Homological Algebra - Problem Set 4

Problem 1. Show directly, without using the bijection with Ext^1 , that the extension classes of the abelian group $\mathbb{Z}/(p)$ by itself are represented by the split exact sequence and the short exact sequences of the form

$$0 \to \mathbb{Z}/(p) \xrightarrow{p} \mathbb{Z}/(p^2) \xrightarrow{i} \mathbb{Z}/(p) \to 0$$

where $1 \leq i \leq p - 1$.

Problem 2. Let R be a ring and let A, B be left R-modules. An *n*-extension of A by B is an exact sequence

$$\xi: 0 \to B \to X_n \to \dots \to X_1 \to A \to 0.$$

We say ξ is pre-equivalent to an *n*-extension

$$\xi': 0 \to B \to Y_n \to \cdots \to Y_1 \to A \to 0,$$

of A by B, if there exists a commutative diagram

We define Yoneda equivalence to be the smallest equivalence relation on the set of *n*-extensions of A by B which contains the pre-equivalences and write $\xi \sim \xi'$ if ξ and ξ' are Yoneda equivalent. Show that there is a natural bijection

$$\Theta: \left\{ \begin{array}{c} n\text{-extensions of } A \text{ by } B \\ \text{up to Yoneda equivalence} \end{array} \right\} \xrightarrow{\cong} \operatorname{Ext}_{R}^{n}(A, B)$$

generalizing the statement for 1-extensions proved in class. The map Θ , called the Yoneda bijection, is constructed as follows. Given an *n*-extension ξ as above, we consider ξ as a resolution

$$X_{\bullet} := (\dots \to 0 \to B \to X_n \to X_{n-1} \to \dots \to X_1) \xrightarrow{\simeq} A$$

of A and choose a projective resolution $P_{\bullet} \xrightarrow{\simeq} A$. The identity map $A \to A$ extends to a map of complexes $f : P_{\bullet} \to X_{\bullet}$ which is unique up to homotopy. We apply the functor $\operatorname{Hom}(-, B)$ and pass to *n*th cohomology to obtain a canonical map $\operatorname{Hom}(B, B) \to$ $\operatorname{Ext}_{R}^{n}(A, B)$. Define $\Theta(\xi)$ to be the image of id_{B} under this map. *Hint:* Immitate the construction given, in the case n = 1, in class of an explicit inverse of Θ using the composition " $g \circ \nu$ " from Problem 4.

Problem 3. We extend the definition of the Baer sum from class: For n > 1, we define the Baer sum of *n*-extensions ξ and ξ' to be the *n*-extension

$$0 \to B \to X_n \coprod_B Y_n \to X_{n-1} \oplus Y_{n-1} \to \dots \to X_2 \oplus Y_2 \to X_1 \times_A Y_1 \to A \to 0.$$

where the leftmost and rightmost terms denote a fibered coproduct and fibered product, respectively. Show that this operation provides an abelian group structure on the set of n-extension classes such that the map Θ becomes a group isomorphism.

Problem 4. Let R be a ring. Let A, B and C be R-modules. Given a map $f : A \to B$ and an *n*-extension

$$\xi: C \to X_n \to \dots \to X_1 \to B \to 0$$

of B by C, we define an n-extension

 $\xi \circ f: 0 \to C \to X_n \to \cdots \to X_2 \to X_1 \times_B A \to A \to 0.$

Given a map $g: B \to C$ and an *m*-extension

$$\nu: B \to Y_m \to \cdots \to Y_1 \to A \to 0,$$

of A by B, we define an m-extension

$$g \circ \nu : 0 \to C \to Y_m \coprod_B C \to Y_{m-1} \dots \to Y_1 \to A \to 0.$$

Finally, given an *n*-extension ξ of *B* by *C* and an *m*-extension ν of *A* by *B* as above, we define an n + m-extension

$$\xi \circ \nu : C \to X_n \to \dots \to X_1 \to Y_m \to \dots \to Y_1 \to A \to 0$$

by composing $X_1 \to B$ and $B \to Y_m$.

(1) Use the Yoneda interpretation of Ext^{*} to show that, for every $n, m \ge 0$, the above constructions provide a well-defined bilinear map

$$\operatorname{Ext}_{R}^{n}(A,B) \times \operatorname{Ext}_{R}^{m}(B,C) \to \operatorname{Ext}_{R}^{n+m}(A,C)$$

called Yoneda composition.

(2) Let A be an R-module. Show that Yoneda composition provides an associative multiplication law on

$$\operatorname{Ext}_{R}^{*}(A, A) := \bigoplus_{n \ge 0} \operatorname{Ext}_{R}^{n}(A, A).$$

so that $\operatorname{Ext}_{R}^{*}(A, A)$ is canonically a ring.

- (3) Consider the $\mathbb{Z}[x]$ -module $\mathbb{Z} = \mathbb{Z}[x]/(x)$. Compute the ring $\operatorname{Ext}_{\mathbb{Z}[x]}^*(\mathbb{Z},\mathbb{Z})$.
- (4) Consider the $\mathbb{Z}[x]/(x^2)$ -module $\mathbb{Z} = \mathbb{Z}[x]/(x)$. Compute the ring $\operatorname{Ext}_{\mathbb{Z}[x]/(x^2)}^*(\mathbb{Z},\mathbb{Z})$.