Deformations of Associative Algebras

Xinyang Liu

October 25, 2019

Let k be an algebraically closed field of characteristic zero and A a vector space over k equipped with an associative multiplication $m : A \otimes_k A \to A$. For simplicity, \otimes_k and Hom_k(-, -) are written as \otimes and Hom(-,-), respectively, and $A^{\otimes n}$ means $A \otimes \cdots \otimes A$ n copies .

1 First-order deformations

Definition 1.1. A first-order deformation of (A, m) is an associative and $k[t]/t^2$ -bilinear multiplication

$$
F: A \otimes k[t]/t^2 \times A \otimes k[t]/t^2 \to A \otimes k[t]/t^2
$$

of the form $F = m + tf$, $f \in Hom(A^{\otimes 2}, A)$.

The multiplication F is associative if, for any $a, b, c \in A$, the equation

$$
F(F(a,b),c) = F(a,F(b,c))
$$

holds. Expanding both sides and collecting the coefficient of t yields the equation

$$
f(ab, c) + f(a, b)c = f(a, bc) + af(b, c)
$$
\n(1)

where $ab := m(a, b)$.

Definition 1.2. Let F_1, F_2 be first-order deformations of m. For any $a \in A$, $g \in Hom(A, A)$, we define an automorphism T of $A \otimes k[t]/t^2$ as $T(a) = a + tg(a)$. First-order deformations F_1 and F_2 are called equivalent if there exists $g \in Hom(A, A)$ such that, for any $a, b \in A$, the equation

$$
F_1(a,b) = T(F_2(T^{-1}(a), T^{-1}(b)))
$$
\n(2)

holds.

From [2,](#page-1-0) if $F_1 = m + tf_1$ is equivalent to $F_2 = m + tf_2$, then there exists $g \in \text{Hom}(A, A)$ such that, for any $a, b \in A$, the equation

$$
f_1(a,b) - f_2(a,b) = ag(b) - g(ab) + g(a)b
$$
\n(3)

holds.

Observe that equivalence classes of first-order deformations of (A, m) can be expressed as the set of morphisms $f \in \text{Hom}(A^{\otimes 2}, A)$ satisfying [\(1\)](#page-0-0) modulo the equivalence relation [\(3\)](#page-1-1). Furthermore, we can describe first-order deformations in terms of the second Hochschild cohomology.

Definition 1.3. Hochschild cohomology $HH^*(A)$ of a k-algebra A is defined as the cohomology of the cochain complex $C^*(A, A)$

$$
0 \longrightarrow A \longrightarrow Hom(A, A) \longrightarrow Hom(A \otimes A, A) \longrightarrow \cdots
$$

with $C^n(A) := Hom(A^{\otimes n}, A)$ for $n \geq 0$ and differential $d : Hom(A^{\otimes n}, A) \to Hom(A^{\otimes n+1}, A)$, $d = \sum_{i=0}^{n+1} (-1)^i \partial^i$ where

$$
\partial^{i} f(a_{0},...,a_{n}) = \begin{cases}\n a_{0} f(a_{1},...,a_{n}) & i = 0 \\
f(a_{0},...,a_{i-1}a_{i},...,a_{n}) & 0 < i \leq n \\
f(a_{0},...,a_{n-1})a_{n} & i = n+1\n\end{cases}
$$

Remark. $C^0(A, A) = \text{Hom}_k(k, A) \cong A$

Example 1.4. Compute $HH^0(A)$, $HH^1(A)$ and $HH^2(A)$.

For the differential $d: C^0(A, A) \to C^1(A, A)$, an element $b \in A$ is a 0-cocycle if, for any $a \in A$, $db(a) = ab - ba = 0$. Hence

$$
H^{0}(A) = \{ b \in A \mid ab = ba \; \forall a \in A \} = Z(A).
$$

For a cocycle $g \in C^1(A, A)$, $dg = 0$ is equivalent to $g(ab) = ag(b) + g(a)b$ for any $a, b \in A$. Such a function is called a k-*derivation* and the collection of all k-derivations is denoted

by $Der(A)$. If $h \in C^1(A, A)$ is a coboundary, then there exists $b \in A$ such that, for any $a \in A$, we have $h(a) = ab - ba$. This type of functions are called *inner derivations*, denote by $InnDer(A)$. Therefore,

$$
HH1(A) = Der(A)/InnDer(A).
$$

Let $f \in C^2(A, A)$ be a cocycle. Then, for any $a, b, c \in A$, we have $df(a, b, c) = af(b, c)$ $f(ab, c) + f(a, bc) + f(a, b)c = 0$, which is equivalent to [\(1\)](#page-0-0). Let $f' \in C²(A, A)$ be a coboundary, then there exists $g \in C^1(A, A)$ such that, for any $a, b \in A$, we have $f'(a, b) = dg(a, b)$ $ag(b) - g(a)b$. This relation is the same as [\(3\)](#page-1-1). Therefore, we have the following theorem.

Theorem 1.5. There is a bijection

$$
\left\{\text{first-order deformations of } (A, m)\right\}/\sim \quad \simeq HH^2(A, A)
$$

We observe that first-order deformations can be classified by $HH^2(A, A)$, and our next goal is to understand the relation between higher order deformations and the Hochschild cochain complex.

2 Higher-order deformations

Definition 2.1. A second-order deformation of (A, m) is an associative and $k[t]/t^3$ -bilinear multiplication

 $F: A \otimes k[t]/t^3 \times A \otimes k[t]/t^3 \rightarrow A \otimes k[t]/t^3$

of the form $F = m + tf_1 + t^2f_2$, with $f_1, f_2 \in Hom(A^{\otimes 2}, A)$.

We now discuss the question of whether a first-order deformation can be extended to a second-order deformation.

2.1 Extension to second-order

Let $f_1 \in C^2(A, A)$ be a cocyle, so that $F = m + tf_1$ is a first-order deformation. We want to find a $f_2 \in \text{Hom}(A^{\otimes 2}, A)$ to extend F to $\tilde{F} = m + tf_1 + t^2f_2$ such that \tilde{F} is associative. The associativity condition yields two equations corresponding to the coefficients of t and t^2 , respectively: for any $a, b, c \in A$,

$$
f_1(ab, c) + f_1(a, b)c = f_1(a, bc) + af_1(b, c),
$$
\n(4)

$$
f_1(a, f_1(b, c)) - f_1(f_1(a, b), c) = f_2(ab, c) + f_2(a, b)c - f_2(a, bc) - af_2(b, c).
$$
 (5)

Observe that [\(4\)](#page-3-0) automatically holds since f_1 is a 2-cocycle, and the right-hand side of [\(5\)](#page-3-1) is a 3-coboundary in Hom $(A^{\otimes 3}, A)$. In order to describe the left-hand side of (5), we introduce Gerstenhaber bracket which was first defined by Murray Gerstenhaber [\[Ger63\]](#page-9-0). As we will now explain, this bracket defines a differential graded Lie algebra structure on the Hochschild cochain complex.

2.2 DGLA and Gerstenhaber bracket

Definition 2.2. A differential graded Lie algebra (DGLA) (L, [,], d) is the data of a \mathbb{Z} graded vector space $L = \bigoplus_{i \in \mathbb{Z}} L^i$ together with a bilinear bracket $[,] : L \times L \rightarrow L$ and a linear map $d: L \to L$ satisfying the following conditions:

- (1) [,] is a homogeneous skew-symmetric, i.e., $[L^i, L^j] \subset L^{i+j}$ and $[a, b] + (-1)^{|a||b|} [b, a] = 0$ where $|a|$ is the degree of a.
- (2) Every a, b, c homogeneous satisfy the Jacobi identity

$$
[a,[b,c]] = [[a,b],c] + (-1)^{|a||b|}[b,[a,c]]
$$

(3) $d(L^i) \subset L^{i+1}, d^2 = 0$ and $d[a, b] = [da, b] + (-1)^{|a|}[a, db]$ the map d is called the differential of L.

We define $\Gamma := \bigoplus_{i \in \mathbb{Z}} \Gamma^i$ to be the graded vector space with $\Gamma^n := \text{Hom}(A^{\otimes n+1}, A)$, for $n \geq -1$, and $\Gamma^n = 0$ for $n < -1$.

Definition 2.3. (i) For $f \in \Gamma^m(A, A)$, $g \in \Gamma^n$, $m \geq 0$, let us denote the element $f \circ_i g \in$ Γ^{m+n} , for $i = 1, \ldots, m+1$, defined by

$$
f \circ_i g(a_1 \otimes \cdots \otimes a_{m+n+1-1})
$$

= $f(a_0 \otimes \cdots \otimes a_{i-1} \otimes g(a_i \otimes \cdots \otimes a_{i+n}) \otimes a_{i+n+1} \otimes \cdots \otimes a_{m+n+1})$
 $i = 1, 2, ..., m+1$

(ii) For every m, n, we define a homomorphism \circ called circle product sending $\Gamma^m(A, A) \otimes$ $\Gamma^{n}(A, A)$ into Γ^{m+n} by setting for $f \in \Gamma^{m}(A, A)$, $g \in \Gamma^{n}(A, A)$, with $m \geq 0$,

$$
f \circ g = \sum_{i=1}^{m+1} (-1)^{(i+1)n} f \circ_i g \tag{6}
$$

and $f \circ g = 0$, for $m < 0$

Note that for $m = n = 0$, the operation is in fact the commutator. Explicitly,

$$
f \circ g = \begin{cases} f \circ_1 g + f \circ_2 g + \dots + f \circ_m g & \text{if n even} \\ f \circ_1 g - f \circ_2 g + \dots + (-1)^{m+1} f \circ_m g & \text{if n odd} \end{cases}
$$

Remark. $df = -[f, m]$, for $f \in \Gamma^m$.

Proposition 2.4. For elements $f \in \Gamma^m$ and $\Gamma \in A^n$, we define the Gerstenhaber bracket

$$
[f,g] = f \circ g - (-1)^{mn} g \circ f \tag{7}
$$

then $(\Gamma, \lceil, \rceil, \delta)$ where $\delta := -d$ for is a differential graded Lie algebra.

Proof. The skew-symmetry follows directly from equation [\(6\)](#page-4-0). For the verification of the Ja-cobi identity, we refer the reader to original paper [\[Ger63,](#page-9-0) Theorem $1\&2$]. The compatibility of differential follows from the fact that the circle product we defined satisfies the graded Leibnitz rule. \Box

Corolary 2.5. If f an n-cocycle in Γ^n , then $[f, f]$ is a 2n-cocycle.

Let $m = n = 1$, for any $f \in \Gamma^1$, $a, b, c \in A$, we have

$$
[f, f](a, b, c) = 2f \circ f(a, b, c) = 2(f(f(a, b), c) - f(a, f(b, c))).
$$
\n(8)

Combing it with equation [\(4\)](#page-3-0), we get the formula

$$
\frac{1}{2}[f_1, f_1] = df_2.
$$
\n(9)

From Corollary [2.5,](#page-4-1) we see that the left-hand side of this equation is a cocycle in Γ^2 , but the right-hand side is a coboundary in Γ^2 . Equation [\(9\)](#page-4-2) says that to find f_2 , making $m + tf_1 + t^2f_2$ a second-order deformation, the left hand side has to be zero in $HH^3(A, A)$, and therefore we obtain the following theorem.

Theorem 2.6. Let $F = m + tf_1$ be a first-order deformation. The class in $HH^3(A, A)$ defined by $[f_1, f_1]$ is the obstruction to extend the first-order deformation $F = m + tf_1$ to a second-order deformation.

In particular, if $HH^3(A, A) = 0$, then any first-order deformation can be extended. However, the vanishing of $HH^3(A, A)$ is not a necessary condition for unobstructedness.

Example 2.7. Let $A = k[x, y, z]/(xy - z, x^2, y^2, z^2)$. Then A is a 4-dimensional algebra and we choose a basis $(1, x, y, z)$. Consider two cocycles $f, g \in \Gamma^1$. Let $f(y, x) = z$ and zero for other basis vector, and $g(x, x) = y$ and zero for the other basis vector. So, $[f, f] = 0$ and $[g, g] = 0$, and we obtain two unobstructed first-order deformations $m + tf$, $m + tg$. But $f + g$ is also a cocyle in Γ^1 , and defines a obstructed first-order deformation $m + t(f + g)$. $[f+g, f+g](x, x, x) = 2f \circ g(x, x, x) = z$, and for any $h \in \Gamma^1$, $dh(x, x, x) = xh(x, x)$ $h(x^2, x) + h(x, x^2) - h(x, x)x = 0$ since A is a commutative algebra. Hence $[f + g, f + g] \neq 0$ in $HH^3(A, A)$.

In general, given a deformation over $k[t]/t^{n+1}$, we want to extent it to be a deformation over $k[t]/t^{n+2}$. By expanding and collecting coefficient of $t^k, k = 0, 1, ..., n+1$, the associativity condition implies that, for any $a, b, c \in A$, the equation

$$
\sum_{i+j=0}^{k} f_j(a, f_i(b, c)) = \sum_{i+j=0}^{k} f_j(f_i(a, b), c)
$$
\n(10)

holds, where $f_0 = m$ is the multiplication of A. For $k = n+1$, equation [\(10\)](#page-5-0) can be rewritten as

$$
\frac{1}{2} \sum_{\substack{i+j=1 \ i,j \neq 0}}^{n+1} [f_j, f_i](a, b, c) = -\delta f_{n+1}(a, b, c)
$$
\n(11)

by dg-Lie structure. If the left hand side of [\(11\)](#page-5-1) is a cocycle, then it is the obstruction class in $HH^3(A, A)$ to extend the nth-order deformation $m + tf_1 + \cdots + t^n f_n$ to a $(n+1)$ th-order deformation.

To prove the claim, we need to use equation [\(10\)](#page-5-0) for $k = 1, \ldots, n$ which yields

$$
\frac{1}{2} \sum_{\substack{i+j=k \ i,j\neq k}} [f_j, f_i] = -\delta f_k, \quad k = 1, \dots, n
$$

Thus, by applying the graded Lebnitz rule,

$$
\sum_{j=1}^{n} \delta[f_j, f_{n+1-j}] = \sum_{j=1}^{n} [\delta f_j, f_{n+1-k}] - [f_j, \delta f_{n+1-j}] = \sum_{\substack{i+j+k=n+1 \ i,j,k \neq 0}} [f_i, [f_k, f_j]] = 0,
$$

and hence a cocycle.

Definition 2.8. $HH^3(A, A)$ is called the obstruction space of A.

We conclude by noticing that any finite-order deformation problem of an associative algebra can be interpreted by associate DGLA. Our next goal is to find the connection between formal deformations of (A, m) and the DGLA $(\Gamma, [,], \delta)$.

3 Formal deformations

Define $\widetilde{A}:=A\otimes k[[t]]$

Definition 3.1. A one-parameter formal deformation of (A, m) is an associative, $k[[t]]$ bilinear multiplication

$$
F: \widetilde{A} \times \widetilde{A} \to \widetilde{A}
$$

of the form $F = m + tf_1 + t^2f_2 + \cdots$ with $f_i \in Hom(A^{\otimes 2}, A)$.

Denote $f := tf_1 + t^2 f_2 + \cdots$.

Note that $\tilde{\Gamma} := \Gamma \otimes t \cdot k[[t]]$ is a DGLA, with elements of degree n expressed as $t\psi_1 +$ $t^2\psi_2 + \ldots, \psi_i \in \Gamma^n$. The dg-Lie structure of $\tilde{\Gamma}$ is obtained from Γ by extending [,] and δ k[[t]]-linearly. Hence, $\widetilde{\Gamma}$ inherits the relation between [,] and δ from Γ such that

$$
\delta = [-, m].
$$

Proposition 3.2. Let $F = m + f$, $f \in \tilde{\Gamma}^1$. Then F is a formal deformation of m if and only if f satisfies the Maurer-Cartan equation

$$
\delta f + \frac{1}{2}[f, f] = 0\tag{12}
$$

Proof. $[m, m] = 0$ since m is associative. The associativity condition of F yields

$$
F(a, F(b, c)) = F(F(a, b), c)
$$

\n
$$
\iff \sum_{i+j=n} f_j(a, f_i(b, c)) = \sum_{i+j=n} f_j(f_i(a, b), c), n \ge 1
$$

\n
$$
\iff \sum_{\substack{i+j=n \ i,j \ne 0}} f_j(a, f_i(b, c)) - f_j(f_i(a, b), c) = f_n(a, b)c + f_n(ab, c) - af_n(b, c) - f_n(a, bc), n \ge 1
$$

\n
$$
\iff \frac{1}{2} \sum_{\substack{i+j=n \ i,j \ne 0}} [f_j \circ f_i] + \delta f_n = 0, n \ge 1
$$

\n
$$
\iff \frac{1}{2} [f, f] + \delta f = 0
$$

the last equivalence is obtained by combing all the equations for $n = 1, 2, \ldots$, and bringing t back, the result follows. \Box

Denote by $MC(\widetilde{\Gamma})$ solutions of Maurer-Cartan equation of the DGLA $(\widetilde{\Gamma},[,],\delta)$, i.e.,

$$
MC(\widetilde{\Gamma}) := \left\{ f \in \widetilde{\Gamma}^1 \, | \delta f + \frac{1}{2}[f, f] = 0 \right\}.
$$

Definition 3.3. For every $x \in \Gamma^1$, define the automorphism of \overline{A}

$$
\psi = \exp(x) = \exp(x) = 1 + x + \frac{x^2}{2!} + \cdots
$$

Formal deformations $F = m + f$ and $F' = m + f'$ are called equivalent if there exists a $x \in \tilde{\Gamma}^0$ such that, for any $a, b \in A$, the equation

$$
(m + f')(a, b) = \psi((m + f)(\psi^{-1}a, \psi^{-1}b))
$$
\n(13)

holds.

Note that $\Gamma^0 \otimes k[[t]]$ is a group with normal multiplication. If we equip $\widetilde{\Gamma}^0$ with the multiplication law given by the Baker-Campbell-Hausdorff formula,

$$
x \cdot y = x + y + \frac{1}{2}[x, y] + \frac{1}{12}([x, [x, y]] + [y, [y, x]]) + \dots,
$$

then the exp map is a group homomorphism sending Γ^0 to $\Gamma^0 \otimes k[[t]]$ such that $\exp(x \cdot y) =$ $\exp(x) \exp(y)$. The inverse of the map $\exp: \tilde{\Gamma}^0 \to \exp(\tilde{\Gamma}^0)$ is the homomorphism

$$
\log :\exp (\widetilde{\Gamma }^{0})\rightarrow \widetilde{\Gamma }^{0},
$$

defined as

$$
1 + x \mapsto x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots,
$$

and hence $(\widetilde{\Gamma}^0, \cdot) \cong \exp(\widetilde{\Gamma}^0)$.

Definition 3.4. The group $exp(\tilde{\Gamma}^0)$ is called gauge group and denoted by $G(\tilde{\Gamma})$. The action of the group $G(\Gamma)$ on Γ^1 is defined by the formula, for any $x \in \Gamma^0$, $f \in \Gamma^1$,

$$
x \star f = f + [x, m + f] + \frac{1}{2!} [x, [x, m + f]] + \frac{1}{3!} [x, [x, [x, m + f]]] + \dots,
$$
 (14)

and this action is called gauge action. Elements f, f' in $\tilde{\Gamma}^1$ are called gauge equivalent if there exists $x \in \tilde{\Gamma}^0$ such that $f' = x * f$.

Remark. Equation [\(14\)](#page-8-0) can be rewritten as a form without m ,

$$
x \star f = f + \delta x + [x + f] + \frac{1}{2!} \{ [x, \delta x] + [x, [x, f]] \} + \frac{1}{3!} \{ [x, [x, \delta x]] + [x, [x, [x, f]]] \} + \cdots, (15)
$$

by $\delta(x) = [m, x]$, so that this gauge action only depends on dg-Lie structure of Γ.

Given equivalent formal deformations $F = m + f$ and $F' = m + f'$, there exists $x \in \Gamma^0$ such that $F' = \psi F(\psi^{-1}, \psi^{-1})$, where $\psi = \exp(x)$. By expanding the equation, we obtain

$$
m + f' = \exp(x)(m + f)(\exp(-x), \exp(-x))
$$

= $(1 + x + \frac{x^2}{2!} + \dots)(m + f)(1 - x + \frac{x^2}{2!} - \dots, 1 - x + \frac{x^2}{2!} - \dots)$
= $m + f + \delta x + [x, f] + \frac{1}{2!} \{ [x, \delta x] + [x, [x, f]] \} + \dots = m + x \star f.$

So the gauge action can be obtained by expressing the right hand side of

$$
x \star f = \exp(x)(m+f)(\exp(-x), \exp(-x)) - m
$$

in terms of Lie bracket. Therefore, formal deformations $F = m+f$, $F' = m+f'$ are equivalent if and only if f, f' are gauge equivalent. Hence, we have the following theorem.

Theorem 3.5. Let A be an associative algebra. There is a bijection

{formal deformations of
$$
(A,m)
$$
} $/\sim \simeq MC(\widetilde{\Gamma})/G(\widetilde{\Gamma})$.

Remark. Solutions of Maurer-Cartan equation only depends on associate DGLA, and the action of gauge group $G(\widetilde{\Gamma})$ on $MC(\widetilde{\Gamma})$ only depends on dg-Lie structure of $\widetilde{\Gamma}$.

Every deformation problem of an associative algebra can be interpreted by constructing DGLA depending on given data. We only discussed DGLA whose differential has the form $\delta = [-, m]$, more generally, one may assume a nilpotent DGLA. For further study about DGLA and deformation theory, the reader can refer to [\[Man05\]](#page-9-1) and [\[DMZ07\]](#page-9-2).

References

- [Bel18] P. Belmans. Advanced topics in algebra, 2018. [https://pbelmans.ncag.info/](https://pbelmans.ncag.info/assets/hh-2018-notes.pdf) [assets/hh-2018-notes.pdf](https://pbelmans.ncag.info/assets/hh-2018-notes.pdf).
- [DMZ07] M. Doubek, M. Markl, and P. Zima. Deformation theory (lecture notes), 2007. <https://arxiv.org/abs/0705.3719>.
- [Fox93] T. F. Fox. An introduction to algebraic deformation theory. Journal of Pure and Applied Algebra, 84(1):17–41, jan 1993. [https://core.ac.uk/download/pdf/](https://core.ac.uk/download/pdf/82317236.pdf) [82317236.pdf](https://core.ac.uk/download/pdf/82317236.pdf).
- [Ger63] M. Gerstenhaber. The cohomology structure of an associative ring. Annals of Mathematics, 78(2):267–288, 1963.
- [Man05] M. Manetti. Deformation theory via differential graded Lie algebras, 2005. [https:](https://arxiv.org/pdf/math/0507284.pdf) [//arxiv.org/pdf/math/0507284.pdf](https://arxiv.org/pdf/math/0507284.pdf).
- [Sze99] B. Szendroi. The unbearable lightness of deformation theroy, 1999. [https://](https://people.maths.ox.ac.uk/szendroi/defth.pdf) people.maths.ox.ac.uk/szendroi/defth.pdf.