Chapter 11

The Hilbert Space

Functional analysis is a fruitful interplay between linear algebra and analysis. One de-
fines function spaces with certain properties and certain topologies and considers linear
operators between such spaces. The friendliest example of such spaces are Hilbert spaces.
This chapter is devided into two parts—one describes the geometry of a Hilbert space,
the second is concerned with linear operators on the Hilbert space.

11.1 The Geometry of the Hilbert Space

11.1.1 Unitary Spaces

Let E be a linear space over K = R or over K = C.
Definition 11.1 An inner product on E is a function (-, ) : F x E — K with

(@) (Mz1+ Ao, y) = A1 (T1,9) + A2 (22,y) (Linearity)

(b) (z,y) = (y,z). (Hermitian property)

(¢) (xz,z)>0forall z € E, and (z,z) = 0 implies x = 0 (Positve definite-
ness)

A unitary space is a linear space together with an inner product.

Let us list some immediate consequences from these axioms: From (a) and (b) it follows
that

(d) (Y, Mzt + Aoma) = Ai (Y, 21) + A2 (y, 22) -

A form on E X E satisfying (a) and (d) is called a sesquilinear form. (a) implies (0,y) = 0
for all y € E. The mapping z — (z,y) is a linear mapping into K (a linear functional)
for all y € E.

By (c¢), we may define ||z||, the norm of the vector x € E' to be the square root of (z, x);
thus

||ac||2 = (z,z). (11.1)
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308 11 The Hilbert Space

Proposition 11.1 (Cauchy—Schwarz Inequality) Let (E,(-,-)) be a unitary space.
For z,y € F we have

[z u) [ < [l 1yl -

Proof. Choose a € C, |a| = 1 such that a(y,z) = |{(z,y)|. For A € R we then have
(since @ (z,y) = a(y,z) = | (z,9) )

(z — aly,z — aly) = (z,2) — aX (y,z) — @ (z,y) + X* (y,9)
= (z,z) — 2\ | (z,y) |+ N (y,y) > 0.

This is a quadratic polynomial aA?4+bA\+c in \ with real coefficients. Since this polynomial
takes only non-negative values, its discriminant 4> — 4ac must be non-positive:

2 2 2
Al y) " = 4llell” lyl” = < 0.

This imnplies | (z,y) | < [lz[| [lyll- -

Corollary 11.2 ||-|| defines a norm on E.

Proof. Tt is clear that ||z|| > 0. From (c) it follows that ||z| = 0 implies z = 0. Further,

IAz|| = /(O\x, A\z) = 1/| A |*(z,z) = | \]|||z]. We prove the triangle inequality. Since
2Re(z) = z + Z we have by Proposition 1.24 and the Cauchy-Schwarz inequality

Iz +yl” = (@ +y,z +y) = (x,2) + (z,9) + (¥, 2) + (4, y)
= ||z + lylI* + 2Re (z,y)
< lzl* + lyl* + 2| (=) |
< =l + gl + 21l lyll = (=l + ly 1)

hence ||z + y|| < ||z[| + [|y]l- .

By the corollary, any unitary space is a normed space with the norm ||z|| = \/{x, x).

Recall that any normed vector space is a metric space with the metric d(z,y) = ||z — y]|.
Hence, the notions of open and closed sets, neighborhoods, converging sequences, Cauchy
sequences, continuous mappings, and so on make sence in a unitary space. In particular

lim z, = x means that the sequence (||z, — z||) of non-negative real numbers tends to
n—r00

0. Recall from Definition 6.8 that a metric space is said to be complete if every Cauchy
sequence converges.

Definition 11.2 A complete unitary space is called a Hilbert space.

Example 11.1 Let K = C.

(a) E=C" 2= (21,...,2,) €EC", y = (y1,...,Yn) € C". Then (z,y) = Zka defines
k=1
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=

an inner product, with the euclidean norm ||z|| = (3 ;_, |z« [)2. (C", (-,-)) is a Hilbert
space.

(b) E = L*(X, ) is a Hilbert space with the inner product (f,g) = [, fgdu.

Using Young’s inequality (Proposition 1.30) and the monotony of the Lebesgue integral,

one easily proves Holder’s inequality

/leg|dué(/lelpdu);(/xlglqdu);, (11.2)

where p and ¢ are conjugate exponents, 1/p 4+ 1/g = 1. For more details, consult [14,
3.5 Theorem, p.62]. In case p = ¢ = 2 we obtain the Cauchy—Schwarz inequality
| [ fgdu ‘2 < [ | f[?dp [ |g|* du. This shows two things, first, fg is integrable and
the inner product is well-defined on L?(X, i), secondly, L?(X, ) is a linear space—the
triangle inequality || f + g|| < ||f]| + |lg|| shows that f,g € L? implies f + g € L.

Note that the inner product is positive definite since f x| f \2 dp = 0 implies (by Propo-
sition 10.17) that | f| = 0 a.e. However, in L?(X, u) it follows f = 0 since we do not
distinguish between function which are equal almost everywhere. Open: the complete-
ness of L*(X, u).

(c) E =¥y, by = L2(N, p) with the counting measure u on N, i.e.

by ={(z,) | zn € C,n €N, Z\xn ” < o0}
n=1
Note that the Cauchy—Schwarz’s inequality (Corollary 1.34) implies

2

k k k [e's) [e's)
Sz | <) Nz P v <D Nz P
n=1 n=1 n=1 n=1 n=1

Taking the supremum over all £ € N on the right, we have

00 2 00 00
S ot | <> lwa Y vl
n=1 n=1 n=1

hence

o0
(@), (yn)) =D TnTn
n=1
is an absolutely converging series such that the inner product is well-defined on /5.
Lemma 11.3 Let F be a unitary space. For any fixred y € E the mappings
= (z,y), and x> (y,)

are continuous functions on E.
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Proof. The Cauchy-Schwarz inequality implies that for z,,z, € F

| <$1ay> - <$2,y> ‘ = ‘ <$1 - $25y> | < ||.Z'1 - :EQ” ”y” )

which proves that the map z +— (z,y) is in fact uniformly continuous (Given & > 0
choose 6 = ¢/ |ly||. Then ||z; — z2|| < ¢ implies | (z1,y) — (z2,y) | < €). The same is true
for z — (y, x). ]

Definition 11.3 Let H be a unitary space. We call x and y orthogonal to each other,
and write z L y, if (x,y) = 0. Two subsets M, N C H are called orthogonal to each other
ifx L yforallz € M and y € N.

For a subset M C H define the orthogonal complement M+ of M to be the set

M*={ze H|{(z,m)=0, forallme M}.

For example, E = R" with the standard inner product and v = (vq,...,v,) € R", v # 0
yields

{v}r ={r e R"| chkvk = 0}.

This is a hyperplane in R™ which is orthogonal to v.

Lemma 11.4 Let H be a unitary space and M C H be an arbitrary subset. Then, M+
is a closed linear subspace of H.

Proof. (a) Suppose that z,y € M*. Then for m € M we have
Mz + Aoy, m) = Ay (z,m) + A2 (y, m) = 0;

hence Az + Aoy € M*. This shows that M~ is a linear subspace.
(b) We show that any converging sequence (z,) of elements of M~ has its limit in M*.
Suppose lim z, = x, ¥, € M+, x € H. Then for all m € M, (z,,m) = 0. Since the
n—oQ
inner product is continuous in the first argument (see Lemma 11.3) we obtain
0= lim (z,,m) = (x,m).

n—00

This shows £ € M~*; hence M~ is closed. n

11.1.2 Norm and Inner product
Let (E,(-,-)) be a unitary space; ||z|| = v/{z, z). then we have

(@y) = (lz +yll* = llz —ylI"), if K=R. (11.3)

= =

() =~ (lz +yl* = llz =y +illz +iy* —illz —iy|?), if K=C. (11.4)
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These equations are called polarization identities. They simply follow by evaluating the
right sides.
Problem. Given a normed linear space (F, ||-||). Does there exist an inner product (-,-)

on E such that ||z|| = /{(x,z) for all x € E? In this case we call ||-|| an inner product
norm.

Proposition 11.5 A norm ||-|| on a linear space E over K = C or K = R is an inner
product norm if and only if the parallelogram law

2 2 2 2
e +yll” + [l = yll” = 2(ll=]" + [l9]]"), 2,y € E. (11.5)

is satisfied. If (11.5) is satisfied, the inner product (-,-) is given by (11.3) in the real case
K =R and by (11.4) in the complez case K = C.

It is easy to see that (11.5) is a necessary condition for E to be a unitary space.

11.1.3 Two Theorems of F. Riesz

(born: January 22, 1880 in Austria-Hungary, died: February 28, 1956, founder of func-
tional analysis)

Definition 11.4 Let (Hy,(-,-),) and (Ho, (-, -),) be Hilbert spaces. Let H = {(z1,z2) |
x1 € Hy, 9 € Hy} be the direct sum of the Hilbert spaces H; and Hy. Then

(w1, m2), (Y1, 92)) = (T1,91); + (2, Y2),

defines an inner product on H. With this inner product H becomes a Hilbert space.
H = H, & H, is called the (direct) orthogonal sum of H; and H,.

Definition 11.5 Two Hilbert spaces H; and H, are called isomorphic if there exists a
bijective linear mapping ¢: H; — Hj such that

<§0(x)7g0(y)>2 = <$,y)1, z,y € Hl-
© is called isometric isomorphism or a unitary map.

Back to the orthogonal sum H = H, & H,. Let H; = {(21,0) | z; € H,} and H, =
{(0,x2) | z2 € Hy}. Then z; — (x1,0) and x5 — (0, z5) are isometric isomorphisms from
H; —» H;,i=1,2. We have H, L H, and H;, i = 1,2 are closed linear subspaces of H.

In this situation we say that H is the inner othogonal sum of the two closed subspaces

ﬁl and ﬁg.

(a) Riesz’s First Theorem

Problem. Let H; be a closed linear subspace of H. Does there exist another closed linear
subspace H, such that H = H; & Hy?
Answer: YES.
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Lemma 11.6 Let C be a convex and closed subset of the Hilbert space H. For x € H let
o(z) = inf{[|lz —y[| [ y € C}.
Then there exists a unique element ¢ € K such that
o(z) = [l — .

Proof. Ezistence. Since p(z) is an infimum, there exists a sequence (y,), ¥, € C, which
approximates the infimum, lim,, ,« ||z — ya|| = o(z). We will show, that (y,) is a Cauchy
sequence. By the parallelogram law (see Proposition 11.5) we have

|Yn — ym”2 =lyn —2+2z— ym||2

2 2 2
= 2lyn = z[I” + 2|7 = yml” = 122 =y — ¥
2

Yn + ¥
=2llyn — 2’ + 2|0 = ymll” — 4 ||z — =

Since C is convex, (yn + ym)/2 € C and therefore ||z — 22E¥m || > p(z). Hence
<2|jgn = z]|* + 2|z — ymll® — do(2)®.
By the choice of (y,), the first two sequences tend to g(z)* as m,n — oc. Thus,

lim_ [y = ymll* = 2(0*(2) + 0(2)°) — de(z)* =0,

I

hence (y,) is a Cauchy sequence. Since H is complete, there exists an element ¢ € H
such that lim,,_, . v, = c¢. Since y, € C and C' is closed, ¢ € C. By construction, we have
lyn — || — o(z). On the other hand, since y, — ¢ and the norm is continuous (see
homework 37.1), we have

1gn = zl| — [lc — ]

This implies p(z) = ||c — ||

Uniqueness. Let ¢, ¢’ two such elements. Then, by the parallelogram law,

0<|le=¢|>=|lc—z+z—¢]

2
c+c

2

:ﬂk—ﬂf+ﬂ@—df—4w—

< 2(0(x)? + o(x)?) — 4o(x)* = 0.
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This implies ¢ = ¢’; the point ¢ € C which realizes the infimum is unique. [

Y
%

Theorem 11.7 (Riesz’s first theorem) Let H; be a closed linear subspace of the
Hilbert space H. Then we have
H=H, & H,

that is, any x € H has a unique representation x = x1 + xo with r1 € Hy and x4 € Hli.

Proof. Let x € H. Apply Lemma 11.6 to the convex, closed set H;. There exists a unique
z1 € Hy such that

o(z) = inf{{lz — a1 || [ 21 € Hi} < [lz — 21 — ty]]

forallt € K and y; € H;. Homework 37.3 (¢) now implies o = x—x; L y; for all y; € H;.
Hence 2, € HlL. Therefore, x = x; + x5, and the existence of such a representation is
shown.

We show the uniqueness. Suppose that x = x; + xo = x| + ), are two possibilities to
write  as a sum of elements of x,, 2| € H, and x,, 7} € Hi-. Then

T -1 =12 —x=u

belongs to both H; and Hi- (by linearity of H; and H,). Hence (u,u) = 0 which implies
u = 0. That is, 1 = 2| and zy = 5. n

Let z = x; + x5 as above. Then the mappings P;(z) = z; and Py(z) = x5 are well-defined
on H. They are called orthogonal projections of H onto H; and H,, respectively. We will
consider projections in more detail later.

(b) Riesz’s Representation Theorem

Recall from Section9.7 that a linear functional on the vector space E is a mapping
F: E — K such that F(Az; + Aoxe) = M F(x1) + MF(xs) for all 21,20 € E and
A, A € K.
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Definition 11.6 Let (E,||-||) be a normed linear space over K. A linear functional
F: E — K is called continuous if x, — = in E implies F(z,) — F(x).

The set of all continuous linear functionals F' on E form a linear space E' with the same
linear operations as in E*.

Now let (H,(-,-)) be a Hilbert space. By Lemmall.3, F,: H — K, F,(z) = (z,y)
defines a continuous linear functional on H. Riesz’s representation theorem states that
any continuous linear functional on H is of this form.

Theorem 11.8 (Riesz’s Representation Theorem) Let F be a continuous linear
functional on the Hilbert space H.
Then there exists a unique element y € H such that F(z) = Fy(x) = (z,y) for allz € H.

Proof. Existence. Let Hy = ker F' be the null-space of the linear functional F'. H; is a
linear subspace (since F is linear). H; is closed since H; = F~1({0}) is the preimage of
the closed set {0} under the continuous map F. By Riesz’s first theorem, H = H, & H{-.
Case 1. H{ = {0}. Then H = H; and F(z) = 0 for all z. We can choose y = 0;
F(z) = (x,0).

Case 2. Hi- # {0}. Suppose u € Hi-, u # 0. Then F(u) # 0 (otherwise, u € Hi" N H;
such that (u,u) = 0 which implies u = 0). We have

CF@) N ey F@
F(:c F(u)) F(z) F(u)F() 0.

Hence z — ?Eg u € Hy. Since u € Hi we have
_ <x - ?Ezg uu> — (o) — ?Ez; (, 1)
Flz) = 5(1»:)) (z,u) = <3: %» _ Fy(2),
where y — W u

Uniqueness. Suppose that both y;,yo € H give the same functional F, i.e. F(x) =
(z,91) = (x,yo) for all . This implies

(y1 —y2,2) =0, =z € H.

In particular, choose x = y; — y2. This gives ||y; — y2||2 = 0; hence y; = 1». n

(c) Application

Any continuous linear functionals on L?(X, p) are of the form F(f) = [, fgdp with some
9 € L2(X, p).
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Any continuous linear functional on /5 is given by
o0
n=1

The mapping H — H', y — F, is an anti-linear isomorphism of linear spaces (that is,
Fyy = AFy, Fy 4y, = Fy, + F,).

11.1.4 Orthogonal Sets and Fourier Expansion

Motivation. Let £ = R"™ be the euclidean space with the standard inner product and
standard basis {ej,...,e,}. Then we have with z; = (z, ;)

n n n
=Y aer, |zll®=D |zl (&y) =) z¥k
k=1 k=1 k=1

We want to generalize these formulas to arbitrary Hilbert spaces.

(a) Orthonormal Sets
Let (H,(-,-)) be a Hilbert space.

Definition 11.7 Let {z; | i € I} be a family of elements of H.
{z;} is called an orthogonal set or OS if (z;,x;) = 0 for 7 # j.
{z;} is called an orthonormal set or NOS if (z;, z;) = d;; for all 4,j € I.

Example 11.2 (a) H = {5, ¢, = (0,0,...,0,1,0,...) with the 1 at the nth component.
Then {e, | n € N} is an OS in H.

(b) H = L2((0,2r)) with the Lebesgue measure, (f,g) = [ " fgd\. Then
{1,sin(nz),cos(nz) | n € N} is an OS.

Note that cos(m + n)x + cos(m — n)z = 2 cos(mz) cos(nz) yields

(cos(mz), cos(nx)) = /0 ’ cos(mz) cos(nx) dx = %/0 7r(Cos(m—i—n)av-i—cos(m—n)aﬁ) dz =0,

if n #m and 7 if n = m. Similarly computations hold for sin z and 1. Finally,
11 =27, |lsin(na)|| =7, [[cos(nz)|| =,

and we obtain

{\/127’ sin\%az)’ coiﬁ;_m:) |n€1N}, {\e;;lnelN}

to be orthonormal sets of H.
Lemma 11.9 (The Pythagorean Theorem) Let {x1,...,z} be an OS in H, then

o+ -+ all® = Nl + -+ [l
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The easy proof is left to the reader.
Lemma 11.10 Let {z,} be an OS in H. Then Y .- xx converges if and only if
S laxl® converges.

Note that the convergence of a series Z;’il x; of elements x; of a Hilbert space H is defined
to be the limit of the partial sums lim,,_,o, > i, ;. In particular, the Cauchy criterion
applies since H is complete:

The series > y; converges if and only if for every ¢ > 0 there exists ny € N

Zyi

t=m

such that m,n > ny imply <e.

Proof. By the above discussion, Y, x5 converges if and only if ||d°,_ 2 || becomes
small for sufficiently large m,n € N. By the Pythagorean theorem this term equals

n
D Mzl
k=m

. . . . 2
hence the series Yz converges, if and only if the series > ||zx||” converges. n

(b) Fourierexpansion

Throughout this parapgraph let {z,, | n € N} an NOS in the Hilbert space H.

Definition 11.8 The numbers (z,z,), n € N, are called Fourier coefficients of x € H
with respect to the NOS {z,}.

1 sin(nz) cos(nz)

Example 11.3 Consider the NOS , ,
P { Vor T NZd
ous example on H = L%((0,27)). Let f € H. Then

<f, Sirj;fc)> = % /O " f(t) sin(nt) dt,
(DY - L s

These are the usual Fourier coefficients—up to a factor. Note that we have another
normalization than in Definition 7.4 since the inner product there has the factor 1/(27).

|n € N} from the previu-

Proposition 11.11 (Bessel’s Inequality) For z € H we have

[z, 2n) [* < 2] (11.6)

[M]8

B
Il

1
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Proof. Let n € N be a positive integer and y, = = — Y ;_, (2, zx) z%. Then

n n

<yn;$m> = <$,$m> - Z <x7$k> <xk;xm) = <x7$m) - Z <$,$k> Okm =0

k=1 k=1

form =1,...,n. Hence, {yn, (x,21) x1,...,{2, Zn) z,} is an OS. By Lemma11.9

2 2 2 2
v + ) (e aw) ael| = llyall® + D |z, ae) P llawll® 2 ) e, 2e) 1,
k=1 k=1 k=1

2
l]” =

since ||zx|”> = 1 for all k. Taking the supremum over all n on the right, the assertion
follows. u

o
Corollary 11.12 For any x € H the series Z (x,xk) x) converges in H.

k=1
Proof. Since {(z, zy) zx} is an OS, by Lemma 11.10 the series converges if and only if the
series S0, ||(2, xx) 2k l” = Soo0, | (2, 24) |* converges. By Bessel’s inequality, this series
converges. -

We call "2 | (z, zx) x) the Fourier series of z with respect to the NOS {z}.

Remarks 11.1 (a) In general, the Fourierseries of x does not converge to x.

(b) The NOS {\/%7, Sili(/%x), coi%”)} gives the ordinary Fourier series of a function f which

is integrable over (0, 27).

Theorem 11.13 Let {x | k € N} be an NOS in H. The following are equivalent:

o
Z x, k) T,  for all x € H, i.e. the Fourier series of x
1

converges t 0.

(b) (z,z) = 0 for all k € N implies z = 0, i. e. the NOS is maximal.

(c) For every x € H we have ||z||* = Z | (z, z) |

(d) If r € H and y € H, then (z,y) =Z z, k) (Tk,y)
k=1

Formula (d) is called Parseval’s identity.

Definition 11.9 An orthonormal set {z; | # € N} which satisfies the above (equivalent)
properties is called a complete orthonormal system, CNOS for short, or orthonormal basis.
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Proof. (a) — (d): Since the inner product is continuous in both components we have
< 00 00 o0
'T y Z xz, xk: T, Z Y, .Tn > Z <'T7 .7)]9> <y7 xn) <$k7 xn>
=1 n=1 k,n=1 Stm

= Z (z,2k) Tk, y)

(d) = (c): Put y = x.
(¢) = (b): Suppose (z,zx) = 0 for all k. By (c) we then have

I201* = Z | (z,2)|>=0; hence z=0.

(b) — (a): Fix z € H and put y = Y, , (z,zx) z) which converges according to Corol-
lary 11.12. With z = x — y we have for all positive integers n € IN

<Z, .Tn) = <.I - y,xn> = <.’L‘ - Z <£L',.Ik) .Tk,l'n>

o0
(2 2n) = (@, 20) = 3 (2, 28) (@5, ) = (8, 20) — (2, 20) = 0.
k=1

This shows z = 0 and therefore z = y, i.e. the Fourier series of = converges to x. [

Example 11.4 (a) H = {5, {e,, | n € N} is an NOS. We show that this NOS is complete.
For, let * = (z,) be orthogonal to every e,, n € N; that is, 0 = (z,e,) = z,. Hence,

= (0,0,...) = 0. By (b), {e,} is a CNOS. How does the Fourier series of z look like?
The Fourier coefficients of x are (x,e,) = x, such that

00
xr = E InCn
n=1

is the Fourier series of x . The NOS {e, | n > 2} is not complete.
(b) H =12((0,2)),

{\/12_7, Sii%x), Cofﬁgx)\nelN}, and {\e/i;MEN}

are both CNOSs in H. This was shown in Theorem?7.19

(c) Existence of CNOS in a Separabel Hilbert Space

Definition 11.10 A metric space F is called separabel if there exists a countable dense
subset of E.
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Example 11.5 (a) R" is separabel. M = {(ry,...,7,) | 11,...,7, € Q} is a countable
dense set in R™.

(b) C™ is separabel. M = {(r1+is1,...,rn+i8s) | 71, -, Tn, S1,- .-, 8, € Q} is a countable
dense subset of C".

(c) L?([a,b]) is separabel. First note that uniform convergence f, = f of continuous
functions implies convergence in 1.?([a, b]) since by Lebesgue’s theorem

lim / | falz) — f(2) [2 dz = / lim | fu(e) — f(z) ! dz = 0.

n—o0 n—00

By the theorem of Weierstrafy (Theorem 7.16) any continuous function on [a,b] can be
uniformly approximated by polynomials. By the above argument, any continuous function
is the L2-limit of polynomial. Since the continuous functions are dense in L?([a,b]) (see
homework 16.5 where the same was proved for the Riemann integral), we conclude that
any L2-function can be approximated by polynomials in the L2-norm. Hence,

n

M = {p(z) | p(z) = Z(rk +isp)z®, n € N,ry, s, € Q}

k=0
is a countable dense subset of L?([a, b]).
Proposition 11.14 (Schmidt’s Orthogonalization Process) Let {yx} be an at most

countable linearly independent subset of the Hilbert space H. Then there exists an NOS
{zy} such that for every n

lin{yy,...,yn} =lin{zy,...,z,}.

Proof. Since {y} is linearly independent, y; # 0. Put z1 = y1/ ||y1]|-

Suppose we have already constructed the NOS {zi,...,z,} with the above property.
However lin{xzy,...,z,} C lin{yz}. That is, there exists, say y,.1, which is not in the
linear span of x1,...,z,. We try the ansatz

n
Tpy1 = E AT+ Yny1-
k=1

The orthogonality property (Z,.1,zx) = 0 then yields

0= (Tny1,Tk) = <Z)‘J’xj + yn+la$k> = X + (Yn+1, Tp) -

i=1

)\k:—(yn+1,xk), k=1,...,n.

Then .
Tpy1 = — Z (Yn+15 Th) T + Yns1
k=1
is orthogonal and linearly independent to {x1,...,z,}. Putting
in—i—l

T = 0=
" Z el
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{z1,...,2,41} is an NOS which linear span coincides with the linear span of {y1, ..., yn11}-
[

Corollary 11.15 Let {ex | k € N} be an NOS where N = {1,...,n} for some n € N
or N = N. Suppose that Hy = lin{e; | k € N} is the linear span of the NOS. Then
T1 =) e (@, ex) e is the orthogonal projection of x € H onto H,.

Proof. 1 € H, is obvious since e, € H; for all ¥ € N. For any e; € H; we have by
continuity of (-, )

(z —x1,¢5) = (2,¢5) — <Z (z,e) ek,ej> = (z,e5) = > _ (z,ex) (ex, €5)

kEN keEN
= (z,e;) — Z (z,ex) Ok; = (z,€5) — (z,€5) = 0.
kEN

Hence, © — xy L H; such that x = z; + (z — 1) is the unique representation of z with
v € Hy and v — 2, € H{. n

Proposition 11.16 A Hilbert space H has an at most countable complete orthonormal
system (CNOS) if and only if H is separabel.

Proof. Suppose {zy | £ € N} is an CNOS, where N = N or N = {1,...,n}. By
Theorem 11.13, z = ), (x, ) x) for all z € H. Then

M = {Z(Tk+i8k)$k | Tk, Sk € (Q}

kEN

is a countable dense subset of H

Other direction. Suppose that H has a countable dense subset M = {g1,...,¥n,.-- }-
Cancel all elements ,, in the sequence which are linearly dependent from its predecessors.
We obtain a linearly independent set {y1,...¥n,-..}. Using Schmidt’s orthogonalization
process we obtain an NOS {z1,...}, with the property lin{z,..., 2.} =lin{y;,...,y-}
for all r € N. Hence (z,zx) = 0 for all k£ implies (z,m) = 0 for all m € M implies
(2,x) = 0 for all z € M = H. This implies z = 0. By Theorem 11.13 (b), {z,} is a
CNOS. n

Corollary 11.17 Let H be a separabel Hilbert space. Then H 1is either isomorphic to K"
for somen € N or to ¢s.

Proof. Let dim H = oo. By Proposition 11.16, there exists a countable CNOS {z) |
k € N}. Every x € H can be written as x = Y -, (z,zx) z5. Define an isomorphism
T:H — ly by T(x) = ({(%,2k),ecn)- By Bessel’s inequality, the sequence of Fourier



11.2 Linear Operators in Hilbert Spaces 321

coefficients is indeed in #5. T is linear since x +— (z,xy) is linear for all k. We have to
show T preserves the inner product. Let xz,y € H; by Parseval’s identity

(x y Z z, :ck Y, Tk) = <T(3§),T(y)>£2-

In particular, ||T(x)| = ||z|| for all z € H. This implies T to be injective since T'(x) = 0

yields 2 = 0. Moreover T is surjective since any (a,) € 2 has a preimage z =Y | a, Ty,
with T'(x) = (ay). This proves that 7" is an isometric isomrphism from H onto /. n

Remarks 11.2 (a) Let G C R"™ be a region. Then L?(G) is an infinite dimensional
separabel Hilbert space hence isomorphic to /5.

(b) Any Hilbert space is isomorphic to some L2(X, i) where y is the counting measure
on X; X = N gives 5. X uncountable gives a non-separabel Hilbet space.

11.2 Linear Operators in Hilbert Spaces

11.2.1 Bounded Linear Operators

Definition 11.11 (a) Let (E, ||-||,) and (E», ||-||,) be normed linear space. A linear map
T: Ey — E, is called continuous if x, — z in E; implies T'(z,) — T'(z) in Ej.

(b) A linear map T': Ey, — Ej is called bounded if there exist a positive real number C > 0
such that

IT(@)|l, < Cllall,, forall z€ By (11.7)

Definition 11.12 Suppose that T: F; — F5 is a bounded linear map. We define its
operator norm by

17,
(a) ||T||=sup{ Tl El,méo},
() 7] = sup {IT@)l, | Iall, < 1}
© |IT] = sup {IT @), | =], = 1}
@ [T =inf{C > 0| 7@, < Cllell,}-

We can restrict ourselves to unit vectors since

[T(ax)lly, _ el IT@)l, _ [T,
loz ]l [afllz]l; [l

This shows the equivalence of (a) and (c). Since ||T'(az)||, = |a|||T(x)]|,, the suprema
(b) and (c) are equal. From The last equality follows from the fact that the least upper
bound is the infimum over all upper bounds. From (a) and (d) it follows,

IT(@)ly < 1Tl -
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Proposition 11.18 For a linear map T: E1 — FEs of a normed space E, into a normed
space Ey the following are equivalent:

(a) T is bounded.
(b) T is continuous.
(c) T is continuous at one point of Ej.

Proof. (a) — (b). This follows from the fact
1T (1) = T ()| = 1T (21 — )| < T[22 — 2],

and T is even uniformly continuous on Fj. (b) trivially implies (c).
(¢) — (a). Suppose T is continuous at xy. To each £ > 0 one can find 6 > 0 such that
|z — xo|| < 0 implies || T(z) — T(x0)|| < &. Let y = x — 0. In other words ||y|| < ¢ implies

IT(y +x0) = T(o)l| = IT(W)]| <.

Suppose z € Ey, ||z|]| < 1. Then ||§/2z|| < §/2 < 6; hence ||T(§/22)|| < €. By linearity of
T, |T(2)|| < 2¢/6. This shows ||T|| < 2¢/$. n

Q 28. T: E; — E, is bounded if and only if for any sequence z, — 0, T(z,) is
bounded.

Proof. If T is bounded, then T is continuous at 0; hence T'(z,) — 0 which is a bounded
sequence. Conversely, suppose that the condition is satisfied. We prove continuity at 0.

1
Suppose that z, # 0 for all n and put A\, = ||z,|| which tends to 0. Then (\/Txn)

T

vV

= v/ An — 0. By assumption, the image sequence is

still converges to 0 since

bounded, say
1

()l

1T ()| < C-

Hence,
1T (za)|| < CV/ Ay — 0

which proves continuity at 0. n

Definition 11.13 Let F and F be normed linear spaces. Let L(E, F') denote the set of
all bounded linear maps from E to F. In case E = F we simply write L(E) in place of
L(E,F).

Proposition 11.19 Let E and F be normed linear spaces. Then L(E, F) is a normed
linear space if we define the linear structure by

(S+T)(2)=S)+T(x), (A\T)(z)=AT(z)

for S,T € L(E,F), A\ € K. The operator norm ||T| makes L(E,F) a normed linear
space.
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Note that L(F, F') is complete if and only if F' is complete.

Example 11.6 (a) Recall that L(K",IK™) is a normed vector space with |[|A]l
1

(=
see Proposition 8.1

(b) The space E' = L(E,K) of continuous linear functionals on E.
(c) H=L12((0,1)), g € C([0,1]),

aij \2>5, where A = (a;;) is the matrix representation of the linear operator A,

defines a bounded linear operator on H. (see homework 39.5)
(d) H =L*((0,1)), k(s,t) € L*([0,1] x [0,1]). Then

(K)(t) = / k(s,8)f(s)ds, e H =12(0,1]

defines a continuous linear operator K € L(H). We have

=] [ renseras| < ([ k011 50)105)
< [ imsnras / £(s) P ds

1
_ / (s, ) [2 ds || FI1%

i < ([ ko as) alsig

K (e < [E 2o, xg0,27) 111l -

This shows K f € H and further, ||K|| < ||kl 2, 1j2)- K is called an integral operator; K
is compact, i.e. it maps the unit ball into a set Whose closur is compact.
(e) H=L%*R), a € R,

Hence,

(Vaf)(t):f(t_a)’ teR,

defines a bounded linear operator called the shift operator. Indeed,

WVaflo= [ [ft=a)[*dt= [ |F@)" dt=If]l3;
R R

hence ||V,|| < 1. Later we will see that ||V,|| = 01.
(f) H = ;. We define the right-shift S by

S(.Tl,.%g,...) = (0,.%1,55‘2,...).

Obviously, [|S(z)|| = |lz]| = (3252, |2, ]%)®. Hence, ||S]| = 1.
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11.2.2 The Adjoint Operator

In this subsection H is a Hilbert space and L(H) the space of bounded linear operators
on H.

Let T € L(H) be a bounded linear operator and y € H. Then F(z) = (T(z),y) defines
a continuous linear functional on H. Indeed,

[F() | =Ty < IT@Hyl < [Tl vzl < Cllell-

Hence, F' is bounded and therefore continuous. in particular,
IEN < (T[] [|y
By Riesz’s representation theorem, there exists a unique vector z € H such that
(T(z),y) = F(z) = (z,2) .
Note that by homework 39.1 and the above inequality
Iz = FI < 1T Mlyll - (11.8)
Suppose y; is another element of H which corresponds to z; € H with
<T($), yl) = <£L’, Z1> '
Finally, let © € H be the element which corresponds to y + 1,
<T($)a Yy + yl) = <l‘, ’LL) .
Since the element u which is given by Riesz’s representation theorem is unique, we have
u = z + z1. Similarly,
(T(z), \y) = F(z) = (z,Az)
shows that Az corresponds to \y.

Definition 11.14 The above correspondence y +— z is linear. Define the linear operator
T* by z = T*(y). By definition,

(T(x),y) = <x,T*(y)>, z,y € H. (11.9)
T* is called the adjoint operator to T.

Proposition 11.20 Let T,T,, T, € L(H). Then T™* is a bounded linear operator with
|T*|| = IT|l. We have
(a) (Ty +Ty)* =Ty +T.f and
(b) (AT)* = AT*.
(c) (Ty)* =Ty T}F.
(d) If T is invertible in L(H), so is T*, and we have (T*)~! = (T-1)*.
(e) (T%)* =
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Proof. Inequality (11.8) shows that
[T*W)|| < ITIIyll, v € H.

By definition, this implies
|T*| < IIT]

and T* is bounded. Since
(T*(2),y) = (v, T*(2)) = (T(y), x) = (z,T(y)),

we get (T*)* =T. We conclude ||T|| = HT**H < ||7*]| ; such that || T*|| = ||T
(a). For z,y € H we have

(Ty + 1) (2), y) = (T1(z) + Ta(2), y) = (T1(2), y) + (T2(2), )
= <x, TF (y)> + <:v, TZ*(y)> = <a:, (T + TQ*)(y)> :

which proves (a).
(c) and (d) are left to the reader. ]

A mapping *: A — A such that the above properties (a), (b), and (c) are satisfied is
called an inwvolution. An algebra with involution is called a *-algebra.

We have seen that L(H) is a (non-commutative) #-algebra. An example of a commutative
x-algebra is C(K) with the involution f*(z) = f(z).

Example 11.7 (Example 11.6 continued)

(a) H=C", A = (a;;) € M(nxn,C). Then A* = (b;;) has the matrix elements b;; = a;;.
(b) H =12([0,1)), T, = Tj.

(c) H = L%(R), Vo(f)(t) = f(t — a) (Shift operator), V.* = V_,.

(d) H = ¢y. The right-shift S is defined by S((z,)) = (0,21, 22,...). We compute the
adjoint S*.

= an—lyn = Z TnlYnt+1 = <(.T1, T2y ... )’ (y27 Y3, - -- )> .
n=2 n=1
Hence, S*((yn)) = (2,93, - - - ) is the left-shift.

11.2.3 Classes of Bounded Linear Operators

H is a Hilbert space.

(a) Self-Adjoint and Normal Operators
Definition 11.15 An operator 7 € L(H) is called
(a) self-adjoint, if A* = A,
(b) normal , if A*A = A A*,



326 11 The Hilbert Space

A self-adjoint operator A is called positive, if (Az,z) > 0 for all x € H. We write A > 0.
If A and B are self-adjoint, we write A > Bif A— B > 0.

A crucial role in proving the simplest properties plays the polarization identity which
generalizes the polarization identity from Section 11.1.2.

4(Az,y) = (Alz +y), v+ y)—(A(z — y),z — y)+i (A(z + iy), z + iy)—i (A(z — iy),z — iy) .
We use the identity as follows
(A(z),z) =0 forall x € H implies A =0.

Indeed, by the polarization identity, (A(x),y) = 0 for all z,y € H. In particular y = A(x)
yields A(z) = 0 for all z; thus, A = 0.

Remarks 11.3 (a) A is normal if and only if ||A(z HA* z)|| for all z € H. In-
deed, if A is normal, then for all z € H we have <A*A z) = (AA*(z),z) which
imply [|A(z)||” = (A(z), A(z)) = (A*(x), A%( > = || A*(2) H? On the other hand, the
polarizarion identity and (A*A(z),z) = <A A* ), z) implies ((A*A — AA*)(z),z) =0
for all z; hence A*A — A A* = 0 which proves the claim.

(b) Sums and real scalar multiples of self-adjoint operators are self-adjoint.

(¢) The product AB of self-adjoint operators is self-adjoint if and only if A and B commute
with each other, AB = BA.

(d) A is self-adjoint if and only if (Ax,z) is real for all z € H.

Proof. Let A* = A. Then (Az,z) = (z, Az) = (Ax, z) is real; for the opposite direction
(A(z),z) = (z, A(x)) and the polarization identity yield (A(z),y) = (z, A(y)) for all z, y;
hence A* = A. n

(b) Unitary and Isometric Operators
Definition 11.16 Let T € L(H). Then T is called
(a) unitary, if T*T =1 =TT*.
(b) isometric, if  ||T(z)|| = ||z|| for all z € H.

Proposition 11.21 (a) T is isometric if and only if T*T = I and if and only if
(T(x),T(y)) = (z,y) for all z,y € H.

(b) T is unitary, if and only if T is isometric and surjective.

(c) If S, T are unitary, so are ST and T—'. The unitary operators of L(H) form a group.

Proof. (a) T isometric yields (T'(z), T(z)) = (x,z) and further ((T*T — I)( ac> =0 for
all z. The polarization identity implies 7% T = I. This implies ((T™*T — I ),y) =0,
for all z,y € H. Hence, (T'(x),T(y)) = (x,y). Inserting y = x shows T is 1sometr1c

(b) Suppose T is unitary. T*T = I shows T is isometric. Since TT* = I, T is surjective.
Suppose now, 7T is isometric and surjective. Since T is isometric, T(x) = 0 implies z = 0;
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hence, T is bijective with an inverse operator T~'. Isert y = T~!(z) into (T'(z),T(y)) =
(x,y). This gives
(T(x),2) =(z,T '(2)), w,2z€H.

Hence T~! = T* and therefore T*T = TT* = I.
(c) is easy (see homework 40.4). m

Note that an isometric operator is injective with norm 1 (since ||T'(x)|| /||z|| = 1 for all
z). In case H = C", the unitary operators on C" form the unitary group U(n). In case
H = R", the unitary operators on H form the orthogonal group O(n).

Example 11.8 (a) H = L2(R). The shift operator V, is unitary since V,V; = V5. The
multiplication operator T, f = g f is unitary if and only if | g | = 1. T}, is self-adjoint (resp.
positive) if and only if g is real (resp positive).

(b) H = {5, the right-shift S((x,)) = (0, 21,2, ...) is isometric but not unitary since S
is not surjective. S* is not isometric since S*(1,0,...) = 0; hence S* is not injective.
(c) Fourier transform. For f € L'(R) define

(Fr e f(z)
A

Let 8(R) = {f € C®°(R) | supyeg [t"fP ()| < 00, Vn,k € Zy}. 8(R) is called the
Schwartz space after Laurent Schwartz. We have $(R) C L}(R), e=*" € $(R). One can
show that F: 8(R) — S(R) is injective, [|[F(f)ll 2wy = Iflli2w)> f € S(R). F has a
unique extension to a unitary operator on LZ(IR). The inverse Fourier transform is

(T \/_/ e f(z)dz, fe€S(R).

11.2.4 Orthogonal Projections
(a) Riesz’s First Theorem—revisited

Let H; be a closed linear subspace. By Theorem 11.7 any x € H has a unique decompo-
sition & = z, + o with z; € H; and zo € H{". The map Py, (z) = z; is a linear operator
from H to H, (see homework 39.1). Py, is called the orthogonal projection from H onto
the closed subspace Hy. Obviously, H; is the image of Py, ; in particular, Py, is surjective
if and only if H; = H. In this case, Py = I is the identity. Since

2 2 2 2 2
1Py (@)1 = [l |I” < flal|” + 2ol = (||

we have || Py, || < 1. If H; # {0}, there exists a non-zero z; € Hy such that || Py, (z1)|| =
||z1]|- This shows || Py, || = 1.

Proposition 11.22 A linear operator P € L(H) is an orthogonal projection if and only
if P2 = P and P* = P.
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Proof. “—”. Suppose that P = Py, is the projection onto H;. Since P is the identity on
Hy, P*(z) = P(z,) = x; = P(z) for all z € H; hence P? = P.

Let © = 21 + z9 and y = y; + y» be the unique decompositions of z and y in elements of
H, and H{, respectively. Then

(P(z),y) = (x1, 71 + y2) = (T1,01) + (T1,%2) = (T1,41) = (T1 + 22, 71) = (z, P(y)),
H:?)_/

that is, P* = P.

“”. Suppose P2 = P = P*. Let H, = {z | P(x) = z}. Since P is continuous, H; =
(P —1)7%({0}) is a closed linear subspace of H. By Riesz’s first theorem, H = H, ® H{.
We have to show that P(z) = z; for all z.

Since P2 = P, P(P(x)) = P(x) for all x; hence P(z) € H,. We show z — P(x) € H
which completes the proof. For, let z € Hy, then

(x — P(z),2) = (z,2) — (P(x), 2) = (x,2) — (z, P(2)) = (z,2) — (x,2) = 0.

Hence x = P(x) + (I — P)(z) is the unique Riesz decomposition of z with respect to H;
and Hi. n

(b) Properties of Orthogonal Projections

Throughout this paragraph let P, and P, be orthogonal projections on the closed sub-
spaces H; and Hj, respectively.

Lemma 11.23 The following are equivalent.

(a) Py + P, is an orthogonal projection.
(b) P1P2 = 0
(C) H1 L HQ.

Proof. (a) — (b). Let P, + P5 be a projection. Then
(P, + P)?> = P!+ PP+ P,P,+ P} = P+ P, + PP, + P,P, 2P+ P,

hence P, P, + P,P, = 0. Multiplying this from the left by P; and from the right by P;
yields
P1P2+P1P2P1:0:P1P2P1+P2P1.

This 1mphes P1P2 = P2P1 and ﬁnally P1P2 = P2P1 = 0.
(b) = (c). Let z; € H; and z9 € Hy. Then

0 = (PLPy(22), 21) = (Pa(22), P1(21)) = (22, 71) -

This shows H; 1 H,.
(¢) = (b). Let z, 2z € H be arbitrary. Then

(PLPy(z), 2) = (Pa(2), Pi(2)) = (22, 21) = 0;
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Hence P, P(xz) = 0 and therefore P, P, = 0. The same argument works for P, P, = 0.
(b) — (a) Since PP, =0 1mp11es PP, =0 (Via, H, 1L HQ),

(P,+ P)* =P+ Pf =P + P,

(P, +P)? =P+ PP+ PP+ P} =P +0+0+ P,

Lemma 11.24 The following are equivalent

(a) PP is an orthogonal projection.
(b) P1P2:P2P1.

In this case, P, Py is the orthogonal projection onto Hy N Hs.

Proof. (b) = (a). (PLP)* = P P} = P,P, = P, P,, by assumption. Moreover, (P, P)? =
P P,P,P, = P,P,P,P, = P, P, which completes this direction.

(a) = (b). PP, = (P,P,)* = PfPF = P,P,.

Clearly, P\P,(H) C H; and P,P,(H) C Hj; hence PPy(H) C H; N Hy. On the other
hand x € H; N Hy implies P; P,z = x. This shows Py P»(H) = H; N Hs. n

The proof of the following lemma is quite similar to that of the previous two lemmas, so
we omit it (see homework 40.5).

Lemma 11.25 The following are equivalent.

(a) H1 g H2, (d) Pl S P2a
(b) PP =P, (c) PP =h,
() Py,— P, is an orth. projection, €) ||1Pi(2)| < ||P(2)||, =€ H.

11.2.5 Spectrum and Resolvent

Let T € L(H) be a bounded linear operator.

(a) Definitions

Definition 11.17 (a) The resolvent set of T, denoted by p(T), is the set of all A € C
such that there exists a bounded linear operator Ry (7) € L(H) with

BA(T)(T' = M) = (T = A)R\(T) = I,

i.e. there T'— AI has a bounded (continuous) inverse Ry (7). We call R)(T) the resolvent
of T at A.

(b) The set C\ p(T) is called the spectrum of T and is denoted by o (7).

(c) X € C'is called an eigenvalue of T if there exists a nonzero vector x, called eigenvector,
with (T — AI)z = 0. The set of all eigenvalues is the point spectrum o,(T)
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Remark 11.4 (a) Note that the point spectrum is a subset of the spectrum, o,(7T") C
o(T). Suppose to the contrary, the eigenvalue A with eigenvector y belongs to the resolvent
set. Then there exists R)(T) € L(H) with

y = BA(T)(T = M) (y) = RA(T)(0) = 0

which contradicts the definition of an eigenvector; hence eigenvalues belong to the spec-
trum.

(b) A € 0,(T) is equivalent to 7' — Al not being injective. It may happen that T"— AI is
not surjective, which also implies A € o(7T") (see Example11.9 (b) below).

Example 11.9 (a) H = C", A € M(n x n,C). Since in finite dimensional spaces T €
L(H) is injective if and only if T is surjective, o(A) = o,(A).
(b) H =12([0,1]). (Tf)(x) = zf(x). We have

op(T) = 2.

Indeed, suppose \ is an eigenvalue and f € L£2([0,1]) an eigenfunction to T, that is
(T'— XI)(f) = 0; hence (x — A)f(x) =0 a.e. on [0,1]. Since z — A is nonzero a.e. , f =0
a.e. on [0,1]. That is f = 0 in H which contradicts the definition of an eigenvector. We
have

C\[0,1] C p(T).

Suppose A & [0,1]. Since x — A # 0 for all z € [0, 1], g(z) =

bounded) function on [0, 1]. Hence,

is a continuous (hence

- A

(Baf)(z) = f(@)

T — A

defines a bounded linear operator which is invers to T — AI since

@20 (1550) = -0 (570 = 1),
We have
o(T) = [0, 1].

Suppose to the contrary that there exists A € p(T') N[0, 1]. Then there exists Ry € L(H)
with

R\(T — \I) =1. (11.10)

By homework 39.5 (a), the norm of the multiplication operator T}, is less that or equal to
9]l (the supremum norm of g). Choose f. = X(r—erte)- Since xu = X3,

(T = ADf.| = ||(z — Nxo.oy (@) f-(2)]] < sup | (& — Nxonpy (@) | 1]

z€[0,1]
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However,

sup ‘ (z - )\)XUE(A)(x) ‘ = sup |z—A|=e.
2€[0,1] €U ()

This shows
(T = AL fe|| < el fell -

Inserting f. into (11.10) we obtain

1fell = [IBA(T = AD) fel| < [|RAHI(T = AL fe]| < [[RAl] € [].f2]]

which implies |Ry|| > 1/e. This contradicts the boundedness of Ry since ¢ > 0 was
arbitrary.

(b) Properties of the Spectrum
Lemma 11.26 Let T € L(H). Then
o(T*) = o(T)*, (complex conjugation) p(T*) = p(T)*.
Proof. Suppose that A € p(T'). Then there exists Ry(T') € L(H) such that
RA(T)(T — M) = (T — AX[)R\(T) = I
(BA(T)(T = AD)* = (T = ARy =1
(T* — MX)Ry\(T)* = R\(t)*(T* — \I) = I.
This shows Ry(T*) = R,(T)* is again a bounded linear operator on H. Hence,
p(T*) C (p(T))*. Since  is an involution (T** = T), the opposite inclusion follows.

Since o(T') is the complement of the resolvent set, the claim for the spectrum follows as
well. .

For A, p, T and S we have

RBA(T) = Ru(T) = (A = p) BA(T) Ru(T) = (A — ) Ru(T) BA(T),
RA(T) = Ba(S) = RA(T)(S = T)Ra(S).

Proposition 11.27 (a) p(7T) is open and o(T) is closed.

(b) If Ao € p(T) and | X — Xo| < || R, (T)||”" then X € p(T) and

o

RA(T) = 3 (0= 2)" Rag (T,

n=0

(c) If [N | > ||T||, then X € p(T) and

Ry(T) ==Y A" '1™
n=0
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Proof. (a) follows from (b).
(b) For brevity, we write Ry, in place of Ry,(T"). With ¢ = |\ — X | [|Rx, (T)]], ¢ € (0,1)
we have

S S [ Bl
1 A
DA A IR =D 1Rl = 1_°q converges.

By homework 38.4, " x,, converges if > ||z,|| converges. Hence,
B=) (A= X)"Ry"
n=0

converges in L(H) with respect to the operator norm. Moreover,

(T = AI)B = (T = AI)B — (A — A)B

(o)

=D (A= 2)"(T = XD)RE =Y (A= A" R
n=0 n=0

=D (A= 2)"Ry — > (A= X)" MRy
n=0 n=0

—

A—X)°RY =1

Similarly, one shows B(T — AI) = I. Thus, R)\(T) = B.
(c) Since | A| > ||T||, the series converges with respect to operator norm, say

n=0

We have - o
(T—=AC == A" 4 Yy " A = 70 = 1.
n=0 n=0
Similarly, C(T — M) = I; hence R\(T) = C. [

Remarks 11.5 (a) By (b), R,(T) is a holomorphic (i. e. complex differentiable) function
in the variable A\ with values in £(H). One can use this to show that the spectrum is
non-empty, o(7T') # @.
(b) If |T'|| < 1, T — I is invertible with invers — >° ~T™.
(c¢) Proposition11.27 (¢) means: If A € o(T) then
|A| < ||T||. However, there is, in general, a smaller
disc around 0 which contains the spectrum. By defini-
tion, the spectral radius r(T') of T is the smallest non-
negative number such that the spectrum is completely
contained in the disc around 0 with radius r(7'):

r(T) =sup{|A|| A € o(T)}.
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(d) A € o(T) implies \* € o(T™) for all non-negative integers. Indeed, suppose A" €
p(T™), that is B(T™ — \") = (T™ — A\") B = I for some bounded B. Hence,

BY TA""HT —\)=(T—\CB=1,
k=0
thus A € p(T).
We shall refine the above statement and give a better upper bound for {|A| | A € o(T")}
than ||T|.

Proposition 11.28 Let TeL(H) be a bounded linear operator. Then the spectral radius
of T is

r(T) = nli_)r{)10||T”||%. (11.11)

The proof is in the appendix.

11.2.6 The Spectrum of Self-Adjoint Operators

Proposition 11.29 Let T = T* be a self-adjoint operator in L(H). Then X € p(T) if
and only if there exists C > 0 such that

(T = AD)z|| = Cl|=]] -

Proof. Suppose that A € p(T'). Then there exists (a non-zero) bounded operator Ry(T)
such that

|z]| = | ”A(T)(T = ADz|| < [[RA(T)|| [[(T" = ALz
Hence,

1
[RA(T) |
We can choose C'= 1/ ||RA(T)|| and the condition of the proposition is satisfied.
Suppose, the condition is satisfied. We prove the other direction in 3 steps, i.e. 1" — Ao/
has a bounded inverse operator which is defined on the whole space H.

Step 1. T — A is injective. Suppose to the contrary that (7" — A)z; = (T — A)zy. Then

(T = AD)z|| = |z||, =€ H.

0= (T = A) (21 — z2)[| = C [l21 — 2],

and ||z; — xo|| = 0 follows. That is z; = z5. Hence, T — AI is injective.

Step 2. Hy = (T — A )H, the range of T'— AI is closed. Suppose that y, = (T' — A )z,
xn, € H, converges to some y € H. We want to show that y € H;. Clearly (y,) is a
Cauchy sequence such that ||y, — ya|| = 0 as m,n — oco. By assumption,

[9m = ynll = (T = AD) (@ — 2m)[| 2 Cllzn — zml| -

Thus, (z,) is a Cauchy sequence in H. Since H is complete, x, — z for some z € H.
Sinnce T — AI is continuous,

Yo = (T = A)z, — (T — Al)z.

n—oo
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Hence, y = (T — Al)z and H; is a closed subspace.
Step 8. Hy = H. By Riesz first theorem, H = H; ® Hi-. We have to show that Hi- = {0}.
Let v € Hi, that is, since T* =T,

0={((T—MN)z,u) = (z,(T —M)u), forall zeH.
This shows (T — A )u = 0, hence T'(u) = Au. This implies
(T(u),u) = X{u,u).

However, T = T™* implies that the left side is real, by Remark11.3 (d) 1.3 xxx. Hence
A = \is real. We conclude, (T' — AM)u = 0. By injectivity of T — A, u = 0. That is
H,=H.

We have shown that there exists a linear operator S = (T — AI)~! which is inverse to
T — AI and defined on the whole space H. Since

lyll = [T = AD S = C IS W),
S is bounded with ||S|| < 1/C. Hence, S = R\(T). ]

Note that for any bounded real function f(x,y) we have

su;)f(w Y) = Sup(sup flz,y) = Sl;p(SIip f(z,y)).

In particular, ||z|| = sup |(z,y)| since y = =/ ||z|| yields the supremum and CSI gives
llyll<t
the upper bound. Further, ||T(x)|| = sup |(T(z),y) | such that
llyll<i
17|l = sup sup |(T'(z),y)[= sup [(T(z),y)| sup sup [(T'(z),y)]|
llz[[<11lyl[<1 ll=l|<1, [lyl|<1 llyll<1|lz|<1

In case of self-adjoint operators we can generalize this.
Proposition 11.30 Let T =T* € L(H). Then we have

Il = sup | (7)) (1112

Proof. Let C' = sup |(T(z),z)|. By Cauchy Schwarz inequality, | (T'(z),z) | < ||T|| |||

ll=[|<1

such that C < ||T]].
For any real positive o > 0 we have:

IT@)I? = (T(2), T(x)) = (T*(x), ) = % (T(az + o~ 'T(@)), 0z + o~ 'T(z)) -
= —(T(az —a 'T(z),0z — a 'T(z)))

VAN

1 _
Z(C’Howc-i—ozl H —f—CHa:c—ole H)

;C(ﬂMﬂ|+%mlT H) (@ ||z]* + o | T(@)]") -

T
it
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Inserting o = ||T(z)]| / ||z|| we obtain

= % @) ]l + =T ()]

which implies ||7'(z)|| < C'||z||. Thus, ||| = C. -
Let m = IIiﬂ£1 (T'(z),z) and M = sup (T'(z),z) denote the lower and upper bound of T.
IS ll=(|<1

Then we have
sup |(T'(z), )| = max{m, M} = ||T|,

llzl|<1
and
m|z))* < (T(z),z) < M ||z||*, forall z € H.

Corollary 11.31 Let T =T* € L(H) be a self-adjoint operator. Then
o(T) C [m, M].
Proof. Suppose that A\g & [m, M]. Then
C:= inf [N —p|>0.

we€[m, M|

Since m = inf (T'(x),z) and M = sup (T'(z),z) we have for ||z|| =1

llzll=1 |lz||=1

1T = doD)]| = Izl I(T = Ao D)zll > [{(T" = Aol)z, 2} |

(T(x),z) = Xo|lz[|*| > C.
——
€[m,M]

This implies
(T — XoI)z|| > C|lz|| forall ze H.

By Proposition 11.29, Ay € p(7T). n

Example 11.10 Let H = L?[0,1], g € C[0,1] a real-valued function, and (T,f)(t) =

g(t)f(t). Let m = i?f}g(t), M = sup g(t). One easily proves that m and M are the
tel0,1 t€[0,1]
lower and upper bounds of T, such that o(T,) C [m, M].

Proposition 11.32 Let T = T* € L(H) be self-adjoint. Then all eigenvalues of T are
real and eigenvectors to different eigenvalues are orthogonal to each other.

Proof. The first statement is clear from Corollary 11.31. Suppose that T(x) = Az and
T(y) = py with A # p. Then

Azy =(T(z),y) = (2, T(y)) =B (z,y) = n{z,y).
Since A # p, (z,y) = 0. n

The statement about orthogonality holds for arbitrary normal operators.
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Appendix: Compact Self-Adjoint Operator in Hilbert
Space

Proof of Proposition 11.28. From the theory of power series, Theorem 2.32 2.32xxx we
know that the series

—z Y _||IT"|| 2" (11.13)
n=0

converges if | z| < R and diverges if | z | > R, where

1

R e —
lim /(|77

n—oo

(11.14)

Inserting z = 1/ and using homework 38.4, we have

_ i )\fnflTn
n=0

diverges if |A\| < lim {/||T"| (and converges if |A| > lim {/||T"|]). The reason for
n—oo n—oo

the divergence of the power series is, that the spectrum o(7") and the circle with radius

lim {/||T"|| have points in common; hence

n—0oQ
H(T) = T 4/[77])

On the other hand, by Remark11.5 (d), A € o(7T) implies A\ € o(T™); hence, by Re-
mark 11.5 (c),

(A< = [A T < VAT

Taking the supremum over all A € o(T') on the left and the lim over all n on the right,

we have
H(T) < lim /77 < T /7] = #(T).
n—»00 n—=00
Hence, the sequence {/||T™|| converges to 7(7') as n tends to oco. n

Compact operators generalize finite rank operators. Integral operators on compact sets
are compact.

Definition 11.18 A linear operator 7' € L(H) is called compact if the closure T'(U;) of
the unit ball Uy = {z | ||z]| < 1} is compact in H. In other words, for every sequence
(@), xn, € Uy, there exists a subsenquence such that 7T'(z,,) converges.

Proposition 11.33 For T € L(H) the following are equivalent:
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(a) T is compact.

(b) T* is compact.

(c) For all sequences (x,,) with ({xn,y)) — (x,y) converges for all y we have
T(x,) — T(x).

(d) There exists a sequence (T,) of operators of finite rank such that
IT T —s 0.

Definition 11.19 Let 7 be an operator on H and H; a closed subspace of H. We
call H; an reducing subspace if both H; and H;- are T-invariant, i.e. T(H;) C H; and
T(H{) C HE

Proposition 11.34 Let T € L(H) be normal.
(a) The eigenspace ker(T—M\I) is a reducing subspace for T and ker(T—M\I) = ker(T—\I)*.
(b) If \, p are distinct eigenvalues of T, ker(T — \I) L ker(T — pl).

Proof. (a) Since T is normal, so is T — A. Hence ||(T — A)(2)|| = (T = A)*(z)|. Thus,
ker(T — \) = ker(T — \)*. In particular, T*(z) = Az if v € ker(T — \I).

We show invariance. Let x € ker(T' — \); then T(z) = Az € ker(T — af). Similarly,
z € ker(T — M)+, y € ker(T — \I) imply

(T(z),y) = (2, T*(y)) = (=, Ay) = 0.

Hence, ker(T — AI)* is T-invariant, too.
(b) Let T(z) = Az and T'(y) = py. Then (a) and T*(y) = @y ... imply

Mz, y) = (T(x),y) = (2, T*(y)) = (&, 7y) = p{z,y) -

Thus (A — ) (z,y) = 0; since X\ # u, x L y. n

Theorem 11.35 (Spectral Theorem for Compact Self-Adjoint Operators)

Let H be an infinite dimensional separabel Hilbert space and T € L(H) compact and
self-adjoint.

Then there exists a real sequence (\,) with \, — 0 and an CNOS {e, | n € N} U {fx |
k € N C N} such that o

T(en) = Apen, n€eN T(fx) =0, ke€N.

Moreover,

o0

T(z) = Az, en)en, x€H. (11.15)

n=1

Remarks 11.6 (a) Since {e,} U{fx} is a CNOS, any z € H can be written as its Fourier

series
o0

Tz = Z (z,e,) e, + Z (@, fi) fr

n=1 kEN
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Applying T using T'(e,,) = A\pe, we have

T(z) = (z,en) Anen+ Y (z, fi) w

kEN ~

which establishes (11.15). The main point is the existence of a CNOS of eigenvectors
{en} U {f k}'

(b) In case H = C™ (R™ ) the theorem says that any hermitean (symmetric) matrix A is
diagonalizable with only real eigenvalues.



Bibliography

[1] 1. Agricola and T. Friedrich, Globale Analysis (in German), Friedr. Vieweg & Sohn,
Braunschweig, 2001.

[2] Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, no. 139,
Springer-Verlag, New York, 1997.

(3] J. Conway, A course in functional analysis, Graduate Texts in Mathematics, no. 96,
Springer-Verlag, New York, 1990.

[4] R. Courant, Differential and integral calculus I-II, Wiley Classics Library, John Wiley
& Sons, New York etc., 1988.

[5] J. Dieudonné, Treatise on analysis. Volume I — IX, Pure and Applied Mathematics,
Academic Press, Boston, 1993.

(6] J. Elstrodt, Maf$- und Integrationstheorie, third ed., Springer, Berlin, 2002.

[7] O. Forster, Analysis 1 — 3 (in German), Vieweg Studium: Grundkurs Mathematik,
Vieweg, Braunschweig, 2001.

(8] F. Hirzebruch and W. Scharlau, FEinfihrung in die Funktionalanalysis, BI-
Hochschultaschenbiicher, no. 296, BI-Wissenschaftsverlag, Mannheim, 1991.

9] K. Konigsberger, Analysis 1 (English), Springer-Verlag, Berlin, Heidelberg, New
York, 1990.

[10] S. Lang, Undergraduate Analysis, second ed., Undergraduate texts in mathematics,
Springer, New York-Heidelberg, 1989.

[11] J. Marsden and A. Weinstein, Calculus. I, II, III, Undergraduate Texts in Mathe-
matics, Springer-Verlag, New York etc., 1985.

[12] P. V. O’Neil, Advanced calculus, Collier Macmillan Publishing Co., London, 1975.

[13] M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional Anal-
ysts, Academic Press, Inc., New York, 1980.

[14] W. Rudin, Real and Complex Analysis, International Student Edition, McGraw-Hill
Book Co., New York-Toronto, 1966.

339



340 BIBLIOGRAPHY

[15] , Principles of mathematical analysis, third ed., International Series in Pure
and Applied Mathematics, McGraw-Hill Book Co., New York-Auckland-Diisseldorf,

1976.

[16] M. Spivak, Calculus on manifolds, W. A. Benjamin, New York, Amsterdam, 1965.

[17] , Calculus, Publish or Perish, Inc., Berkeley, California, 1980.

[18] C. von Westenholz, Differential forms in mathematical physics, second ed., Studies in
Mathematics and its Applications, no. 3, North-Holland Publishing Co., Amsterdam-
New York, 1981.



