Chapter 1

Real and Complex Numbers

Basics

Notations
R Real numbers
C Complex numbers
QR Rational numbers

N ={1,2,...} positive integers (natural numbers)

7 Integers
We know that N C Z C Q C R C C. We write R, @, and Z, for the non-negative
real, rational, and integer numbers x > 0, respectively. The notions A C B and A C B
are equivalent. If we want to point out that B is strictly bigger than A we write A C B.
We use the following symbols

defining equation

~, = implication, “if ..., then ... ”
<= “if and only if”, equivalence

\4 for all

3 there exists

Let a < b fixed real numbers. We denote the intervals as follows

[a,b] :={r € R|a <z <b} closed interval

(a,b) :={z € R|a <z <b} open interval

[a,b) :={r € R|a <z < b} half-open interval

(a,b] :={r € R|a <z <b} half-open interval

[a,00) :={r € R|a <z} closed half-line

(a,00) :={r € R|a <z} open half-line

(—oo,b):={z € R|xz <b} closed half-line

(—oo0,b):={r € R|xz <b} open halfline

Mathematical Induction

Mathematical induction is a powerful method to prove theorems about natural numbers.
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2 1 Real and Complex Numbers

Theorem 1.1 (Principle of Mathematical Induction) Let ny € Z be an integer. To
prove a statement A(n) for all integers n > nyg it is sufficient to show:

(I) A(ng) is true.
(IT) For any n > ng: If A(n) is true, so is A(n + 1) (Induction step).

It is easy to see how the principle works: First, A(ng) is true. Apply (II) to n = ny we
obtain that A(ng + 1) is true. Successive application of (II) yields A(ng + 2), A(ny + 3)
are true and so on.

Let us recall the meaning of the sum sign > and the product sign [[. Suppose m < n

are integers, and ag, kK = m,...,n are real numbers. Then we set
n n
E Ak = Qp + Q1+ + - + Ay, Hak = Uplmt1 * - Q.
k=m k=m

In case m = n the sum and the product consist of one summand and one factor only,
respectively. In case n < m it is customary to set

n n
Z ar := 0, (empty sum) H ar :=1 (empty product).
k=m

k=m

The following rules are obvious: If m < n < p and d € Z are integers then

n P P n n+d
E ap + E ar = E ag, E ap = E QK_d (index Shift).
k=m k=n+1 k=m k=m k=m+d

We have for a € R, Zaz(n—m—i—l)a.

k=m

Example 1.1 (a) For all nonnegative integers n we have Z(Qk —1)=n%

k=1
Proof. We use induction over n. In case n = 0 we have an empty sum on the left hand

side (Ihs) and 02> = 0 on the right hand side (rhs). Hence, the statement is true for n = 0.
Suppose it is true for some fixed n. We shall prove it for n + 1. By the definition of the
sum and by induction hypothesis, Y ",_,(2k — 1) = n?, we have

n+1 n
dRE-1)=> @k-1)+2n+1)—-1 = n’+2n+1=(n+1)"
k=1 k—1 ind. hyp.
This proves the claim for n + 1. n

(b) For all positive integers n > 8 we have 2" > 3n?.
Proof. In case n = 8 we have

2" =28 =256 >192=23-64 =38 = 3n?



and the statement is true in this case.

Suppose it is true for some fixed n > 8, i.e. 2" > 3n? (induction hypothesis). We will
show that the statement is true for n + 1, i.e. 2"*' > 3(n + 1)? (induction assertion).
Note that n > 8 implies

n—1>7>2 = n—-12>4>2 = n’-2n—-1>0
= 3n*—2n—-1)>0 = 3n’—6n—-3>0 | +3n° +6n+3
= 6n*>3n’+6n+3 = 2-3n>3n*+2n+1)
= 2-3n>>3(n+ 1)~ (1.1)

By induction assumption, 2"*! = 2.2" > 2.3n? This together with (1.1) yields
2"+t > 3(n 4 1)2. Thus, we have shown the induction assertion. Hence the statement is
true for all positive integers n > 8. [

For a positive integer n € N we set
n
n!:= H k, read: “n factorial,” 0!=1!=1.
k=1

For non-negative integers n, k € Z, we define

n\ i n—i+1 nn-1)---(n—-k+1)
(k>_H ko k(k-1)---2-1

i=1

The numbers (Z) are called binomial coefficients since they appear in the binomial theo-

rem, see Proposition 1.4 below. It just follows from the definition that

<Z>=O for k > n,

n n! n
= ——— === f < < .
(k) Kl(n —&)! <n—k> or0sksn

Lemma 1.2 For 0 < k <n we have:

Proof. For k = n the formula is obvious. For 0 < k£ < n — 1 we have

(Z) * (kil) = k!(nni PIRECE 1)!(:!— k—1)!
_(k+Dnl+ (n—k)n! _ (n+1)! _(n+1>.

E+D)!n—k)!  (k+D)!(n—k! \k+1

We say that X is an n-set if X has exactly n elements. We write Card X = n (from
“cardinality”) to denote the number of elements in X.
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Lemma 1.3 The number of k-subsets of an n-set is (Z)

The Lemma in particular shows that (}) is always an integer (which is not obvious by its
definition).

Proof. We denote the number of k-subsets of an n set X,, by C. It is clear that Cf =
C} =1 since & is the only O-subset of X,, and X,, itself is the only n-subset of X,,. We
use induction over n. The case n = 1 is obvious since Cj = C] = ((1)) = (1) = 1. Suppose
that the claim is true for some fixed n. We will show the statement for the (n + 1)-set
X ={1,...,n+1} and all £ with 1 < k < n. The family of (k+1)-subsets of X splits into
two disjoint classes. In the first class A; every subset contains n + 1; in the second class

As, not. To form a subset in A; one has to choose another k elements out of {1,...,n}.

n
k

one has to choose k£ + 1 elements out of {1,...,n}. By induction assumption this number
is Card Ay, = CF, = (k+1) By Lemma 1. 2 we obtain

n+l _ AL n . n+1
Ciera = Card Ay + Card A4, = (k) * <k+ 1) - <k+ 1)

which proves the induction assertion. [

By induction assumption the number is Card A; = C} = ( ) To form a subset in A,

Proposition 1.4 (Binomial Theorem) Let z,y € R and n € N. Then we have

(z+y)" = 2": (Z) AT

k=0

Proof. We give a direct proof. Using the distributive law we find that each of the 2"
summands of product (z + y)® has the form z" % y* for some k = 0,...,n. We number
the n factors as (x +y)" = fi- fo - fu, i = fo=+-+= fn = +y. Let us count how
often the summand 2™ * y* appears. We have to choose k factors y out of the n factors
fi,---, fn- The remaining n — k factors must be xz. This gives a 1-1-correspondence
between the k-subsets of {fi,..., fo} and the different summands of the form z"~* y¥.

Hence, by Lemma 1.3 their number is C}} = (Z) This proves the proposition. [

Q 1. Prove that for x # 1 and n € N we have

n+1

11—z
Zm 11—z

S0 e

Q 2. Prove that
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Q 3. Prove that

n n

Y B =nn+1)2n+1)/6, > K =n*(n+1)°/4.

k=1 k=1

Q 4. Let r be a positive integer. Prove that there exist rational numbers a,1, a9, ... a0,
such that for all n € N

n

1
SR = g+t ann.
k=1

1.1 Real Numbers

In this lecture course we assume the system of real numbers to be given.

A satisfactory discussion of the main concepts of analysis such as convergence, continuity,
differentiation and integration must be based on an accurately defined number concept.
An existence proof for the real numbers is given in [7, Appendix to Chapter 1]. The
author explicitly constructs the real numbers R starting from the rational numbers Q.
The aim of the following two sections is to formulate the axioms which are sufficient to
derive all properties and theorems of the real number system.

The rational numbers are inadequate for many purposes, both as a field and an ordered set.
For instance, there is no rational z with 22 = 2. This leads to the introduction of irrational
numbers which are often written as infinite decimal expansions and are considered to be
“approximated” by the corresponding finite decimals. Thus the sequence

1, 1.4, 1.41, 1.414, 1.4142, . ..

“tends to v/2.” But unless the irrational number v/2 has been clearly defined, the question
must arise: What is it that this sequence “tends to”?

This sort of question can be answered as soon as the so-called “real number system” is
constructed.

Example 1.2 We now show that the equation
7’ =2 (1.2)

is not satisfied by any rational number x. Suppose to the contrary that there were such
an z, we could write x = m/n with integers m and n, n # 0 that are not both even. Then
(1.2) implies

m? = 2n?. (1.3)

This shows that m? is even and hence m is even. Therefore m? is divisible by 4. It follows
that the right hand side of (1.3) is divisible by 4, so that n? is even, which implies that n
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is even. But this contradicts our choice of m and n. Hence (1.2) is impossible for rational
x.
Let us examine the situation a little more closely. Set

A={z€ Q. |2°<2} and B={zcQ,|2*>2}.

We shall show that A contains no largest element and B contains no smallest. That is
for every p € A we can find a rational ¢ € A with p < ¢ and for every p € B we can find
a rational ¢ € B such that ¢ < p.
Suppose that p is in A. We associate with p > 0 the rational number

2 — p? _ 2p+2

- = . 1.4
¢=p+ p+2 p+2 ( )

Then

Ap° +8p+4—2p" —8p—8  2(p* —2)
(p+2)? - (p+2)?7

If pisin A then 2 — p? > 0, (1.4) shows that ¢ > p, and (1.5) shows that ¢> < 2. If p is

in B then 2 < p?, (1.4) shows that ¢ < p, and (1.5) shows that ¢ > 2.
The purpose of this example has been to show that the system of rational numbers has

¢ —-2= (1.5)

certain gaps in spite of the fact that between any two rationals there is another: If r < s
then r < (r 4+ s)/2 < s. The real number system fills these gaps. This is the principal
reason for the fundamental role which it plays in analysis.

Q 5. If r, r # 0, is rational and z is irrational prove that r + x and rx are irrational!

Q 6. Prove that /12 is irrational!

We start with the brief discussion of the general concepts of ordered set and field.

1.1.1 Ordered Sets

Definition 1.1 Let S be a set. An order (or total order) on S is a relation, denoted
by <, with the following properties. Let x,y,z € S.

(i) One and only one of the following statements
<y, =y, Yy<o

is true.
(ii) x < y and y < z implies z < z  (transitivity of <).

In this case S is called an ordered set.

The statement x < y may be read as “x is less than 3” or “z precedes y”. It is convenient
to write y > x instead of x < y. The notation x < y indicates x < y or z = y. In other
words, z < y is the negation of z > y. For example, R is an ordered set if r < s is defined
to mean that s —r > 0 is a positive real number. Let

R*:= {(z,y) | z,y € R}
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be the set of ordered pairs of real numbers (Caution: We use the notation (a,b) for the
open interval as well as for ordered pairs!). Then R? becomes a ordered set defining

(z,y) < (2',y) <= (z <2’ or (z=2" and y<y')).

Definition 1.2 Suppose (S, <) is an ordered set, and £ C S. If there exists a § € S
such that x < g for all x € E, we say that E is bounded above, and call 5 an upper bound
of E. Lower bounds are defined in the same way with > in place of <.

If S is both bounded above and below, we say that S is bounded.

Example 1.3 (a) The intervals [a,b], (a,b], [a,b), (a,b), (—o0,b), and (—o0,b| are
bounded above by b and all numbers greater than b.

(b) E:={1/n|ne N} =1{1,1/2,1/3,...} is bounded above by any a > 1. It is bounded
below by 0. But we need another axiom tho show that 0 is the greatest lower bound.

Q 7. Let E be a nonempty subset of an ordered set; suppose « is a lower bound and
is an upper bound of E. Prove that a < !

Definition 1.3 Suppose S is an ordered set and E C S. If there is an o € E such that
a>x forallzin F

then « is called the mazimum of E and is denoted by o« = max E.
Similarly, 8 € E is called the minimum of E' if § < z for all z € E; f = min E.

Example 1.4 (a) £ :=[0,1), 0 = min £, F has no maximum.
(b) E:={1/n|n € N}, max F = 1, E has no minimum.
Q 8. Give the proofs of the statements in Example 1.4.

Remarks 1.1 1. If £ has a maximum it is unique.
2. If F is a finite set it has always a maximum and a minimum.
3. max F is an upper bound of F.

More important than maximum and minimum are the following more general notions:

Definition 1.4 Suppose S is an ordered set, £ C S, an F is bounded above. Suppose
there exists an o € S such that

(i) v is an upper bound of E.
(i) If B is an upper bound of E then a < g.

Then « is called the least upper bound of E or supremum of E (it is clear from (ii) that
there is at most one such «), and we write

a=supFE.

The greatest lower bound or infimum of a set E which is bounded below is defined in the

same manner: The statement
a=inf F

means that « is a lower bound of F and for all lower bounds £ of E we have § < a.
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An equivalent formulation of (ii) is the following: (i7') If § < « then S is not an upper
bound of E.

Example 1.5 (a) Consider the sets A and B of Example1.2 as subsets of the ordered
set Q. Since AU B = @, (there is no rational number with z? = 2) the upper bounds
of A are exactly the elements of B. Since B contains no smallest member, A has no least
upper bound in Q.
Similarly, B is bounded below by A and all negative rational numbers. Since A has no
largest member, B has no greatest lower bound in Q.
(b) If & = sup FE exists, then « may or may not belong to E. For instance consider [0, 1)
and [0, 1]. Then

1 = sup|0, 1) = sup|0, 1],

and 1 ¢ [0,1), 1 € [0, 1]. We shall show that sup[0,1) = 1. Obviously, 1 is an upper bound
of this interval. Suppose that § < 1. Then 8 < (8+1)/2 < 1. Since (8+1)/2 €[0,1), 8
is not an upper bound. Consequently, 1 is the supremum of [0,1). If max F exists then
sup F also exists and max £ = sup F. Indeed, max E is an upper bound for £ and if
is another upper bound we have max F < 3 since max E € E. The converse direction is
also true and easy to see: If sup F exists in F then it equals max F.

1.1.2 Fields

Definition 1.5 A field is a set F' with two operations, called addition and multiplication
which satisfy the following so-called “field axioms” (A),(M), and (D):

(A) Axioms for addition

If x € F and y € F then their sum z + y is in F.

Addition is commutative: x +y =y +x for all z,y € F.

Addition is associative: (r+y)+z=x+ (y+ 2) for all z,y,z € F.

F' contains an element 0 such that 0+x =z for all x € F.

To every = € F there exists an element —z € F such that z + (—z) = 0.

R
\_/V\Eo/\_/v

(M) Axioms for multiplication

If x € F and y € F then their product zy is in F'.
Multiplication is commutative: zy = yx for all x,y € F.

DO

Multiplication is associative: (zy)z = z(yz) for all z,y,z € F.
F contains an element 1 such that 1z = x for all x € F.
If z € F and x # 0 then there exists an element 1/x € F such that z - (1/z) = 1.

EE=EEE

ot

(D) The distributive law

z(y +2) =xy + a2
holds for all x,y,z € F.
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Remarks 1.2 (a) One usually writes
z 2 .3
T—y, — T+y+2 xyz, r° x°, 22,...
Y

in place of

1
z+(-y),z-—, (x+y) +2 (zy)z, 2 -2,z -2 -z, 2, ...
Yy

(b) The field axioms clearly hold in @ if addition and multiplication have their customary

meaning. Thus @ is a field. The integers Z form not a field since 2 € Z has no multi-

plicative inverse (axiom (M5) is not fulfilled).

(c) The smallest field is Fo = {0, 1} consisting of the neutral element 0 for addition and

the neutral element 1 for multiplication. Multiplication and addition are defined as fol-
+]0 1 -0 1

lows 0 ‘ 0 1 00 0. Itis easy to check the field axioms (A), (M), and (D)
111 0 110 1

directly. Since 1+ 1 = 0 one can see that the field axioms alone are not enough to detect

the positive integers inside the real numbers. We need additional axioms namely ordering
properties.

(d) Although it is not our purpose to study fields (or any other algebraic structures) in
detail, it is worthwhile to prove that some familiar properties of ( are consequences of
the field axioms; once we do this, we will not need to do it again for the real numbers and
for the complex numbers.

(e) (A1) to (A5) and (M1) to (M5) mean that both (F,+) and (F'\ {0}, -) are commutative
(or abelian) groups, respectively.

Proposition 1.5 The axioms of addition imply the following statements.
(a) If t +y =2+ 2 then y = z (Cancellation law).
(b) If v +y =z then y =0 (The element 0 is unique).
(¢) If z +y =0 the y = —x (The inverse —z is unique).
)

(d) =(-2) ==

Proof. If x + y = z + z, the axioms (A) give
y=0+y=(—z+2)+y=—2+@+y)=—<2+@+2)=(—2+2)+2=0+2==2

This proves (a). Take z =0 in (a) to obtain (b). Take z = —z in (a) to obtain (c). Since
—z+x =0, (c) with —z in place of x gives (d). n

Proposition 1.6 The axioms for multiplication imply the following statements.
(a) If  # 0 and xy = xz then y = z (Cancellation law).

(b) If t # 0 and vy = x then y = 1 (The element 1 is unique).

(c) Ift #0 and zy = 1 then y = 1/x (The inverse 1/x is unique).

(d) If x #0 then 1/(1/z) = x.
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The proof is so similar to that of Proposition 1.5 that we omit it.

Proposition 1.7 The field azioms imply the following statements, for any z,y,z € F

(a) 0z = 0.

(b) If x5y =0 thenz =0 ory = 0.
(c) (—2)y = —(zy) = z(-y).

(d) (=z)(—y) = zy.

Proof. 0z + 0z = (0 + 0)x = O0x. Hence 1.5 (b) implies that 0z = 0, and (a) holds.
Suppose to the contrary that both z # 0 and y # 0 then (a) gives

11
l=———ay=

11
.20 =0,
y yz

a contradiction. Thus (b) holds.
The first equality in (c) comes from

(—2)y+2y=(—zr+2)y=0y=0,
combined with 1.5 (b); the other half of (c) is proved in the same way. Finally,
(—=2)(=y) = —[z(=y)] = —[-=zy] = zy
by (c) and 1.5 (d). m

Q 9. Prove the laws of fractions (a,b,c,d € R, b # 0, d # 0):
(a)

g if and only if ad = bc.

ad + be
bd

I IO
|

—
=3
~

Sl oIe
+

=l

SIE

—
o
N—r
&l o

1.1.3 Ordered Fields

In analysis dealing with equations is as important as dealing with inequalities. Calcu-
lations with inequalities are based on the ordering axioms. It turns out that all can be
reduced to the notion of positivity.

In F there are distinguished positive elements (z > 0) such that the following axioms are
valid.

Definition 1.6 An ordered field is a field F' which is also an ordered set, such that for
all z,y,z € F

(O) Axioms for ordered fields

(O1) z>0andy >0 implies x +y > 0,
(O2) z >0 andy >0 implies zy > 0.
If x > 0 we call x positive; if x < 0, x is negative.
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For example @@ and R are ordered fields, if x > y is defined to mean that x — y is positive.

Proposition 1.8 The following statements are true in every ordered field F'.
(a) Ifr <y anda € F thena+ 1z < a+y.
b) Ifr<yandz' <y thenzx+2' <y+y.

Proof. (a) By assumption (¢ +y) — (e +2z) =y —x > 0. Hence a+z < a+y.
(b) By assumption an by (a) we have x + 2’ < y+2' and y+12' < y+14'. Using transitivity
(Definition 1.1 (ii)) we have z + 2’ <y + ¥/. =

Proposition 1.9 The following statements are true in every ordered field.
(a) If £ > 0 then —z < 0, and if x < 0 then —z > 0.

(b) If £ > 0 and y < z then zy < xz.

(¢) Ift <0 and y < z then xy > xz.

(d) If x # 0 then x2 > 0. In particular, 1 > 0.

(e) If0<z<ythen0<1l/y<1/x.

Proof. (a) If £ > 0 then 0 = —x + 2 > —x + 0 = —z, so that —z < 0. If z < 0 then
0=—-2+2< —2+0=—zso that —z > 0. This proves (a).
(b) Since z > y, we have z — y > 0, hence z(z — y) > 0 by axiom (0O2), and therefore

zz=z(2—y)+zy P'r;l.8 0+ zy = zy.
(c) By (a), (b) and Proposition 1.7 (c)

—[z(z —y)] = (=z)(z —y) > 0,

so that z(z — y) < 0, hence zz < zy.

(d) If z > 0 axiom 1.6 (ii) gives 22 > 0. If z < 0 then —x > 0, hence (—)? > 0 But
z? = (—z)? by Proposition 1.7 (d). Since 12 =1, 1 > 0.

(e) Ify > 0and v < 0 then yv < 0. But y-(1/y) =1 > 0. Hence 1/y > 0, likewise 1/x > 0.
If we multiply x < y by the the positive quantity (1/x)(1/y), we obtain 1/y < 1/z. n

Remark 1.3 The finite field Fy = {0,1}, see Remarks 1.2, is not an ordered field since
1+ 1 =0 which contradicts 1 > 0.

The field of complex numbers C (see below) is not an ordered field since i2 = —1 contra-
dicts Proposition 1.9 (d).

Q 10. Show that the transitivity of < is a consequence of (O1), (02), and (A)!
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1.1.4 Embedding of natural numbers into the real numbers

Let F' be an ordered field. In order to distinguish 0 and 1 in F' from the integers 0 and 1
we temporarily write O and 1p. For a positive integer n € N, n > 2 we define

Lemma 1.10 We have ng > Op for alln € N.

Proof. We use induction over n. By Proposition 1.9 (d) the statement is true for n = 1.
Suppose it is true for a fixed n, i.e. ngp > 0p. Moreover 1p > 0. Using axiom (02) we
obtain (n+ 1)1p = ng + 1p > 0. n

From Lemma 1.10 it follows that m # n implies ngp # mp. Indeed, let n be greater than
m, say n = m + k for some k£ € N, then ng + kr = mp. Since kr > 0 it follows from
1.8 (a) that np > mp. In particular, np # mp. Hence, the mapping

N — F, n—ng

is injective. In this way the positive integers are embedded into the real numbers. Addition
and multiplication of natural numbers and of its embeddings are the same:

ng+mpr = (n+m)p, npmp = (nm)p.

From now on we identify a natural number with the associated real number. We write n
for np.

Definition 1.7 (The Archimedean Axiom) An ordered field F is called Archimedean
if for all z,y € F with > 0 and y > 0 there exists n € N such that nz > y.

An equivalent formulation is: The subset N C F' of positive integers is not bounded
above. Choose x = 1 in the above definition, then for any y € F' there in an n € N such
that n > y; hence N is not bounded above.

Suppose N is not bounded and = > 0,y > 0 are given. Then y/z is not an upper bound
for N, that is there is some n € N with n > y/z or nx > y.

Remark 1.4 The fields @ and R are Archimedean, see below. But there exist ordered
fields without this property. Let F':= R(¢) the field of rational functions f(t) = p(t)/q(t)
where p and ¢ are polynomials with real coefficients. Since p and ¢ have only finitely
many zeros, for large ¢, f(¢) is either positive or negative. In the first case we set f > 0.
In this way R(¢) becomes an ordered field. But ¢ > n for all n € N since the polynomial
f(t) =t — n becomes positive for large ¢ (and fixed n).

1.1.5 The completeness of R

Using the axioms so far we are not yet able to prove the existence of irrational numbers.
We need the completeness axiom.
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Definition 1.8 (Order Completeness) An ordered set S is said to be order complete
if for every non-empty subset £ C S which is bounded above, there exists the least upper
bound sup £ in S.

(C) Completeness
The real numbers are order complete, i.e. every subset £ C R which is bounded above
has a least upper bound.

The set @Q of rational numbers is not order complete since, for example, the bounded set
A={r € Q, | z* < 2} has no least upper bound in @Q.

Later we will define the square root of 2 as v/2 := sup A. The existence of v/2 in R is
furnished by the completeness axiom (C).

The axiom (C) implies that every subset £ C R which is bounded below has a greatest
lower bound. This is an easy consequence of Homework 1.4 (a).

We will see that an order complete field is always Archimedean.

Proposition 1.11 (a) R is Archimedean.
(b) If z,y € R, and x < y then there is a p € Q with x < p < y.

Part (b) may be stated by saying that Q is dense in R.
Proof. (a) Let z,y > 0 be real numbers which do not fulfill the Archimedean property.
That is, if A := {nz | n € N}, then y would be an upper bound of A. Then (C) furnishes
that A has a least upper bound a@ = sup A. Since z > 0,  — z < o and o — x is not an
upper bound of A. Hence a — z < mx for some m € N. But then a < (m + 1)z, which
is impossible, since « is an upper bound of A.
We give an alternative proof for (a) and show that N is not bounded above. Suppose
to the contrary that N has an upper bound. By (C), N has a least upper bound, say
a =sup N. By Lemma1.12(2) to € = 1/2 there exists an n € N such that a — 1/2 < n.
Adding 1 we obtain @ < @+ 1/2 < n + 1. We conclude that « is not an upper bound of
N since n+1 € N and n+ 1 > a. A contradiction!
(b) Since z < y, we have y — z > 0 and (a) furnishes a positive integer n such that
n(y —x) > 1. Apply (a) again to obtain positive integers m; and my with m; > nz and
me > —nx. Then

—may < nxr < my.

Hence there is an integer m with —mo < m < m; such that
m—1<nr<m.
If we combine these inequalities, we obtain
nr<m<14+nxr <ny.

Since n > 0, it follows that x < m/n < y. This proves (b) with p = m/n. ]
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Remark: If z,y € Q with z < y, then there exists z € R\ Q with 2 < z < y; chose
z=(x—y)/V2+y.

We shall show that E := {1/n | n € N} has infimum 0. Obviously, 0 is a lower bound.
Suppose that o > 0. Since R is Archimedean, we find m € N such that 1 < ma or,
equivalently 1/m < «. Hence, « is not a lower bound for E which proves the claim.

Remarks 1.5 (a) Axiom (C) is equivalent to the Archimedean property together with
the topological completeness (“Every Cauchy sequence in R is convergent,” see Proposi-
tion 2.16).

(b) Axiom (C) is equivalent to the aziom of nested intervals, see Proposition 2.9 below:
Let I, := [an, b, a sequence of closed nested intervals (1,41 C I,,) such that:

For all € > 0 there exists ng such that 0 <b,, — a, < ¢ for all n > ng.

For any such interval sequence {I,} there exists a unique real number a € R which is a
member of all intervals, i.e. {a} =),cn In-

Supremum and Infimum revisited

The following equivalent definition for the supremum of sets of real numbers is often used
in the sequel.

Lemma 1.12 Suppose that E C R. Then « is the supremum of E if and only if

(1) « is an upper bound for E,
(2) For all € > 0 there exists v € E with « — ¢ < z.

Proof. Suppose first that « = sup £. Then « is an upper bound for E. Since « is the
least upper bound of E any smaller number is not an upper bound. Hence, a — ¢ < « is
not an upper bound; that is there exist x € EF with z > a — €.
Suppose now that the conditions (1) and (2) of the lemma are fulfilled. We will show
that the second condition for the least upper bound is satisfied. For, let 8 < « and set
e = a— (. Hence ¢ > 0. By (2), there exists x € E such that o — ¢ < z. That is
a—(a— ) = < x. We conclude that § is not an upper bound for E. Hence oo = sup E.
]

Lemma 1.13 (a) Let M C R and N C R nonempty subsets which are bounded above.
Then M+ N :={m+n|m € M,n € N} is bounded above and

sup(M + N) = sup M + sup N.

(b) Let M C Ry and N C R, nonempty subsets which are bounded above. Then M N :=
{mn |m e M,n € N} is bounded above and

sup(MN) = sup M sup N.
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Proof. (a) Let s = sup M and t = sup N; then s > m for all m € M and ¢t > n for all
N in N. Hence s+t > x for all z € M + N, and s+t is an upper bound for M + N.
Let € > 0 be given. Since s = sup M Lemma 1.12 furnishes the existence of some m € M
with m > s — ¢/2. Similarly, there is some n € N with n > t — ¢/2. Taking the sum of
both inequalities gives m +n > s+t —e. By Lemma 1.12, s 4 ¢ is the least upper bound
of M + N.

(b) Let s = sup M and ¢t = sup NV; then s > m for all m € M and ¢t > n for all n in N.
Hence st > z for all x € M N, and st is an upper bound for MN. If s =0 or ¢t = 0,
M = {0} or N = {0} and the statement is clear. Suppose now s > 0 and ¢t > 0. Let
¢ > 0 be given. Choose €; < € such that

e1<s(s+t) and & <t(s+1). (1.6)

Then, by Lemma 1.12, there exist m € M and n € N such that

°1 and n>t— 2 .
s+t s+t

m>s— (1.7)
The inequalities (1.6) ensure that the right hand sides of (1.7) are positive. So we can
multiply them:

2

&1 &1 &1
mn > |s— t— =st—¢e1+ > st—e1 > st —e.
s+t s+t s+t

Using Lemma 1.12 again, we conclude that st is the least upper bound of M N. [

1.1.6 The Absolute Value

For x € R one defines

T, if x>0,
|z | = .
—z, if x<O.

Lemma 1.14 For a,z,y € R we have

(a) |z| >0 and |z | =0 if and only if x = 0. Further | —z|=|z]|.

(b) £z < |z|, |z | =max{z, -z}, and |z | <a <= (z <a and -z <a).
(©) [zy|=[z] |yl and[z/y|=|z[/[y] ify #O0.

(d) |z+y| <|z|+|y| (triangle inequality).

@ [lz|=lyll <]z +yl.

Proof. The first part of (a) is clear by Proposition 1.9 (a).

For the second part suppose first £ > 0. Then —x < 0 and consequently
|—z| = —(—2) = 2 = |z|. Ifx < 0 then —x > 0 and |—z| = —x = |z|. This
proves (a).

(b) Suppose first that > 0. Then z > 0 > —z and we have max{z, —z} =z = |z |.If
x < 0 then —z > 0 > 2 and max{—z,z} = —z = | z|. This proves the first part of (b).
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The second part of (b) stems from the fact that the maximum of a set coincides with its
supremum and « is an upper bound of {z, —z}.

One proves the first part of (c) by verifying the four cases i) z,y > 0, i) z > 0, y < 0,
iii) z < 0, y > 0, and iv) z,y < 0. To the second part.

Since x = (z/y) -y we have by (¢) |z|=|z/y| |y|. The claim follows.

(d) Since +z < |z| and +y < |y| by (b) it follows from Proposition 1.8 (b) that
+(z +y) <|z|+]|y| By the second part of (b) this means |z +y| < |z |+ |y]|-

(e) Imserting u := z + y and v := —y into |u+wv| < |u| + |v| one obtains
lz| < |lz4+y|+|—-y| = |z+y| + |y|. Adding —|y| on both sides one obtains
lz| — |y| < |z+y|. Changing the role of x and y in the last inequality yields
—(lz|=|y]) < |z +y|. The claim follows using (b). n

Q 11. Define a relation < on R? = {(z,y) | , y € R} by
(z,y) < (2',y") if (<2’ or (z=2" and y<y)).

Prove that with this relation, (R?, <) is an ordered set. Is (R? <) order complete?

1.1.7 Powers of real numbers

We shall prove the existence of nth roots of positive reals. We already know 2", n € Z.
It is recursively defined by 2™ := 2"! -z, 2! := 2, n € N and 2" := 1/z7" for n < 0.

Proposition 1.15 (Bernoulli’s inequality) (a) Let x > —1 and n € N. Then we have
(14+2z)">1+nax.
Equality holds if and only if t =0 orn = 1.
(b) Ify > 0 and n € N we have
1 1
n <14+ —(y—1).
yr <1+ -(y—1)
Equality holds if and only if y =1 orn =1.

Proof. (a) We use induction over n. In case n = 1 we obtain equality. Suppose the claim
is true for some fixed n > 1. Since 1+ z > 0 by Proposition 1.9 (b) multiplication of the
induction assumption by this factor yields

(1T+2)"' > A +n2)(1+2)=1+Mn+Dr+ns’>> 1+ (n+ 1)z

This proves the assertion for n + 1. We have equality in the second estimation only if
x = 0. It turns out that the first estimation is also an equality in this case.
(b) Putting 2 := y» — 1 we have 2 > —1 and (a) applies:

1
y=@w""">1+n@y""—1) ~y-1> ytm—1.

The claim follows. ]
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Lemma 1.16 (a) For z,y € R with x,y > 0 and n € N we have

<y 2" <y"

(b) For z,y € Ry and n € N we have

nz" ty —x) <y" — 2" <ny" 'y — ). (1.8)

We have equality if and only if n=1 or x = y.
Proof. (a) Observe that

with ¢ :=Y"p_, y"F 21 > 0 since 2,y > 0. The claim follows.
(b) We have

n

Yt — " — nxnfl(y _ 37) — (y - .Z') Z (ynkakfl _ xnfl)
k=1

_ (y _ .’L’) Zxk—l (yn—k . xn—k) >0
k=1

since by (a) y —z and y" % — 2"~* have the same sign. The proof of the second inequality
is quite analogous. [

Proposition 1.17 For every real x > 0 and every positive integer n € N there is one
and only one y > 0 such that y™ = x.

This number y is written {/x or x%, and it is called “the nth root of z”.
Proof. The uniqueness is clear since by Lemma 1.16 (a) 0 < y; < y, implies 0 < 37 < 7.
Set

E={teR, |t" <z}

Observe that F # & since 0 € E. We show that E is bounded above. By Bernoulli’s
inequality and since x < nz we have

teEst'<z<l4+nr<(l+2z)"
& t<l+r

Lemma1.16
Hence, 1+ z is an upper bound for E. By the order completeness of R there exists y € R
such that y = sup E. We have to show that y” = x. For, we will show that each of the

inequalities y" > z and y" < x leads to a contradiction.
Assume y"™ < z and consider (y+ h)™ with “small” h (0 < h < 1). Lemma 1.16 (b) implies

0<(y+h)"—y"<n(y+h)" ' (y+h—y) <hn(y+1)""
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Choosing h small enough that An(y + 1)"~! < z — y™ we may continue
(y+h)"—y"<z—y"

Consequently, (y+ h)™ < z and therefore y+ h € E. Since y + h > y, this contradicts the
fact that y is an upper bound of F.

Assume y™ > x and consider (y—h)™ with “small” h (0 < h < 1). Again by Lemma 1.16 (b)
we have

0<y"—(y—h)"<ny" '(y—y+h)<hny"".
Choosing h small enough that hny"~! < y® — x we may continue
y' = (y—h)" <y -z

Consequently, z < (y — h)" and therefore t" < z < (y — h)™ for all ¢ in E. Hence y — h is
an upper bound for F smaller than y. This contradicts the fact that y is the least upper
bound. Hence y™ = z, and the proof is complete. [

Corollary 1.18 If a and b are positive real numbers and n € N then (ab)*/™ = a'/™ p1/™.
Proof. Put o = @'/ and B = b'/". Then
ab=a"B" = (af)",

since multiplication is commutative (Axiom (M2)). The uniqueness assertion of Proposi-
tion 1.17 shows therefore that

(ab)l/n — O!ﬁ — al/n bl/n

Lemma 1.19 Fiz b > 0. (a) If myn,p,q € Z andn > 0, ¢ > 0, and r = m/n = p/q.
Then we have

(™) = (bP)1/a, (1.9)

Hence it makes sense to define b" = (b™)'/™.
(b) If a,b > 0 are real and r, s € Q then we have

™ =dd’, d*=(d)°, and (ab)" =ad'b'".

Proof. (a) Using the power laws in the case that the exponents are positive integers
a® = (a*)! = (a!)* and the definition of the nth root (c'/")" = ¢ we obtain

()= () ) = =i = () = ()"
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Taking the nqth root and using its uniqueness, we obtain our assertion.

The proofs of the statements in (b) are also purely algebraic. We prove only the second
statement and leave the rest as an exercise. For, let = m/n and s = p/q with positive
integers n and ¢ and integers m,p. We obtain

()" = (@)= (((@)7)) = (@) = wr=em

Taking the nqth root we obtain

and therefore, (a")® = a"*. ]

Definition 1.9 Fix b > 1. If z € R define

b* = sup{t’ | p € Q, p < z}.

For 0 < b <1 set .

(1/b)*

Without proof we give the familiar laws for powers and exponentials. Later we will

T

redefine the power b* with real exponent. Then we are able to give easier proofs.

Lemma 1.20 Ifa,b >0 and x,y € R, then
(a) b°TY = b, b* Y = b® /bY

(b) b™ = (b")

(c) (ab)® = a®b".

1.1.8 Review of Trigonometric Functions

Degrees and Radians

The circumference C' and the area A of a circle with radius r are
C =2rr and A=m7r?

where m = 3.14159.... We will give a precise definition of 7 later. If two rays are drawn
from the center of a circle, both the length and the area of the part of the circle between
the rays are proportional to the angle between the rays. So that the length Cy and the
area Ay are determined by

6 6
Cy = w?wr, Ap = @M’Q (0 in degrees).
These formulas become simpler if we adopt the radian unit of measure, in which the total
angular measure of a circle (360°) is defined to be 2.

1
Co=0r, Ap= 507“2, (@ in radians).
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Conversion between radians and degrees are made by multiplying or dividing by the factor
360°

2m
The following table gives some important angles in degrees and radians:

Degrees ‘0" 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°

; s ks s s 2n 3n sm 3
Radians ‘ 0 % . 3 5 2 . 5 T 5 2T

Sine and Cosine

The sine, cosine, and tangent functions are defined in terms of ratios of sides of a right
triangle:

side adjacent to 6
cosf =

hypotenuse
. side opposite to 0
sinf =
hypotenuse
side opposite to #
tanf =

side adjacent to 6

Let ¢ be any angle between 0° and 360°. Further let P be the point on the unit circle
(with center in (0,0) and radius 1) such that the ray from P to the origin (0,0) and the
positive xz-axis make an angle ¢. Then cos ¢ and sin ¢ are defined to be the z-coordinate
and the y-coordinate of the point P, respectively.

L hm If the angle ¢ is between 0° and 90° this new definition coincides

y
< — . with the definition using the right triangle since the hypotenuse
y

which is a radius of the unit circle has now length 1.

If 90° < ¢ < 180° we find cos¢ = —cos(180° — ¢) < 0 and
* sing = sin(180° — ¢) > 0.

If 180° < ¢ < 270° we find cosp = — cos(p — 180°) < 0 and
* singp = —sin(¢ — 180°) < 0.
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X

Co

If 270° < ¢ < 360° we find cosp = cos(360° — ¢) > 0 and

sin ¢ = —sin(360° — ¢) < 0.

For angles greater than 360° or less than 0° define

cos ¢ = cos(p + k 360°),

sin ¢ = sin(¢ + £ 360°),

where k£ € Z is chosen such that 0° < ¢ + k£ 360° < 360°. Thinking of ¢ to be given in
radians, cosine and sine are functions defined for all real ¢ taking values in the closed

interval [—1, 1].

If o # 5 + km, k € Z then cos ¢ # 0 and we define

sin
tan g := L

cos

If ¢ # km, k € Z then sin ¢ # 0 and we define

coS

cot p := — .
sin @

In this way we have defined cosine, sine, tangent, and cotangent for arbitrary angles.

Special Values

x in degrees | 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°
¢ inradians |O £ £ 2 I 2 i S . on
sinz T T e e B
cos T 1 ? @ % 0 —% —? —? -1 0 1
tan z 0 ¥ 1 3/ -3 -1 =¥ o0 / 0
Addition Formulas
We need the following two addition formulas for cosine and sine.
cos(x +y) = cosx cosy — sinzsin y,

The Pythagorean theorem in the trigonometric form reads as

sin(z + y) = sinz cosy + cos z sin y.

sin?z +cos’z = 1.

(1.10)

(1.11)
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1.2 Complex numbers

Some algebraic equations do not have solutions in the real number system. For instance
the quadratic equation z? — 4z + 8 = 0 gives ‘formally’

1 =2++vV—-4 and zo=2-—+—4.
We will see that one can work with this notation.

Definition 1.10 A complex number is an ordered pair (a,b) of real numbers. “Ordered”
means that (a,b) # (b,a) if a # b. Two complex numbers x = (a,b) and y = (¢, d) are
said to be equal if and only if ¢ = ¢ and b = d. We define

z+y:=(a+cb+d),
zy = (ac — bd, ad + be).

Theorem 1.21 These definitions turn the set of all complex numbers into a field, with
(0,0) and (1,0) in the role of 0 and 1.

Proof. We simply verify the field axioms as listed in Definition 1.5. Of course, we use the
field structure of R.
Let x = (a,b), y = (¢,d), and z = (e, f). (A1) is clear.

(A2 z+y=(a+c,b+d)=(c+a,d+b) =y+x.

(A3) (z+y)+2z = (a+c, b+d)+(e, f) = (atc+e, b+d+ f) = (a,b)+(c+e, d+ f) = z+(y+2).
(A4) z + 0 = (a,b) + (0,0) = (a,d) =

(A5) Put —z := (—a, —b). Then z + (—z) = (a,b) + (—a, —b) = (0,0) = 0.

(M1) is clear.

(M2) zy = (ac — bd, ad + bc) = (ca — db, da + cb) = yz.

(M3) (zy)z = (ac — bd, ad + bc)(e, f) = (ace — bde — adf — bef, acf — bdf + ade + bee) =
(a,b)(ce — df,cf + de) = z(yz).

(M4) z-1 = (a,b)(1,0) = (a,b) =

(M5) If « # 0 then (a,b) # (0,0), which means that at least one of the real numbers a, b

is different from 0. Hence a? + > > 0 and we can define

1'_ a —b
z \a2+ba2+02)°

(ab)( ¢ b ):(1,0):1.

a? + b2 a2 4 b?

Then

&
&Ir—‘

z(y+2) =(a,b)(c+e,d+ f) = (ac+ae—bd —bf,ad + af + bc + be)
= (ac — bd, ad + bc) + (ae — bf,af + be)
=2xy + yz.
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Remark 1.6 For any real numbers we have (a,0) + (b,0) = (a + b,0) and (a,0)(b,0) =
(ab,0). This shows that the complex numbers (a,0) have the same arithmetic properties
as the corresponding real numbers a. We can therefore identify (a,0) with a. This gives
us the real field as a subfield of the complex field.

Note that we have defined the complex numbers without any reference to the mysterious
square root of —1. We now show that the notation (a,b) is equivalent to the more
customary a + bi.

Definition 1.11 i:= (0,1).

Proposition 1.22 (a) i2 = —1. (b) Ifa,b € R then (a,b) = a + bi.

Proof. (a) i* = (0,1)(0,1) = (-1,
(b) @+ bi = (a,0) + (b,0)(0,1) =

Definition 1.12 If a,b are real and z = a + bi, then the complex number Z := a — bi is
called the conjugate of z. The numbers a and b are the real part and the imaginary part
of z, respectively. We shall write a = Rez and b = Im z.

Proposition 1.23 If z and w are complezx, then
(a) z+w=7z+w,

b) zw =z - W,

c) z+zZ=2Rez, z—7zZ=2iImz,

—~~ Y~

d) 2Z is positive real except when z = 0.

Proof. (a), (b), and (c) are quite trivial. To prove (d) write z = a + bi and note that
2Z=a>+ b C

Definition 1.13 If z is complex number, its absolute value | z | is the (nonnegative) root
of 2Z; that is | z | := V2 Z.

The existence (and uniqueness) of | z | follows from Proposition 1.23 (d). Note that when
x is real, then z =T, hence | z| = V2. Thus |z|=zifz > 0and |z|=—zifz < 0. We
have recovered the definition of the absolute value for real numbers, see Subsection 1.1.6.

Proposition 1.24 Let z and w be complexr numbers . Then
(a) |z| > 0 unless z =0,

(b) [Z][=1z],

(© [zw|=1[z][w],

(d) [Rez| <[z],

e) | z+w|<|z|+|w].
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Proof. (a) and (b) are trivial. Put z = a + bi and w = ¢ + di, with a, b, ¢, d real. Then
lzw > = (ac — bd)? + (ad + be)? = (a2 + V) (E + d?) = | z|* |w |?

or | zw|* = (|z| |w|)% Now (c) follows from the uniqueness assertion for roots.
To prove (d), note that a? < a? + b?, hence

la| =Va? < Va2 +0?=|z]|.
To prove (e), note that Zw is the conjugate of 2w, so that zw + Zw = 2 Re (2w). Hence

24w =(+w)E+W) =22+ 2T +Zw+wD
=|z|*+2Re(2W) + |w|
<zl +2]z| w|+|w* = (2] +]w])?

Now (e) follows by taking square roots. n

Q 12. If 27 =1 compute |1+ z[*+ |1 — z|*.
Q 13. If 2z, ..., z, are complex, prove that

|21+ 20+ 4z | < |z |+ +]|2].

1.2.1 The Complex Plane and the Polar form

There is a bijective correspondence between complex numbers and the points of a plane.

Im A
By the Pythagorean theorem it is clear
that | z| = va? + b? is exactly the dis-
b Lo ____ z=atbi tance of z from the origin 0. The angle
¢ between the positive real axis and the
half-line 0z is called the argument of z
and is denoted by ¢ = argz. If z # 0,
the argument ¢ is uniquely determined

up to integer multiples of 27

-
|

a Re

Elementary trigonometry gives
b
| 2]

a

sin p = , COsp =

k2

This gives with r = | 2|, a = rcos ¢ and b = rsin . Inserting these into the rectangular
form of z yields

z = r(cos @ +1isinp), (1.12)

which is called the polar form of the complex number z.
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Example 1.6 a) z = 1 +i. Then |z| = /2 and sinp = 1/4/2 = cosp. This implies
¢ = 7/4. Hence, the polar form of z is 1 44 = v/2(cos 7/4 + isin7/4).

b) z = —i. We have |—i| = 1 and sinp = —1, cosp = 0. Hence ¢ = 37/2 and
—i = 1(cos 37w /2 + isin 37/2).

c¢) Computing the rectangular form of z from the polar form is easier.

z = 32(cos 77 /6 + isin 77 /6) = 32(—v/3/2 — i/2) = —16V/3 — 16i.

z+w
The addition of complex numbers corresponds to the

addition of vectors in the plane. The geometric mean-
ing of the inequality |z + w| < |z |+ | w]| is: the sum
w of two edges of a triangle is bigger than the third edge.

Multiplying complex numbers z = r(cos ¢ + isiny)
and w = s(cos 1 +isin®)) in the polar form gives

2w = rs(cos ¢ +isin ¢)(cos + isin )
= rs(cos @ cost — sin psin ) +
7 i(cos ¢ sin e + sin p cos 1))
w zw = rs(cos(p + ) + isin(p + 9)), (1.13)

where we made use of the addition laws for sin and

cos in the last equation.

Hence, the product of complex numbers is formed by taking the product of their absolute
values and the sum of their arguments.

The geometric meaning of multiplication by w is a similarity transformation of C. More
precisely, we have a rotation around 0 by the angle ¥ and then a dilatation with factor s
and center (.

Similarly, if w # 0 we have

= = (cos(p — ) +isin(p — ). (114)

Proposition 1.25 (De Moivre’s formula) Let z = r(cos p+isin ) be a complex num-
ber with absolute value r and argument . Then for all n € Z one has

2" = r"(cos(ny) +isin(ny)). (1.15)

Proof. (a) First let n > 0. We use induction over n to prove De Moivre’s formula. For
n = 1 there is nothing to prove. Suppose (1.15) is true for some fixed n. We will show
that the assertion is true for n 4+ 1. Using induction hypothesis and (1.13) we find

n+l _ n

2" = ™. 2 = r"(cos(nep) +isin(nep))r(cos g +isin ) = r"T(

cos(ne+p) +isin(np+¢)).



26 1 Real and Complex Numbers

This proves the induction assertion.
(b) If n < 0, then 2" = 1/(z7"). Since 1 = 1(cos0 + isin0), (1.14) and the result of (a)
gives
1 1 . . . .
2" =— = —(cos(0 — (—n)p) +isin(0 — (—=n)p)) = r"*(cos(ny) + isin(nyp)).
z n /r*’n

This completes the proof. [

Example 1.7 Compute the polar form of z = /3 — 3i and compute 2'°.
We have | z| = v/3+9 = 2v/3, cos = 1/2, and sinp = —/3/2. Therefore, ¢ = —7/3
and z = 2v/3(cos(—7/3) + sin(—7/3)). By the De Moivre’s formula we have

2P = (2V3) (cos (—15%) +isin (—15%)) = 2%37v/3(cos(—5m) + isin(—5m))
S5 — _ol537./3

1.2.2 Roots of Complex Numbers

Let z € C and n € N. A complex number w is called an nth root of z if w™ = 2. In
contrast to the real case, roots of complex numbers are not unique. We will see that there
are exactly n different nth roots of z for every z # 0.

Let z = r(cos ¢ +isin ) and w = s(cos ¢ +isin)) an nth root of z. De Moivre’s formula
gives w™ = s"(cosny + isinny). If we compare w™ and z we get s™ =r or s = /r > 0.

2k
Moreover nY = ¢ +2km, k € Z or ¢y = £+—7T, keZ. For k=0,1,...,n—1 we obtain
n n
different values vy, 91, . .., ¥,_1 modulo 27. We summarize.

Lemma 1.26 Let n € N and z = r(cosp +ising) # 0 a compler number. Then the
complex numbers

2k 2k
W = {‘/?(cosu—f—isinu), k=0,1,...,n—1
n n

are the n different nth roots of z.

Example 1.8 Compute the 4th roots of z = —1.

A
lz|=1= |w|=+v1=1,argz = ¢ = 180°. Hence
W, W
1 0
Yo =2
4’
o 1-360° .
= — =135
- ¢1 4 + 4 )
2=-1 o 2-360°
= — - 2250
7702 4 + 4 )
3 - 360°
Yy =2+ — 315°,
W, A 4 4
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We obtain
wy = cos45° +isin45° = %\/i + i%\/é
w; = cos 135° 4+ isin 135° = —%\/ﬂ i%\/i,
wy = cos 225° + isin 225° = —%\/5 — i%\@,
w3 = cos 315° 4+ isin 315° = %\/i - i%\/i.

Geometric interpretation of the nth roots. The nth roots of z # 0 form a regular n-gon
in the complex plane with center 0. The vertices lie on a circle with center 0 and radius

1.3 Inequalities

1.3.1 The Arithmetic-Geometric mean inequality

Proposition 1.27 Let n € N and x1,...,z, be in Ry. Then

Tit -+ T
n

> /T T (1.16)

We have equality if and only if x1 = x9 = -+ = .

Proof. We use forward-backward induction over n. First we show (1.16) is true for all n
which are powers of 2. Then we prove that if (1.16) is true for some n + 1, then it is true
for n. Hence, it is true for all positive integers.

The inequality is true for n = 1. Let a, b > 0 then (y/a—v/0)? > 0 implies a+b > 2v/ab and
the inequality is true in case n = 2. Equality holds if and only if a = b. Suppose it is true
for some fixed k € N; we will show that it is true for 2k. Let xy, ..., 2k, y1,---,yx € R4
Using induction assumption and the inequality in case n = 2, we have

1 (& u 11 1 ¢ VN
(3o 3w 23 (1% io) =5 (1) + (T
k k %
Z(H%H%)
=1 =1

This completes the ‘forward’ part. Assume now (1.16) is true for n + 1. We will show it
for n. Let z1,...,2, € Ry and set A := ()", z;)/n. By induction assumption we have

n-ll—l (x1+--+xz, +A)> (sz ) = n—li— (nA+ A) > (Hw,) Ant
n %4_1 n nil n 1/n
A> (Hz) At = Anti > (H:c) —= A> (Hw) .
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It is trivial that in case x;1 = 29 = - - - = x,, we have equality. Suppose that equality holds
in a case where at least two of the z; are different, say z1 < x5. Consider the inequality
with the new set of values x| := &, := (21 + z2)/2, and z} = x; for i > 3. Then

(1) —imem i ()

't ($1+$2

2
T1Tg > T1Ty = ) < 4x139 > x? + 2x129 —i—a:% 0> (2, — x2)2.

2
This contradicts the choice x; < 5. Hence, 1 = 25 = -+ = x,, is the only case where
equality holds. This completes the proof. [

Now we extend Bernoulli’s inequality to rational exponents.

Proposition 1.28 (Bernoulli’s inequality) Let a > —1 real and r € Q). Then
(a) A+a)" >1+rzifr>1,

(b) A+a) <l+rxifr<l.

Equality holds if and only if a =0 orr = 1.

Proof. (b) Let r = m/n with m <n, m,n € N. Apply (1.16) toz; :=1+a,i=1,...,m
and xz; :=1fori=m+1,...,n. We obtain

1 1
- (ml+a)+ (n—m)1) > ((L+a)™-1")"
Dat1> > (14a)n,
n
which proves (b). Equality holdsif n=1orifz; =--- =2z, i.e. a =0.

(a) Now let s > 1, z > —1. Setting r = 1/s and a := (1 + 2)'/" — 1 we obtain r < 1 and
a > —1. Inserting this into (b) yields

(1+a) < ((1+z)%)T§1+r((1+z)5—1)
z<r((1+z) 1)

This completes the proof of (a). ]

Corollary 1.29 (Bernoulli’s inequality) Let a > —1 real and © € R. Then
(a) A+a)*>14zaifz>1,
(b) (1+4+a)* <1+4=zaifz <1. Equality holds if and only if a =0 or x = 1.

Proof. (a) First let a > 0. By Proposition1.28 (a) (1 +a)” > 1+ ra if r € Q. Hence,

(14+a)*=sup{(1+a) |reQ,r<z}>sup{l+ra|reQ,r<z}=1+za.
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Now let —1 < a < 0. Then r < z implies ra > xa, and Proposition 1.28 (a) implies
(14+a) >1+7ra>1+za. (1.17)

By Definition 1.9

1
sup{(1/(a+ 1)) |r € Q, r < z} HW2.1

(1+a)® = inf{(1+a)" [reQ,r <z}

Taking in (1.17) the infimum over all » € QQ with 7 < z we obtain
(14+a) =inf{(14+a)" |reQ,r<z}>1+za.

(b) The proof is analogous, so we omit it. ]

Proposition 1.30 (Young’s inequality) Ifa,b € R, and p > 1, then
1 1
ab < —af + - b7, (1.18)
p q

where 1/p+1/q = 1. Equality holds if and only if a? = bY.

Proof. First note that 1/¢ = 1 — 1/p. We reformulate Bernoulli’s inequality for y € R
and p > 1

1 1 1
y”—lzp(y—l)<:>2—j(yp—1)+12y<:>];yp+52y.

If b = 0 the statement is always true. If b # 0 insert y := ab/b? into the above inequality:

L(ab)? 1 ab
p \ b q b
1aPb? 1 _ ab
o 4 I >
p bt g be
1 1
—a? + —b? > ab,
p q
since b?t9 = pP7. We have equality if y = 1 or p = 1. The later is impossible by
assumption. y = 1 is equivalent to b9 = abor b9 =qa or b P =a? (b #£0). If b= 0
equality holds if and only if a = 0. n

-

Proposition 1.31 (Ho6lder’s inequality) Letp > 1, 1/p+1/¢ =1, and x1,...,z, €
Ry and yy,...,y, € Ry non-negative real numbers. Then

Zxkykﬁ (Zﬁ) (Zyg> - (1.19)
k=1 k=1 k=1

We have equality if and only if there exists ¢ € R such that for allk =1,...,n, 2} /yl = ¢
(they are proportional).
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Proof. Set A := (3_p_, xi)%’ and B := (D, yg)%. The cases A = 0 and B = 0 are trivial.
So we assume A, B > 0. By Young’s inequality we have

o ye 1 xp 1y

A B_pﬂ q B9

n n n

s (324) ($u)

k=1 k=1 k=1

Equality holds if and only if 27 /AP =y /B9 for all k = 1,...,n. Therefore, 2% /y] = const.
m

Corollary 1.32 (Cauchy—Schwarz inequality) In case p = q = 2 we have

n n n
Zxkyk < Zxﬁ Zy]%a Tk, Yk > 0. (1.20)
k=1 k=1 k=1

|2 g < =l Iyl

Corollary 1.33 (Complex Holder’s inequality) Let p > 1, 1/p+ 1/q = 1 and
e,y € C, k=1,...,n. Then

1 L
Zmyus(ZmP) (zw) .
k=1 k=1 k=1
Equality holds if and only if | xy |’ / | yx |* = const. for k=1,... n.

Proof. Set zy := | zy | and yx, := |yx | in (1.19). This will prove the statement. n

Corollary 1.34 (Complex Cauchy—Schwarz inequality) If T1y.-ny Ty and
Yi, -« -5 Yn are complex numbers, then

2 n n
< e luel (1.21)
k=1 k=1

n
E TkYk
k=1
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Proof. Using the general triangle inequality, Proposition 1.24 (e) and the complex Hélder
inequality we obtain

n n n 1/2 n 1/2
Zxk% SZ\%H?JHS(ZWHQ) (ZWHQ) :

This proves the statement. [

Proposition 1.35 (Minkowski’s inequality) If z1,...,2, € Ry and y1,...,y, € Ry

and p > 1 then
(Z(xk + Y) ) (Z xk) (Z yﬁ) - (1.22)

Equality holds if p=1 or if p > 1 and xy/yy = const.

Proof. The case p = 1 is obvious. Let p > 1. As before let ¢ > 0 be the unique positive
number with 1/p+ 1/¢ = 1. We compute

n n

Z(mk +y) = Z(mk + Y) (T + ye)” Zxk T+ yr)P T+ Zyk T + Yr)"~
k=1 k=1 k=1

= (Z ‘”Z) 5 (Z(”Ck +uk) " l)q) (Z yk) (Z Tk + yk)(p_l)q)
(1.19) : P

< ()" (2)"™) (Stenraer)

1 1
We can assume that »_(zx + yx)? > 0. Using 1 — — = — by taking the quotient of the
q p

last inequality by (32 (zx + y&)?)"/? we obtain the claim.
Equality holds if z%/(z + yx)®?~D7 = const. and yf/(z) + yx)P~D9 = const.; that is
Ty /yr, = const. n

Corollary 1.36 (Complex Minkowski’s inequality) If x1,...,Zn,%1,---,yn € C
and p > 1 then

(Z‘Wr?/k\p)pﬁ<Z|$k|”)p+(2|yk\”)p. (1.23)

k=1 k=1
FEquality holds if p=1 orif p > 1 and xx/yp = A > 0.
Proof. Using the triangle inequality gives |xp+ye| < |xx| + |yel; hence

Svcilze+u P < >p_i(Jze| + |yk ). The real version of Minkowski’s inequal-
ity now proves the assertion. [
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If x = (x1,...,z,) is a vector in R™ or C", the (non-negative) number

Y
el := (Zm |p)
k=1

is called the p-norm of the vector x. Minkowski’s inequalitie then reads as

12+ yllp < ll2llp + [lyll»

which is the triangle inequality for the p-norm.

1.4 Appendix A: Powers with Real Exponents and
Logarithms

Lemma 1.37 (a) Fora,b> 0 and r € Q we have

a<b<d <b ifr>0,
a<b<a >0 ifr<Qo.

(b) Fora >0 and r,s € QQ we have

r<s<=add <a ifa>1,
r<s<=ada >d ifa<l.

Proof. Suppose that r > 0, r = m/n with integers m,n € Z, n > 0. Using Lemma 1.16 (a)
twice we get
a<b<i=ad" <" <= (am)% < (bm)%,

which proves the first claim. The second part r < 0 can be obtained by setting —r in

place of r in the first part and using Proposition 1.9 (e).

(b) Suppose that s > r. Put 2 = s —r, then z € Q and z > 0. By (a), 1 < a implies

1 =1"<a” Hence 1 < a®* " =a*/a", and therefore " < a®. f s<r,thenz=s—7<0

and, by (a), 1 < a implies 1 > a” = a®/a". Hence, a" > a®. The proof for a < 1 is similar.
]

Our aim is to define b* for arbitrary real z.
Lemma 1.38 Let b,p be real numbers with b > 1 and p > 0. Set
M={b|reQ,r<p}, M={b|seQp<s}

Then
sup M = inf M.
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Proof. (a) M is bounded above by arbitrary b°, s € @, with s > p, and M’ is bounded
below by any ", r € QQ, with r < p. Hence sup M and inf M’ both exist.

(b) Since r < p < s implies a" < b* by Lemma 1.37, sup M < b* for all b* € M'. Taking
the infimum over all such 4%, sup M < inf M".

(c) Let s = sup M and € > 0 be given. We want to show that inf M’ < s + ¢. Choose
n € N such that

I/n<e/(s(b—1)). (1.24)

By Proposition 1.11 there exist r, s € ) with

1
r<p<s and s—r< —. (1.25)
n

Using s — 7 < 1/n, Bernoulli’s inequality (part 2), and (1.24), we compute
1 1
=0 =00""-1)<sbr —1)<s—(b—1)<e.
n

Hence
infM' <b°<b +e<supM +e¢.

Since € was arbitrary, inf M’ < sup M, and finally, with the result of (b), inf M’ = sup M.
|

Corollary 1.39 Suppose p € Q and b > 1 is real. Then
W =sup{d" | r € Q,r < p}.

Proof. For all rational numbers r,p,s € Q, r < p < s implies " < a? < a®. Hence
sup M < a? < inf M’'. By the lemma, these three numbers coincide. [

1.4.1 Logarithms

Fix b > 1, y > 0. We can prove the existence of a unique real x such that b* = y by
completing the following outline. This number z is called the logarithm of y to the base
b, and we write z = log, y.

(a) It t>1and n > (b—1)/(t — 1), then '/ < ¢. (Use Bernoulli’s inequality.)

(b) If w is such that b < y, then b**+/" < y for sufficiently large n (apply (a) with
t=yb ")

(c) If ¥ > y, then b*~'/" > y for sufficiently large n.

(d) Let A:={w | b"” < y} and show that x = sup A satisfies b* = y.

(e) Prove that this x is unique.
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Lemma 1.40 For any a > 0, a # 1 we have
(a) log,(bc) = log, b log, ¢ if b,c > 0;
()b&()—cb&,ﬁb>0

1
(@b%bzgg ifb,d >0 and d # 1.

Later we will give an alternative definition of the logarithm function and we will prove
the properties (a), (b), and (c).



