Chapter 10

Measure Theory and Integration

10.1 Measure Theory

Citation from Rudins book, [11, Chapter 1]: Towards the end of the 19th century it
became clear to many mathematicians that the Riemann integral should be replaced by
some other type of integral, more general and more flexible, better suited for dealing with
limit processes. Among the attempts made in this direction, the most notable ones were
due to Jordan, Borel, W.H. Young, and Lebesgue. It was Lebesgue’s construction which
turned out to be the most successful.

In a brief outline, here is the main idea: The Riemann integral of a function f over an
interval [a, b] can be approximated by sums of the form

> 1) m(E),

where F1,..., E, are disjoint intervals whose union is [a,b], m(F;) denotes the length
of F; and t; € E; for i = 1,...,n. Lebesgue discovered that a completely satisfactory
theory of integration results if the sets E; in the above sum are allowed to belong to
a larger class of subsets of the line, the so-called “measurable sets,” and if the class of
functions under consideration is enlarged to what we call “measurable functions.” The
crucial set-theoretic properties involved are the following: The union and the intersection
of any countable family of measurable sets are measurable; ... the notion of “length”
(now called “measure”) can be extended to them in such a way that

m(EyUB,U---) = m(By) + m(Fy) + -

for any countable collection {E;} of pairwise disjoint measurable sets. This property of
m is called countable additivity.

The passage from Riemann’s theory of integration to that of Lebesgue is a process of
completion. It is of the same fundamental importance in analysis as the construction of
the real number system from rationals.
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286 10 Measure Theory and Integration

The Measure Problem

Lebesgue (1904) states the following problem: We want to associate to each bounded
subset F of the real line a positive real number m(FE), called measure of F, such that the
following properties are satisfied:

(1) Any two congruent sets have the same measure.
(2) The measure is counntable additive.
(3) The measure of the unit interval [0, 1] is 1.

He emphasized that he was not able to solve this problem in full detail, but for a certain
class of sets which he called measurable. We will see that this restriction to a large family
of bounded sets is unavoidable—the measure problem has no solution.

Definition 10.1 Let X be a set. A family (non-empty) family A of subsets of X is called
an algebra if

1. A € A implies A € A,
2. A,B € Aimplies AUB € A.

An algebra A is called a o-algebra if for all countable families {A,, | n € N} with 4, € A
we have U A, € A.

neN

Remarks 10.1 (a) Since A € A implies AUA° € A; X € Aand g = X° € A.
(b) If A is an algebra, then AN B € A for all A,B € A. Indeed, by de Morgan’s rule
(Lemma6.9) we have AN B = (A° U B¢)¢, and all the members on the right are in A by

the definition of an algebra.
(c) Let A be a o-algebra. Then ﬂ A, € Aif A, € Aforalln € N. Again by de Morgan’s

neN
rule .
(] A4 = (U A;) .
neN n€eN

(d) The family P(X) of all subsets of X is both an algebra as well as a o-algebra.

(e) Any o-algebra is an algebra but there are algebras not being o-algebras.

(f) The family of finite and cofinite subsets (these are complements of finite sets) of an
infinite set form an algebra. Do they form a o-algebra?

Elementary Sets in R"

Let R be the real axis together with £00, R = RU {400} U{—occ}. We use the following
rules.

1. —00o < 400 and —oc0 < z < +o00 for all z € R.

2. tco+zxz =2+t occ =210 forall z € R.
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3. If x > 0 we have

4. If x < 0 we have

5. 0-Ffoo==00-0=0.

The set
I:{(xl,...,:rn)E]R"|aijxijb,~, 7;21,...,77,}

is called a rectangle or a boz in R"™, where < either stands for < or for < where a;, b; € R.
For example a; = —oo and b; = +oc yields I = R", whereas a; = 2, by = 1 yields [ = @.
A subset of R" is called an elementary set if it is the union of a finite number of rectangles
in R". Let &, denote the set of elementary subsets of R".

€, 1s an algebra but not a o-algebra.
Proof. The complement of a finite interval is the

union of two intervals, the complement of an infinite

interval is an infinite interval. Hence, the complement
of a rectangle in R" is the finite union of rectangles.

The countable (disjoint) union M = {J,cx[n, 7 + 3]
is not an elementary set. [

Note that any elementary set is the disjoint union of

a finite number of rectangles.

Definition 10.2 Let B be any (nonempty) family of subsets of X. Let o(B) denote the
intersection of all o-algebras containing B, i.e.

o(B) =4
i€l
where {A; | 7 € I'} is the family of all o-algebras A; which contain B, B C A, for all i € I.

Note that the o-algebra P(X) of all subsets is always a member of that family {A;}
such that o(B) exists. We call o(B) the o-algebra generated by B. o(B) is the smallest
o-algebra which contains the sets of B.

Lemma 10.1 For any non-empty family B of subsets of X, o(B) is a o-algebra over X.
We have o(o(B)) = o(B). If By C By then o(B1) C o(Ba).
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Proof. (a) Let A,, A € o(B) for all n € N, that is A,, A € A; for all i € I. Since A; is a
o-algebra, A° € A; and U A, € A; for all 4. Thus, A® € o(B) and U A, € o(B). This

neN nelN
completes the proof of the first part.

(b) This property is obvious since o(A) = A for any o-algebra A: the smallest o-algebra,
that contains the given o-algebra A is of course A itself. The property o2 = ¢ is called
the idempotence of o. The same facts are true for taking the closure.

()

By C By, implies o(By) C o(Bs)
)
family of o-algebras {Agb} containing B; there may be more. Hence, the intersection

In fact, any o-algebra A;” that contains B, contains B; as well. However, among the

over larger family {.Ag-l)} becomes smaller. ]

Recall that &, is the algebra of elementary sets in R"™.

Definition 10.3 The Borel algebra in R™ is the o-algebra o(&,) generated by the ele-
mentary sets €,. Its elements are called Borel sets.

The Borel algebra is the smallest o-algebra which contains all boxes in R"” We will see
that the Borel algebra is a huge family of subsets of R™ which contains “all sets we are
ever interested in.” Later, we will construct a non-Borel set.

Proposition 10.2 Open and closed subsets of R™ are Borel sets.

Proof. We give the proof in case of R?. Let I (zo,0) = (x¢ — &,T¢ + &) X (Yo — &, Yo + €)
denote the open square of size 2¢ by 2¢ with midpoint (2o, ¢o). Then I% C I forn € N.
Let M C RR? be open. To every point (zg,%,) with rational coordinates zg, 4o we choose

the largest square I/, (20, %) € M in M and denote it by J(zo,¥o)-
We show that

M= U J (0, yo)-

(x0,y0) €M, rational

Since the number of rational points in M is at least countable,

()? , the right side is in o(&3). Now let (a,b) € M arbitrary. Since

o o’»f) M is open, there exists n € N such that I5/,(a,b) C M. Since
(a,b) the rational points are dense in R?, there is rational point (zq, o)

which is contained in I;/,(a,b). Then we have

I1(z0,y0) € I2(a,b) C M.

1
n

Since (a,b) € I1(xo,y0) C J(z0,Yo), we have shown that M is the union of the countable
family of sets J. Since closed sets are the complements of open sets and complements
are again in the o-algebra, the assertion follows for closed sets. [
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Remarks 10.2 (a) We have proved that any open subset M of R" is the countable union

of rectangles I C M.

(b) The Borel sets in R™ are exactly the sets which can be built by countable unions or

intersections of open or closed sets.

(c) The Borel algebra o(&,,) is equal to the o-algebra generated by the family G of open

sets in R™, cf. Homework 34.2.

Let us look in more detail at some of the sets in 0(€,). Let § and F be the families of

all open and closed subsets of R", respectively. Let G5 be the collection of all intersection

of sequences of open sets (from §), and let F, be the collection of all unions of sequences

of sets of F. One can prove that ¥ C G5 and § C F,. These inclusions are strict. Since

countable intersection and unions of countable intersections and union are still countable

operations, G5, F, C 0(&,)

For an arbitrary family 8 of sets let 8, be the collection of all unions of sequences of sets

in 8, and let 85 be the collection of all unions of sequences of sets in 8. We can iterate the

operations represented by ¢ and 4, obtaining from the class G the classes G5, G55, Gsos,
. and from JF the classes F,, F,5, ... . It turns out that we have inclusions

§CG5C Gss C---Ca(En)
FCF,CFpsC---Coa(&n).

No two of these classes are equal. There are Borel sets that belong to none of them.

10.1.1 Additive Functions and Measures

Definition 10.4 (a) Let A be an algebra over X. An additive function or content p on
A is a function p: A — [0, +00] such that

0,
(i) w(AUB)=pu(A)+ u(B) forall A,B € A with ANB=g.

(b) An additive function p is called countably additive (or o-additive in the German
literature) on A if for any disjoint family {4, | A, € A, n € N}, that is A, N A; = & for
all i # 7, with | J,cn An € A we have

7 (U An) =) u(An).

neN neN

(c) A measure is a countably additive function on a o-algebra A.

If X is a set, A a o-algebra on X and p a measure on A, then the tripel (X, A, u) is called
a measure space. Likewise, if X is a set and A a o-algebra on X, the pair (X, A) is called
a measurable space.
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Notation. We write Z A, in place of U A, if {A,} is a disjoint family of subsets. The

neN neEN
countable additivity reads as follows

p(AyUAsU--+) = pu(Ay) + p(Ag) + -+,
uqxeX\HneNﬁxeAﬁy:£$§:MAﬂ
k=1

We call the additive function p finite if u(X) < oo.

Example 10.1 (a) Let X be a set, zp € X and A = P(X). Then

1, xy€ A,
u(4) = ’
07 ) ¢ A

defines a finite measure on A. p is called the point mass concentrated at .
(b) Let X be a set and A = P(X). Put

400, if A has infinitely many elements
pu(A) = .
n, if A has n elements.

1 is a measure on A, the so called counting measure.
(¢c) X =R", A= ¢, is the algebra of elementary sets of R". Every A € &, is the finite
disjoint union of rectangles A = >7" | I. We set u(A) = >7", u(I) where
p(I) = (by — a) -+ (bn — an),
if I ={(z1,...,2,) € R" | a; X2 < b;,i=1,...,n} and a; < b;; u(&) = 0. Then p is
an additive function on &,. It is called the Lebesgue content on R". Note that y is not
a measure (since A is not a o-algebra and p is not yet shown to be countably additive).
However, we will see in Proposition 10.5 below that p is even countably additive. By
definition, p(line in R?) = 0 and u(plane in R3) = 0.
(d) Let X =R, A= &, and « an increasing function on R. For a,b in R with a < b set
/'l’a([aa b]) = O,/(b+ 0) - a(a - 0)5
ta(la, b)) = a(b—0) — afa - 0),
pa((a,b]) = a(b+0) — afa + 0),
ta((a,b)) = a(b—0) — afa+0).

Then p, is an additive function on &; if we set
pa(A) = pa(l), if A=)_I.
i=1 i=1

We call p, the Lebesque—Stieltjes content.
On the other hand, if ¢: & — R is an additive function, then : R — R defined by

oz(x) _ {N((O’x]): x>0,
_M(($70])7 T < 07

defines an increasing function « on R such that p = p, if « is continuous from the right.
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Properties of Additive Functions

Proposition 10.3 Let A be an algebra over X and p an additive function on A. Then

(a) p (Z Ak> = ZM(Ak) if A; € A form a disjoint family of subsets.
k=1

k=1

(b) u(AUB) + (AN B) = p(A) + u(B), A, B € A.
(c) A C B implies u(A) C u(B) (p is monotone).

(d) If AC B, A,B € A, and u(A) < +oo, then u(B\A) = u(B) — p(A), (u
is subtractive).

()

7 (U Ak) <) (A,

k=1 k=1
if Ay € A, k=1,...,n, (u is finitely subadditive).
(f) If {Ax | k € N} is a disjoint family in A and ZAk € A. Then
k=1

ZM(Ak) < p (Z Ak) :
k= k=1

1

Proof. (a) is by induction. (d), (c), and (b) are easy (cf. Homework 34.4).

(e) We can write U Ay, as the finite disjoint union of n sets of A:
k=1

JAr=41U (A\A) U (A5\ (A1 UAy)) U=+ U (A\ (A1 U=+ U A, y)).
k=1

Since p is additive,

n

1 (U Ak) = ZM(Ak\(Al U---Ap1)) <) p(Ayg),

= k=1

where we used p(B\ A) < u(B) (from (d)).
(f) Since p is additive, and monotone

k=1

Taking the supremum on the left gives the assertion. [

Proposition 10.4 Let p be an additive function on the algebra A. Consider the following
statements
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(a) p is countably additive.
(b) For any increasing sequence A, C Ant1, A, € A, with U A, = Ae A

n=1

we have lim p(A,) = p(A).
n—»00

(c) For any decreasing sequence A, O Apy1, An € A, with ﬂ A, € A and

n=1

w(Ayp) < oo we have lim p(A,) = u(A).
n—oo
(d) Statement (c) with A = & only.
We have (a) + (b) = (¢) = (d). In case u(X) < oo (u is finite), all statements are
equivalent.
Proof. (a) — (b). Without loss of generality A; = &. Put B, = A,\A4, ;forn=2,3,....

Then {B,} is a disjoint family with A, = ByUB3U---UB,, and A = J,-, B,. Hence,
by countable additivity of u,

A) =) u(By) = n]i_)IEOZN(Bk) = lim p (Z Bk> = lim pu(A,).
k=2 k=2 k=2

(b) — (a). Let {A,} be a family of disjoint sets in A with (JA, = A € A; put By =
Ay U---UAg. Then By is an increasing to A sequence. By (b)

n

1(Bn) = p (Z Ak) u is additive Z H(A) _) w4 (Z Ak)

k=1

Thus, ZM(A;C) =L (Z Ak>.

k=1 k=1
(b) — (c). Since A, is decreasing to A, A;\ A, is increasing to A; \ A. By (b)

pANA,) — p(Ai\ A),

hence (A1) — u(An) _ (A1) — u(A) which implies the assertion.

(¢) = (d) is trivial.

Now let p be finite, in particular, u(B) < oo for all B € A. We show (d) — (b). Let
(A,) be an increasing to A sequence of subsets A, A, € A. Then (A\ A,) is a decreasing
to @ sequence. By (d), u(A\A,) - 0. Since p is subtractive (Proposition 10.3 (d))

and all values are finite, u(A4,) — p(A). ]
n—oo

Proposition 10.5 Let a be increasing and p, the corresponding Lebesgue—Stieltjes con-
tent on €1. Then pg ts countably additive if and only if « is continuous from the right.

Proof. Let p, be countably additive and a € R. Fix a > 0. By Proposition 10.4 (c) for
any decreasing to a sequence (b,) we have

a(bn) = a(a) = 1a((0, b)) = 1a((0, a]) = pa((a; b)) — 1a(D) = 0;
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hence, « is continuous from the right.
Now let a be continuous from the right, i.e. u((a,b]) = a(b) — a(a). The proof of
countable additivity of u = pu, is the hard part of the proposition. We will do this in the

case
00

(aa b] = U (ak’ bk]

k=1

with a disjoint family [ag, b) of intervals. By Proposition 10.3 (f) we already know

((a, b)) = pl(ax, bi))- (10.1)
k=1

We prove the opposite direction. Let ¢ > 0. Since « is continuous from the right at a,
there exists ay € [a,b) such that a(ag) — a(a) < ¢ and, similarly, for every k£ € N there
exists ¢ > by, such that a(c) — a(by) < £/2F. Hence,

[ao, b] U (ax, b) < | (ak, k)
k1 k=1

is an open covering of a compact set. By Heine—Borel (Definition 6.11) there exists a finite

subcover
N N

[ag, b] C U(ak,ck), hence (ag, b] C U(ak,ck],

k=1 k=1
such that by Proposition 10.3 (e)

N
p((a0, b)) < pl(ak, ).
k=1
By the choice of a¢ and ¢y,

3

p((ak, c]) = p(ax, b]) + alcr) — albr) < p((ax, be]) + o

Similarly, u((a,b]) = p((a, ao]) + p((ao, b)) such that
(@, b)) < pl(ao, b)) +2 <37 (l(aw b)) + o)+

N [e's)
§Z,u((ak,bk )+ 2 < Z (ak, b)) + 2¢

Since ¢ was arbitrary,

In view of (10.1), p, is countably additive. n
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Corollary 10.6 The correspondence p — a(u) from Example 10.1 (d) defines a bijection
between countably additive functions u on €1 and the monotonically increasing, right con-
tinuous functions a on R (up to constant functions, i.e. « and « + ¢ define the same
additive function).

Historical Note. It was the great achievment of Emile Borel (1871-1956) that he really
proved the countable additivity of the Lebesgue measure. He realized that the countable
additivity of u is a serious mathematical problem far from being evident.

10.1.2 Extension of Countably Additive Functions

Here we must stop the rigorous treatment of measure theory. Up to now, we know only
two trivial examples of measures (Example10.1 (a) and (b)). We give an outline of the
steps toward the construction of the Lebesgue measure.

e Construction of an outer measure u* on P(X) from a countably additive function
on A.

e Construction of the o-algebra A, of measurable sets.

Theorem 10.7 (Extension and Uniqueness) Let u be a countably additive function
on the algebra A.

(a) There ezists an extension of u to a measure on the o-algebra o(A) which coincides
with p on A. We denote the measure on o(A) also by p.

(b) This extension is unique, if X = > o> | An, A, € A, and p(A,) < oo for alln € N,

(Without proof)

Remarks 10.3 (a) The extension theory is due to Carathéodory (1914). For a detailed
treatment, see [5, Section I1.4].

(b) The property (b) is called o-finiteness of u. For the algebra of elementary sets &, of
R"™ and the Lebesgue content it is obvioulsy satisfied since R" is the countable disjoint
union of bounded boxes: for example R =7 ((—n — 1, —n] U (n,n + 1]).

10.1.3 The Lebesgue Measure on IR"

Using the facts from the previous subsection we conclude that for any increasing, right
continuous function « on R there exists a measure p, on the o-algebra of Borel sets. We
call this measure the Lebesgue—Stieltjes measure on R. In case a(z) = x we call it the
Lebesgue measure. Extending the Lebesgue content on elementary sets of R™ to the Borel
algebra o(&,,), we obtain the n-dimensional Lebesgue measure A, on R".

Completeness

A measure p: A — R, on a o-algebra A is said to be complete if A € A, u(A) =0, and
B C A implies B € A. It turns out that the Lebesgue measure A, on the Borel sets of
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R" is not complete. Adjoining to o(&,) the subsets of measure-zero-sets, we obtain the
o-algebra A, of Legesgue measurable sets A, :

Ay, =0(Fn), Fo=EU{XCR"|XCE, FEeo(&), MF) =0}
The Lebesgue measure A, on A, is now complete.

Remarks 10.4 (a) The Lebesgue measure is invariant under the motion group of R™.
More precisely, let O(n) = {T € M(n x n,R) | T*T = TT* = E,} be the group of real
orthogonal n x n-matrices (“motions”), then

M(T(A)) = M(A), A€A,, TeO(n).

(b) A is translation invariant, i.e. \,(A) = \y(x + A) for all z € R™. Moreover, the
invariance of A\, under translations uniquely characterizes the Lebesgue measure \,: If A
is a translation invariant measure on (&), then A = ¢\, for some ¢ € R, .

(c) There exist non-measurable subsets in R™. We construct a subset E of R that is not
Lebesgue measurable.

We write x ~ y if x — y is rational. This is an equivalence relation since x ~ z for all
r € R, x ~ yimplies y ~ x for all x and y, and x ~ y and y ~ z implies x ~ z. Let E be
a subset of (0, 1) that contains exactly one point in every equivalence class. (the assertion
that there is such a set E is a direct application of the aziom of choice). We claim that
E is not measurable. Let F +r ={z+r |z € E}. We need the following two properties
of E:

(a) If z € (0,1), then z € E + r for some rational r € (—1,1).
(b) If r and s are distinct rationals, then (E+7r) N (E+s) = @.

To prove (a), note that for every z € (0,1) there exists y € F with x ~y. If r = 2 — v,
thenz =y+re E+r.

To prove (b), suppose that z € (E+7)N(E +s). Then 2 = y+r = z + s for some
y,z € E. Since y — z = s —r # 0, we have y ~ 2z, and E contains two equivalent points,
in contradiction to our choice of E.

Now assume that E' is Lebesgue measurable with A\(E) = . Define S = U(E + ) where
the union is over all rational r € (—1,1). By (b), the sets E+r are pairwise disjoint; since
A is translation invariant, A(E + r) = A(E) = « for all . Since S C (—1,2), A\(S) < 3.
The countable additivity of A now forces @ = 0 and hence A(S) = 0. But (a) implies
(0,1) € S, hence 1 < A(S), and we have a contradiction.

(d) Any countable set has Lebesgue measure zero. Indeed, every single point is a box
with edges of length 0; hence A({pt}) = 0. Since ) is countably additive,

o

A{z1, 20, Tpy .. }) = Z/\({xn}) =0.

n=1

In particular, the rational numbers have Lebesgue measure 0, A(R)) = 0.
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(e) There are uncountable sets with measure zero. The Cantor set (Cantor: 1845-1918,
inventor of set theory) is a prominent example:

0:{2%

i=1

a; € {0’2}} )

Obviously, C' C [0, 1]; C' is compact and can be written as the intersection of a decreasing
sequence (C,) of closed subsets; C; = [0,1/3] U [2/3,1], A(Cy) = 2/3, and, recursively,
2

1 1
1= -CoU[Z+2C, ).
Cu1 = 5C <3+30)

Clearly, ) "
ACrir) = SA(C) = -+ = (%) AC) = (%) .

By Proposition 10.4 (c), A(C) = lim A(C,) = 0. However, C' has the same cardinality as
n—oo
{0,2}N = {0, 1} 2 R which is uncountable.

10.2 Measurable Functions

Let A be a o-algebra over X.

Definition 10.5 A real function f: X — R is called A-measurable if for all a € R the
set {x € X | f(x) > a} belongs to A.

A complex function f is said to be A-measurable if both Re f and Im f are A-measurable.
A function f: U — R, U C R", is said to be a Borel function if f is o(&,)-measurable,
i.e. f is measurable with respect to the Borel algebra on R".

A function f: U — V, U C R*, V C R™, is called a Borel function if f~'(B) is a Borel
set for all Borel sets B C V.

Note that {z € X | f(z) > a} = f~'((a, +00)). From Proposition 10.8 below it becomes
clear that the last two notions are consistent. Note that no measure on (X, A) needs to
be specified to define a measurable function.

Example 10.2 (a) Any continuous function f: U — R, U C R", is a Borel function.
Indeed, since f is continuous and (a, +00) is open, f1((a,+00)) is open as well and hence
a Borel set (cf. Proposition 10.2).

(b) The characteristic function x4 is A-measurable if and only if A € A (see homework
35.3).

(c) Let f: U — V and ¢g: V — W be Borel functions. Then gof: U — W is a Borel
function, too. Indeed, for any Borel set C C W, g (C) is a Borel set in V since g is a
Borel function. Since f is a Borel function (gof)~'(C) = f~'(¢7'(C)) is a Borel subset of
U which shows the assertion.

Proposition 10.8 Let f: X — R be a function. The following are equivalent
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(@) {z | f(x) >a} € A foralla € R (i.e. [ is A-measurable).
(b) {z | f(z) > a} € A for all a € R.

(c) {z | f(z) <a} € A for all a € R.

(d) {z | f(z) <a} € A foralla € R.

(e) f~Y(B) € A for all Borel sets B € (&,).

)
Proof. (a) — (b) follows from the identity

{z | f(z >a}—ﬂ{x|f ) >a+1/n}.

neN

Since f is A-measurable and A is a g-algebra, the countable intersection on the right is
in A.

(a) — (d) follows from {z | f(z) < a} = {z | f(x) > a}°. The remaining directions are
left to the reader (see also homework 35.5). m

Lemma 10.9 Let f,g: X — R be A-measurable. Then {z | f(z) > g(z)} and {z |
f(z) =g(x)} are in A.
Proof. Since
{z]f(=) <g@)}=JUz| fl@) <} n{z|q<g(@)}),
9€Q

and all sets {f < ¢} and {¢ < g} the right are in A, and on the right there is a
countable union, the right hand side is in A. A similar argument works for {f > g}.
Note that the sets {f > g} and {f < g} are the complements of {f < g} and {f > g},
respectively; hence they belong to A as well. Finally, {f = g} = {f > g}n{f < ¢} ]

It is easy to see (cf. homework 35.4) that for any sequence (a,) of real numbers

lim a, = inf supa; and lim a, = sup inf ay. (10.2)
n—00 neEN g>p n—00 neN k>n

Proposition 10.10 Let (f,) be a sequence of A-measurable functions on X. Then sup f,,

nelN
inf f,, hm fn, im f,, are A-measurable. In particular hm fn is measurable if the limit
eN o0 n—00 —+00
erists.

Proof. Note that for all ¢ € R we have (cf. homework 35.4)

{sup fn < a} = ﬂ {fn < a}.

neEN

Since all f, are measurable, so is sup f,. A similar proof works for inf f,. By (10.2),

lim ,,_y00 f, and lim fn, are measurable, too. [

n—oo
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Proposition 10.11 Let f,g: X — R Borel functions on X C R™. Then af + By, [ - g,
and | f | are Borel functions, too.

Proof. The function h(x) = (f(z), g(z)): X — R? is a Borel function since its coordinate
functions are so. Since the sum s(z,y) = = + y and the product p(z,y) = zy are contin-
uous functions, the compositions seh and peh are Borel functions by Example 10.2 (c).
Since the constant functions o and [ are Borel, so are af, g, and finally af + fg.
Hence, the Borel functions over X form a linear space, moreover a real algebra. In
particular — f is Borel and so is | f | = max{f, —f}. ]

Let (X, A, 1) be a measure space and f: X — R ar-
bitrary. Let f* = max{f,0} and f~ = max{—f,0}
denote the positive and negative parts of f. We
have f = f* — f~ and | f| = f* + f~; moreover
frHfm>0.

Corollary 10.12 Let f is a Borel function if and only if both f* and f~ are Borel.

10.3 The Lebesgue Integral

We define the Lebesgue integral of a complex function in 3 steps; first for positive, simple
functions, then for positive measurable functions and finally for arbitrary measurable
functions. In this section (X, A, i) is a measure space.

10.3.1 Simple Functions
Definition 10.6 Let M C X be a subset. The function

1, e M,
xu(z) =
07 'Z‘ ¢ M’

is called characteristic function of M.
An A-measurabel function f: X — R is called simple if f takes only finitely many values
Cly...,Cp.

Clearly, if ¢4, ..., ¢, are the distinct values of the simple function f, then

n
f - Z CiXA;»
=1

where A; = {z | f(z) = ¢;}. It is clear, see homework 35.2, that f measurable if and only
if A; € A for all i. Obviously, {A; | i =1,...,n} is a disjoint family of subsets of X.

We denote the set of simple functions on (X,A) by §; the set of non-negative simple
functions is denoted by 8. It is easy to see that f, g € 8§ implies af +£¢g € §, max{f, g} €
S, min{f,g} € §, and fg € §.
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For f = ZCiXAi € &, define

=1

/X fdp= ZCiM(Ai)- (10.3)

The convention 0 - (+00) is used here; it may happen that ¢; = 0 for some 7 and p(4;) =
+o0.

Remarks 10.5 (a) Since ¢; > 0 for all 4, the right hand side i is well-defined in RR.

(b) Given another presentation of f, say, f Zdﬂ XB;» Zdﬁ w(B;) gives the same
value as (10.3).

The following properties are easily checked.
Lemma 10.13 For f,ge 8., A€ A, c € Ry we have

1) [y xadp = p(A).
2) [yefdu=cfy fdpu.
3) [x(f+g)du= [ fdu+ [ gdp.

(
(
(
(4) f < g implies [, fdu < [, gdpu.

)
)
)
)

10.3.2 Approximation of Measurable Functions by Simple Func-
tions

Theorem 10.14 Let f: X — [0,400] be measurable. There exist simple functions s,
n € N, on X such that

(a) 0 < S1 < 82 < f
(b)  sp(x) — f(z), as n — oo, for every z € X.
n—,oo
y
f
Example. X = (a,b), n =1,
1 ‘ ‘ 1 <4< 2. Then
3l4 / \ 1
E. \ EJll:fi1 (|:05 5)) )
12 3 3
| | R Jo 1y
o ] =={z)
L : : 3 — 1
0 a| | ! ! i Fo = 7 ([1,+oc]) .
E E F E12 Ex X
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Proof. For n € N and for 1 < i < n2", define

on on

Em'=f_1<[i_1 Z)) and  F, = f1([n, o))

and put

1—1
Sn = Z on XEn; T NXF,-

Proposition 10.8 shows that E,; and F),, are measurable sets. It is easily seen that the

functions s, satisfy (a). If z is such that f(z) < 400, then

0 < f(z) — sn(z) < (10.4)

1
on
as soon as n is large enough, that is, x € E,; for some n, 7 € N and not z € F,. If
f(z) = 400, then s,(z) = n; this proves (b). ]

From (10.4) it follows, that s, = f uniformly on X if f is bounded.

Definition 10.7 (Lebesgue Integral) Let f: X — [0, +00] be measurable. Let (s,(x))
be an increasing sequence of simple functions s, converging to f(z) for all z € X,

lim s,(z) = sup s,(z) = f(x). Define
n—o0 neN

/fdu:sup/ Spdpu (10.5)
X neN J X

and call this number in [0, +o00] the Lebesgue integral of f(x) over X with respect to the
measure |4 or p-integral of f over X.

The definition of the Lebesgue integral does not depend on the special choice of the
increasing functions s, ' f. One can define

/ fdu =sup {/ sdp| s < f, and s is a simple function } .
X X

Observe, that we apparently have two definitions for [ x fdup if f is a simple function.
However these assign the same value to the integral since f is the largest simple function
greater than or equal to f.

Proposition 10.15 The properties (1) to (4) from Lemma10.18 hold for any non-
negative measurable functions f,g: X — [0,+00], c € R,.

(Without proof.)
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10.3.3 Integration of Arbitrary Complex Functions

Let (X, A, p) be a measure space.

Definition 10.8 (Lebesgue Integral—Continued) A complex, measurable function
f: X — Cis called p-integrable if

[ 1lan<oo

If f =wu+iv is p-integrable, where u = Re f and v = Im f are the real and imaginary
parts of f, u and v are real measurable functions on X. Define the u-integral of f over

X by
/fdu:/u+du—/udu+i/v+du—i/ v~ dp. (10.6)
X X X X X

These four functions u*, v, v*, and v~ are measurable, real, and non-negative. Since
we have u™ < |u| < | f] etc., each of these four integrals is finite. Thus, (10.6) defines
the integral on the left as a complex number.

We define £'(X, 1) to be the collection of all complex p-integrable functions f on X. It
is sometimes desirable to define the integral of a measurable function f: X — [—o00, +00]

to be
/deu=/Xf+—/deu,

if at least one of the integrals on the right is finite. The left side is then a number in
[—00, +00].
Note that for an integrable functions f, [, fdp is a finite number.

Proposition 10.16 Let f,g: X — C be measurable.

(a) f is p-integrable if and only if | f | is p-integrable and we have

/deu‘S/XIfldu-

(b) f is p-integrable if and only if there exists an integrable function h with
[ fI<h

(c) If f, g are integrable, so is c1 f + cog where

du = d du.
/)((61f+629) W C1/Xf ,u-l-CQ/Xg 1
(d) If f < g on X, then [ fdu < [, gdp.

It follows that the set L!(X, ) of u-integrable complex-valued functions on X is a linear
space. The Lebesgue integral defines a positive linear functional on £'(X, u). Note that
(b) implies that any measurable and bounded function f on a space X with p(X) < oo
is integrable.
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Definition 10.9 Let A € A, f: X — R or f: X — C measurable. The function f is
called p-integrable over A if x4 f is p-integrable over X. In this case we put,

/Afduz/Xfodu-

In particular, Lemma 10.13 (1) now reads [, du = pu(A).

10.4 Some Theorems on Lebesgue Integrals

10.4.1 The Role Played by Measure Zero Sets

Definition 10.10 Let P be a property which a point  may or may not have. For
instance, P may be the property “f(z) > 0” if f is a given function or “(f,(z)) converges”
if (f,,) is a given sequence of functions. If (X, A, i) is a measure space and A € A, we say
“P holds almost everywhere on A”, abbreviated by “P holds a.e. on E”, if there exists
N € A such that y(N) =0 and P holds for every point x € E\ N.

This concept of course strongly depends on the measure u, and sometimes we write
pu-a.e. For example, if f, g are measurable functions, we write f ~ g if f = g p-a.e. on
X. This means u({z | f(z) # g(x)}) = 0. This is indeed an equivalence relation. Note

that f = g a.e. on X implies
/fw=/gw-
X X

Indeed, let N denote the zero-set where f # g. Then
[t=9an= [ =g+ [ (7=9)du<uN)(o0) + u(X\N) -0 =0
X N X\N

Proposition 10.17 Let f: X — [0, +o0] be measurable. Then
fod,uzo if and only of f =0 a.e. on X.
(See homework 36.3)

Definition 10.11 Let (X, A, i) be a measure space. For 1 < p < oo, LP(X, ) denotes
the set of A-measurable functions f on X such that | f ¥ € LY(X, u). For f € LP(X, )

set
= P q E. e
||f||p (/ |f‘ M) (10 )

From Proposition 10.17 it follows that ||-||, is not a norm, in general, since [, | f " du =0
implies only f = 0 a.e. However, identifying functions f and g which are equal a.e. ,
(10.7) defines a norm on those equivalence classes.

Let N={f: X —» C | f is measurable and f =0 a.e. }. Then N is a linear subspace
of LP(X, u) for all all p, and f = g a.e. if and only if f — g € N.
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Definition 10.12 Let (X, A, 1) be a measure space. LP(X, 1) denotes the set of equiv-
alence classes of functions of LP(X, ) with respect to the equivalence relation f = g

a.e. that is,
LP(X, 1) = L7(X, ) /N

is the quotient space. LP(X, y1) is a normed space with the norm (10.7).

Example. We have xg = 0 in LP(R, \) since xg = 0 a.e. on R with respect to the
Lebesgue measure (note that @ is a set of measure zero).

10.4.2 The Monotone Convergence Theorem

The following theorem about the monotone convergence by Beppo Levi (1875-1961) is
one of the most important in the theory of integration. The theorem holds for an arbitrary
increasing sequence of measurable functions with, possibly, [ < Jndp = +o0.

Theorem 10.18 (Monotone Convergence Theorem/Beppo Levi) Let (f,) be a
sequence of measurable functions on X and suppose that

(1) 0< fi(z) < fo(x) < --- < +oo forallz € X,
(2)  fa(z) - f(z), for every z € X.

Then f is measurable, and

lim fodu = / fdu.
X X

n—oo

(Without proof) Note, that f is measurable is a consequence of Proposition 10.10.
Corollary 10.19 Let f,: X — [0,+00]| be measurable for all n € N, and f(z) =
an(x) forz € X. Then

n=1

/ngndﬂzg/xfndu'

Example 10.3 (a) Let X = N, A = P(N) the o-algebra of all subsets, and p the counting
measure on N. The functions on N can be identified with the sequences (z,), f(n) = z,.
Trivially, any function is A-measurable.

What is fN 7, dp? First, let f > 0. For a simple function g,, given by g, = z,X{n}, we

obtain [ g,dy = z,u({n}) = z,. Note that f = Zgn and g, > 0 since z,, > 0. By

n=1

/NfdMZE/Ngnduzgxn-

Now, let f be arbitrary integrable, i.e. [ |f| du < oo; thus Y 07, [z, | < co. There-
fore, (z,) € L'(N, p) if and only if Y x, converges absolutely. The space of absolutely

Corollary 10.19,

convergent series is denoted by ¢, or ¢;(IN).
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(b) Let apy > 0 for all n,m € N. Then

Proof. Consider the measure space (N, P(N), p) from (a). For n € N define functions
fa(m) = @mp. By Corollary 10.19 we then have

/an_;fn(m)dﬂzfxfdlﬁg)z:lf(m):mz:;;amn
———
f(m)
n=1 n=1m=1

Proposition 10.20 Let f: X — [0, +o0] be measurable. Then
o= [ fan, aca
A

defines a measure ¢ on A.

(See homework 36.4)

10.4.3 The Dominated Convergence Theorem

Besides the monotone convergence theorem the present theorem is the most important
one. It is due to Henry Lebesgue. The great advantage, compared with Theorem?7.7, is
that u(X) = oo is allowed, that is, non-compact domains X are included. We only need
the pointwise convergence of (f,), not the uniform convergence. The main assumtion here
is the existence of an integrable upper bound for all f,.

Theorem 10.21 (Dominated Convergence/Lebesgue) Let f,,f: X — R or into
C, n € N, be measurable functions such that

(1) fa— f asn — o< a.e.
@) [fal<g ae

(3)/ngu<+oo.

Then [, | f|dp < co and

im [ fadu= [
X X

n—oo

lim /X | fo—fldu=0. (10.8)

n—oo
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Note, that (10.8) shows that (f,) converges to f in the normed space L'(X, ).

Example 10.4 (a) Let A, € A, n € N, A; C Ay C --- be an increasing sequence with

UAn:A.

neN

If f e L'(A,p), then
lim fdu= / fdup.
Ay, A

n—o0

Indeed, the sequence (x4, f) is pointwise converging to xf and | x4, f| <|xaf | which
is integrable. By Lebesgue’s theorem,

lim/ fdu= lim/XAan/XAde:/fd:u-
n—oo [ 4 n—oo Jy X A

However, if we do not assume f € L!(A, i), the statement is not true (see Remark 10.6
below).
(b) Let f, = nX(0,1/n) be defined on (0,1). Then f, — 0 pointwise, however

/Olfnd,uzlﬁ/OIO:O.

Note, that f,, is neither monotonic nor dominated by any integrable function g.

10.4.4 The Riemann and the Lebesgue Integrals

Proposition 10.22 Let f be a bounded function on the finite interval [a, b].

(a) f is Riemann integrable on [a,b] if and only if f is continuous a. e. on [a,b].

(b) If f is Riemann integrable on [a,b], then f is Lebesque integrable, too. Both integrals
coincide.

Let I C R be an interval such that f is Riemann integrable on all compact subintervals
of 1.

(c) f is Lebesgue integrable on I if and only if | f | is improperly Riemann integrable on
I (see Section 5.4); both integrals coincide.

Remarks 10.6 (a) The characteristic function xq on [0, 1] is Lebesgue but not Riemann
integrable; xq is nowhere continuous on [0, 1].

o -
sin
dx
1 T

converges (see Example 5.9); however, the Lebesgue integral does not exist since the

(b) The (improper) Riemann integral

integral does not converge absolutely.
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10.4.5 Fubini’s Theorem

Theorem 10.23 Let (X1, A, p1) and (X, Ag, pio) be o-finite measure spaces, let f be an
A1 ® Ay-measurable function and X = X7 x Xs.

(a) Iff: X — [0’ +OO], Qp(xl) = f f(xlva) dpz, ¢($2) = f f(xlva) dp, then

X9 X1

[ o) de = [ rameomw= [ )

X1
X1 XX2

(b) If f € LY X, uy ® po) then

/ fd(pm @ p2) = / ( [z, 29) dﬂl) dps.
X1XX2 Xa X1

Here A; ® A, denotes the smallest o-algebra over X, which contains all sets A x B,
A € Ay and B € A,. Define p(A x B) = p1(A)uo(B) and extend u to a measure pg @ po
on A; ® A,.

Remark 10.7 In (a), as in Levi’s theorem, we don’t need any assumption on f to change
the order of integration since f > 0. In (b) f is an arbitrary measurable function on
X, % X,, however, the integral [, | f| du needs to be finite.
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