Exercise Sheet 3

Problem 1. Read the proof of Hilbert's Nullstellensatz (Chapter 10, 7.6) in Artin's algebra book and explain why the proof works, more generally, for any uncountable algebraically closed field K instead of \mathbb{C} .

Problem 2. Let F be a ∂ -field of characteristic 0 with algebraically closed field of constants K_F . Let $f \in F$ such that there does not exist $y \in F$ with $\partial(y) = f$. Consider the matrix

$$A = \left(\begin{array}{cc} 0 & f \\ 0 & 0 \end{array}\right) \in F^{2 \times 2}.$$

Show that the ∂ -ring F[T] with $\partial(T) = f$ is a Picard-Vessiot ring for A.

Problem 3. Let F be a ∂ -field of characteristic 0 with algebraically closed field of constants K_F and let $a \in F^*$. Consider the matrix

$$A = (a) \in F^{1 \times 1}.$$

and let

$$R = F[T, T^{-1}]$$

with $\partial(T) = aT$.

- 1. Suppose that, for every $n \in \mathbb{N} \setminus \{0\}$, there does not exist $y \in F$ with $\partial(y) = nay$. Show that R is a Picard-Vessiot ring for A.
- 2. Suppose that there exists $n \in \mathbb{N} \setminus \{0\}$ and $0 \neq y \in F$ with $\partial(y) = nay$. We assume n > 0 to be minimal. Show that

$$\overline{R} = R/(T^n - y)$$

is a Picard-Vessiot ring for A.

3. Find explicit examples for F and a which realize the above two cases.

Problem 4. Let F be a ∂ -field of characteristic 0 with algebraically closed field of constants K_F . Let E/F be a finite Galois extension of F with Galois group G. Prove that E/F is a Picard-Vessiot extension as follows:

- 1. Show that the derivation ∂ on F admits a unique extension to a derivation of E such that $F \subset E$ is an embedding of ∂ -fields.
- 2. Show that, for every $\sigma \in G$ and every $x \in E$, we have $\sigma(\partial(x)) = \partial(\sigma(x))$. Hint: Consider the map $x \mapsto \sigma^{-1}(\partial(\sigma(x)))$.
- 3. Argue that we may find $\alpha_1, \ldots, \alpha_r$ such that $E = F(\alpha_1, \ldots, \alpha_r)$ and G permutes the set $\{\alpha_i\}$. Deduce that the K_F -linear span V of the set $\{\alpha_i\}$ is G-invariant and choose a K_F -basis v_1, \ldots, v_n of V. Let $W = Wr(v_1, \ldots, v_n)$ be the Wronskian matrix of v_1, \ldots, v_n .
 - (a) Show that, for every $\sigma \in G$, there exists $C_{\sigma} \in \operatorname{GL}(n, K_F)$ such that $\sigma(W) = WC_{\sigma}$.
 - (b) Show that $wr(v_1, \ldots, v_n) \neq 0$ so that W is invertible.
 - (c) Show that the entries of $A = \partial(W)W^{-1}$ are invariant under G and that W is a fundamental solution matrix for $A \in F^{n \times n}$.