:;)dlmvkxk 1—1‘ Z( ) k. O

k=0

We thus have
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3.1. Bi-slash operator

Definition 3.3. For v € GLy(Z) we set vt == ('y*l)t and define the bi-slash operator on
the space Vi by

GLQ(Z) X Vk — Vk
(1) = = £ (2, (7 2)')

where 21 = (21, 22)" and 23 = (y1,y2)".

Remark 3.4. The bi-slash operator on Vy is essentially given by applying the slash operator
from Definition [2.3] twice. It thus follows by a similar calculation as in Proposition [2.4] that
this in fact yields a right group action on V.

Lemma 3.5. For even k € N the space Vy is invariant under —1, i.e. for f € Vi we have
fI(=1) = .

Proof. Note that —1 is self-inverse and fixed under transposing. The proof thus follows
analogously to Lemma [2.5] O

For the following definition, we recall the GLy(Z)-matrices € and § from ([2.2]).

Definition 3.6. We denote the eigenspaces of the operator |e on Vj with eigenvalues 1
and —1, respectively, by

Vl:_ = {f € Vi \ f(xo, 1,92, 91) = f($1,962,y17y2)}
Vk_ = {f € Vi \ f(952737173/27y1) = —f(901,902;y17y2)}

and the eigenspaces of the operator |§ on Vi with eigenvalues 1 and —1, respectively, by

Vil ={f €V | f(=x1, 22, —y1,42) = f(21, 72,91, 92)}
V]?dd = {f S Vk‘ | f(—xla:l:Za —y17y2) = —f('IlavaylayQ)}'

Furthermore, for a subspace W C Vi, we set W*® := W NV} for all e € {4+, —, ev,odd}.
Remark 3.7.
i) Analogously to Remark we have orthogonal decompositions in eigenspaces
Ve=VieV, ad V=V eWR
with projections given by
TV, — VT T Ve =V,

Fer g4 Tle) fer 3= 7le)
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3. Bi-period polynomials

and

7V, = VY, 7ol Y V;‘gdd
1 1
[ S+ 11) [ 5= 118).
We further denote
o =)
for all f € Vi and @ € {+, —, ev,0dd}.

ii) Let k be even. The operators |e and |0 on Vi commute in this case since €§ = de
modulo £1 (cf. Lemma|3.5). This implies that |¢ acts on V§¥ and V29 and |§ acts
on V,j and V, . Hence we obtain a refined decomposition given by

Vk: _ V];Q—,ev ® V;—,odd @ Vk—,ev ® Vk—,odd
where

+.ev . v+ ev +,0dd . 4+ odd
VP = VE Ve, Vol o v e,

Vk*,ev — ka N V](:V, V’;,odd — Vk— N V;?dd-

Note that the projections 7+ and 7~ commute pairwise with 7¢v and 7°9¢ for even k.
These compositions yield projections onto V,:r o V,: ’Odd, V., and V, ©dd Which we

denote by
=77 o ¥, gtoedd . 2+, 7r°dd,
o — 1 o ,R_ev, 7r—,odd e 7rodd'
We further denote
o0 . _ep0
o0 =7*(f)

for all f € Vy, @ € {4+, —} and o € {ev,0dd}.

Remark 3.8. Let v € GLa(Z). Then there are different ways to describe the bi-slash
operator from Definition [3-3]

(v 0

T (0 'Yt>

and consider the natural analogue of the slash operator from chapter [2] i.e.

1. We set

GL4(Z) X Vi — Vi
(0./)— £ ((o-2)")

where z = (21, 22,y1,y2)". Then the bi-slash operator f |y is given by f ((7-2)").
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3.1. Bi-slash operator

2. Note for v = (Z d

b) S SLQ(Z) that

— t
(s wh it wh) = (-2, (77" 22)")

= (a1 + bz, cx1 + dxa, dy1 — cy2, ay2 — byr)

and
(4 9)-(5 3)
/ 7= =Y
—Y2 Ui —Y2 Y1
B < ary + bry  cxy + dx2>
—(ay2 —by1) dy1 —cy2 )
Now set

7 = < 1 x2>
—Y2 Y1
and consider f € V; as a function on 2 x 2-matrices via

f: Z’—>f(Z) = f($1,$2,?/17y2)‘

This yields
fly=1(2-7Y).

Definition 3.9. Let ¢ € V4 be the polynomial given by
q(Z) = det(Z) = z1y1 + 2292
The following observation is now trivial.

Proposition 3.10. The polynomial q is invariant under the action of SLa(Z), i. e. for all
v € SLa(Z) we have

qly =q.

Definition 3.11. Let I' € GL4(Q) be the group of isometries of g, i.e.

= {7 € GL(Q) | a((7-2)") = a(z")}

. t
where z = (21, z2,y1,92)".

Remark 3.12. Since GL4(Q) acts naturally on Vi we obtain an action of I' on Vi. By
Remark 3.8 we also have an embedding GLa(Z) — I via

v 0
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3. Bi-period polynomials

Example 3.13. Consider the matrices

1 0 0 0 1 0 0 0
00 0 —1 0 -1 0 0

=10 o 1 o | v=19 o 1 o |ECM@)
0 -1 0 0 0 0 ~1

Since q((7 - 2)t) = q(2') and q((v - 2)') = q(2*) for z = (21,22, y1,y2)" we have T, € T'. By
using the notation of Remark we have for f € V; that

f |T = f(xla —Y2,Y1, _1‘2) = f(Zt)
and

flv = f(z1, —x2,y1, —y2) = f(6Z5").

Remark 3.14. In fact, [Sie36 p. 259] shows that the action of T" is generated by the
embedded actions

(1vSL2(Z)) — Fv (L’V) = (f = f(Z ’ ’Vt))
(SL2(Z),1) =T, (v, 1) = (f = f(y-2))

as well as f |7 and f|v from Example

Remark 3.15. We extend the I'-action on Vj; to an action of the group ring Z[I'] on V
analogously to Definition

We will now define the central objects of this chapter and show two basic results.

Definition 3.16. For k > 1 the space of bi-period polynomials is given by
We={feVi|fI1+85=Ff|1+U+U? =0}

We further set Wy := Q.
Lemma 3.17. For odd k we have Wy = {0}.

Proof. Let f € V), with

_ i, J,m,n
f(z1,22,y1,92) = E Qi,j,m,;n L1 X2 Y1 Y-
1,3,m,n>0,
i+j+m+n=k—2

Fix some i1, 2, j1,72 > 0 with 41 + 42 + j1 + j2 = k — 2. Since St = S, the coefficient of
zlafyl'yy? in f|S is given by (—1)22a;, i, i, j,. Then f € ker(1+ S) implies

_1)\teti2,. . . . o _1\ata,,. L. o
(=1) Qig iy jarjr T Qi jig,j1,j2 = 0 and (—1) Qi jig,j1,52 T Qig,ir,jarjs = 0-

Since k — 2 is odd, we have (—1)2+72 £ (—1)11J1 hence f = 0. O
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3.2. A special case of Weitzenbdck’s theorem

Recall the spaces W,j , W, WEY and W,de from Definition Analogously to chapter
we also set Wi = {0}, W == Q, W§¥ := Q and W9 := {0}.
Note that the proof of Proposition only relies on invariance under |—1 and matrix

identities. Hence we obtain the following lemma by a similar proof.

Lemma 3.18. For k € Ny we have

WE =W and W = we.

3.2. A special case of Weitzenbdck's theorem

Recall the calculation for dim(W}) in section . First, we considered the orthogonal
complement of Wy, in V. We were then able to compute the dimension of that complement
since there are no SLg(Z)-invariant polynomials in Vi. We want to pursue the same
approach to compute the dimension of Wy, in the next section. However, we already saw
that ¢ = x1y1 + z2y2 is invariant under the action of SLy(Z). The goal of this section is
therefore to describe the space

&, = {fEVk | f=1rfly for allveSLg(Z)}.

Remark 3.19. Since the group SL2(Z) is generated by S and T', the space & consists of
all polynomials that are invariant under both |S and |T', i.e.

& =ker(l1 —8)Nker(1—-T).
Note that the space ker(1 — S) is invariant under a finite group. So we can compute its

dimension via Molien’s theorem [A:12] The group generated by T', however, is infinite. Our
first goal will therefore be to describe ker(1 — 7) more explicitly.
Remark 3.20. For A € Z we have

A (1A
r=(p 1)

We thus obtain a group homomorphism

(Z7 +) - (SLQ(Z)7 )
A — T2

and note for f € Q[x1, z2,y1,y2] that

FIT? = f(21 + Aza, 2, y1, y2 — Ayr).

So by considering A € C and f € C[x1,x2,y1,y2] instead, we can define an action of the
additive group G,(C) on V ® C = Clx1, z2,y1, y2] via

A * f(xlaanyhyQ) = f(xl + )‘x271‘27y17y2 - >\y1)
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3. Bi-period polynomials

We further observe that ¢ = z1y1 + x2ys is invariant under this action since

q(x1 + Ax2, 22, Y1, Y2 — Ay1) = (21 + Ax2)y1 + 22(y2 — Ay1)
= q(z1, 22,91, y2) + Maayr — x2y1) = q(x1, T2, Y1, Y2)-

A theorem by Weitzenbock [Wei32| states that the algebra of G,(C)-invariant polynomials
in n variables is finitely generated. The following theorem is a special case of this.

Theorem 3.21. We have

(C[1U1,$27917y2]6“(c) = Clz1y1 + z2y2, 2, y1].

Proof. This proof follows [FR17, Example 7.4.10|. Since the polynomials z1y; + z2y2, 2
and y; are invariant under G,(C), we immediately obtain that

(C[Ilyl + 332y271’27y1] g (C[‘TlaxzaylayQ]Ga(C)-

To show the converse inclusion, let

_ 1,02, 01, 72
f(x1,m2,91,92) = E iy iz j1,ge T1 T2 Y1 Yo~ € Vi
11,12,J1,52 >0,
i1+i2+j1+jo=k—2

with f =A% f, i.e.
f(xlax%ylayz) = f(xl + )\$27$27y17y2 - )‘yl)

Differentiating this equation w.r.t. A and evaluating at A = 0 yields due to the product
rule

d o .
_ T 21 .02,,J1 _ J2
0= E d/\an,zmmz (w1 + Az2)" 257 y1" (Y2 — Ay1)
11,22,J1,52 20,
i1+i2+j1+jo=k—2

A=0

— T i1—1,d2+1, j1, 72 . i1, 4o, J1+1 ja—1
= E iy ig 1,42 (Zl Ty Ty Y1 Yy T J20 Xy x3YT Y3

o 01,42,J1,J220,

i1+i2+j1+je=k—2
of of
= x’2 - —_— 1 - —_
O0xy Y 0y
Now consider the substitutions

X1 = z1y1 + T2Y0, Xo = w9, Yi=u1, Yo =yo
X1 =z, X5 =z, Y{ = 1, Yy = ziy1 + 22y2

and set

_ X1 — XvY-
p1(X1, Xo, Y1, Yo, Y1) = f <122

% ,Xg,Yl,Yg) € C[Xy, X5, Y3, Y5, Yy ]
1
Y - Xy

X1 X3V VX o= o (X1 PR
2

> € C[X}, X5, Y7, Yy, X51].
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3.2. A special case of Weitzenbdck’s theorem

Note that Xl%)l% = 71 and %_Xi)ﬁyf = 1. So after resubstitution we have py,ps €
2
Clx1, z2,y1, 2] with
(@1, 22, y1,92) = f(21, 2, Y1, y2) = p2(x1, T2, Y1, Y2). (3.1)

The product rule now implies that

p1 0 X1 — XY,
— § Qi i
(9Y2 L aY2 11,22,]1,J2 }/1
o 01,42,J1,J220,
i1+ig+j1+j2=k—2

) " X;'Q Yljl Ysz

i1—1
X, — Xo¥5\ , . ,
= R ) ig+1y J1—1y,j2
- Z Qiy in,j1,52 Z1‘<Y1 XY Yy
| i1,42,41,5220,
i1+i2+j1+j2=k—2
X1 — XoYo\" i
iav g1y J2—1
- Z Qiyio,j1,52 J2 <Y1 X Y7 Y .
| 11,2,J1,5220,
i1+i2+j1+jo=k—2

By resubstituting we see that

L (2,9 g

— = To—— — Y1 5—
Yy 1

x1 0y

Similarly, we have

0X|  x9
This shows p; € (C[Xl,Xg,Yl,Yfl] and po € (C[Xé,Yl’,YQ’,Xéfl]. Since p; and ps consist
of finitely many monomials, we find minimal numbers n, m € Ny such that
@1 (X1, X2, Y1) =Y - p1 (X1, Xo, V1, Y, 1) € C[X1, Xo, V1]
¢2(X3, Y1, Y3) = (X3)™ - p2(X3, Y7, Y3, X5 ') € C[X3, Y7, V3],
After resubstituting we have p; = ps by and hence

xy' - qu(x1yr + T2y2, T2, Y1) = Y1 - @2(X2, Y1, T1Y1 + T2y2).

s 1( of af>:O_

_ Lot — =
28x1 un

Now assume n > 0. We then obtain for y; = 0 that ¢;(z2y2,x2,0) = 0. In particular, we
have ¢1(y2,1,0) = 0 for zo = 1. This implies that y; still divides ¢, i.e. we find some

q1 € Clz1y1 + z2y2, w2, %1] With y1 - 1 = ¢1. But then

h=y"m
contradicts the minimality of n. Hence n = 0 and f € Clx1y1 + z2y2, T2, y1]. O

Corollary 3.22. Let k£ > 4 be even. Then the space & is spanned by a power of ¢, i.e.

= (),

where ¢ = x1y1 + x2y2 and the generating series of & is given by
2

> x

E dim &, 2F = ——.
1— 22

k=0
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3. Bi-period polynomials

Proof. The inclusion <qk2;2>Q C & is clear.

For the converse inclusion let f € &. By Remark we have f € & if and only if
f € ker(1—S) and f € ker(1 — 7). Theorem implies for the latter condition that
I € Qlx1y1 + z2y2, T2, y1]. But since

(22) | =z (1) [S = =12
the invariance under |.S implies f € Q[x1y1+22y2]. The generating series follows immediately
from the fact that & is one-dimensional for even k£ and trivial for odd k. O

3.3. An invariant pairing
As we want to use the same approach to compute the dimension of W, as we did for W}, in
section [2.4] we need a pairing on Vj that is invariant under the action of SL2(Z) in order

to describe the orthogonal complement of W.

Definition 3.23. For (iy, 2, j1, j2), (M1, ma, n1,n2) € N§ with we set

i1 12 J1,. ] mi_.mo_ ni N (_1)i1+j1

1 2 1 2 1 2 1 2 -—

<9U1 To¥1 Y2 501 Ty Y1 Yo > = ( E—2 ) (i1,02,51,42),(m2,m1,n2,n1)
11,82,J1,J2

and linearly extend this to a pairing (-,-) on V.

Definition 3.24. For p,q € V we set d(p) = p (_8%27 8%1, —%, %) and

(.0)y = gy (00) @0).

Lemma 3.25. The pairing (-,-), is a non-degenerate bilinear form on V.

Proof. Since 9 is essentially a substitution of variables, we immediately obtain that J is a
linear map on Vj. Hence (-, ), is linear in the first argument. So without loss of generality
let p=a-zi'z2yl'y)? for some a € Q and 1,142, j1, j2 € Ng. Then for a polynomial r € V
of the form 4
r= Y g Ti2uys
Z‘?j7m7n

we have o
(_1)114-]1

(p,1)g = ) “ 0 big iy g i -
(i1,i27j17j2)

Hence (-, ), is also linear in the second argument. So (-, ), is a bilinear form.

The form is non-degenerate since for any non-zero P € V let p as above denote one of its
fola _ 2,01, 02, 71
monomials, then for pg = z*5 y;*y," we have

(_1)i1+j1

T T a0, 0
(il,i’z,ji]é)

<P7 pO)B =
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3.3. An invariant pairing

Similarly to Proposition [2.26] we have the following lemma.
Lemma 3.26. The pairings on Vj, agree, i. e. we have (-,-) = (-, ).

Proof. By linearity of both pairings it suffices to prove the claim for monomials f € Vi, and
g € Vi,. If k1 # ko then both pairings vanish. So assume without loss of generality that
f(@1, 22,y1,92) = i w2yl yy’ and g(x1, 22, y1,y2) = 27" 2y 2y ys? with iy +io+ j1 +jo =
k—2 and my +mo +n1 +n9g =k — 2 for some k > 2. Then

— (_1)i1+j1 8i2 ail oz o™ mi,ma, N, N2
<fag>8_ (k—2)' 85632 81’121 ay{zg ay;l (371 .%'2 yl y2 )

(_1)i1+j1

B (k—2)! (@)1 (22)! (7)1 (72)! (i 2.1 o) (ma my ma )
(_1)i1+j1

- ( k-2 )5(i1,i27j1,j2),(m2,m1,nz,m) = <f> g>- O
i1,82,71,52

Theorem 3.27. The pairing (-,-) is invariant under the action of SLa(Z), i.e. for all
fyg € Vi and vy € SLa(Z) we have

(flv,glv)=(f9)- (3.2)

Proof. By linearity of the pairing it suffices to prove the claim for monomials f, g € V;. So
i1,.02, 91, J2 mi,,me, N1, N2

let f(x1,22,y1,92) = ' w5y yy” and g(x1, x2,y1,y2) = 27" x5 Yy yy>. Note that (3.2)) is

equivalent to
{(flv.g)=(f9]7™")
since this implies
(flv.gh)={(frgly-v")=(f9).
Since the group SLo(Z) is generated by S and T, it suffices to show that
(f1S.9)=(f9|57") (3.3)
(fIT .9y =(fg|T7"). 3.4

We have for the left-hand side of (3.3) that

(-1
<f |S 79) = ﬁé(ig,z&,j27j1)7(m27m1,n2,n1)

11,42,J1,J2

and for the right-hand side that

B (_1)i1+j1+m2+n2
(fols™) = (T
11,12,J1,J2

So both sides vanish unless f = g in which case we have i1 + j1 +mo +ngs =k — 2.

11,42,51,32),(m1,ma,n1,n2)*
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3. Bi-period polynomials

To compute both sides of (3.4) we first note that
fIT = f(z1 + 22, 22,91, 92 — Y1)

i1 . J2 .
1 : i —
— E <l1>m111 l1x122+l1 . E (_1)l2 <?2>y{1+l2yéz lo
1 l3—0 2
and

g|T™" = g(@1 — 2,22, y1, 91 + y2)
mi n2
(S (et ) (3 ()
11=0 ll 1o=0 l2
So we obtain that the left-hand side of (3.4) is
(_1)j1+m2 i o
<f ’T 79) = T) Mo 5(i1+i2,j1+j2),(m1+m2,n1+n2)

( m
mi,m2,n1,n2

while the right-hand side yields

1 (_1)i1+i2+j1+m1 my N9
<f’g |T > = k—2 i ; 5(1'1+i2,j1+j2),(m1+m2,m+n2)'
(i172'27j1,j2) 2 J1

So both sides vanish unless i1 +io = m1 +mo and ji + jo = n1 +ne. In this case, i1 > mo is
equivalent to my > io and js > ng is equivalent to ny > ji. Hence the binomial coefficients
on both sides vanish simultaneously. The conditions further imply that

(_1)i1+i2+j1+m1 — (_1)j1+m2 )

The equality of both sides of (3.4)) then follows from
<m12> (]2>(M1)!(m2)!(n1)!(n2)! _ (1) (J2)! (m1)! ( .2) (n1)! (n2)

ny (i1 — m2)! (m2)! (2 — n1)! (n1)!
_ (1) (G2)! (ma)! (n2)!

N (m1 — ig)! (TLQ —jl)!

= () () it Gt =

Remark 3.28. Similar to the second part of Proposition it follows analogously that
the pairing (-,-) is invariant under the action of GLo(Z) if k is even.

Remark 3.29. The pairing (-, ) is not invariant under the action of I". E.g., consider
f,9 € Vs with f(z1,29,y1,y2) = xlx%yw% and g(:m,:vz,yhyz) = xizoyiy2. We then have

(f(2),9(2)) = @ 7’5 = f(T-2),9(T-2))
where f(T-Z) = f((y- 2)') with

el

2
Il
OO O =
o O = O
O = = O

= o O

38



3.4. Dimensions

3.4. Dimensions

Now that we have established an invariant pairing by Theorem [3.27] we are able to compute
the dimension of W, by considering similar decompositions as we did for W}, in section
We recall that Wy = Q (see Definition [3.16] and that W, = {0} and W, = Q. We begin

with a definition that will be convenient for denoting the respective dimensions.

Definition 3.30. For A\ € R we set

_ {w, if A+ 3 < [A]
P‘]: . 1
A1, ifA+1>T1A).

This definition essentially rounds a number A € R to its closest integer with the convention
that [1] = 1.

Theorem 3.31.

i) Let k > 4 be even. The dimension of Wy, is explicitly given by
1/k+1 k2 k
di = - —1)z—+4- k— |- 1
im Wy 6( 3 >—|—( ) 4+3<Qk [3]>+

{1, ifk=0 mod 3
Ok =

MES

where
0, else.

ii) The generating series of Wy is given by

= .. p 1+2t 4620 +102% 46210 + 15212 4 1021 + 216 — 2218

Zdlmwk = 12 612 '
(1 —24)2(1 —29)

k=0

Proof. For even k > 4 the space Vj, is invariant under |1 (Lemma [3.5]). The operators |S

and |U thus have order 2 and 3, respectively. Hence analogously to Remark we obtain
the decompositions

Vi=A, @B, and V,=Cp, DD, (3.5)
where
Ak:ker(l—S), Bk:ker(l—i—S),
Cr =ker(1 -U), Dy = ker(1 + U + U?).

Since the pairing (-, ) on Vy is invariant under SLo(Z) by Proposition we obtain that
the decompositions (3.5)) are in fact orthogonal (cf. Corollary ,1.e.

A L B, =V, =Ci, L Dy. (3.6)
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3. Bi-period polynomials

Now W), = B, N Dy and (3.6)) imply that W, = (Ag + Cr)*. With &, = A N Cy as before,
we obtain

Vi =W ® A /E @ Cr/Ex ® Ek. (3.7)

Since & is 1-dimensional by Corollary [3:22] this yields dimension-wise that
dim W, = dim V, — dim A, — dimCp, + 1. (3.8)

Since S and U generate finite groups (cf. Remark for the notation), we can compute
the dimensions of A, and Cj, via Molien’s theorem This yields

dim(Ag) = % ((k?;1> F(—1)5+L. ’;)

dim(Cy) = % <<k§1> 2 {g] o 2k>

where the generating series are given by

id_ A gh = (1227 + 102" 4220 4 27)

1m X =

k=0 ' (1—a)?(1 —2?)?

id' o gk T (122 220 + 142 4 2% + 22710 4 2)
2 mceg r = (1 — xﬁ)z(l — $2)2 .

Recall that dim(Vy) = (k'gl) by Lemma We now obtain [i)| from (3.8]) and the respective

dimensions above as this implies

1/k+1 k2 k

To show [ii)| we also use (3.8]). Recall from the proof of Lemma that the generating series
of Vy is given by
2

s . k T
k=0

Note that Vy is non-trivial for odd k. However, since (3.8]) only holds for even k, we first
observe that

io: dim Ve 2 x2 (1+6x2+:n4)
k p—

k=0
k even

By Corollary we have
2

> T
k=0

Note that (3.8]) also holds for k = 2 since W4 is trivial and the right-hand side yields in fact
0 as all spaces are 1-dimensional is this case. So by adjusting for dim Wy = 1 the claim
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3.4. Dimensions

Table 2: Dimensions of W, W,;t and Ly for k € {3,..., 14}
13 14

k 3 4 5 6 7 &8 9 10 11 12
dimW, [0 3 0 8 0 15 0 24 0 57 0 70
dmWw;" {0 1 0 3 0 6 0 10 0 26 0 32
dimW, |0 2 0 5 0 9 0 14 0 31 0 38
dimfl, |2 3 6 8 12 15 20 24 30 57 42 70
follows from
ki:odim Wy, 2t = - (1(;__6 iz; 1’4) o - (1 ‘*‘(2195_2;)120(171‘;3;6 ’ 378)
B 22 (14222 +22% + 142% + 228 + 2210 4 212) N x? 41
(1 —26)2(1 — 22)2 1—22

142t +62°+102% 4+ 620 + 15212 + 102 4 216 — 221°
a (1 — 2%)2(1 — 25)2 '

Proposition 3.32.
i) Let k > 4 be even. The dimension of W,j is explicitly given by

o= () y-2) 5 o ) w3

%, ifk=0 mod 3
o =¢5-[4] -2, ifk=1 mod3
)

where

ii) The generating series of W,j is given by

xt (1+3x2+4x4+2x6—|—9x8—|—7x10+x12 —23314—3:16)

: + .k _
Z dim Wk - (1 _ x4)2(1 _ x6)2

k=0

Proof. Recall from Remark that we have decompositions
Vi =V @V, and V=V ey

The operator |e acts on the spaces Wy, Ag, Cr and & since the identities €S = Se,
eU = U?c and eU? = Ue hold modulo £1. Since ¢ is diagonalizable, we obtain splittings in

3The source code that was used to compute these dimensions can be found in appendix
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3. Bi-period polynomials

the eigenspaces with eigenvalues 1 and —1, respectively. Corollary yields S,j = &, and
&, =1{0}. We thus obtain by (3.7) that

V]j = W,j ©® A;/Ek @C;/é‘k @ E.
Since dim & = 1 this yields dimension-wise that
dim W =dimV;} — dim A — dimC;" + 1. (3.9)

We can compute the generating series of V,j , Az and C,j with Molien’s theorem m since
the groups generated by {€}, {€, S} and {¢,U} are finite, respectively. This yields for even

k > 4 that
1 k+1 k
di = —
im V) 2(( 3 )+2>

g = ) (MO | 3)

2 6

) 1//(k+1 k 3
ame = () [{] -2 ot

where the generating series are given by

=) 2 (1 +x2)
di + ok € (
kz_o imV, x A= 222(1 = )2

N ek (142 +4at +2b 4 28)
ZdlmAk = (1 — 2%)2(1 — 22)2
k=0

e w2 (2?2t 620 + 28 4+ 210+ 212)
> dimCat = (1— 20)2(1 — 22)2 '
k=0

Now [1)| follows from (3.9) and the respective dimensions since

;((k;;rl) _k(’;+1§(k+1)> _ <k;1>“_

For [ii)| we first note that Vlj is non-trivial for odd k. So we first observe that

00 2 2\2
. " k_a:(l—i—a:)
kZ:O dimV," x _7(1—x2)4 .

k even

By using the generating series of & from Corollary we thus obtain from (3.9) that

idimV\ﬁL 2k = z” (1 +x2)2 a? (1 + a2 44zt 425 +x8)
ot =

2 T [ G Ty
:1:2(1+x2+x4+6w6+x8+x10+x12)+ z2
(1 —25)2(1 — 22)2 1—2a2

xt (1—|—3l‘2 4424 +2205 4928 + 7210 4 212 — oM —xlﬁ)
= . O]
(1 —2%)2(1 — x6)2
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3.4. Dimensions

Corollary 3.33.
i) Let k > 4 be even. The dimension of W,  is explicitly given by

e (k1N (1 k-4 k(. [k 4 [k 2k
d““”‘( 3 ><3 4<k1>> 4(2[4%1) 3{3%“3*%

where

1, ifk=0 mod3
Ok =
0, else

and

, if k=0 mod 3
(%] -2, ifk=1 mod3
[£]+2, ifk=2 mod 3.

oI o

ii) The generating series of W,  is given by

idimw_ 2k = 1+32°5+62%4+4210 4622+ 32 4 220
o (11— 202 '
k=0

Proof. In the proof of Proposition we saw that |e acts on W,. We thus obtain a
decomposition in eigenspaces with eigenvalues 1 and —1, respectively, i. e.

W =W aew, .
Theorem and Proposition therefore yield for even k > 4 that

dim W, = dim Wy — dim W,j

(1) () 461

o (e e} o
Zdika_ ¥ = Zdika ¥ — ZdimW,j zF
k=0 k=0 k=0

1+2* +625+1028 +620 + 1522 + 102 + 216 — 2218

(1 —2%)2(1 — 25)2
at (14+322 + 42 + 220 + 928+ 7210 4+ 212 — 221 — 219)
(1 —a%)?(1 — 20)?
14325 +628 +4210 46212+ 3214 + 220
- (1—2%)%(1 - 25)2 '

and

The dimensions of W, W,j and W, for small values of k can be found in table .
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3. Bi-period polynomials

3.5. Laplacian operator

After the previous discussions were analogous to chapter [2] for the most part, we are
now going to introduce the Laplacian operator associated with the quadratic form ¢ from
Definition The idea of considering this operator was proposed by D.Zagier in a private
conversation with U. Kiihn.

Definition 3.34. We set the Laplacian operator (associated with q) on V to be

0? 02
A= + .
0x10y1  0x20y2

Remark 3.35. The Laplacian maps homogeneous polynomials to homogeneous polynomials.
So for all £k € N, k > 2, we have a linear map

A‘Vk: Vi = Vi_o

and we write ker(A); = ker(A) N V.

Lemma 3.36. There is a decomposition

Vi = ker(A), @ (2191 + 22y2) - V2.

Proof. Let p,q,r € V. First note that d(¢r) = 9(q)0(r) = 9(r)0(q). This is immediate if
we think of 0 as a formal substitution of variables. We thus have

(k —2)!{gr,p) = 0(qr)(p)(0) = 9(r)(9(q)(p))(0) = (k —2)!(r,0(¢)p) -

Hence applying 9(q) is adjoint to multiplication with ¢. In particular, for ¢(x1, x2,y1,y2) =
T1Yy1 + T2y2, 7 € Vi_o and p € Vi we have that the kernel of 9(q) in Vy is the orthogonal
complement to g - Vx_o. The claimed decomposition follows since A = 9(q). O

Corollary 3.37. We have
dim(A)g = (k —1)2.

Proof. Lemma yields that
dim(A)g = dim(Vy) — dim(Vy_2)

and by Lemma M we have dim(Vy) = (kérl) Hence

dim(A) = <k+1> _ <’f—1> P L G [

3 3 6

= k-1 E oy 0
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3.5. Laplacian operator

Lemma 3.38. Let a,b,c,d € C be complex numbers. Then for all k € N we have

A ((—bd:ﬁl + bexg + acyy + adyg)k) =0.

Proof. For r = —bdx1 + bcxs + acy; + adys the multinomial theorem yields
Tk B Z <i,j,m,n> (_1)1 (bdxl)l (bCJ}Q)] (acyl)m (GdyQ)n.

i+j+m+n=k

Now fix some %1, 42, j1, j2 € Ng. The coefficient of xill:n?y{ly? in A(r*) is then given by

< K > (=1)"™ (bd)™ (be)™ (ac)™* (ad)” ( — (bd)(ac) + (be)(ad)) = 0. O

11,12, J1, J2
Remark 3.39. For iy, 19, j1, jo € Ng with 41 4+ io = j1 + jo we consider the system of linear
equations
11 = mq + ma, i2 = n1 + na, J1 = m1 + no, J2 =mao+nq (3.10)
with m1, ma,n1,ns € Ng. Since this yields
w=n+Jj—%,, l=ntj2—u, J=u+ti2—J2, Je=u+ti2—7J
the solution has one degree of freedom. A solution (mj,ma,ni,ng) to is given by

(j1,01 — J1,12,0) if i3 > g1
(i1 = J2,J2,0,42) if i3 > jo
(041,32 — j1,51) ifd2 > j1
(i1,0, j2, 12 — j2) if i2 > jo

Furthermore, if (my, ma,n1,n2) solves (3.10)), then (m; — A\;mo + A,n1 — A,ng + A\) € Ng
is a solution for all suitable \ € Z.

Lemma 3.40. The map

p: Ve — Ve @ Vg
f(5'317$2791a92) — f(CLC, a’da 7bd7 bC)

1s well-defined.
Proof. Since ¢ is linear, it suffices to show the claim for monomials. Let a:zf x’;y{ly%é eV

then
@(xilsc?y{lyf) — (_1)j1 qittiepiitiz | Ltz iz i o Vi @ Vi

which is clear if we identify Vi ® Vi, with the V-subspaces of bi-homogeneous polynomials
in 4 variables, i.e.

(f-g|fe€Qla,b],g € Qle,d homogeneous monomials, deg(f) = deg(g) =k —2)g. O
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3. Bi-period polynomials

Remark 3.41. Using the description

_ T a9
f($1,$27y1ay2)—f<<y2 y1>>
from Remark we get

i.e. we evaluate f at a rank 1 matrix.
Theorem 3.42. The restriction ¢|xer(a), : ker(A)g — Vi, ® Vi, of the map ¢ from Lemma
is an isomorphism of vector spaces, i. e.
ker(A)r = Vi ® Vi.
The inverse map is given by
P: Vi @ Vi — ker(A)g

(=¥
(k —2)!

where r(a,b, c,d) = —bdxy + bexs + acy; + adys € (Vi @ Vi) @ V.

f(a,bi e d) —> (f(a,bic,d),r(a,b,c.d)2)

Proof. Let p: Vi, — Vi ®V}, be the linear map from Lemmam Since (x1y1 +x2y2) =0
the decomposition from Lemma [3.36] implies that ¢ can naturally be considered as a map
ker(A)r — Vi ® Vj, instead.

To show that the map v is well-defined, let r = —bdx1 + bexe + acyr +adys € (Vi @ Vi) @ Vg
and observe that for f(a,b;c,d) € Vi ® Vi we have

) 1 )
A((f(abie.d)r(abie,d}?) ) =A <<k oy AN (a,b,c,@:(o,o,o,m)
_ k-2
(k—2)! of) (A(T )> (a,b,e,d)=(0,0,0,0)
53,

We first show @ o) = idy, gv,. Let f(a,b;c,d) = aLb - 9 d’? with iy +is = k —2 = j1 + jo
and assume without loss of generality that iy > j;. We then have

(D¢ ;
= =2 <f(a,b,c,d),r(a,b,c,d)k 2>a
_

1)i2+j1 ai2 ail 8]2 8]1
(k —2)!12 <aai2 b Oc2 3dj1>

k—2

m ni1+ng1mi+me mo+ni gmi+ng,  mi, mo, ni, N

§ (_1) 1( a™ 2p™M1 2 M2 1gm Qxl 11‘223/113/22
mi,mo, N1, N2

(f)

mi,mz,n1,n22>0,
mi+ma+ni+na=k—2

min(iz,j1) o —\
o Z (—1)22 k—2 SNV AN AN J1—=A _t1—J1+A do—X A
- A—=0 (F—=2)12\j1 — Ai1t —ji1+ Aizg — A A (EHEN G ) " v
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3.5. Laplacian operator

where the last equality follows from Remark Applying ¢ to this yields

min(i2,71)
1 k—2 o
= - F VUG Y (3 )81 B2 AT 52
p(y(f)) ;) (S (j1 A A) (1)1 (32)!(j1)! (o)l b2 I d
— a2 I1 JI2

where the last equality holds follows from

min(iz,j1)

2. Gooe <j1 — i — i+ Az = A, /\> (i)}i2) ()t 2)!

A=0

min(i2,51) . . -1
B (i1)!(i2)! k—2
> (jl_)\)!(il—j1+)\)!(i2_>‘)!/\!< 1 )

A=0
(R0
= \AM\Ui-A J

=1

since i1 = k — 2 — i9 and the Chu—Vandermonde identity yields for K, M, N € Ng that
mm%’m M\ (N-M\ (N
A K—-)\) \K)/)
A=0
Note that ker(A), and Vi ® Vi are finite-dimensional. It thus suffices to show that their

dimensions agree. We have dim V;, = k — 1 by Remark [2.2 . hence dim(V;, ® V4,) = (k — 1)?
and Corollary - yields that dim(ker(A)y) = (k — 1)2. O

Lemma 3.43. The Laplacian operator commutes with the action of I', i.e. for f € Vi and
v €I we have

A(flv)=A0) |- (3.11)

Proof. Since the Laplacian is linear, assume without loss of generality that f = x’ll a:lfy{ly%z.

By Remark it suffices to show that (3.11]) holds for all v € I" such that

flv=rfn-2Z-75)

with (y1,72) € {(1,5),(S,1),(1,7),(T,1)} and for v € {7, v} with 7 and v from Example
[3:13] The respective actions yield

f(Z-SY) = f(—wa, 21, —y2,51)
f(S-Z) = f(y2, —y1, v2, —71)
f(Z-TY) = f(x1 + 22,22, 51,52 — 41)
J(T-2) = f(x1 —y2, 22 + Y1, 91, ¥2)
flm = f(x1, —y2,y1, —22)
flv = f(z1, —z2,y1, —y2)
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3. Bi-period polynomials

and we have
i1,02—1, j1, j2—1

e i1—=1 o d1—1 4 ..
A(f) =i ol a2yl Yy Fiojealta? yllyy . (3.12)

Let (71,72) = (1,5). It is straight forward to verify that both sides of (3.11)) yield

i1—1, J2

i1 2P (—w2) 1 T g (—yo)

+iggo 22 (—aa) T (—yp)
Let (y1,72) = (S,1). Then both sides of are equal to
i1 (—21)2 2 1 (1) y" T g (—a) 2T @t (—y) P
Let (v1,72) = (1,7T). Since
A((z1 + 22)" (y2 — 1)) =0
we obtain by the product rule that

A(f ) = A((z1 + z2) 22yl (2 — 11)7)
= irg1 (21 + 22) 1 a2yl T (g2 — 11)72 + g (1 + x0) 22Tyl (y2 — 1)
=A(f) Iy
where the last equality follows from (3.12)).

Let (y1,72) = (T, 1). Since

Ja—1

A((z1 = y2)" (w2 + 1)) =0
we have by the product rule that
A(f1y) = A((z1 — y2)" (w2 + 1) 2yl 2
= i1 (@1 — y2) " N + 1) 2y ye?? 4 dnga (11 — y2) " (w2 4 y1) 2 Ty Py 2!
=A(f) Iy

where the last equality follows, again, from .
Let v = 7. It is straight forward to verify that both sides of yield
injr 2 T (—m) Py T (—y2)? g 2 (—we) 2Tyl (—y)
Let v = v. Then both sides of are equal to
igran T (=) T (—ye)? +ggp ™ (—a2)? Tyt (—ye)?

This finishes the proof. O

We can now use our previous results to gain new insights on the space of bi-period
polynomials. In particular, we obtain the following decomposition for Wy, which is analogue
to the decomposition of V; from Lemma [3.36
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3.5. Laplacian operator

Proposition 3.44. Let k > 4 be even. Then there s a decomposition

Wi = ker (Alw,) @ (2191 + T2y2) - Wi—a.
Proof. Let f € Wy. The decomposition from Lemma [3.36] yields f = f1 + ¢ - fo with
unique f1 € ker(A)g, fo € Vik_o and q(x1, 22, Y1, y2) = T1y1 + x2y2. We need to show that
fi € ker (Alw,) and fa € Wy_o. Since ¢ is invariant under the bi-slash operator and A
commutes with |S and |U (Lemma [3.43) we have

O=f1+S=(fitqg fo)1+S. (3.13)
Applying A yields

0=A((g- o)1+ 9)=A(qg-(f2l1+5)).
But ker(A)r Ng-Vi—2 = {0} which implies f € ker(1+.5). An analogue calculation shows

fo €ker(1+U +U?), hence fo € Wiy_y. Now (3.13)) shows immediately that f; € ker(1+S)
and analogously that f; € ker(1+ U + U?), hence f; € ker(Alw, ). O

Theorem 3.45. Let k > 4 be even. We then have

ker(Alw,) = Vi @ Wy

Proof. By Theorem [3.42] we have
ker(A)k 2VeiV, = (p(Vk).

For f € Vi and v € GLy(Z) we have by Remark that

p(flv) =1 <<Z> ((C d) 'vt)> :

This implies for ¢(f) = g1 ® g2 that
e(fl1+8)=0 < ¢|1+5=0
and similarly for ‘1 +U + U?. Hence

ker(Alw,) = Vi @ Wy. O

Combining Proposition [3.44] and Theorem lets us compute the dimension of Wy
recursively. In particular, the dimension formula is equal to the formula from Theorem

3311
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3. Bi-period polynomials

Corollary 3.46.
i) Let k > 4 be even. The dimension of W}, is explicitly given by

o= ()52 % (522 o

ii) The generating series of W is given by

Zdlka:E _1+1f2x2- (Zdlkal‘ .
k=0 =1

Proof. Since W5 = {0} we obtain from Proposition that

oo 1 [e.e]
: k . k
; dim Wy, 2" = .2 ; dim(ker(Alw,)) z". (3.14)

Now let k > 4 be even. For claim [i)| we recall from Proposition that

wmi-s-s((52) 2]

Hence Theorem yields

dim (ker(Aly, ) = <l<: —3-2 (V‘;QJ + V‘;QD) (k—1)
—(k—2)2—1—2<V“;2J - VEQJ) (k —1).

We then obtain by using (3.14) that

dim W, = Zk: (n—2)2—1—2q”;2J + {"ng)(n—l)

n=4,
n even

()t () e

n even

For claim [ii)| we recall from Remark that dim Vj, = k£ — 1. By Theorem we further
have ker(Aly, ) = Vi ® Wj. Hence

> dim(ker(Ahy,)) 2 =Y dim Vi - dim W, 2*
k=1 k=1

x2 Z —1) dlkaaz
k=1

=z dx(zdlkax )

D..
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3.5. Laplacian operator

Now with dim Wy = 1 we obtain from (3.14]) that

> 1
Z dim W, =1+ g Z dim(ker(Alw,)) a®
k=0 k=1
:1—1—7362 -d(idika xk_l) ]
1—22 dx — '

Remark 3.47. Recall from Proposition [2.29] that the generating series of W, is given by

> 1+ 212
dim Wy zF =
kz:o (1 —24%)(1 — %)

and therefore

> 1 14212
dim Wy, 21 = = -1).
; e m<<1—m4><1—w6> )

So Corollary [3.46] yields that

. 2 d 1+ 212 1
di L _ 1
kZO i Wy @ T2 @ (az(l —z4)(1 — %) :C)

C1+a2t+62%+1028%4 620 + 1522 + 102! 4 210 — 2418
- (1—2%)2(1 — 26)2 '

Note that this indeed coincides with the generating series of Wy, from Theorem [3.31
We now consider an analogue of the Lewis space from Definition [2.18
Definition 3.48. We denote the kernel of the operator 1 — T — T” by
Ly =ker(1-T—-T")C V.
Lemma 3.49. Let k > 4 be even. Then there is an isomorphism of vector spaces

Wi = L.

Proof. The proof of Proposition also yields that
Ly, = ker(Alg,) @ (z1y1 + z2y2) - Li—2 (3.15)
and the proof of Theorem [3.45] also shows that

ker(A]Lk) =2V, ® L. (3.16)
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3. Bi-period polynomials

We therefore obtain that

k—
:@ (Alz-) %’@Vm@bﬂ
- g
i even 'Leven
:@Vklégwkl_@kerA\sz = . g
'Leven Zeven

Remark 3.50. Observe that we have Wy, C L. For f € Wy we have f|14+S = 0 and
f ‘1 + U + U? = 0. By subtracting the latter from the first equation we obtain

fls-Uv-U*=0

and applying |S yields
fL-T-T =o.

This shows that the isomorphism in Lemma [3.49]is in fact an equality of vector spaces, i.e.

Wi = Ly.

Corollary 3.51. Let £ > 4 be even. Then

W,;t = ker(1 — T F Te).
Proof. Follows analogously to Corollary [2.21] O

We conclude this section by considering another subspace of Vi and use the Laplacian A to
describe this space in terms of even and odd period polynomials.

Definition 3.52. For even k > 4 we set

Wi =A{f eWr [ f(2)
Wi =A{f eWr | 1(2)
Wi =A{f e Wi | £(2)

where Z = <x1 $2> (cf. Remark .
Y2 N

Recall from Example that f(Z') and f(0Z4") are given by the action of |7 and |v,
respectively.

£(Z2)}
f(625%)}
(2 = £(624%)}
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3.5. Laplacian operator

Proposition 3.53. Let k > 4 be even.

i) There is a decomposition

Wi = ker(A\W;) ® (x1y1 + w2y2) - Wi_s.

ii) There is a decomposition
Wi = ker(Alwy) @ (2191 + 22y2) - Wi_o.
iit) There is a decomposition

Wi = ker(Alyyrv) ® (2191 + z2y2) - Wi

Proof. With q(x1, 22,91, y2) = 1y1 + 22y2 we have Wy, = ker(Al|yy, ) @ g - Wy—_2 by Propo-
sition So for each f € W, we obtain unique f; € ker(Aly,) and fo € Wj_o with

f=h+aq f. (3.17)
For claim [i)[let f € W]. Applying |7 to (3.17)) yields
flmr=hAlr+ (@ fo)l|r. (3.18)

Recall that the action of 7 commutes with the Laplacian by Lemma [3.43] So applying A

to yields
A(f) = Alg- f2)

while applying A to yields
A(flm) =Alg- f2) 7).
Since f = f|r and ¢ = g |7 we thus obtain
Alg- f2) = Alg - (f2]7))-
Hence q - (fo — f2|7) € ker(Alw, ) Mg - Wi_2. But this space is trivial, hence
q-(fa—falr)=0

which shows fo = fo|7. Now applying |7 to (3.17) immediately yields f; = f1|7. Hence
f1 € ker(Alyyr) and fo € W], which proves the first claim.

For claim let f € W)/. Note that Lemma also holds for v. So by replacing 7
with v in the proof of part [i)} we similarly obtain that A(q - fo) = A(g- (f2]v)). Hence
q-(fa— falv) € ker(Alw,) N g - Wyg—2 = {0}. This shows fo = fo|v. Applying v to (3.17)
then implies f1 = f1 | which proves the second claim.

The statements |i)| and [ii)| directly imply claim O
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3. Bi-period polynomials

Theorem 3.54. Let k > 4 be even.

i) We have

ker (A|Wg) = <f(a7b) ®g(c,d) +g(a7 b) ®f(cv d) ‘ fvg € Wk>@‘

it) We have
ker (Alyr) = (V& @ W) @ (Vo4 @ ).

iti) We have

ker (Alype) 2 (f(a,b) @ gle,d) + g(a,b) @ f(e,d) | f.9 € We* or f.g € W,gdd>Q

Proof. Recall the map ¢: Vi, — Vi ® Vi from Lemma which is given by

o(f(z1,z2,y1,92)) = f(ac,ad, —bd, be).

The restriction to ¢[ier(a), yields an isomorphism ker(A)g = Vi, ® Vi, by Theorem We
further used this map in Theorem to show that ker(Alw, ) = Vy @ Wy. Let f € Wj.
We then find g1 € Vi and go € Wy, such that o(f) = g1(a,b) ® g2(c,d).

For claim [i)| assume f € W]. Recall that f|r = f(Z"'). By Remark we have

etrin=1((3) @ v)

G ®ge=e(f)=¢(fIT)=g2®ag.

We observe that f € Wy then implies that g; € Wy (cf. proof of Theorem |3.45)) and since
g1 ® go = g2 ® g1, the claim follows.

and therefore

For claim [ii)| assume f € Wy. Recall that f|v = f(6Z4"). Since §* = § we obtain by
Remarks [3.8] and [3.47] that
a
o(f V) :f<<5 <b> ((e d)é)).

N1 ®g=e(f) =e(flv)=9116 ®g210
where g; |0, i = 1,2, denotes the slash operator from chapter 2, We thus have

Hence

WY {g1@go € Vi@ Wi | 9116 ® 9216 = g1 ® g2}
= (V' @ W) @ (Vid @ W),

The statements [i)| and [ii)| now directly imply O
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3.6. Applications 1: Exotic relations for double g-zeta values

Corollary 3.55. We have

%) 1 00
: ) k _ : k
E dim W, 2" = T E dim(ker(A|yrv)) @
k=4, k=4,
k even k even

which yields for all even k > 4 that

k
dim W[ = > dim(W2Y)?.
n=4

)
n even

Proof. The first statement follows immediately from part of Proposition [3.53 So it
suffices to show that
dim(ker(A\Wg,u)) = dim(W")2.

Using the basis for ker(A|W;,u) from part fiii)| of Theorem we observe for f,g € Wodd

that there are
<dim(W,§dd) - 1)
2

ways of choosing (possibly equal) f,g € W,gdd. For f,g € WY we similarly have

(dim<vv2,§v> + 1>

ways of choosing f,g € Wg¥. By Remark we have dim(Wg¥) = dim(Wk"dd) + 1. Hence

dim(ker(Alyyro)) = <dim<2W,§v>> N <dim(W2,§v> + 1)

(dim (W) (dim (W) — 1) + (dim(Wg*) + 1)(dim(W£"))
2

2dim(W§Y)

= dim(W) ;

3.6. Applications 1: Exotic relations for double ¢-zeta values
The theory of multiple g-zeta values is concerned with g-analogues of multiple zeta values,
i.e. g-series (4 such that we retrieve multiple zeta values by taking the limit as ¢ — 1 .

In general, we consider for s; > 1, s2,...,5 > 0 and polynomials Q;(t) € tQ[t] and
Q2,...,Qi(t) € Q[t] the power series

st st @ Q)= Y @@ g

ny>--->n;>0 (1 - qn1)371 e (1 — qnl)sl
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3. Bi-period polynomials

We leave out some technical details but remark that multiplying by (1 — ¢)%1" "5 and
then taking the limit as ¢ — 1 yields the multiple zeta value ((s1,...,s;) as long as s; > 2
and so,...,5; > 1. Now consider

Zq = spang{Cy(s1,...,s1:Q1, ..., Qi) | 1 > 0,deg(Q;) < s;}
where we set (;(0;0) = 1.

The vector space Z; has different spanning sets. For details on this topic as well as an
overview over some of the common spanning sets we refer to [BK20|, [Zha20|, [Bac20] and
|Bri21]. We will use combinatorial multiple Eisenstein series as a spanning set. For r > 1,
ki,..., k. > 1and dy,...,d. > 0 we denote the combinatorial multiple Eisenstein series in

depth r by
ki,..., k;,
¢ <d1,...,dr> € Qldl
Forki1 >di+2and k; >d; +1,i=2,...,r, we have

g;n%(l_Q)lir +kTG (di dr) :g(kl_dlw'-)k'r_d?")'

For further details on this we refer to [BB22].

Recall our discussion in section[2.6] In Propositions and [2.47| we used the non-degenerate
pairing to obtain that certain Q-linear relations amongst single and double zeta values can
be computed by applying the linear map (f,-) to an identity of generating series for single
and double zeta values. We will pursue a similar approach in this section.

Consider the generating series of combinatorial multiple Eisenstein series in depth 1 and 2

which are given by
< ) “ < ) -
E ' )
k>1 !

d>0

X1, %2 ki,ka\ k-1 k 1y1 yz
& G N A
2 (yl,y2> . kz>1 <d17d2> 2 dy dp!
dy.d> S0

In [BB22, Proposition 6.7| it is shown that the combinatorial multiple Eisenstein series
satisfy an analogue of the double shuffle relation from section [2.6] i.e.

k1 ka\ k1, ko ka, kq k1 + ko
¢ (dl) ¢ <d2> =¢ <d1,k2> G <d2,d1) TG <d1 + d2>
N e B
et T 1— el 2 — e1 1,€2

e1t+ea=d1+d2
l1,l2>1,e1,e2>0

" dq!ds! ki+ko—2 G ki1+ko—1
(d1 +da +1)! ki —1 di+do+1)°

(3.19)
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3.6. Applications 1: Exotic relations for double g-zeta values

Similar to the double shuffle relations in (2.17]), by setting

o () = (0 %)
R+ <1’1,$2> . Y1+ Yo Y1+ Y2

)

Y1, Y2 1 — T2
) <:L‘1 +CL‘2) _®, (1'1 +SE2>
R <$1,$2> o hn Y2
Y1,Y2 Y1 — Y2

we can rewrite (3.19)) as
x T I1,T xT2,T « [L1,T
o (1n)-e () = i) e (o) + (002)
Al Y2 Y1, Y2 Y2, Y1 Y1, Y2
— &, <$1 +IU2,SU2> + 6, <ZB1 +$2,$1> Lo <$1,$2> .
Y1, Y92 — 1 Y2,Y1 — Y2 Y1, Y2

By extending the bi-slash operator to power series in variables x1, 2, y1, y2, We can rewrite
the second identity in (3.20]) as

G (T — 1)(1+¢) = R* <x1’$2> — R <‘”1’x2> . (3.21)

Y1, Y2 Y1, Y2

(3.20)

We cannot expect, similar to Proposition [2.43] that (3.21]) encodes all non-trivial linear
relations amongst combinatorial multiple Eisenstein series since the generating series &,
and &, are also invariant under the swap-involution (see [BB22, Theorem 6.5|), i.e.

x 1,T
®1<>:<y>’ ®2< 1s 2)262(y1+yz7?/1>'
Y T Y1, Y2 L2, T1 — T2
Therefore, we consider the formal double Eisenstein space. This space was introduced by

[BBK20] and [BKM21] in an attempt of generalizing the work of [GKZ06|. We also refer to
[Bac21| for further details.

Definition 3.56. For an integer K > 1, the formal double Eisenstein space of weight K is
_ k L) k1, k2 \ | ktd=ki+kotdy+do=K
gK - <Z <d> aZ (dl,dQ) 7P <d17d2> k’k17é2212,d’d11,d2220 Q/
where we divide out the following relations
k1, ko k1, ko k2, k1 k1 + ko
P =7 Z Z
<d17 dz) <d1, /fz) * <d2, d1> * <d1 + dz)

o (e R (R
Iy +lo—F1 +ko 1= €1 2= €1 1, €2

e1+ea=d1+d2
l1,l2>1,e1,e2>0

n di!ds! ki+ ko —2 7 ki+ko—1
(d1 +da+1)! k-1 di+do+1)°

(3.22)
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3. Bi-period polynomials

We also consider the generating series

n ()27 ()

d>0
2($1,332> _ < ) ki —1,.ko— 13/1 yz
— ah '
Y1, Y2 b di! do!’
i dy>0
sl§<331,332) _ <k1,7€2> —1 ko 1y1 Z/2
- zh '
Y1, Y2 e dy,ds di! do!
d1,d2>0

We can then rewrite the defining relations (3.22)) for £k analogously to above as

T1,T T1,T o, T I1,T
P ) o () o ()
Y1, Y2 Y1, Y2 Y2,Y1 Y1, Y2

3.23
1+ X2, 22 r1+ 22,21 w [ T1,22 ( )
= 39 + 32 + NR;
Y, Y2 — 1 Y2,Y1 — Y2 Y1, Y2
where
I T2
o (ml,x2> o 3 (yl + y2> 31 <y1 —|—y2>
f Y1, Y2 ) Tr1 — T2 ’
1+ T2 T+ X2
3 (") (77
mu_l <$1,IE2) . ! Y1 ! Y2
f Y1, Y2 Yyr — Y2 '
Now rewrite the second identity in (3.23)) as
x [ L1,T2 w [ T1,T2
T—-—1)(1+¢) =R — R . 3.24
3z( >( ) ! (yl,y2> f <y1,y2> ( )

By extending the non-degenerate pairing (-,-) to a duality pairing Q[x1,x2,y1,y2] X
Q[z1, z2,y1,y2] — Q, we have the following statement which is analogue to Proposi-

tion 2.43]

Proposition 3.57. Let K > 4 be even. Then for all non-trivial linear relations of the form

ki k
> Moo Z (02 = ) M2 (3.25)
dq.d dl;d2
ki+kotdi+do=K 1,42 k+d=K

k1,k2>1 k>1,d>0

di,d2>0
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3.6. Applications 1: Exotic relations for double g-zeta values

with A\, gy Ak € Q there exists a f € Vy, such that
d

dy,d2
k * T 7:[" X 7:1:
Z A2 <d> = <f($1,$2,y1,y2),9%f( ! 2) —9%;”< ! 2>>
frd— K d Y1, Y2 Y1, Y2
k>1,d>0

AN 1 T1, T2
Z )‘k17k2Z <d1,d2> - <f($17$2>y17y2) ‘(1 +€)(T 1) 732 <y17y2>> .

kithotdi+dp=K 4142
k1 ko >1
d1,d>>0

The proof of Proposition [3.57] follows analogously to the proof of Proposition [2.43] since
we only used properties of the group ring and the pairing (-, -) which are still true in this
case.

Analogue to section we write A* = (14 ¢€)(T~! —1).

Example 3.58. Consider the polynomial q(z1,z2,y1,y2) = 1y1 + z2y2 from Definition
3.9} By applying the linear map (g(w1,2,y1,¥2),-) to (3.21) we have

-3 (o()-<()
(q|A™,82) =0

where the last equality follows from ¢|A™ = 0. Hence we obtain the relation

“{1)=e )

Proposition 3.59. If f, f' € Vi determine the same relation via applying the linear maps
(f(z1,22,91,y2), ) and (f'(x1,22,y1,92),"), respectively, to (3.24]) then their projections
onto V;g differ by a multiple of q¥.

Proof. Recall the proof of Proposition Analogously we obtain that 7= (f — f/) is
invariant under |e and |T. This vector space is spanned by q¥ by Theorem and

since (z2) e = z1 and (y1) |€e = ya. O

Example 3.60. Let K = 4. We consider the symmetric polynomials fi, fo € V; with
fi(@r, e, y1,92) = f + 23 + y7 +y3 and fo(z1,22,91,92) = 21y + 22y1. Since

ow—1=20(3) o) () 1)

3.1 2.2 1.1 1.1
A* :2 ) 2 ) _2 ) )
VilA7,82) G<0,0> - G(w) G(m) +G(0,2>
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3. Bi-period polynomials

and

oo =o(2) 1)

. (21

~__
|
Q
7\
= ul\'.)
O =
~__
+
Q
N\
o o=
DN
~_

we obtain the relations

4 3 2 1 1 3.1 2.2 1.1 1.1
2 _9 - —oa(> ) +2a(2%) —2a( !
G(O) G<1> +G<2> SG(3> G(w) * G<0,0> G<1,1) +G<0,2>
and
3 2 2.1 2.1 1.2
-2 =2 ’ -2 ’ 2 ’ .
G(l) +G<2) G<0, 1) G(LO) - G<0, 1)

Combining these relations, we further yields that
4 1 1 3,1 2,2 2,1 2,1
2 - = =2 ’ 2 ’ 2 ’ —2 ’
6(5) ~30(:) =26(a0) +29(56) +26(70) 29 (51)
1,2 1,1 1,1
-26(g7) -26(111) +6(o12)
Notation. We say that a relation of the form (3.25])
e is symmetric in Z(ev,ev) if k; + d; and kg + da even implies that

)\khk? = )‘k2,k1
dy,da d2,dy

e contains no Z(odd,odd) terms if k1 + dy and kg + d2 odd implies that

Ay ko = 0.
dy,d2

Proposition 3.61. Let f € W;¥. Then the relation (3.25)) induced by applying the linear
map (f |T ,-) to (3.24) is symmetric in Z(ev,ev).

Proof. Follows analogously to the proof of Proposition [2.47] O

Example 3.62. We consider the generic polynomial in Wg" for aq,...,as € Q given by

p(x1, 2, Y1, Y2) = a1 fi1(x1, 22, y1,y2) + a2 fa(@1, w2, Y1, 92) + a3 fs(x1, x2, y1, y2)
+ aq f4<m17$27y17y2) + as f5(331>$2ay17 y2>
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3.6. Applications 1: Exotic relations for double g-zeta values

where

4

f1(901, 2, Y1, y2) = fc% — To, f2($1,9€273/17y2) = 90‘%2/1 - x1x§y1 + 90%962212 - 903?;2,
fa(x1, w9, Y1, y2) = 23y% — 2293, falw1, o, y1,Y2) = 15 + T2yPys — T1Y1YS — Tays

fs(x1, 22,91, 92) = y1 — vs

is a basis of W§'. We then have

and

(p|T

o =no()) - = () - (54 2l
(G- 5e) +5iel)

5,1 4,2 3,3 4
= (26() +elan) 2(00) *#lo))
4,1 3,2\ 1./3,2\ 1.(23
’ ~G - 161, ~G
(1,0) 6 (1 0) (0 1) 57\o 1>>
3,1 3,1 3,1\ 1 (22
2,0 G<1,1> G<0 2) _12G(2,0>
(3.27)

1.,/2,2\ 1 .(22 1,3\ 1.(1,3
_‘2G<1J)'_2G(02>_F6G<L1>*_4G QQ))

(3.26)

)

)

1 /2,1 2,1\ 1 ./1,2\ 1 /1,2
+a4<mG<zl)+8G<L2)+JQG<12>+8G<a3>>

1 /1,1\ 3 /1,1 1,1\ 1 /1,1
woa (56(50) +36(00) +6(0s) +59(0) )

For any choice of a1, ...,a5 € Q, this yields a relation between the right-hand sides of (3.26)
and (3.27) that is symmetric in Z(ev, ev).

Relations that are symmetric in Z(ev, ev) that arise from applying the linear map (f, ), for
some f € Vg, to (3.24) modulo such relations that contain no Z(odd, odd) are isomorphic
to W' Analogously to Theorem we obtain the following theorem.

Theorem 3.63. There is a isomorphism of vector spaces

WEV ~

(relations in Ex which are symmetric in Z(ev,ev))q

(relations in Ex which are symmetric in Z(ev,ev) and contain no Z(odd,odd))q

Remark 3.64. In other words, the space of polynomials which give symmetric relations
in Z(ev,ev) is isomorphic to Wi¥ @ Uy, where f € Uy, yields relations via (f,-) which are
symmetric in Z(ev, ev) but contain no Z(odd, odd).
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3. Bi-period polynomials

3.7. Applications 2: Quadratic relations in the Lie algebra [bs

Another occurrence of bi-period polynomials in the theory of multiple g-zeta values can
be found in study of the linearized balanced quasi shuffle Lie algebra [bs. In this thesis we
only need fragments of this theory. For more details, we refer to the forthcoming thesis of
A. Burmester |[Bur22].

We have a decomposition

© oo
[bs = @ [bﬁkﬂ" - H Q[xl, Ylye- ey x“yr]
k,T:O r—0

where [bsy, . contains certain homogeneous polynomials in r variables of degree k —r. In
fact, the pair (lbs, {, }), where {, } can considered as a generalization of the Ihara bracket,
is a bigraded Lie algebra. There are two occurrences of period polynomials in the theory of
[bs.

1.) The subspace in depth r =1 is
b= D Qg

r>1
s>0
r+s odd

where

5(2)(1‘, y) =" Lyt + a2ty r+ s odd, (3.28)

are even polynomials and the Lie bracket
{, }: lbsy x lbs; — [bsy
is explicitly given for f, g € [bs by
{f. 9} (@1, 22,91, 92) = (f(21,91)9(2,92) — f(22,92)9(x1,31)) 1+ U +U> . (3.29)

The relations of [bs in depth 2 are given by the kernel of {, }: [bs; x [bs; — [bso.
We remark that the bracket factors through the exterior product [bsy A [bsy, i.e. we
have a short exact sequence

0—— ker({ , }) —— [bs; A [bsy [bsy 0.

Since [bs; is spanned by polynomials of the form (3.28]), we obtain that [bs; A [bs; is
isomorphic to the space that is spanned by homogeneous polynomials of the form

= @5) = Emy (@, y08 () (@2,42) — §m1 (@2, 92)€ 2 (1, 31)

with 71,792, 81, $2 odd. A non-zero = has degree K — 2 where K =11 + 1o+ 51 + So is
even. We have E € ker(1 + ) and since & (7) is an even polynomial, we observe that
S

<_1‘17 $2> _= (mlu $2> — (mlu _I2> (3 30>
—Y1,Y2 Y1, Y2 Y1, —Y2

(1]
(11
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3.7. Applications 2: Quadratic relations in the Lie algebra [bs

Since 5(2)(30,3/) = 5(2)(3/,96) we further have

- ($1,y2> _= <$1,902> _= <y17372> (3.31)
Y1, T2 Y1, 2 T1,Y2) ‘
Now we can deduce from (3.30) and (3.31]) that

E=Zlv=2 ("“’ _””2> (3.32)

Y1, = Y2

and

(1]
(1]

r =2 <x1’ _y2> . (3.33)

Y1, —T2

On the other hand, the identities (3.30) and (3.31)) also follow from (3.32)) and (3.33))
since E € ker(1 4 5) and the degree of = is even. So we obtain that

Ee{feVK‘f|1—|—S:O,f|u:f]T:f}.

By (3.29), the bracket on [bs; is given by applying the operator |1 + U + U?. Hence
we obtain for the weight K component of the kernel that

[1]
[1]

ker({, Dk 2 {E€ Wk |E=E]|r, v} =Wy

Now Corollary yields for even K > 4 that

K
dim(ker({, }g) = dimWg" = Y dim(M,)’
:47

with dim(Mg) = dim(W ) where Mg denotes the space of modular forms of weight
K (cf. section [2.5).

2.) Recall the discussion on generators in depth 4 from section Ecalle’s construction
of these elements can be extended to construct generators in depth 4 for [bs. The
explicit construction, however, is too extensive for this thesis, so we refer to [Bur22|
for details. But we mention that the number of these generators is essentially given
by dim(Sg)? where Sk is the space of cusp forms of weight K (cf. section .

Conjecturally, the Lie algebra [bs is generated by the elements & () from part and the
S

generators in depth 4 we mentioned in part All relations are expected to be in depth 2
and 5. This would imply the dimension conjecture for Z, by Bachmann-Kiihn [BK20].
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4. Representation theory for SLy(C)

4. Representation theory for SL,(C)

This section follows [Hall5|. Throughout the section we let n € N be an arbitrary natural
number with n > 2 (unless stated otherwise).

Representation theory is mainly about describing algebraic structures, e. g. finite groups, Lie
groups and Lie algebras, as linear transformations of vector spaces. Since we are interested
in finite-dimensional representations of the group SL2(C), we will focus on the theory of
matrix Lie groups and restrict the discussion to finite-dimensional representations.

4.1. Matrix Lie groups and Lie algebras

We begin our discussion by defining some fundamental concepts.

Definition 4.1. A matriz Lie group is a subgroup G C GL,,(C) that is closed in GL,(C),
i.e. if a sequence in G converges entrywise to some matrix A € GL,(C) then A € G.
Examples 4.2.

e The special linear group
SL,(C) ={A € M,(C) | det(A) = 1}

is a matrix Lie group. In fact, SL, (C) is closed under limits since the determinant is
a continuous function.

e Let V be a finite-dimensional C-vector space. By choosing a basis for V', we can
identify the group of invertible linear transformations of V', denoted GL(V'), with
GL,,(C) where n = dimc(V'). Note that the induced topology on GL(V'), however, is
independent of the choice of basis. Hence, GL(V') has a matrix Lie group structure.

Definition 4.3. A finite-dimensional complex Lie algebra is a finite-dimensional C-vector
space g equipped with a map [-,] : g X g — g, called bracket, such that [-, -]

1. is bilinear,
2. is skew-symmetric, i.e. [X,Y] = —[Y, X] for all X, Y € g and
3. satisfies the Jacobi identity

(X, [V, Z)|+ Y, [Z, X]|+ [Z,[X,Y]] =0

forall X,Y,Z € g.

A well-known example for Lie algebras are associative algebras.
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4.1. Matrix Lie groups and Lie algebras

Proposition 4.4. For an associative algebra A define
[X,Y]=XY -YX
for all XY € A. This yields a Lie algebra structure on A.
Remark 4.5. The bracket from Proposition[4.4]is called commutator bracket. The properties

of a Lie algebra are immediate to verify. The associativity of the algebra is essential for the
Jacobi identity to hold.

Example 4.6. Let V be a finite-dimensional C-vector space. The space of endomorphisms
on V, denoted End(V), is an associative C-algebra. Hence we obtain a Lie algebra by
Proposition 4.4l To emphasize this Lie algebra structure we write

gl(V) == End(V).

We now introduce an important map in the theory of matrix Lie groups. We therefore set
X0 =1 for all X € M,(C).

Lemma 4.7. Let X € M, (C) be a square matriz. Then the series

00 xm
PR
0 m:

converges absolutely.

Proof. Consider the Hilbert-Schmidt norm

IxXi=1 > 1XyP

1<i,j<n

which satisfies || XY < | X| |]Y] for all X,Y € M,(C) due to the Cauchy-Schwarz
inequality. For m € N we thus have || X™]] < || X" and hence

oo
m=0

Xm
m)!

oo m
X
<y T 0
=0

m)

Definition 4.8. For X € M, (C) we define the exponential of X by

[e.e]

X’ITL
K=y A

m=0
Lemma 4.9. Let X,Y € M,(C) be commuting matrices, i.e. XY =Y X. We then have

XY XY Y X
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4. Representation theory for SLy(C)

Proof. If X and Y commute we have

(X +Y)" = i <T> Xiymi,

=0

Since the series converge absolutely, we have on the other hand
<m) XZY?TL—’L — €Y€X

which implies the claim. O

Corollary 4.10. For X € M, (C) we have eX € GL,(C) with inverse given by e~X.

Lemma 4.11 ([Hall5, Theorem 2.12|). For any X € M,(C) we have

det(eX) _ etrace(X) ]

Given a matrix Lie group G, the matrix exponential allows us to associate a Lie algebra to
it. For details, including a proof that this is in fact a Lie algebra, see [Hall5, Section 3.3].

Definition 4.12. Let GG be a matrix Lie group. The Lie algebra of G is then given by
g={X €M,(C)|forallt e R:e"* € G}

equipped with the commutator bracket [X,Y] = XY —Y X for X,Y € g.

Example 4.13. Consider the matrix Lie group SL,,(C) from Example For X € M,,(C)
we have det(eX) = et™°(X) by Lemma So if !X € SL,(C) for all t € R we have

pttrace(X) _ 1
Taking the first derivative w.r.t. ¢ and evaluating in ¢ = 0 on both sides yields
trace(X) = 0.
The Lie algebra of SL,(C) is thus given by

sl,(C) == {X € M,(C) | trace(X) = 0}.

66
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4.2. Simple connectedness of SL;(C)

Note that matrix Lie groups inherit a subspace topology of the standard topology on
M, (C) = C"*. This allows for a topological approach to matrix Lie groups. The topological
properties connectedness and simple connectedness will turn out to be of particular interest
for our discussion on representations of matrix Lie groups and their Lie algebras in section
In Propositions and we will see that the irreducible representations of simply
connected matrix Lie groups are determined by their Lie algebra. This is useful since the
irreducible representations of sl(C) can be computed with basic linear algebra.

Definition 4.14. A matrix Lie group G is

e connected if G = G1 U G5 for disjoint open sets Gy, G2 C G implies that G; = ) or
G2 = (Z)a

e path connected if for all A, B € G there is a continuous function ~: [0,1] — G with
v(0) = A and (1) = B. We say that ~ is a path from A to B.

Remark 4.15. The property of being path connected defines an equivalence relation on G.
To show that a space is path connected, it thus suffices to check if all points are connected
to one fixed point in the space. Another well-known topological fact is that path connected
spaces are connected. In fact, a matrix Lie group is connected if and only if it is path
connected. See |Hallb, Section 3.8] for more details on this.

Lemma 4.16. The matriz Lie group SL,(C) is path connected.

Proof. Let A € SL,,(C) be an arbitrary matrix. Since all complex square matrices are
triangularisable we find P € GL,(C) and an upper triangular matrix B such that A =
PBP~!. We denote the values on the diagonal of B by Ai,...,\,. Since A € SL,(C)
we have A\;--- A, = 1. Set D = diag(A1,...,A,). Then B is path connected to D
(e.g., obtain a path by multiplying each entry of B except for the diagonal by t € [0, 1]),
thus A is path connected to PDP~!. Now since the multiplicative group C* is path
connected, we find paths v;(¢), ¢ € [0, 1], from A; to 1 for each i € {1,...,n — 1} and set
Yn(t) = (71(t) - - - Yn—1(t)) . This yields a path from PDP~! to the identity via

y(t) == P -diag(vi(t),...,Ya(t)) - P7L.
This path indeed lies in SL,,(C) since for any ¢ € [0, 1] we have
det(y(t)) = det(P) - y1(t) - - Y (t) - det(P) ™t = 1. O
Definition 4.17. Let G be a matrix Lie group. A loop in G is a path v: [0,1] — G with
~v(0) = v(1). The group G is simply connected if it is path connected and every loop in G

is contractible, i.e. there is a continuous map H: [0, 1]?> — G, called homotopy, such that
for all s,¢ € [0, 1] we have

H(s,0) = H(s, 1), H(0,t) = ~(t) and H(1,) = H(1,0).
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4. Representation theory for SLy(C)

Some interesting examples for simply connected spaces are given by spheres. The unit circle
S1 ¢ R2, however, is a loop itself and thus not simply connected. For further details as
well as a proof of the following lemma we refer to [Manl5, Section 11.4].

Lemma 4.18. The unit n-sphere
§" = {z € R™1 | |laf| = 1}

with standard norm ||| is simply connected for all n > 2.

Definition 4.19. A homeomorphism is a continuous and bijective map between topological
spaces such that the inverse map is also continuous. Two spaces are homeomorphic if there
exists a homeomorphism between them.

Remark 4.20. Homeomorphic spaces satisfy the same topological properties. This follows
essentially from the definition. In particular, two homeomorphic spaces are simply connected
if and only if either of the spaces is simply connected.

Definition 4.21. Let n € N. The special unitary group of degree n is given by
SU(n) = {A € M,(C) | det(A) =1,4* = A™'}

where A* := At is the adjoint matriz to A.

Lemma 4.22. The group SU(2) is simply connected.
Proof. 1t suffices to show that

SU(2) = {(g :f) € M,(C)

ol 418 = 1}

since C = R? then implies that SU(2) is homeomorphic to S and hence simply connected
by Lemma and Remark An explicit homeomorphism SU(2) — S? is then given
by

(0%

o« —B
(5 L ) s (Re(a), Im(a), Re(5), Tm(3))

For a, 8 € C with |a|? + |3|? = 1, it is straight forward to verify that <g _C_f) has

determinant 1 with inverse given by the adjoint matrix.

Now let A € SU(2) be an arbitrary matrix and write
a b
a=(20)
a e\ _(d b
b d) \-c¢ a

which implies d = @ and b = —¢. By setting « := a and 8 := ¢ we obtain that A is of the
claimed form. Now det(A) = 1 implies that |a|? + |3]* = 1. O

We then have A* = A~1 i.e.
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4.2. Simple connectedness of SLy(C)

Definition 4.23. Let X be a topological space. A subspace Y C X is a deformation
retract of X if there is a continuous map R: X x [0, 1] — X such that

R(z,0) =z, R(z,1) €, R(y,t) =y

forallz € X,y € Y and t € [0,1]. The map R is a deformation of X into Y.

Lemma 4.24. The matriz Lie group SLa(C) is simply connected.

Proof. By Lemma we only need to show that loops in SLy(C) are contractible. To do
that, we show that SU(2) is a deformation retract of SLy(C). This is sufficient, since any
loop in SLy(C) can then be continuously mapped into the simply connected space SU(2).

To obtain a deformation of SL2(C) into SU(2) we use the Gram-Schmidt process. We
therefore consider the projection operator proj, (v) = % -u for u,v € C? with the
standard scalar product (-,-) and write A = (a1, az) with column vectors a1, as € C?. Now

consider the continuous maps

re: SLa(C) — SLa(C), A (ar,az —t - proj,, (az))
pr: SLo(C) — SLo(C), A (H;lHt’ lai||* - (ag — projal(ag))>
1

for all ¢ € [0,1]. To see that r:(A) € SL2(C) note that elementary column operations do
not change the determinant. Now set

R: SLy(C) x [0,1] —s SLy(C)

(A t) . T’Qt(A), t <
7 pa-1(A), t>

N[ D=

We claim that R is a deformation of SLs(C) into SU(2). First note that r1(A) = po(A)
and ro = idgr,(c). If A € SU(2) then (a1,a2) = 0 and [[a1|| = 1, hence R(A,t) = A for all
t € [0,1]. To prove that

= (-2 Y|ay]| - (a2 — proj,, (a
R 1) = (25 el (a2 = pro, (oa)

is unitary for all A € SLy(C), it suffices to show that the column vectors yield an orthonormal
basis of C2. The vectors are orthogonal since

<||Zi\|’ lax]- (o2 = projal(%))> = (a1, a2 — proj,, (a2)) = (a1, a2) — { (a1,a1) = 0.

And since the vectors are orthogonal, the determinant is 1 and m is normalized, we also

obtain that the second vector has norm 1. O
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4. Representation theory for SLy(C)

4.3. Representations of matrix Lie groups and Lie algebras

Definitions 4.25.

e Let G and H be matrix Lie groups. A continuous group homomorphism IT: G — H
is called Lie group homomorphism.

e Let g and h be Lie algebras. A Lie algebra homomorphism is a linear map w: g — h
such that
7 ([X,Y]) = [7(X), (V)]

for all X,Y € g.

Definition 4.26. Let V be a finite-dimensional C-vector space.
e Let G be a matrix Lie group. A Lie group homomorphism
II: G — GL(V)
is called a (finite-dimensional) representation of G.
e Let g be a Lie algebra. A Lie algebra homomorphism
w:g— gl(V)
is called a (finite-dimensional) representation of g.

In either case, the dimension of V' is called the dimension of the representation.

Definition 4.27. Let Vi,...,V, be finite-dimensional C-vector spaces.

e Let G be a matrix Lie group and Ily,...,II, be representations of G acting on
Vi, ..., Vy, respectively. The direct sum of I1y, ..., 1I, is given by

I e ---1l,: G—)GL(Vl@”'@Vn)
Ar— ((v1y..y0n) = (T (Ao, .. T (A)vy)) .
e Let g be a Lie algebra and 71, ..., m, be representations of g acting on Vi,...,V,,
respectively. The direct sum of my,...,m, is given by
Mm@ Om:g—gl(V1 -0 V,)

X — ((v1y..oy0n) = (M (X)v1, .oy (X))

It follows immediately from the definition that the direct sum of representations is again a
representation.

70



4.3. Representations of matrix Lie groups and Lie algebras

Example 4.28. The slash operator from Definition [2.3|can be thought of as a representation
of SLQ(C)H Let II: SL2(C) — GL(V}) denote the slash operator. Then the bi-slash operator
from Definition [3.3|is a direct sum of two slash operators, namely

(y) & T(y7").

Definitions 4.29.

e Let G be a matrix Lie group and IT: G — GL(V) be a finite-dimensional representation
of G. A subspace W C V is called invariant if

I[I(A)(w) e W foral Ae G,weW.

e Let g be a Lie algebra and 7: g — gl(V') be a finite-dimensional representation of g.
A subspace W C V is called invariant if

7(X)(w) e W forall X € g,we W.

Furthermore, a proper subspace W ;Cé V' is nontrivial if W # {0}. A representation of a
Lie algebra or matrix Lie group, respectively, is irreducible if it has no nontrivial invariant
subspaces.

Proposition 4.30 (|Hall5, Proposition 4.4]). Let G be a matriz Lie group with Lie algebra
g, V be a finite-dimensional C-vector space and I1: G — GL(V') be a representation of G.
Then there is a unique representation 7w: g — gl(V') such that

(eX) = )
for all X € g. The representation m can be explicitly computed as

m(X) = %H(etx) .

For a representation II of a matrix Lie group we call the Lie algebra representation 7w from
Proposition [£.30] the associated representation to II. The following proposition gives strong
connections between associated representations for connected matrix Lie groups.

Proposition 4.31 (|Hall5, Proposition 4.5]). Let G be a connected matriz Lie group with
Lie algebra g.

1. Let I be a representation of G and w the associated representation of g. Then 11 is
wrreducible if and only iof w is irreducible.

4One needs to replace «y - z with y~1 - z in the definition since representations naturally induce left instead

of right actions. See Definition [f:35) and Lemma [£:36] for details.
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4. Representation theory for SLy(C)

2. Let 117 and Ily be representations of G and let w1 and w9 be the associated Lie
algebra representations. Then w1 and wo are isomorphic if and only if II; and Il are
isomorphic.

By Proposition [4.30| we can always associate a Lie algebra representation to a given Lie
group representation. On the other hand, it is in general not possible to associate a Lie
group representation to a given Lie algebra representation. The following proposition,
however, states that this works if the matrix Lie group is simply connected.

Proposition 4.32 (|Hall5, Theorem 5.6]). Let G and H be matriz Lie groups with Lie
algebras g and b, respectively, and let m: g — b be a Lie algebra homomorphism. If G is
simply connected, there exists a unique Lie group homomorphism I1: G — H such that

II (eX) =X forall X € g.

We now established some connections between representations of Lie groups and of the
associated Lie algebras. In addition to that, we want also to describe connections between
different representations of the same Lie group or Lie algebra. We therefore consider the
following definition.

Definition 4.33. Let V and W be a finite-dimensional C-vector spaces.

e Let G be a matrix Lie group, II;: G — GL(V) and IIa: G — GL(WW) be representa-
tions of G. A linear map ¢: V — W such that

d(I11(A)(v)) = Ha(A)(e(v)) forall Ac G,veV

is called an intertwining map.

e Let g be a Lie algebra, m1: g — gl(V) and mo: g — gl(W) be representations of g. A
linear map ¢: V — W such that

d(m1(X)(v)) = ma(X)(P(v)) forall X e g,veV

is called an intertwining map.

In either case, an isomorphism of representations is an intertwining map ¢ that is a vector
space isomorphism. If there exists such an isomorphism, the representations are isomorphic.

4.4. Finite-dimensional irreducible representations of SL,(C)

In this section we want to characterize the irreducible representations of SLa(C) up to
isomorphism. To do so, we will first define a n-dimensional representation of SLo(C) for
each n € N. To show the irreducibility of these representations, we first use Proposition [4.30
to compute the associated representations of sly(C). Since SLo(C) is simply connected by
Lemma it then suffices by Proposition to show that the associated representations
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4.4. Finite-dimensional irreducible representations of SLg(C)

of sl3(C) are irreducible. To characterize the irreducible representations, we will finally show
in Theorem that irreducible representations of sl3(C) are uniquely determined (up
to isomorphism) by their dimension. This will be sufficient for SLs(C) due to Proposition

431

Remark 4.34. For n > 2, we denote the space of homogeneous polynomials of degree
n — 2 over C by

Ve ={f = f(z,y) € Clz,y] | f homogeneous, deg(f) =n — 2}.

Definition 4.35. We define II,,: SLy(C) — GL(V,,41,c) which acts on f € V,, 41 ¢ via

A (f= f(ATT-2)Y)

where z = (z,y)".
Lemma 4.36. The map 11, is an n-dimensional representation of SLo(C).

Proof. By Remarkwe have dim(V,,11,¢c) =n. Let A, B € SLy(C) and f € V41 c. Note
that f(A~!.2) is again a homogeneous polynomial of degree n — 1 (cf. Proposition .
And since

I, (A) (I (B) () = Ma(B)(F(A™" - 2)) = £ (BT AT 2)9))
=f ((AB)™" - 2)") = L (AB)({)

the map II,, is in fact a group homomorphism. O

Remark 4.37. We denote the associated representation to II,, from Proposition by
T 5l2(C) — gl(Vig1,c). For some X € sl3(C) this representation acts on f € V,, 41 ¢ via

d

Z (eftX . z)

m(X)f() = = (1)

=0
In order to work with 7,, we will first describe the action (4.1]) more explicitly.

Lemma 4.38. For X € sly(C) with
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4. Representation theory for SLy(C)

Proof. Consider the curve z(t) = e X . z and denote the coordinates by z(t) = (z(t), y(t)).
Since each entry (!X )i.;j is given by a absolutely convergent power series in ¢ we can compute

the derivative term by term, hence

e}

d Lx 0 d m(_X)m_ e (—X)m _ o)
TR Dr i DLy e [ OAP D

m=1

This yields
d
&Z(t) =-X z

t=0

For some f € V41 c the chain rule now implies that

of dy
o Oy dt

_ofde

d
m(0f = G0 =5

=0 ox

W - (_X).e—tX_
(am—i—by)—gzj;-(cx—l—dy). O

Our next goal is to show that each m, is irreducible. We will therefore make use of the
vector space structure on slp(C). Recall from Example that the underlying set of sly(C)
consists of 2 x 2-matrices with vanishing trace. A basis is thus given by

1 0 0 1
() ()

The commutator bracket on sl (C) yields the relations

[H, X] = 2X, [H,Y] = -2V,

Lemma [£:38] then yields

0 0
m(H) = e + ya—y
0
(X)) = e
(YY) = —xaay

Y = (g g).

[X,Y] = H. (4.2)

Now recall the standard basis on V;, 11 ¢ from Remark of the form z"~1~%’ for i €
{0,...,n—1}. By applying the operators above to this basis we obtain

T (H) (2" 7)) = (—n+ 14 2i) -2

Ta(X) (@ ) = —(n—1— i) -
ﬂ'n(Y)(LEn_l_iyi) — . xn—iyi—l'

n—l—iy’i (43)

n—i—2, i+1
Y

In particular, (4.3)) shows that each basis element 2"~y is an eigenvector for 7, (H) with
eigenvalue (—n + 1 4 2i). The operators m,(X) and 7,(Y") shift the exponent up or down
by 1, respectively. We are now ready to prove the irreducibility of 7.
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4.4. Finite-dimensional irreducible representations of SLg(C)

Proposition 4.39. The representation m, is trreducible.

Proof. Let W C V41 ¢ be an invariant subspace with W # {0}. It suffices to show that
W = V,q1,c. Now let f € W be a non-zero element with

fx,y) = apx™ a1 2y + o+ ap_1y™ !

for some a; € C.

Since f # 0 there exists some ig = min{i € {0,...,n—1} | a; # 0}. Applying 7, (X)"*~1-%
to f yields by a non-zero multiple of y"~!. This is because n — 1 — ¢ vanishes if and
only if i = n — 1 but if ig = n — 1 we already have f = a,_1y" " with a,_; # 0. Since W
is assumed to be invariant, we thus have y"~1 € W.

Now for all i € {1,...,n — 1} we obtain by (4.5 that m,(Y)*(y"~!) is a non-zero multiple
of 2'y" 17", The invariance of W again yields that x'y"~'=" € W. Since W C Vati,c
therefore contains a basis of V;, 41 ¢, we have W = V;, 1 ¢ and the proof follows. O

Our next and final goal for this section is to show that any given irreducible representation
of sl3(C) is isomorphic to some 7,. From now on, let m: sl3(C) — gl(V') be an arbitrary
n-dimensional irreducible representation of sla(C). We will first prove two lemmas that will
be needed to prove Theorem [4.43

Lemma 4.40. Let u € V' be an eigenvector of w(H) with eigenvalue A € C. We then have
T(H)m(X)u=A+2) - 7(X)u
m(H)n(Y)u=(A—2) -7(Y)u.

Proof. Since 7 is a Lie algebra homomorphism we have due to (4.2)) that

[w(H), m(X)] = n([H, X]) = 2m(X)
[w(H),n(Y)] = =([H,Y]) = =2x(Y).

Hence

A
Ay
A
>
<
i

m(X)m(H)u+27n(X)u = (A +2) - 7m(X)u
=n(Y)r(H)u —27(Y)u = (A —2) - 7(Y)u. O

A
5 ~—"
A
>.<
g
|

Remark 4.41. Note that Lemma implies that 7(X)u and 7(Y)u are eigenvectors of
m(H), unless they vanish, with eigenvalues A 4+ 2 and A — 2, respectively.

Lemma 4.42. Let u € V be an eigenvector of m(H) with eigenvalue A € C, N € Ny such
that ug == 7(X)Nu # 0 but 7(X)NTlu = 0 and set uy, == (Y )*ug for all k > 1. We then
have for all k > 1 that

T(X)up = k((A+2N) — (k — 1)) up_1. (4.6)
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4. Representation theory for SLy(C)

Proof. For A = X+ 2N we obtain by applying Lemma repeatedly that
7(H)ug = Aug
and
m(H)up = (A — 2k)uy,
Now observe that yields [7(X),n(Y)] = n(H) and thus
7(X)n(Y) =7n(H) +n(Y)r(X).
We now prove by induction on k.

The claimed identity holds for & = 1 since

m(X)uy = 7(X)n(Y)ug = (7(H) + 7(Y)7(X))ug = 7m(H)upg = Aup.
Now assume holds for some k > 1. We then have
(X )ug 1 = 7(X)m(Y Ju, = (r(H) + 7(¥)m(X))u
= m(H)ug + k(A — (k — 1)) 7(Y)ug_1
= (A —2k)up + k(XA — (b — 1)) uk
=(k+ 1)()\ k)ug. O]

—

Theorem 4.43. Let w be an irreducible representation of sla(C). Then m is isomorphic to
7 from (4.1) for some n € N.

Proof. Let w act on the finite-dimensional vector space V. Since C is algebraically closed
the operator 7(H) has an eigenvector u and we denote the corresponding eigenvalue by A.
By Lemma [£.40] we have

m(H)m(X)fu = (A + 2k) - 7(X)*u

for all £ € N. Since V is finite-dimensional, the operator w(H) only has finitely many
eigenvalues. So we have 7(X)*u = 0 for almost all k¥ € N. But since 7(H )u does not vanish,
we find in particular some N > 0 such that

7(X)Nu#0 and w(X)Vtlu=0.

We denote ug := 7(X)Nu and have w(H)ug = (A + 2N) - ug. Now define uy, == 7(Y)*uq for
all k > 0. Applying Lemma to the eigenvector ug of w(H) yields that

m(H)up = (A4 2N — 2k)uy.

Again, since 7(H) only has finitely many eigenvalues we find some M € Ny such that ug # 0
for all kK < M but upr+1 = 0. By Lemma [4.42] we now have

OZW(X)UM_H = (M—i—l)()\—i-QN—M)uM
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4.4. Finite-dimensional irreducible representations of SLg(C)

Since M + 1 > 0 we obtain A\ + 2N = M. So in conclusion, we have non-zero vectors

ug, . . ., Uy with
m(H)ug = (M — 2k)uy, forall k < M
if k<M
m(Vue =4
0, iftk=M (4.7)
k(M — (k—1))up_q1, ifk>0
r(X g = M~ E Do
0, ifk=0
Now consider the span V' of ug, ..., up. Since they are eigenvectors of w(H) with distinct

eigenvalues, they are linearly independent. So we have dimV/ = M + 1 and clearly V' C V.
But V’ is invariant under m(H), m(X) and 7(Y"). Since H, X,Y is a basis for slz(C), the
space is in fact an invariant subspace of V. This yields by our assumption that V' = V.

So if m; and w9 are any irreducible representations acting on vector spaces V; and Vs with
dim(V}) = n = dim(V2) then we find bases {ug,...,u,—1} and {vg,...,v,—1} for V; and
Va, respectively. Since both representations are uniquely described by w.r.t. their
respective basis, we obtain an isomorphism between 71 and mo via u; — v;. ]

Combining Proposition and Theorem implies that there is (up to isomorphism)
exactly one n-dimensional irreducible representation of sly(C) for each n € N. This also
follows for the irreducible representations of SLy(C) by Proposition In particular, any
(finite-dimensional) irreducible representation of SL(C) is isomorphic to II,, from Definition

435 for some n € N.
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5. Generalized period polynomials

5. Generalized period polynomials

In this chapter, we introduce multivariate extensions of period polynomials. To define an
analogue of the slash operator, we use the irreducible n-dimensional representation II,, from
Definition We generally proceed similarly to chapters 2] and [3] After defining the
i sion .

space of generalized period polynomials Wkn in section we will discuss the analogue of

the Lewis space in section We conjecture that the spaces agree in all cases where W,En)
is non-trivial. This conjecture could not be proven in the scope of this master thesis as it

remains unclear how to describe the space E,g") of SLg(Z)-invariant polynomials. In section

[6.3] we introduce a non-degenerate pairing on the space of homogeneous polynomials in n
variables. This pairing can be seen as a natural generalization of the pairing from section

We will prove that this pairing is invariant under the action of SLa(Z) (Theorem [5.21)).
In section we attempt to compute the dimension of W,gn) similarly to sections [2.4] and

However, we can only provide a dimension formula that depends on the dimension of
B,
k

5.1. Slash operator

Definition 5.1. For n, k € N with £ > n we denote the space of homogeneous polynomials
in n variables by

Vk(n) ={f=f(z1,...,20) € Qx1,...,2,] | f homogeneous,deg(f) =k —n}.

If £ and n are clear from the context, we also use the shorthand notation d = k — n.
Remark 5.2. Note that V, = Vk@) and Vj, = Vk(i)g.

Lemma 5.3. For k > n we have

dim V" = <k - 1).

n—1

Proof. Observe that a basis for Vk(n) is given by

{afoaly [y in) €NGyi 4t ig =k —n )

We can use the combinatorial method of stars and bars to count the number of basis vectors.
Each tuple (i1,...,4,) € N§ with i1 + - - - + i, = k — n can be uniquely depicted by placing
n — 1 bars (|) amongst k — n stars (%) via

*-..*|*..-*

11 12 in
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5.1. Slash operator

Since there are k — n stars it is clear that i1 + - - - + 4, = k — n and by possibly placing bars

at the beginning, the end and next to one another we also have (i1, ...,%,) € Nj. Observe
that (5.1) contains a total of k — 1 objects. Hence the number of possible arrangements is
given by (:j) O

Corollary 5.4. Since
k—1\ (k-1
n—1) \k—n

there is an isomorphism of vector spaces

To define an analogue of the slash operator from Definition [2.3] we use the irreducible
representations II,, from Definition and consider the inclusion SLg(Z) < SL2(C).
Since representations naturally induce left group actions, we will instead consider the
corresponding right action. So for v € SLy(Z) this right action is given by II,(y~1), i.e.

s (f(x,y) — f((v- <;’3>)t))
where f € V41c.

Definition 5.5. For v € SLy(Z) we denote the transformation matrix of IT,,(y~!) € GL,(Q)
by 4. If n is clear from the context, we may omit the superscript.

Example 5.6. For n = 6 we have

00 0 0 0 —1 1 -5 10 —10 5 —1
00 0 0 1 0 1 =4 6 -4 1 0
- o 0o 0o =10 o - 1 -3 3 -1 0 0
=10 0 1 0 0 o0 and U=, o 1 ¢ o o
0 -1 0 0 0 0 1 =10 0 0 0
1 0 0 0 0 0 10 0 0 0 0

The source code that was used to compute these matrices can be found in appendix [C.3

Definition 5.7. We define the slash operator on the space Vk,(n) by

SLa(Z) x V™ — v,
()= [ = F(G-2)")

where z = (z1,...,2,)"
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5. Generalized period polynomials

Recall from Lemmas and that homogeneous polynomials are invariant under the
action of |—1 in all cases where the space of (bi-)period polynomials is non-trivial. The

following lemma specifies the cases for which Vk(n) is invariant under |—1. We will later see
that these are again the non-trivial cases we will be interested in (see Lemma |5.12)).

Lemma 5.8. For n,k € N with k > n such that n even implies that k is even, the space

Vk,(n) is invariant under |—1, i.e. for f € Vk(n) we have
fI=1) =7
Proof. For f € Vk(n) we write
f= Z Aoy, an Xyt -y € an). (5.2)
at,...,an >0,
061+“'+05n:d

Since

I, (—idy) = (—1)"*tid,

acts trivially for odd n, this case is clear. If n is even, then k is even by assumption. In
this case, the degree d = k — n is even and we have

AED = DY aaa(c2)™ o (ma)® = ()T f = f. O

Remark 5.9. In chapters [2] and [3] we considered an action of the general linear group
GL2(Z) instead of SLy(Z). Note that Definition also allows us to compute actions of
GL2(Z)-matrices.

We therefore extend the SLy(Z)-action on Vk(n) first to an action of GL2(Z) and then to an
action of the group ring Z|GL2(Z)] on Vk(n) analogously to Definition m

Definition 5.10. We denote the eigenspaces of the operator |€ on Vk(n) with eigenvalues 1
and —1, respectively, by

vt = {re v

fe=s)  md v = {rev

fle=~1}
and the eigenspaces of the operator ‘5 on Vk(n) with eigenvalues 1 and —1, respectively, by

Vk(n),ev — {f c Vk(n)

T

7l =-r}.
Furthermore, for a subspace W C Vk,(n) we set W =W nN Vk(n)" for all @ € {4, —, ev,odd}.

Definition 5.11. The space of generalized period polynomials is given by

win = {f ey

f‘1+S:f‘1+U‘+U~2:0}.
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5.2. Generalized Lewis space

Table 3: Dimensions of L,(Cn). Cases where W,gn) = {0} (i.e. n even and k odd) are typeset

in gmy.

onEkFl3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2 1 1 1 1 3 1 3

3 -1 1 2 2 5 3 8 6 11 9 16 12 21 17
4 - = 2 4 14 24 48

5 - - -1 2 4 11 19 30 53 77 111

6 - - = = 5 19 80

7 - - - - =1 3 14 30 80 143

8 - - - = = - 8 53

9 - - - - - = =1 6 24 77

00(- - - - - - - = 11 111

nm{i- - - - - - - - = 3 9 48

Lemma 5.12. For even n and odd k we have W,gn) = {0}.

Proof. Let f € Vk(n) asin (5.2). Then f € ker(1 + S‘) implies for all coefficients that
Aoy ,... .o + Aoy, ,...;0p = 0 and Aoy ,...,on, = QAag,..aq -

Hence f = 0. 0

5.2. Generalized Lewis space

Definition 5.13. We denote the kernel of the operator 1 — T — T’ by

L =ker(1 - T —1T") c v

and refer to it as the generalized Lewis space.

We know from Proposition that W,gQ) = L,(f) for even k. We now want to work out for
what kind of pairs (n, k) € N* we also have

w™ =i (5.3)

5The source code that was used to compute these dimensions can be found in appendix
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5. Generalized period polynomials

Remark 5.14. Recall that we have W,En) = {0} for even n and odd k (Lemma [5.12)).

However, the space Ll(cn) is non-trivial in this case. E.g., the polynomial f = 2§ — 2% € an)

suffices f|1 — T — T" = 0 since

_ ~_ ~/: d_ d_ n—1 . _ d _ d_ n—1 . _
fl=-T-T =2{—x, <Z <z B 1)%) z,, ] (Z (z B 1)%) 0.

i=1 =1
Apart from the exception in Remark the identity ([5.3]) seems to hold.

Conjecture 5.15. Forn, k € N with k > n and such that n even implies that k is even we
have

wi =,

Remark 5.16. Conjecture [5.15] has been tested for all cases in table [8] The symmetry
along the columns follows from Remark

One of the inclusions stated in Conjecture holds for all n, k € N with k& > n.
Lemma 5.17. Forn,k € N with k > n we have

wi c L.

Proof. Let f € Wén). Then

The proof of Lemma shows more generally that f|(—1) =+f. So f € L,gn). O

In the well-known case for n = 2, the other inclusion of Conjecture [5.15 makes usually use
of the fact that non-trivial polynomials are not invariant under the action of SLy(Z) in this
case. However, this is no longer true in general for polynomials in multiple variables.

2

Example 5.18. For f(z1,22,23) = 25 — x123 € V5(3) we have

184 =f, flo® =rf and F1T6) = 1.
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5.3. An invariant pairing

5.3. An invariant pairing

We recall the pairing on Vk@) from Definition which is SLg(Z)-invariant (Proposition
. In this section, we discuss a generalization of this pairing for each n € N, n > 2, on
the spaces Vk(n). By a slight abuse of notation, we also denote these pairings by (-,-). This
is not ambiguous as the generalized version will coincide with the previous pairing for the
case n = 2.

Definition 5.19. We define a pairing on monomials in Vk(") by

_1 Z?:llal
<x?1'.,xgvn’$fl...xg"> = ( )

(atten) TR () “ (0, (B 1)

Q1,0 =1 \i—1

(5.4)

and extend this linearly to a pairing on Vk(n).

Remark 5.20. The additional factor II7"; (7;:11) ~“ is essential for the desired invariance
property, as we will see in the proof of Theorem We will have a further discussion on
this at the end of this section.

Using the inclusion morphism SLg(Z) < SL2(C), we obtain an induced action of SLa(Z)
(n)
on V..

Theorem 5.21. The pairing from Deﬁnition is invariant under the action of SLa(Z),
i.e. forall f,g¢ Vk(n) and vy € SLa(Z) we have

(1.9l =(f9)-
In order to prove Theorem [5.21] it suffices to show that it is invariant under actions of the

SLo(Z)-generators S and T for monomials f,g € Vk(n). To do so, we will introduce some
further notation and lemmas first.

Definition 5.22. Let m € N be a natural number. We denote the set of its weak composi-
tions of length ¢ for some ¢ € N by

Py(m) = {(a1,...,a) €N§ | ay +--- +a; = m}.
For a multi index 8 = (51, ...,0n) € Nj we set
,P(B) = Pl(/Bl) X - X Pn(ﬁn)

We call m € P(B) a weak composition of 3 and write m(®) = (mgi), e mgl)) € Pi(p;) for
the ith entry in m.

Further, let o = (aq,...,a,) € Nij be another multi index. We set
Puo(B) = {m € P(p) ‘ Vie{l,...,n}: ngj) = ai}
j=i

and call m € P, () an admissible weak composition of B with respect to .
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5. Generalized period polynomials

Example 5.23. For a = (2,2,4,1) and 8 = (0, 3,3, 3) we have

Pa(8) = {((0),(2,1),(0,1,2),(0,0,2,1)), ((0), (2,1),(0,0,3),(0,1,1,1)),
((0),(1,2),(1,0,2),(0,0,2,1)), ((0), (1,2),(0,0,3),(1,0,1,1)) }.

Notation. Let n € N and a = (041, . ,an) € N{ be a multi index. We then denote its
inverted multi index by

o= (an,...,al) € Ng.

Lenlma 5.24. Letn € N and «, 8 € Nj be multi indices. Then there is a bijection between
Pa(B) and Ps(@).

Pmo_f. If both sets are empty, the claim is trivial. So assume without loss of generality that
Pa(B) # 0. By symmetry, it suffices to show that there is an injective map ¢: Po(8) —
Ps(a). For m = (m(l), . ,m(")) € Po(B) define

p =mlH) vi<i<j<n (5.5)

and set

@ ((m(l), L ,m(”))) = <p(1), . ’p(n)) _

Since (5.5)) also yields the inverse relation mgj ) = pgfl:-i), the map ¢ is injective. So it

suffices to show that this defines a map Py () — Pa(@).
For i € {1,...,n} the ith entry in ¢(m) is given by

p = (my e mIEEYY

So the ith entry is indeed of length i. Now, since m is an admissible weak composition of /3
w.r.t. o we have for all i € {1,...,n} that

mgl) + -+ mgz) = Bn+1—i (56)

and

This implies that

_ » _i B8
pz(,l) + ... +p§n) = mgn-i-l g + -+ mgf_ll_zl) Bi
and
4 . » (%),
pgz) +-- +P§z) = mgfll—zz) +oeet mgﬁl—z‘ Ant1-i
which shows ¢(m) € Pg(a). -
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Lemma 5.25. Let o, f € Njj be multi indices such that || = |B|. Then the coefficient of

:C/fl . gn in ‘T(”) s given by

Proof. Since

> (1 ZZ)% , 63

each summand corresponds to a choice from the n factors in . For j € {1,...,n} there

()
J

composition of j3;, i.e. mgj)—i— +m =B andm]) € {0,. ..,Bj} forallie {1,...,5}.
. . N 8 .

This choice of mU) yields exactly one possible way to obtain the factor z ;7 in 5.8]).

G

Z-] ) times

are precisely the first j factors that contain xj;. Let m) = ( (J ) RN 0 ) be a weak

Now fix a weak composition m = (m(l), ey m(”)) for 8 such that z; is chosen m
from the ith factor in (5.8)). For i € {1,...,n} there are thus

(0. i)
™

possible ways to choose the respective number of factors from the ith factor in (5.8). Note

that this multinomial coefficient vanishes, unless mz(-i) + mgn) = q;. It therefore suffices
to restrict the weak compositions of 5 to admissible weak compositions w.r.t. «. Finally,

the factor

H (n — 2> i

j=i M
accounts for the respective coefficients of z;, ..., z, from (5.8). Hence summing over all
admissible weak compositions of 8 w.r.t. « yields the desired coefficient. O

Corollary 5.26. Let «, 5 € Nj be multi indices such that |a| = [3]. Then the coefficient

of #" o afr in 201 .. gom ‘Tfl is given by

R (EROE 17

mepa(ﬁ)z 1 Jj=t
Proof. Since
S (D
i=1 \ j=t J
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5. Generalized period polynomials

Lemma yields that

zn(z

mGPa

)
1

The sign of each summand in (5.9)) is given by

Il ||
‘M: lM: I M:

N
Il
—

SN G+ ) - m

i=1 j=i

We are now able to prove Theorem [5.21]

AR
z:: “+ij-ilmﬁj>
a,+Zj B
i (a + Bi). O

Proof of Theorem[5.21] Since the group SLy(Z) is generated by S and T', it suffices to show

(o5} (e
<x1 R e

aq (03
<£L‘1 R e

The left-hand side of (5.10)) is

and

(_1) ?:1(i+1)~04n+1—i <:L€4n .. xn X Bl . $£n>

while the right-hand side is

(—1)Zim (i+1)5: <x?1 o gln g

o 1 Bn\ _ o fe?
S7x1 ...xn”>_<x1 mn

T7xf1x5”>:<$?l$g

",xfl xﬁ” §_1> (5.10)
nogf g | T > (5.11)
(5.12a)

51> (5.12b)

Both (5.12a]) and (5.12b]) vanish unless a = . If o = 3, then ([5.124)) is

(—1)2?:1(i+1)'an+17i+i‘an+1,i

(_1)a1+“‘+an

(e T, ()™

and ([b.12b]) is

(—1)2im ) aitio

IS

7777 n

(_1)a1+~-~+an

(e T, (2D
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5.3. An invariant pairing

The left-hand side of (5.11)) is due to Lemma and the Kronecker delta in (5.4]) given by

(7)
(—1)2i= PP ( ) a <n—z)ml
4B Bn i Z H ’L (n) : H ..
(62;4%5 ) 1T (n 1) o MEPa( < Ty G N T
(J)
(—1)(”+1)'d+2?:1 1B | | | n J l)
- e bt X T
’B" : H?:l (7711) o mEPa(,B)Z 1j=1 z
while the right-hand side of is due to Corollary given by
7)
(—1)2 i (az+avz+1 z+/31 < > n <TL _ l> m;
n i 2 ) .
) I ) m%(a) I o) 110G
(J)
(_1)(n+1)-d+2?:1 i-Bs ,;L
= o LByl B .
ot T, (52))° " me% Z]-_[ljl_[l m! (),
We have
n 8 n ) (j) Z) m(,j)
n — 1 —Pn+4+1—j z () 1
H<j—1> Z HH ] : Z HH ) (mi] !)
Jj=1 mEPq(B) i=1 j=i e me'Pa ) i=2 j=i

. 'To prove the

i1 (i~
) from Lemma So

1 .
(Trl jz) and vise versa for

denote its corresponding

and similarly for the sum over Pg(a) since [T, ('}~ ) )Q"H_i

=1
claimed equality, we use the bijection between Ps(a ) nd (
for every p € Ps(a) there is a m € P,(B) such that m¥ = p
a)

7

all 1 <i < j <n. Now fix some m € Py (3) and let p € Pg(a
admissible weak composition. We then have

l m o non e m® o
() 0o =TG5 o)

=2 j=1 P
_ﬁﬁ (n =)l — D! P ( (n—l—l—z‘)')—l
R =2 j=i (n =D =) Pryi—j -

which coincides with the respective summand of p € Pg(a) in the second sum since

(n—2)i(j —1)!

(n =!G —)!
is invariant under the substitution (i,7) — (n+ 1 — j,n + 1 —4). Hence the sums agree
summand-wise and are thus equal as claimed. This finishes the proof. O

We conclude this section with a discussion on the alternative Definition of (-,+) on
Vk@) in terms of partial derivatives. We will first give a generalized definition for all n € N

on the spaces Vk(n) and then compare it to the pairing from Definition Recall the
shorthand notation d = k — n.
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5. Generalized period polynomials

Definition 5.27. For f,g € Vk(n) we set

ool = g f (e (0 g (1 ) (g ).

8.1‘n, Y 8l‘n+1_i7 8.7}1

The pairing on Vk(n) from Definition no longer has the desired invariance property for
n > 2.

Example 5.28. We consider f,g € V;)(B) with f(x1,x9,23) = l‘%l’gl‘g and g(z1,z2,z3) =

r3z2r3. Then we have

(f,g)' =0 and <f‘T,g‘T>,:%.

)

However, for monomials f, g € Vk(n the pairings on Vk(n) agree up to a factor.

Proposition 5.29. Let f(z1,...,2,) = af* - 28 and g(z1,...,2,) = :):flxg" be

monomaials in Vk(n). Then

Proof. Note that both pairings vanish unless o; = 8,,41—; for all i € {1,...,n}. In this case

o n— 1\ n oyl ap!
|| — (— Zi: z~ai.71 n

=1 ¢
=(f,9). 0

This implies together with Theorem that there is a slight modification of (-,-)’ that
makes the pairing invariant.

Corollary 5.30. Let f, g € Vk(n) be monomials as in Proposition [5.29, Setting

(f.g)" = ﬁ <7Z__11) ey

=1

and extending this linearly yields a pairing on Vk(n) that coincides with (-, -) from Definition
and is thus invariant under the action of SLy(Z).
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5.4. Dimensions

Now let n, k € N with k£ > n and such that n even implies that k is even. The SLy(Z)-action
on Vk(n) is invariant under |—1 in this case (see Lemma . We thus have

Vk(”) = AI(:L) &) B,(Cn) and Vk(n) = C,gn) <) D,(Cn) (5.13)
where
A](Cn) = ker(1 — S) =im(1+ 5’), B;(gn) = ker(1 + S) = im(1 - 5’)
and

O =ker(1-0) =im(1+ U+ 0%), D =ker(1+0 +0?) = im(2 - U - 0?),

We have by definition that W(n) = B,(Cn) N D]({n). The splittings in ((5.13)) are orthogonal by
Theorem (cf. Corollary , hence W,gn) = (A,gn) + C,gn))l. However, the space

E =AM nc
is non-trivial in general (see Example [5.18). We therefore obtain
VO Z 400500 ¢ 00 /) g B g gy
which implies dimension-wise that
dim W™ = dim V" — dim A" — dim " + dim E(". (5.14)
We have dim(Vk,(n)) = (fl j) by Lemma Since the spaces A,in) and C,gn) are invariant

under the finite groups generated by S and U, respectively, their dimensions can be computed
via Molien’s theorem [A.12] We therefore introduce some further notation.

Notation 5.31. Let M € GLy(Z). We denote

e the algebra of M("-invariant polynomials in n variables over Q by

@[xlv"'axn]M = {f € Q[J;b"'awn] f‘M = f}7
e the space of homogeneous polynomials of degree k in Q[z1, . . ., a:n]M by Q[x1, ..., xn]fc\;f
and
e the Hilbert-Poincaré series of Q[zy, ... ,xn]M by PJS;) (x), i.e.

P};’)(m) = Zdim(@ <Q[$1, e ,xn]g;[) zk.
k=0
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5. Generalized period polynomials

Proposition 5.32. Let n,k € N withn > 2 and k > n.

i) For even n and odd k we have dim A,(Cn) = dim C,(cn) = 0. Otherwise we have

where
(—1)1677”, n even
an = {(_1)”51'(k+1), n odd
“’%%M, n=0 mod 3
Cnk = 3 1, n=1 mod3

5= 18]+ 1582 - 521, n=2 mod3

and w = 5" is a third root of unity.
i1) For even n the generating series of A](cn) and C]gn) are given by

24201 —2)"(14z)"
)2

Do) (1422 + (1 —2)"(1+2?)
2

Z dim A,(Cn) 2F = "
o 4(1—x)2(1—

xn

S i 0 ok —
z::d Cy 6(1 — xﬁ)[%](l —x2)"" [5]

<(1+m)” l+z+2 )[%](1 —x+x2)[§]

(
F(1-2)"Q+z+ 2B -2+ 2?)E]
+ﬂ1—m4%u+x)u—x+x%ﬁ
N,

For odd n the generating series of A,gn) and C,gn) are given by

N 3] 1 (1 2)202]
im A™ gk — n (1+2)%5 + (1 -2

kZ:Od k 2(1 _ $2)2[%](1 N x)an[%}

3 im O™ gk = gn (142 +2?)15] 4201 — 2)215]

k:Z_Od Ck (1 _ x3)[%](1 _ x)nf[%]

Proof. The respective Hilbert-Poincaré series are computed in appendix [B] The claimed
identities in [i1)| follow from expanding the respective rational functions and multiplying by

2™ to account for the degree k — n.
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For even n we observe that the numerator and denominator of the generating series from
are even polynomials. We thus obtain that A,(ﬁn) and C’,gn) are trivial in this case for odd k.
To prove [i)}, we will consider each of the remaining cases.

We first consider A,(Cn). For even n appendix immediately yields that

P (z) = % g% ((k +Z_ 1) +(-1)% <§ * g N 1)) . (5.15)

k even

For odd n we have

% Ooo(k+n—1) 4 i (SHI[;]_l)xk'M

k= k=0,
k even

Since n — 4 [%] = (—1)717_1 for odd n, we consider the residue class of n modulo 4.

First assume n =1 mod 4. We then have n — 4 [%] =1 and hence

‘We thus obtain

where the last equality follows from the so-called hockey-stick identity

f:(]\fj—z) _ <K+IJ(V+1> (5.16)

=0

for N, K € N. So we have

Pén>(x):;i<<k+z—1>+<L§J ET [Z]))mk‘ (5.17)
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5. Generalized period polynomials

Now assume n =3 mod 4. We then have n — 4 [%] = —1 and hence
1
n] -z
(1 — 2)n4l4]
e {+2[3) 5)+2[3]
= /e +2[2 -1 > 2422 -1
Z <2 k4 )xk_(l_x):Z(_l)k( 2 k4 )xk
k=0, 2 k=0 LQJ
k even
we have i
n e (/k+n—-1 El+2[2] -1
=0 3]
We now consider C}En). First assume n is even. Appendix yields that
9] e8] k n
(n) 1 ktn—1) 4 5] -1\ & 1
Py <x>:(z( dey (T )
3 k=0, k k=0, 3 (1- 3«")”73[5]
k even 3|k
(5.19)
> Eyr[z]-1 1
ST C ) WA
k=0 3 (1+ )31

3k
Note that n — 3[%] = {m € {~1,0,1} | m = n mod 3}. So if we further have n = 0

mod 6 then (5.19) yields
00 00 k n
(n) 1 E+n—1\ . st3—1\ ,
Py (x)_3<z ( L b2y B x (5.20)
k=0, k=0, 3
k even 6|k

Now assume n =4 mod 6. Then

= N z‘k’ —
3] ,; 1+ S

N
(1 . x)n—3[,

and hence (5.19) yields

n i<—1>’“<i (i1 1)))
(E19) % g’ ((k J:Z ~ 1) N 2(V§J£J[§]>>xk (5.21)
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Now let n =2 mod 6. Then (5.19)) yields

FOEE DS (e +2( - (k + [g] B (Sgﬁ])W)

k=0, k=0,
k even 6|k
(5.22)
Now assume n is odd. Then appendix [B:2] yields that
1 k+n—1 E -1 2
pm (x) == ( > + ( 3] >xk — . (5.23)
B kzo Z 5 (1 - )13

3|k

We consider the remaining residue classes of n modulo 6. First assume n =3 mod 6. Then

(-23) yields
00 00 k n
" - Fg-1
Pé)(x)—;<z<k+z 1)xk+2z<3 3 >xk> (5.24)
3

k=0

Now assume n =1 mod 6. Then (5.23) yields that

P (z) = ;(2 <I<:+Z—1>xk+ i <§+ [g} —1>$k. (1335))

h=0 k0,
SECTREC)
610 ;(g <k+:— 1>mk +2§;O (L’;J@[g]%k) (5.25)

3k
(XS (k+n—1\ , - §+[%]_1 k k+1>
= ¥ +2 (% — ") . (5.26)
(Z (e ()

To conclude the proof, note that the spaces A( " and C'( ") contain polynomials of degree
k —n. Hence i) I follows by considering the coefﬁClent of k= in (5.15)), (5.17) and (5.18)

for dlmAl(C " as well as in (5.20)), (5.21)), (5.22)), (5.24])), (5.25)) and (| - ) for dlmC]i ). O

93



5. Generalized period polynomials

In order to use (5.14) to compute the dimension of W,En) we still need the dimension of

E,(Cn) = Al({") N C,in). Recall the analogue spaces from sections and In the case
of period polynomials, this space is trivial. In the case of bi-period polynomials, the key
argument was a special case of Weitzenbdck’s Theorem which showed that the algebra
of |T-invariant polynomials is finitely generated. In the proof, we considered the action of
T as a differential operator. This derivation was given on Q[x1, x2,y1,y2] as

0 0

dpi =T+ —— — Y1 - ——.
bi 2 635'1 1 8y2

The algebra of invariants is then equal to the kernel of this derivation. By considering the
restriction to V3, we obtain an endomorphism with transformation matrix

000 O
100 O
000 —1
000 O
The Jordan form of this is given by
01 00
0000
00 01
00 00

This is interesting in light of the following theorem by Tyc. For a proof of this theorem we
refer to the original paper.

Theorem 5.33 (|Tyc98|). Let A = Clxy,...,x,] and let d: A — A be a non-zero locally
nilpotent derivation such that d(W) C W with W = Czxy + - - - + Cxy,. Then ker(d) is

1. a Gorenstein ring and

2. a polynomial algebra if and only if W = Wy @ W' for some subspaces Wy, W' C W
such that d(Wp) = 0, d(W’') € W’ and the Jordan matriz of the endomorphism
dlwr: W' — W' is one of the following

010
L. foo)
0 0O

Note that Jordan form corresponding to the derivation dy; coincides with the last matrix
from Theorem [5.33] However, this is not the case in this more general setting.

o O O O
o O O O
o= O O

o O O

T

Corollary 5.34. The ring of invariants C[z1,...,z,]" is a polynomial algebra if and only

if n <3.
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Proof. For n > 2 and A € R we consider the matrix

~ o\ A AN,
() = ()

Now let f € Vk(n) for some k > n. Then

c%\(f‘f/\)‘,\:o:%f Zn:<?:i)/\jlxj’m’$n A=0

n—1
‘ 0

89@

where the last equality follows from the product rule and the fact that after evaluating the
expression at A = 0 only one summand remains in each entry.

Now, if f is invariant under T', we obtain that

n—1
) 0
d,, == Z(n—z)-xiﬂ . 83{2- =0

=1
so we can identify Clxy, ... ,:rn]T with ker(d, ). However, the transformation matrix of d,,
is given by

0 0 ... 00

n—1 0 00
0 n—2 00
0 0 ... 1.0

and the entries of the Jordan form are 0 everywhere except for the superdiagonal, i.e.

010 ...0
0 01 0
000 ... 1
000 ...0

Now let W = Cz1+ - - -+ Cux,, and consider a decomposition W = Wy & W' with d,,(Wp) = 0
and d(W') ¢ W'. The kernel of d,|w is one-dimensional with d,(z,) = 0. And since
dp(z;) is a multiple of x;41 for all i € {1,...,n — 1}, the condition d(W') C W’ implies
that W/ = W and Wj is trivial. The proof now follows from the second part of Theorem
b33l O
By Corollary it seems to be more complicated to find the generating series for E,(Cn)
if n > 4 compared to the space & from section [3.2] Unfortunately, it was not possible to

compute the dimensions of E,(gn) within the scope of this thesis.
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A. Representation theory of the dihedral group of order 6

A. Representation theory of the dihedral group of order 6

As an example for a discussion on representation theory and isotypical decompositions we
consider the dihedral group Dg. Geometrically, this group describes the isometries of a
regular triangle. Algebraically, the group is given by the presentation

Dg = <r,s ‘ r3, 2, (57“)2> (A1)

where 7 and s correspond to a rotation of 120° and a reflection, respectively. We have by

(A1) that | Dg| = 6.

For the following discussion, we will first introduce some fundamental notions and statements.
The statements, however, will not be proven for the sake of simplicity. For the proofs as
well as more details on the subject see, e.g., [FH13|, [Ser+77|, |[Pan06| and [Tel05].

Throughout this discussion, let F be an algebraically closed field of characteristic 0, V' a
n-dimensional F-vector space and G C GL(V') be a finite group.

Definition A.1. We define a representation of G, invariant subspaces of a representation
and irreducible representations of G analogously to Definitions and [4.29] respectively.

Definition A.2. Let p: G — GL(V) be a representation of G. The character of p is given
by x,: G — F, g — trace(p(g)). The character x, is irreducible if p is irreducible. We
denote the set of irreducible characters of G by X (G). If G is clear from the context we
write X instead.

Proposition A.3. The number of conjugacy classes in G equals | X]|.

Lemma A.4. Let p: G — GL(V) be a representation of G and W C V an invariant
subspace. Then there is an invariant subspace W' C V' such that

V=WaeW.

Definition A.5. Let p: G — GL(V) and n: G — GL(W) be representations of G. A
linear map ¢: V — W such that

¢(p(9)(v)) =n(9)(¢(v))

for all g € G, v € V is called an intertwining map.

Lemma A.6 (Schur’s lemma). Let p: G — GL(V) and n: G — GL(W) be irreducible
representations of G and let ¢: V. — W be an intertwining map. Then

1. ¢ is either an isomorphism or ¢ =0 and

2. if VW, then ¢ is a homothety.

98



By Lemmas and we obtain the following corollary.

Corollary A.7. Let p: G — GL(V) be a representation of G. Then there exists a unique
decomposition

V=" (A.2)

XX

where, for each x € X, V, = T;B ™ such that the representation p,: G — GL(T)) is
irreducible and k, € Ny.

Definition A.8. The decomposition (|A.2)) is called isotypical decomposition and the spaces
V, are isotypical components. To emphasize the group G, we also write VXG instead of V.

We now set R = F[z1,...,z,] and denote the subalgebra of G-invariant polynomials by
RE={feR|forall M eG:M(f)=f}

where the G-action on R is induced by the action on V, i.e.

=i o ()

Proposition A.9 (|Hil90|). The algebra R is finitely generated. The generators have
bounded degree of < |G.

Since R is infinite-dimensional, we consider the grading

R= éRk
k=0

where Ry = {f € R | f homogeneous,deg(f) = k}. Note that the spaces Ry, called
homogeneous components, are finite-dimensional. Our previous discussion thus applies to
the homogeneous components of R.

Remark A.10. Since the G-action is degree preserving, we obtain a grading on R® where
the homogeneous components are given by (RG) p = RS N Ry, for all k € Ny. For y € X
we further set (Rf)k = Rg N R, for all k € Ng. We thus obtain that Rg is a graded
RSE-module since RS - Rg C Rg .

Definition A.11. For an irreducible character y € X we call

Fay(x) = x(1)~") _ dimg ((R{)x) 2"
k=0

the Molien series of (G, x).
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A. Representation theory of the dihedral group of order 6

Theorem A.12 (Molien). Let x € X be an irreducible character, then
1 X(M)
F =y
Gx(2) |G| Z det(1 — xM)

In order to compute isotypical decompositions for Dg, we first specify the irreducible
representations of Dg. Since Dg contains 3 conjugacy classes, we have |X| = 3. In fact, the
1-dimensional irreducible representations of Dg are given by

p1(g) =1 for all g € Dg

pa(g) = (—1)°rd@)+1 for all g € Dg.

The 2-dimensional irreducible representation p3: Dg — GL(C?) can be described on the
generators r and s by

pi) = (3 %) and pie) = () o)

where w = e’5" is a third root of unity. Note that the eigenvalues are {w,w?} and {1},
respectively.

Computing the corresponding characters yields x;(g) = pi(g) for all g € Dg and i € {1,2}
as well as
2, g=1
xs(g)=q-1, g€ {rr?}
0, g¢€/{s,rsris}

Now, let w: Dg — GL(V') be an arbitrary representation of Dg. Since 7(r) is diagonalizable
we obtain the decomposition
V=VieV,eV,

where V), is the eigenspace of 7(r) to the eigenvalue A € {1,w,w2}. The transformation
7(s) preserves V; since srs~! = r~1. The space V; therefore decomposes into a direct sum
of copies of the irreducible representations p; and po from above. For the remaining spaces
V., and V_ 2 we observe that 7(s) is a self-inverse isomorphism V,, — V_2. By choosing a
basis e, ..., e, for V,,, we obtain a basis €,. .., e}, for V 2 where e, = 7(s)(e;). Hence 7(s)
acts on Ce; ® Ce as (9 §) and 7(r) acts as (¥ % ). This yields a decomposition of V,, &V,

0 w?
in n copies of the 2-dimensional representation ps.

As an explicit example, let R = C[X,Y]. The isotypical decomposition
D D D
Ry = (Rxf)k b (szﬁ)k ® (RX36)k
for k € N is then given by
(RP6), = (f € Ry | M(f) = [ for all M € Dg)¢
(RYS), = (f € Ry |r(f)=f.s(f) = Fe
(R>€36)k - <(f>g) € R% | T(f) = wf,r(g) = wzg?s(f) = g,S(g) = f>(c .
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By Proposition RC is a finitely generated C-algebra with generators of degree < 6.
Hence it suffices to compute the isotypical components (Rfﬁ)k for k € {0,...,6}. This
yields

R =C[XY,X*+Y?].

We further have by Remark that R%"' and ngﬁ are finitely generated RP¢-modules.
Explicitly, we have

D¢ _ pD 3 3
RS =R (X° -Y?)
D D D Dg y2 Dgvy 2
R® = R7*X ® R”°Y & R”6X* @& R7°Y?.

The respective Molien series can now be computed with Molien’s theorem hence

1
2o —x3 -2 41

Fpg . (x Zdlmc RD6 =
FDonz (37) = Zdim@ (R>?26)k; b =2 FD67X1 (x)
Fpg s ( Z dim¢ RD6 = (z+2%)- Fpg . ().

This concludes our discussion.

B. Hilbert-Poincaré series of the spaces A,(Cn) and C’,g")

We denote the Hilbert-Poincaré series by Pé”) (x) and P[(]n) (x) respectively.

B.1. The space A,i")

For even n, the group generated by S ig given by {id, —id,S’ , -S }. Hence Molien’s
theorem yields that

Pé")(x):l( ! + ! T — )
4 \det(id —zid) = det(id+xid) = det(id —2S)  det(id +-zS5)
11 1 2
it )
1 & E+n-—1 @ %‘F%—l k
5 () et
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B. Hilbert-Poincaré series of the spaces A,(cn) and C,gn)

For odd n, the group generated by S ig given by {id, 5’}, as 52 = id in this case. Hence
Molien’s theorem yields that

n 1 1 1
P @) = 5 det(id —zid) det(id _xs))
1 1
D) ( 1—2)n (1+ .%')2[%](1 _ ;U)”Q[Z]>
1 1 1
~ 2 ( 1—z)n (1- xz)Q[%] ' (1- x)”‘lm)

& k—i—n—lxk > §+2[%}—1$k. 1
AT ) O )

=0 k=0,
k even
B.2. The space C\"
For even n, the group generated by U™ is given by {id, — d,0,-U,U2, U2} Hence

Molien’s theorem [A.12] yields that

(n) (:L') 1 1 1 n 1
o det(id —z id) det(id +zid)  det(id —zU)

1 1
+ — + — + =
det(id+2U)  det(id —2zU?)  det(id +2U?) )

_1< 1 2 P S 2 )
6\N(L—2)"  (14z+a22)B8la—g)n20E] Q42 (1 -z 4 22)E] @ 4225
_1 1 1 2 2
=5 (1—2x) (1+x) (1— $3)[%](1 x)n—?;[%} (1+ J:3)[%](1 + x)n—?;[%]
1 (ktn—1\ , «— ok (ktn—1 o
(B () ()
> k n 0 k n
3+[5] -1 s 2 N Rk o 2
+;§( 3 ) ey 1)< 5 > <1+x>n3[z]>
3|k 3k
U (R S A
_3<1§,( F ) +,§( 5 ) (1— z)"3[3]
k even 3|k
0 k n
1)k s+ (3] -1 ok 1
+,§,( 1) ( : ) (1+x)n3[g]>
3k

102



W N =

© 0w N O s W N

= e
No= O

o
w

For odd n, the group generated by U™ is given by {id, U, 02}, as U3 = id in this case.
Hence Molien’s theorem yields that

P (x) =

1 1 1
. — + =+ =
<det(1d —zid)  det(id —zU) = det(id —zU?) )

Wl Wl

C. Source code

The computer based calculations in this thesis were done using the free and open-source
computer algebra system SageMath [The22|. In order to compute period polynomials we
first need to define the respective matrices. Since they are needed in most computations
below, we will state the corresponding code here.

S = matrix ([[0, —1],[1,0]])
T = matrix ([[1.1],[0,1]])
U= matrix([[1,—-1],[1,0]])

eps = matrix ([[0,1],[1,0]])

C.1. Dimension of period polynomials

The following code was used to compute the dimensions of Wy, W,;—L and Ly in table

k =8

P = PolynomialRing (SR, 'x,y")

poly =0

for i in range(k—1):
j=k—2—i

tmp = var("a%d"%(i))
poly += tmpxP.gens()[0]" j*P.gens()[1]"i

relS = poly + S.act_on_polynomial(poly)

relU = poly + U.act_on_polynomial(poly) + (U~2).act_on_polynomial(poly)

invEps = poly — eps.act_on_polynomial(poly)

relEps = poly + eps.act_on_polynomial(poly)

relLewis = poly — T.act_on_polynomial(poly) —
(eps*Txeps).act_on_polynomial(poly)

A = matrix(ZZ,[[rel.coefficient (coeff) for coeff in poly.coefficients ()]
for rel in relS.coefficients() + relU.coefficients()])
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C. Source code

B = matrix(ZZ,[[rel.coefficient(coeff) for coeff in poly.coefficients ()]
for rel in relS.coefficients() + relU.coefficients() +
invEps. coefficients()])
C = matrix(ZZ,[[rel.coefficient(coeff) for coeff in poly.coefficients()]
for rel in relS.coefficients() + relU.coefficients() +
relEps.coefficients()])
D = matrix(ZZ,[[rel.coefficient(coeff) for coeff in poly.coefficients ()]
for rel in relLewis.coefficients()])
print (A.right nullity () ,B.right nullity (),C.right nullity () ,D.right _nullity())

C.2. Dimension of bi-period polynomials

The following code was used to compute the dimensions of Wy, Wl;t and Ly in table .

k =38

P = PolynomialRing (SR, 'x1,x2,yl,y2")

poly =0

for i,y in enumerate(sorted(list(set([prod(x) for x in

cartesian_product iterator ([P.gens() for _ in range(k—2)])])))[:: —1]):
tmp_var = var("a%d"%(i))
poly += tmp_varxy

relS = poly + bi_slash _mat(S).act_on_polynomial(poly)

relU = poly + bi_slash mat(U).act on_ polynomial(poly) +
bi slash mat(U"2).act on_ polynomial(poly)

invEps = poly — bi_slash _mat(eps).act_on_polynomial(poly)

relEps = poly + bi_slash _mat(eps).act _on_polynomial(poly)

relLewis = poly — bi_slash _mat(T).act_on_polynomial(poly) —
bi _slash _mat(eps*Txeps).act_on_polynomial(poly)

A = matrix(ZZ,[[rel.coefficient(coeff) for coeff in poly.coefficients ()]
for rel in relS.coefficients() + relU.coefficients()])

B = matrix(ZZ,[[rel.coefficient(coeff) for coeff in poly.coefficients ()]
for rel in relS.coefficients() + relU.coefficients() +
invEps. coefficients ()])

C = matrix(ZZ,[[rel.coefficient(coeff) for coeff in poly.coefficients ()]
for rel in relS.coefficients() + relU.coefficients() +
relEps.coefficients()])

D = matrix(ZZ,[[rel.coefficient(coeff) for coeff in poly.coefficients ()]
for rel in relLewis.coefficients()])

print(A.right _nullity () ,B.right _nullity () ,C.right _nullity () ,D.right_nullity())

C.3. Transformation matrices under irreducible representations

The transformation matrices that were introduced in section were computed using
SageMath [The22|. As this computation was frequently needed in the code of we
defined a function to return said matrices. The source code is given below.

def trafo _mat(n,mat):
R.<varl ,hvar2> = PolynomialRing (QQ)
Ist = []
for i in range(n):
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C.4. Dimension of generalized period polynomials

tmp = varl~(n—1—i)*var2"i
poly = mat.act_on_polynomial (tmp)
tmp_Ist = [poly[n—1-i,i] for i in range(n)]
Ist.append(tmp Ist)
return matrix (QQ, Ist)

C.4. Dimension of generalized period polynomials

The dimensions in table [3| have been computed using SageMath |The22]. The source code
for this computation is given below. Note that the occurring function trafo_mat in the

code is defined in appendix

n=>5

k =38

P = PolynomialRing (SR, 'x' ,n)
poly =0

for i,y in enumerate(sorted(list(set([prod(x) for x in
cartesian_product iterator ([P.gens() for _ in range(k—-n)])])))[:: —1]):
tmp_var = var("a%d"%(i))
poly += tmp_varxy

relS = poly + trafo_mat(n,S).act_on_polynomial(poly)

relU = poly + trafo_mat(n,U).act_on_polynomial(poly) +
trafo_mat(n,U"2).act_on_polynomial(poly)

relLewis = poly — trafo_mat(n,T).act_on_polynomial(poly) —
trafo_mat(n,epsxTxeps).act_on_polynomial(poly)

A = matrix ([[rel.coefficient(coeff) for coeff in poly.coefficients()] for

rel in relS.coefficients()+relU.coefficients()])

matrix ([[rel.coefficient(coeff) for coeff in poly.coefficients()] for

rel in relLewis.coefficients()])

print(A.right _nullity () ,B.right _nullity ())

B
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