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Abstract

This is the introduction and overview talk for a research seminar on derived deformation theory.
We give a very quick tour of some of the main principles of derived deformation theory, starting
from very basic notions. We introduce the idea of a deformation problem, observe that it is possible
to treat infinitesimal deformations of algebraic and geometric structures on the same footing, and
motivate the concept of the tangent space of a deformation problem. After very briefly invoking
some examples (to be covered in detail in the seminar) in which differential graded Lie algebras
(dglas) play a prominent role, we change perspective and associate deformation problems to a dgla.
This naturally leads us to considering space-valued functors on Artinian dg algebras as the most
general deformation problems – these are Lurie’s (derived) formal moduli problems. We can then
state and appreciate the classification theorem for formal E∞-moduli problems, which is the main
objective of this seminar.
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1 Moduli problems and deformation theory

Deformation theory is the study of families of mathematical objects of a given type. What this actually
means, though, will depend on what we mean by a ‘family’.

Example 1.1 As a very simple example, consider a manifold1 M , and let us try to study families
of points x ∈ M . First, one can just view all points x ∈ M individually, merely acknowledging their
existence. From this point of view, the moduli object of points in M would be the underlying set UM
of M .

However, since M has got much more structure than its underlying set, we can say when elements
of UM belong to a particularly good type of family: a family of points of M , parameterised by a
manifold P , is simply a smooth map f : P → M . These families have yet more structure when taken
together: they assemble into a functor

M : Mfdop → Set , P 7→Mfd(P,M) .

1All our manifolds will be smooth.
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That is, they form a presheaf on the category of manifolds. In fact, M can be reconstructed from
this presheaf by an application of the Yoneda Lemma. Thus, the manifold M and, equivalently, the
presheaf M contain all information about smooth families of points in M . /

From the point of view of moduli problems, this is a (if not ‘the’) perfect-world example and
even almost tautological, but it illustrates well the idea of families over parameter spaces and of their
interplay as we change the parameter space.

However, we would like a more robust and general theory of deformations; for instance, in Exam-
ple 1.1 we cannot treat deformations of structures that make no reference to smoothness or a topology.

Example 1.2 How should we treat deformations of an algebra (A,µ) over a field k, without assuming
that the underlying vector space A is topological and that µ is continuous? Here one understands a
deformation of the algebra structure as a polynomial (or power series) µε = µ0 + εµ1 + ε2µ2 + · · · with
coefficients in Modk(A⊗A,A) such that, for each λ ∈ k, the map µλ makes A into an algebra. /

Observe that here we have the following features:

(1) an arbitrary field k (in Example 1.1 we are forced to use k = R or k = C) and
(2) a degree of deformation given by the highest power of t.

Question 1.3 Is there a way to treat the deformations/families of Example 1.1 and of Example 1.2
on the same footing? /

We cannot describe the algebraic deformations in Example 1.2 in a smooth way, but we can describe
the geometric deformations in Example 1.1 in an algebraic way: to that end, we enlarge our category
of manifolds to a category of (locally) ringed spaces. These are pairs M = (|M |,OM ) of a topological
space |M | and a sheaf OM of (local) rings on M . A morphism (|M |,OM ) → (|N |,ON ) is a pair
(f, φ) of a continuous map f : |M | → |N | and a morphism of sheaves of (local) rings φ : ON → f∗OM .
Any smooth manifold M is a locally ringed space via its underlying topological space and its sheaf of
smooth R-valued functions.

Example 1.4 Consider the locally ringed space D1 = (∗,R[ε]/ε2). It can be though of as the point
∗ ∈ Top with an additional, infinitesimal direction. This is justified by the observation that, for a
manifold M , a map D1 →M is equivalently a pair (x, v), where x : ∗ →M is a point in M and where
v : C∞(M,R) → R[ε]/ε2 is a morphism of rings. For f ∈ C∞(M,R), we have that v factors through
the germ of OM at x and that

v(f) = v0(f) + ε v1(f) .

The fact that v is a morphism of rings implies that

(1) v0 is a ring homomorphism, and hence2 given by evaluation at x ∈M , and

(2) v1 is an R-valued derivation, and hence equivalently a tangent vector at x ∈M .

In other words, the data (x, v) : D1 →M corresponds uniquely to a tangent vector V ∈ TxM . /

Thus, a morphism D1 →M is a first-order deformation of a point x ∈M . Morphisms (∗,R[ε]/εn)→
M can be understood as higher-order deformations. Generally, morphisms of this type can be under-
stood as infinitesimal deformations of points in M . In fact, this interpretation makes sense for all
ringed spaces (∗, A), where A ∈ ArtR is a finite-dimensional local R-algebra with maximal ideal mA

2ker(v0) is a prime ideal since R is a field, and prime ideals in C∞(M,R) correspond to points in M . This point must
then be x since v0 factors through the germ at x.
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and residue field A/mA
∼= R. These algebras satisfy3 (mA)n = {0} for n� 0, so that we can view the

space (∗, A) as a point with infinitesimal directions controlled by mA.

Morphisms (∗, A)→ (∗, B) are in bijection with ring morphisms B → A in the opposite direction.
Thus, the functoriality of our presheaf M from Example 1.1 changes: when we first extend the functor
to ringed spaces and then restrict to spaces of the form (∗, A), where A ∈ ArtR, we are left with a
functor

M : ArtR → Set .

Definition 1.5 A functor X : Artk → Set is called a Set-valued deformation functor (over k), or a
classical moduli problem over k if it satisfies

(1) for every surjective morphisms A′ → A← A′′ the resulting morphism

X
(
A′ ×

A
A′′) −→ X(A′) ×

X(A)
X(A′′)

is surjective, and
(2) if A′ = k[ε]/ε2 and A = k, the morphism is bijective.

Deformation functors allow to study (infinitesimal) deformations of a wide variety of objects; for
instance, this approach unifies Example 1.1 and Example 1.2. We will see motivating examples of
such functors in detail in both a purely algebraic framework in Talk 2 and in a geometric setting in
Talk 3. In both cases, we will see that deformations are related to cohomology theories (Hochschild and
Kodaira-Spencer). The (classical) formal study of deformation functors will be the subject of Talk 4.

2 The tangent space and the presence of dglas

Definition 2.1 Let F : Artk → Set be a classical moduli problem over k. Motivated by Example 1.4
we call the value TF := F (k[ε]/ε2) ∈ Set the tangent space of the moduli problem F .

Example 2.2 An example with both algebraic and geometric flavour is the following. Consider the
functor

SL2 : Ring→ Set , SL2(R) :=

{(
a b

c d

)
∈M(2×2, R)

∣∣∣∣∣ ad− bc = 1

}
.

This is not yet a deformation functor; heuristically, the functor SL2 is defined on all rings (hence on
schemes, i.e. ‘extended/non-infinitesimal’ parameter spaces), rather than just Artinian algebras over a
field k (which we view as infinitesimal test spaces, see Example 1.4). Deformations are taken around
a chosen point, according to the ideas from Section 1. A point in SL2 is a pair x = (k, η) of a field k
and an element η ∈ SL2(k), which we take to be the unit 2×2-matrix 1 over k. We obtain a functor

SL2,x : Artk → Set , SL2,x = {1} ×
SL2(k)

SL2(−) ,

SL2,x(A) =

{(
a b

c d

)
∈M(2×2, A)

∣∣∣∣∣ ad− bc = 1, p(a) = p(d) = 1, p(b) = p(c) = 0

}
.

Its tangent space reads as

TSL2,x = SL2,x(D1) =

{(
1 + rε sε

uε 1 + vε

)
∈M(2×2,D1)

∣∣∣∣∣ 1 = (1 + rε)(1 + vε) = 1 + (r + v)ε

}
3This is a consequence of the Nakayama Lemma.
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=

{(
r s

u v

)
∈M(2×2, k)

∣∣∣∣∣ r + v = 0

}
∼= sl2(k) .

This is the vector space we expect to obtain as the tangent space to SL2 at the unit element; for
instance, for k = R it is the vector space underlying the Lie algebra of the Lie group SL2(R). /

We will see that by the axioms of a moduli problem, TX comes endowed with the structure of a
k-vector space. For deformations of a k-algebra A it turns out that TX is related to the Hochschild
cohomology of A. For deformations of complex structures on a manifold/variety M , the tangent space
TX is related to the cohomology of the Gerstenhaber complex of polyvector fields on M . This will
be shown in Talk 2 and Talk 3. An important observation is that the cochain complexes underlying
both these cohomologies carry additional structure: they form differential graded Lie algebras (dglas).
This structure turns out to be abundant in commutative deformation problems; why will become clear
when we follow Lurie’s treatment of those deformation problems.

3 Moduli problems from differential graded Lie algebras

Motivated by the above examples, we start to investigate dglas in more detail; this will be the main
subject of Talk 5.

Definition 3.1 Let k be a field of characteristic zero. A differential graded Lie algebra over k is a
graded k-vector space L =

⊕
i∈Z L

i together with a linear map d: L → L[−1] and [−,−] : L ⊗ L → L

such that

(1) (L,d) is a cochain complex,

(2) the bracket [−,−] is graded antisymmetric, [a, b] = −(−1)|a||b|[b, a],

(3) [−,−] satisfies the (graded) Jacobi identity [a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [c, a]],

(4) d is a (graded) derivation for [−,−]: d[a, b] = [da, b] + (−1)|b|[a,db].

Definition 3.2 Let (L,d, [−,−]) be a dgla over k. An element a ∈ L1 is called a Maurer-Cartan
element of L if it satisfies

da =
1

2
[a, a] = 0 .

We denote the set of Maurer-Cartan elements of L by MC(L).

Lemma 3.3 Let (L,dL, [−,−]) be a dgla over k, and let (C,dC) be a (not necessarily unital) com-
mutative differential graded algebra (cdga) over k. Then, there is a new dgla L ⊗ C, with underlying
graded vector space given by

(L⊗ C)n =
⊕

i,j∈Z, i+j=n
Li ⊗ Cj ,

differential given by
d(`⊗ c) = dL`⊗ c+ (−1)|`|`⊗ dCc

on pure vectors, and with bracket defined by

[`⊗ c, `′ ⊗ c′] = [`, `′]⊗ cc′ .
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As it turns out, every dgla gives rise to a deformation functor via its theory of Maurer-Cartan
elements. One idea to obtain a functor Artk → Set from (L,d, [−,−]) is to set

F̃ (L)(A) := MC(L⊗mA) = Spank{`⊗ r | ` ∈ L1, r ∈ mA, d`⊗ r +
1

2
[`, `]⊗ r2 = 0} .

We would like to see whether this gives a sensible tangent space; thus, we compute

T
F̃ (L)

= F̃ (L)(D1) = MC(L⊗ kε) ∼= {` ∈ L1 |d` = 0} = Z1(L) .

This does not quite match our expectations, since in the examples before, the tangent space was always
the first cohomology group, rather than the vector space of cocycles. In order to obtain H1(L) as the
tangent space of a moduli problem F (L) associated to L, we need to have elements ` ∈ L0 of degree
zero appear in the computation of TF (L).

Now consider the cdga Ω•(∆1), whose underlying vector space is k[t]⊕ k[t]dt[1], i.e. the element dt

has degree 1. Its differential reads as

dΩ(p0(t) + p1(t)dt) = ∂tp0(t)dt .

Consider the dgla

L⊗ Ω•(∆1) ∼= {`0(t)⊗ `1(t)dt | `0, `1 ∈ L[t] = L⊗k k[t]} .

We may write the differential as

d(`0(t)⊗ `1(t)dt) = dL`0(t) +
(
− ∂t`0(t) + dL`1(t)

)
dt .

Here, dL acts only on the coefficients of polynomials, and the minus sign stems from the fact that we
need to move the differential past the L-factors in order to differentiate the polynomial factors.

Observe each λ ∈ k induces a morphism

eλ : F̃ (L⊗ Ω•(∆1)) −→ F̃ (L) ,

given by evaluating the polynomial `0 at λ.

Let us have a look at the tangent space of F̃ (L⊗ Ω•(∆1)): we have

T
F̃ (L⊗Ω•(∆1))

= MC
(
L⊗ Ω•(∆1)⊗ kε

)
=
{
`0(t) + `1(t)dt

∣∣ `0 ∈ L1[t], `1 ∈ L0[t], 0 = d
(
`0(t) + `1(t)dt

)}
=
{
`0(t) + `1(t)dt

∣∣ `0 ∈ L1[t], `1 ∈ L0[t], dL`0(t) = 0, dL`1(t) = ∂t`0(t)
}
.

Proposition 3.4 We have
T
F̃ (L)

(e1 − e0)(T
F̃ (L⊗Ω•(∆1))

)
= H1(L) .

Proof. We already know that T
F̃ (L)

= Z1(L). We thus need to show that im(e1−e0) = im(d) = B1(L).
First, we prove the inclusion im(e1 − e0) ⊃ im(d). To see this, let ` ∈ L0, and consider the element
dL` t+ `dt ∈ L⊗Ω•(∆1). By construction, it gives rise to an element in T

F̃ (L⊗Ω•(∆1))
, and it satisfies

(e1 − e0)(dL` t+ `dt) = dL` .
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To show that im(e1 − e0) ⊂ im(d), we use a Poincaré Lemma argument: let `(t) = `0(t) + `1(t) dt

lie in the tangent space of F̃ (L⊗ Ω•(∆1)). We compute

dL

(∫ 1

0
`1(t)dt

)
=

∫ 1

0
dL`1(t)dt

=

∫ 1

0
∂t`0(t)dt

= `0(1)− `0(0) .

This proves the claim.

A good candidate for a deformation problem associated to L would thus be the quotient

F (L) = F̃ (L)/∼ ,

where ∼ is the equivalence relation generated by ` ∼ `′ in F̃ (L)(A) if there exists an element ̂̀ ∈
F̃ (L ⊗ Ω•(∆1))(A) such that `′ = e1(̂̀) and ` = e0(̂̀). For more details, we refer to [Man99]. This
leads us to two crucial observations:

Remark 3.5 By construction, the values of F (L) look like the connected components π0(XL) of a
simplicial set XL. As we know, the standard simplices ∆• form a cosimplicial object in topological
spaces, or even in manifolds with corners (or one can even consider extended affine versions to obtain
nice varieties or manifolds). Taking cdgas Ω• on them, one would hope to obtain a simplicial cdga. This
is indeed true, and it implies that one can promote F̃ (L) to a functor valued in Set∆ [Hin01, Get09]. /

Remark 3.6 Despite all this work, we are currently only using elements of L≤1 in the formation of
then tangent space associated to L, even after extending Ω•(∆1) to Ω•(∆•). The reason is that the
Maurer-Cartan equation makes sense only for elements of degree −1, and the elements of degree n of
the relevant dgla L⊗ Ω•(M)⊗ kε (for any M) are spanned by elements of the form

` =
∑
i∈N0

`i ⊗ ωi ⊗ ε ,

where |ωi| = i and, consequently, |`i| = n− i.
The solution to this is as simple as it is powerful: we observe that everything changes if we give ε

itself a degree. Then elements of degree n suddenly become

` =
∑
i∈N0

`i ⊗ ωi ⊗ ε ,

where |ωi| = i and, consequently, |`i| = n+|ε|−i. Hence, the highest degree of L-factors is |`0| = 1−|ε|,
and the exact same computations as we have done above go through analogously and yield

F̃ (L)(k ⊕ k[ε]/ε2)

(e1 − e0)
(
F̃ (L⊗ Ω•(∆1))(k ⊕ k[ε]/ε2)

) ∼= H1−|ε|(L) .

Thus, allowing differential graded Artin k-algebras as the domain of our deformation functors, we
suddenly detect the entire cohomology of L. /
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4 Derived formal moduli problems

Motivated by Remark 3.5 and Remark 3.5 we extend the domain and codomain of our moduli problems.
Following Lurie [Lur10, Lur11], we work in an ∞-categorical framework and enlarge the ∞-category
of cochain complexes of k-modules (cdgas over k) to the ∞-category Modk of k-module spectra (the
∞-category CAlgk of E∞-objects in Modk). The analogue of Art is denoted CAlgk,sm, and is developed
in detail in [Lur10, Lur11]. We write k ⊕ k[n] for the square-zero extension of a field (or ring) k by a
parameter ε of degree n. Let S denote the ∞-category of spaces.

Definition 4.1 [Lur10, Def. 4.6] Let k be a field. A formal moduli problem over k is a functor
X : CAlgk,sm → S satisfying the following properties:

(1) X(k) ' ∗.
(2) If A′ → A← A′′ are morphisms in CAlgk,sm such that the induced morphisms π0A

′ → π0A← π0A
′′

are surjective, then the canonical morphism

X
(
A′ ×

A
A′′) −→ X(A′) ×

X(A)
X(A′′)

is a homotopy equivalence.

This defines an ∞-category FMPk.

It follows that if X ∈ FMPk, then π0X is a classical moduli problem (Def. 1.5). One defines the
tangent space of X ∈ FMPk as TX(0) = X(k ⊕ k[0]). A crucial observation is that TX(0) is part of a
spectrum TX ∈Modk with TX(n) = X(k ⊕ k[n]).

The main objective of this seminar – apart from familiarising ourselves with the ideas of deformation
theory and learn lots of new mathematics – is to prove the following theorem, which gives a fully precise
formulation of our (vague) observation that dglas are strongly related to moduli problems over k (in
the commutative case).

Theorem 4.2 [Lurie, Pridham] Let k be a field of characteristic zero. There is an equivalence of
∞-categories Ψ: FMPk → Liedg

k . The underlying k-module spectrum of Ψ(X) is TX [−1].

The reason that TX [−1] should carry a Lie algebra structure can now be seen very elegantly [Lur10]:
Since X(k) ' ∗ and since every (unital) k-algebra A comes with a canonical morphism k → A, each
space X(A) is canonically pointed (up to contractible choices). Hence, it makes sense to form the new
moduli problem ΩX = Ω◦X, where Ω: S∗ → S∗ is the based loop space functor. One can now observe
that there is an equivalence

TΩX ' TX [−1] .

Since ΩX is valued in group-like loop spaces, we should expect its tangent space to carry a Lie algebra
structure; compare Example 2.2.

In fact, in [Lur11] Lurie deduces Theorem 4.2 after developing a very general framework for de-
formation problems. After a transitional Talk 6, the Talks 7–10 will survey this general theory of
deformations. (Talk 9 is a small aside and covers the theory of ∞-toposes following [Lur09, Ch. 6],
which is partially used in the proof of 4.2.) In Talks 11 and 12 we will specialise to deformation
problems in the commutative world and prove Theorem 4.2 as an application of the general formalism
we learnt. The key concept here is that of Koszul duality, which relates pairs of algebraic structures
– for example, it relates commutative algebras and Lie algebras. The final talks will deal with further
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applications of the general formalism, for instance in the non-commutative world of En-algebras for
n <∞.
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