Chapter 2

Sequences and Series

This chapter will deal with one of the main notion of calculus, the limit of a sequence.
Although we are concerned with numerical sequence, almost all notions make sense in
arbitrary metric spaces.

Given a € R and € > 0 we define

Ucda):={z€eR|a—e<z<a+e},

and call it the e-neighborhood of a.

2.1 Convergent Sequences

A sequence is a mapping x: N — R. To every n € N we associate a real number z,,. We
write this as (zp)nen or (71,22, --.).

Example 2.1 (a) z, = =, (1/n) ,(1,1/2,1/3,...);

(b) z, = (=1)"+1, (0,2,0,2,...);

(¢) £, = a (a € R fixed), (a,a,...) (constant sequence),

(d) 2, = a" (a € Ry fixed), (a,a?, d?,...) (geometric sequence);

Definition 2.1 A sequence (z,) is said to be convergent to x if
For every € > 0 there exists nyg € N such that n > ny implies

|z, — x| <e.

x is called the limit of (z,) and we write

r = lim x, orsimply x=Ilimz, or z,— .
n—oo
If there is no such z with the above property, the sequence (z,) is said to be divergent.
In other words: (z,) converges to x if any neighborhood U,(z), € > 0, contains “almost
all” elements of the sequence (x,,). “Almost all” means “all but finitely many.” Sometimes
we say “for sufficiently large n” which means the same.
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36 2 Sequences and Series

This is an equivalent formulation since z, € U.(r) means z — ¢ < z, < x + ¢, hence

|z — z, | <e. The ng in question need not to be the smallest possible.

We write
lim z, = 400 (2.1)
n—,oo

if for all £ > 0 there exists ng € N such that n > ng implies z,, > E. Similarly, we write
lim z, = —o0 (2.2)
n—oQ

if for all £ > 0 there exists ng € N such that n > ny implies z,, < —FE. In these cases

we say that +oo and —oo are improper limits of (x,). Note that in both cases (z,) is

divergent.

Example 2.2 (0) lim(-n)?® = —oo, limn = +oo. But ((—n)") and
(1,2,1,3,1,4,1,5,...) both have no improper limit.

Let us have a look at the above Example 2.1.

(a) lim1/n = 0. Let ¢ > 0. We are seeking ny with |1/n — 0| < ¢ for all n > ny. This is
equivalent to 1/ < n. Choose ng > 1/¢. Then for all n > ng : n > 1/¢; hence 1/n < ¢
and |z, — 0| < 0. Therefore, (x,) goes to 0.

(b) z, = (=1)"+1 is divergent. Suppose to the contrary that x is the limit. To e = 1 there
is ng such that for n > ng we have |z, — 2| < 1. For even n > ng we find |2 —z | < 1 for
odd n > ny, |0 — x| = |z | < 1. The triangle inequality gives

2=(2—-2)+z|<|2—2z|+|z|<1+1=2

This is a contradiction. Hence, (z,) is divergent.
(¢) x, =a. limz, = asince |z, —a|=]a—a|=0<¢eforalle >0 and all n € N.

(d) z, = a™, (a > 0).
. n 1, if a=1,
lim " =
n—00 0, if 0<ax<.

(a™) is divergent for a > 1. Moreover, lima"™ = +o00. To prove this let £ > 0 be given. By
the Archimedean property of R and since a—1 > 0 we find m € N such that m(a—1) > E.
Bernoulli’s inequality gives

a”>m(a—1)+1>m(a—1) > E.
By homework 4.1 (b), n > m implies
a">a" > FE.
This proves the claim.

Clearly (@) is convergent in cases a = 0 and a = 1 since the sequence is constant then.
Let 0 < a < 1. Bernoulli’s inequality gives

(é)nZH-n(%—l) >n(2—1) lan | (n(1/a—1)) > 0

m >a" > 0. (23)
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1 1
Let ¢ > 0. Ch >————_Th > ——  and n > ny impli
et € 0ose My S/a=T) en m(/a—1) and n > ng implies
1 1
la" = 0] =]a" | =d" < < <e.

@3) n(l/a—1) = no(1/a—1)

Hence, a™ — 0.

Proposition 2.1 The limit of a convergent sequence is uniquely determined.

Proof. Suppose that = limz,, and y = limz, and x #y. Put ¢ := |z —y| /2 > 0. Then

Iy e NVR>ng:|o—x,| <e,
ng eNVR>ng:ly—y,| <e.

Choose m > max{ni,ny}. Then |z — z,, | < e and |y — z,,, | < . Hence,
le—y|<|z—2p|+|y—zn|<2e=|z—y].

This contradiction establishes the statement. n

Proposition 2.1 holds in arbitrary metric spaces.

Definition 2.2 A sequence (z,) is said to be bounded if the set of its elements is a
bounded set; i.e. there is a C' > 0 such that

|z, | < C foralln e N.
Similarly one defines that (x,) is bounded above and bounded below.

Proposition 2.2 If (z,) is convergent, then (x,) is bounded.

Proof. Let x = limz,,. To € = 1 there exists nqg € N such that |z — z, | < 1 for all n > ny.
Then |z, | = |z, —z+2z|< |z, —z|+|z|<|z|+1for all n > ny. Put

C:=max{|z1|,...,|Tpe_1|,| 2|+ 1}

Then |z, | < C for all n € N. =

The reversal statement is not true; there are bounded sequences which are not convergent,
see Example 2.1 (b).

Corollary. If (x,) has an improper limit, then (z,) is divergent.

Proof. Suppose to the contrary that (x,) is convergent; then it is bounded, say |z, | < C
for all n. This contradicts x, > E as well as x, < —F for £ = C and sufficiently large
n. Hence, (z,) has no improper limits, a contradiction. n
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2.1.1 Algebraic operations with sequences

The sum, difference, product, quotient and absolute value of sequences (z,) and (y,) are
defined as follows

(xn) + (yn) = (-Tn + yn)7 (-Tn) : (yn) = (an yn)a

(x")._ == T =(|lz
(Yn) ( >’(y”7é0) [ (@a) [ = ([ ).

Yn
Proposition 2.3 If (z,) and (y,) are convergent sequences and ¢ € R, then their sum,
difference, product, quotient (provided y, # 0 and limy, # 0), and their absolute values
are also convergent:

a) lim(z, + y,) = limz,, + limy,;
b) lim(cz,) = climz,, lim(z, + ¢) = limz,, + c.

d) lim &» = Imeu g0, o 0 for all n and limy, # 0;

yn  limyp

(
(
(¢) im(z, y,) = limx,, - limy,,;
(
(e) im |z, | = |limz, |.

Proof. Let x, — x and y, — v.
(a) Given £ > 0 then there exist integers n; and ns such that

n > ny implies |z, — x| < £/2 and n > ny implies |y, —y| < /2.
If ng := max{ny,ny}, then n > ny implies
[ (@ntuyn) —(@+y) | <|on—z[+|pm—yl[<e

The proof for the difference is quite similar.
(b) follows from |cx, —cx|=|c||2zn — 2| and | (x, +¢) — (x +¢) | = | 2p — 2 |-
(¢) We use the identity

Tnln — Y = (Tn — ) (Yn — Y) + (Y0 — y) + y(zn — 2). (2.4)
Given € > 0 there are integers n; and ns such that
n > ng implies |z, — 2| < v/ and n > ny implies |y, — y | < \/e.
If we take ng = max{ni,ns}, n > ng implies
[ (@n —2)(yn —y) | <&,
so that
it (70— 2)(4n — 1) = 0

Now we apply (a) and (b) to (2.4) and conclude that

lim (z,y, — zy) = 0.

n—oo



2.1 Convergent Sequences 39

(d) Choosing ny such that |y, —y| <|y|/2 if n > ny, we see that
(I <Ty=tnl+ vl <[yl/2+]va]l = lynl> 1yl /2.

Given € > 0, there is an integer ny > n; such that n > ny implies
2
v —yl <lyl e/2.

Hence, for n > ng,

1 1 Yn — Y 2
‘:‘” ‘< 5| —yl| <e

Un Y vy | |yl

Yn Y
and we get lim(yi) =1 . The general case can be reduced to the above case using
n imyy,

(c) and (zn/yn) = (n - 1/yn)-
(e) By Lemma1.14 (e) we have ||z, | —|z|| < |z, —x|. Given € > 0, there is ny such

that n > ng implies | z,, — z | < . By the above inequality, also ||z, | — |z || < ¢ and we
are done. -

Example 2.3 (a) z, := ”T“ Set z, = 1 and y, = 1/n. Then 2, = z, + y, and we

already know that limz, = 1 and limy, = 0. Hence, lim 2 =lim1+1limi =1+0=0.
(b) a, = 3":2¢23" We can write this as

Since lim1/n = 0, by Proposition 2.3, we obtain lim1/n? = 0 and lim 13/n = 0. Hence
lim2/n? = 0 and lim (3 + 13/n) = 3. Finally,

fim S8R limoo (345) 3

nooo 12 —2  lim, e (1—2) 1

(c) We introduce the notion of a polynomial and and a rational function.

Given ag,a1,---,a, € R, a, # 0. The function p: R — R given by p(t) := a,t" +
ar_1t" 1t + - -+ ait + ag is called a polynomial. The positive integer r is the degree of the
polynomial p(t), and ay, . ..a, are called the coefficients of p(t).

Given two polynomials p and ¢; put D := {t € R | q(t) # 0}. Then r = p/q is a called a
rational function where r: D — R is defined by

Polynomials are special rational functions with ¢(¢) = 1.
If z, — 2 and p(t) the above polynomial. Then lim p(z,) = p(z).We have p(z,) =
n—oo

S, axzk. By Proposition 2.3

lim p(z,) = lim E ap ¥ = E lim ay 2* = E ap lim zf = E ar (lim z,)"
n—oQ n—0o0 n—o0 n—0o0 0 n—oQ
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(d) The limit of a rational function of n. Let p(t) as in the above example and ¢(t) =
> 5o brt® polynomials with coefficients by, € R. Using Proposition 2.3 and (c) we have

n a0 “+ay

tim 20— iy g w
n—00 q(n) n—00 prs

1 r—s Or or r<s

= lim n
n—00 b—T or r =s.
P(n)\ . .. .
In case r > s the sequence m is divergent. More precisely,
n

if ay /by > 0,
lim 2 _ {+°°’ if a,/b, > (2.5)

n) —o0, if a,/bs <O.

Using the fact that P(n)/Q(n) is positive for all but finitely man n if and only if a, /b is
positive, the statement follows directly from the next Remark 2.1.

Remark 2.1 Let a, be a sequence with a, # 0 for every n and lima,, = 0. Then

1
lim — = +o0, if a, > 0 for all but finitely many n; (2.6)
n—oo a/n

1
lim — = —oo, if a, < 0 for all but finitely many n. (2.7)
n—0oQ an

Proof. We will prove (2.7). The proof of (2.6) is analogous. Let ¢ > 0. By assumption
there is a positive integer ng such that n > ng implies —¢ < a,, < 0. By Proposition 1.9
this implies 0 < —a,, < ¢ and further

1 1
— < —=<0. (2.8)
ap, €

Suppose E > 0 is given; choose € = 1/E and ng as above. Then by (2.8), n > ng implies

1 1
— < —--<-FE.
ay, €

This shows (2.7). =

In the German literature the next proposition is known as the ‘Theorem of the two
policemen’.

Proposition 2.4 (Sandwich Theorem) Let a,, b, and x, be real sequences with a, <
Tn < by for all but finitely many n € N. Further let lima, = limb, = . Then x, is also
convergent to x.

Proof. Let ¢ > 0. There exist ny, ny, and ng € N such n > n; implies a,, € U.(x), n > no
implies b, € U.(z), and n > nz implies a, < z,, < b,. Choosing ng = max{n;, ny, ns},
n > ng implies z,, € U.(x). Hence, z, — . n
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Example 2.4 z, = /1 + 1/n. Using Bernoulli’s inequality, 1 < \/1+1/n < 1+41/(2n).
Since both the left hand side (1) and the right hand side (1 + 1/(2n)) are convergent to
1, limzx, = 1.

Q 14. Prove the following statement. Let (z,) be a real sequence and z € R. Suppose
there is a sequence d,, — 0 such that for all but finitely many n € N

|z, — x| < |d,]|.

Then lim x,, = x.

2.1.2 Some special sequences

1
Proposition 2.5 (a) If p > 0, then lim — = 0.
n—o00 M
(b) If p > 0, then lim {/p =1.
n—oo

(¢) lim /n=1.
n—oo a

(d) Ifa>1 and a € R, then lim (n—

n—o0o Q@
Proof. (a) Let ¢ > 0. Take ng > (1/¢)*/? (Note that the Archimedean Property of the real

numbers is used here). Then n > ng implies 1/n? < ¢.
(b) If p> 1, put x, = {/p — 1. Then, z,, > 0 and by Bernoulli’s inequality we have

0<z, < ! (p—1)
T < —(p-—
n p
By Proposition 2.4, z, — 0. If p =1, (b) is trivial, and if 0 < p < 1 the result is obtained

by taking reciprocals.
(c) Put x, = ¢/n — 1. Then z,, > 0, and, by the binomial theorem,

—1
n=1+z,)"> %xi
Hence
2

(d) Put p = a — 1, then p > 0. Let k be an integer such that £ > «, k > 0. For n > 2k,

" n nn—1)---(n—k+1) nkpk
(+oy> <k) v= Kl 7> S

Hence,
@ @ 2k k!
o< =" < n® "k (n > 2k).
ar (I+p = p*

Since o — k < 0, n®* — 0 by (a). m
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Q 15. Let (z,) be a convergent sequence, z,, — z. Then the sequence of arithmetic
n

means S, := % E xr also converges to x.

k=1
Q 16. Let (z,,) > 0 a convergent sequence of positive numbers with and limz, = = > 0.

Then /x129-- -z, — x. Hint: Consider y, = logz,.

2.1.3 Monotonic Sequences

Definition 2.3 A sequence (z,) of is said to be

(a) monotonically increasing if x, < x,,1 for all n;
(b) monotonically decreasing if x, > x,1 for all n.

The class of monotonic sequences consists of the increasing and decreasing sequences.

A sequence is said to be strictly monotonically increasing or decreasing if x, < x,.1 or
Ty > Tpyq for all n, respectively. We write z,, 7 and z, \..

Proposition 2.6 A monotonic and bounded sequence is convergent. More precisely, if
() is increasing and bounded above, then limx, = sup{x,}. If (x,) is decreasing and
bounded below, then limz, = inf{z,}.

Proof. Suppose z, < xz,;1 for all n (the proof is analogous in the other case). Let
E :={z, | n € N} and x = supE. Then z, < z, n € N. For every € > 0 there is an
integer ng € N such that

T—e< Ty, <,

for otherwise © — ¢ would be an upper bound of E. Since x,, increases, n > ng implies
r—e<z, <,

which shows that (z,,) converges to x. ]

2.1.4 Subsequences

Definition 2.4 Let (z,) be a sequence and (ng)ren a strictly increasing sequence of
positive integers ny € N. We call (z,, )ren a subsequence of (z,)nen. If (z,,) converges,
its limit is called a subsequential limit of (x,,).

Example 2.5 (a) x, = 1/n, ny = 2*. then (z,,) = (1/2,1/4,1/8,...).
(b) (z,) = (1,-1,1,—-1,...). (x9) = (—=1,—1,...) has the subsequential limit —1;
(zor41) = (1,1,1,...) has the subsequential limit 1.

Proposition 2.7 Subsequences of convergent sequences are convergent with the same
limyt.
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Proof. Let limz, = z and z,, be a subsequence. To € > 0 there exists my € N such that
n > mg implies |z, — x| < €. Since n,, > m for all m, m > mg implies |z, —z| < ¢;
hence limz,,, = . [

Definition 2.5 Let (z,) be a sequence. We call z € R a limit point of (z,) if every
neighborhood of = contains infinitely many elements of ().

Proposition 2.8 The point x is limit point of the sequence (x,) if and only if x is a
subsequential limit.

Proof. If klim Tp, = « then every neighborhood U, (z) contains all but finitely many zy,;
—00

in particular, it contains infinitely many elements x,,. That is, z is a limit point of (z,).
Suppose z is a limit point of (z,,). To € = 1 there exists z,, € U;(x). To ¢ = 1/k there
exists ny with z,, € Uy/x(z) and ny > ng_1. We have constructed a subsequence (z,,) of

(x,) with
1

%;
Hence, (z,,) converges to . ]

‘x_‘rnk|<

Question: Which sequences do have limit points? The answer is: Every bounded sequence
has limit points.

Proposition 2.9 (Principle of nested intervals) Let I, := [a,,b,] a sequence of
closed nested intervals I,,1 C I, such that their lengths b, — a, tend to 0:

Given € > 0 there exists ng such that 0 < b, — a,, < e for all n > ny.

For any such interval sequence {I,} there ezists a unique real number x € R which is a
member of all intervals, i.e. {x} =N, en In-

Proof. Since the intervals are nested, (a,) " is an increasing sequence bounded above
by each of the by, and (b,) “\, is decreasing sequence bounded below by each of the a.
Consequently, by Proposition 2.6 we have

dz = lim a, = sup{a,} < b,, forallm,and 3Fy= lim b, = inf{b,} > x.
n—00 m—0o0
Since a, <z <y < b, for all n,

@ # 2,91 C () In-

neN

Since x = sup a,, and y = inf by, [z,y] =), cn In- Now we will use the second assumption.

neN
Given € > 0 we find n such that y — x < b,, — a,, < &. Hence y — x < 0; therefore z = v,

and the intersection contains a unique point z. [
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Proposition 2.10 (Bolzano—Weierstrafl) A bounded real sequence has a limit point.

Proof. We use the principle of nested intervals. Let (z,) be bounded, say |z,| < C.
Hence, the interval [—C, C] contains infinitely many z;. Consider the intervals [—C, 0]
and [0, C]. At least one of them contains infinitely many xy, say I; := [a1, b1]. Suppose,
we have already constructed I, = [ay, b,] of length b, — a,, = C/2"~! which contains in-
finitely many xj. Consider the two intervals [ay, (a, +0b,)/2] and [(a, +by,)/2, b,] of length
C/2™. At least one of them still contains infinitely many zy, say I,41 := [@ps1,bn11]- In
this way we have constructed a nested sequence of intervals which length go to 0. By
Proposition 2.9, there exists a unique = € (), o In- We will show that x is a subsequential
limit of (z,) (and hence a limit point). For, choose z,, € Ij; this is possible since I
contains infinitely many z,,. Then, a; < z,, < b, for all & € N. Proposition 2.4 gives
z = lima, <limz,, <limb; = x; hence limz,, = z. [

Remark 2.2 The principle of nested intevals is equivalent to the order completeness of
R. Using (2.9) we can prove that any subset of R which is bounded above has a least
upper bound. The method is quite similar to that used in the proof of Proposition 2.10.
Suppose E C R is bounded above by b; and non-empty, say e € E. Set a; = e — 1; then
a1 is not an upper bound for F. Suppose a, and b, are already constructed, where a,
is not an upper bound of E whereas b, is. Consider m = (a, + b,)/2; if m is an upper
bound of E, set b,+1 = m, ay11 = ay, if not, set a,.1 = m and b,.1 = b,. Then a,,; is
still not an upper bound and b, is still an upper bound of E. Obviously, the lengths of
the intervals [a,, b,] tend to 0. By Proposition 2.9 there exists a unique number = which
belongs to all intervals. Using z = inf{b,, | m € N} it is not difficult to see that z is an
upper bound of E. Using x = sup{a,, | m € N} one can see that x — ¢ is not an upper
bound for every € > 0. Hence, z = sup F.

Example 2.6 (a) z, = (—1)""! + 1/n; set of limit points: {—1,1}.

(b)z, =n-5 ﬁ}, where [z] denotes the least integer less or equal to z ([7] = [3] = 3,
[—2.8] = =3, [1/2] = 0).

(zn) =(1,2,3,4,0,1,2,3,4,0,...); set of limit points: {0,1,2,3,4}

(c) One can enumerate the rational numbers in (0,1) in the following way.

L1,

Ta, I3

The set of limit points is the whole interval [0, 1].
y T4, s, Te,

B W= N =

SR INWIN
[

(d) z, = n has no limit point. Since it is not bounded, Bolzano-Weierstraf fails to apply.

Let (z,) be a bounded sequence, say |z, | < C, with A the set of limit points of (z,).
Then, A C [-C,C] is bounded. Put Z := sup A and z := inf A.
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Definition 2.6 Let (z,) be a bounded sequence and A its set of limit points. Then T is
called the upper limit of (z,) and z is called the lower limit of (z,). We write

Z = lim z,, z = lim z,.
n—00 n—00
If () is not bounded above, we write lim z,, = +oco. It was shown in Homework 5.5 that
in this case (z,) has a subsequence with improper limit +oo. If moreover +oc is the only
limit point, limz, = 400, and we can also write limz,, = 4+o00. If (z,) is not bounded
below, lim x, = —oo. Then (x,) has a subsequence diverging to —oo. If —co is the only
limit point, lim z,, = —oco and we can also write lim z,, = +00.

Proposition 2.11 Let (z,) be a bounded sequence and A the set of limit points of (zy,).
Then T := sup A and z := inf A are also limit points of A.

Proof. Let ¢ > 0. By the definition of sup there exists 2’ € A with 2’ > T — ¢/2.
Since z' is a limit point, U,/2(z') contains infinitely many elements x;. By construction,
U:/2(2") C U.(Z). Hence, Z is a limit point, too. The proof for « is similar. n

Proposition 2.12 Let b € R be fized. Suppose (x,,) is a sequence which is bounded above,
then

Tn < b for all but finitely many n implies

fim o, < b. (29)
n—oo
Similarly, if (x,) is bounded below, then
Tn > b for all but finitely many n implies
lim z, > b. (2.10)
n—oo

Proof. We prove only the first part. Proving statement for lim x,, is similar.

Suppose to the contrary that ¢ := limz, > b. Set ¢ = (¢t — b)/2, then U.(¢) contains
infinitely many z,, (¢ is a limit point) which are all greater than b; this contradicts z,, < b
for all but finitely many n. Hence limz,, < b. [

Remarks 2.3 (a) Note, that for sup and inf we have

zn, < b for all n implies
sup{z,} <b.

Similarly, if (z,) is bounded below, then

T, > b for all n implies
inf{z,} > b.
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This in particular implies lim z,, < sup{z,} and limz,, > inf{z,}.

Let (z,) be bounded.

(b) limx, and limx, are the smallest and the greatest subsequential limits of (x,) by
Proposition 8.

(c) limz, < limx, since the set A of limit points of (x,) is non-empty (by Proposi-
tion 2.10) and therefore inf A < sup A.

The next proposition is a converse statement to Proposition 2.7.

Proposition 2.13 Let (x,) be a bounded sequence with a unique limit point z. Then (z,,)
converges to x.

Proof. Suppose to the contrary that (z,) diverges; that is, there exists some £ > 0 such
that infinitely many z,, are outside U.(z). We view these elements as a subsequence
(yx) = (xn,) of (z,). Since (x,) is bounded, so is (yx). By Proposition 2.10 there exists
a limit point y of (yx) which is in turn also a limit point of (z,). Since y & U.(z), y # x
is a second limit point; a contradiction! We conclude that (z,) converges to z. [

Note that limz, + ¢ is an upper bound for all but finitely many z,, and limz, — ¢ is a
lower bound for all but finitely many x,,, see homework 6.3. Let us consider the above
examples.

Example 2.7 (a) z, = (=1)""' +1/n; limz, = -1, limz, = 1.

(b) xzp,=n—-5 [%],li_mxnzﬂ,mxn:él.

(c) (x,) is the sequence of rational numbers of (0,1); limx,, = 0, limx,, = 1.
(d) z, = n; limz, = limz, = +oo.

Proposition 2.14 If s, < t, for all but finitely many n, then

lim s, < lim ¢,, lim s, < lim t¢,.

n—00 n—0o0 n—00 n—00

Proof. We show the first inequality. The proof of the second is analogous. Suppose (t,) is
bounded above. Then (s,,) is also bounded above. Put t* = lim¢, and s* = lims,,. Since
s* is a limit point of (s,), there is a subsequence (s,,) converging to s*. Since s,, < tn,,
for all but finitely many k, (t,,) is bounded below by s* — ¢ for any € > 0 and bounded
above since (¢,) is bounded above. Hence, by Proposition2.10, (¢,,) has a convergent
subsequence, say t,, ~— t**. Then

sF—e <t <t

Since ¢ was arbitrary, s* < t*.
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Second proof. (a) We keep the notations s* and t* for the upper limits of (s,) and (¢,),
respectively. Set s = lim s, and ¢ = lim¢,. Let € > 0. By homework 6.3 (a)

|

—e¢ <s, forall but finitely many n
e<s

= s —

by assumption

n <t, forall but finitely many n

= s—¢<limt,
by Prp.2.12
- supis—¢€|e>0}; <1
by Remark 2.3 (a) p{_ | } T
s<t

(b) Now we proof the second part using homework 1.4 (a), —sup E = inf(—FE). By
assumption —t, < —s, for all but finitely many n. Part (a) of this proof gives

2.2 Cauchy Sequences

The aim of this section is to characterize convergent sequences without knowing their
limits.

Definition 2.7 A sequence (z,) is said to be a Cauchy sequence if:

For every € > 0 there exists a positive integer ny such that |z, — z,,, | < ¢ for
all m,n > ny.

The definition makes sense in arbitrary metric spaces. The definition is equivalent to
Ve >03ng € NVn > ngVk € N: |Zpip — 2 | < €.

Lemma 2.15 FEvery convergent sequence is a Cauchy sequence.

Proof. Let z,, — x. To ¢ > 0 there is ng € N such that n > ng implies z,, € U,/2(x). By
triangle inequality, m,n > ng implies

| Ty — T | <|Zp — 2|+ |2 —2| <e/24+¢/2=c¢.

Hence, (z,) is a Cauchy sequence. m
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Proposition 2.16 (Cauchy convergence criterion) A real sequence is convergent if
and only if it 1s a Cauchy sequence.

Proof. One direction is Lemma2.15. We prove the other direction. Let (z,) be a Cauchy
sequence. First we show that (z,) is bounded. To & = 1 there is a positive integer ny
such that m,n > ng implies | z,,, — z,,| < 1. In particular |z, — z,, | < 1 for all n > ny;
hence |z, | <14 |z, |. Setting

C=max{|z|,|z2]|, | Tng1]|,|ZTno | +1},

|z, | < C for all n.

By Proposition 2.10 there exists a limit point x of (x,); and by Proposition 2.8 a sub-
sequence (z,,) converging to z. We will show that lim, ,, 2, = z. Let ¢ > 0. Since
. — x we find kyp € N such that k& > ky implies |z, — 2| < /2. Since (z,) is a
Cauchy sequence, there exists ng € N such that m,n > ng implies | z,, — z,,, | < €/2. Put

T

ny := max{ng, N, } and choose ki with ny, > nq > ng,. Then n > n; implies

<2-¢g/2=e.

|z — 2, | < ‘x—a:nkl —i—‘xnkl—xn

Example 2.8 (a) z, =Y ,_,1/k=14+1/2+1/3+---+1/n. We show that (z,) is not
a Cauchy sequence. For, consider

2m+1 2m+1

B N 1 2m 1
Lom+1 — Tom = Z P Z gm+1l — gm+l 9"

k=2m+1 k=2m41

Hence, there is no ng such that p,n > ng implies |z, — z, | < %

n (_1)k+1
(b) z,, = Z ~——— =1-1/2+1/3—+---+ (=1)""'1/n. Consider

k

k=1
1 1 1 1

_ =(—=1)" _ + e ()R
Ttk = T = ( )[n-i-l n+2 n+3 (=1) n+k

= (=1 Kn-lu _TL-1|-2>+ <n41r3_n-1+4)+"'

+ {(n—ki—l - ﬁ) , k even

L k odd

Since all summands in parentheses are positive, we conclude

. 1 1 1 (n+i_1 —n—}rk), k even
|x”+k_x"|_<n+1_n+2)+(n+3_n+4>+ +{ . k odd

ntk’
1
_ o ( 1 )+-.'+{n—+k, k even
N e RS (vt = ) oven
1

Tnik — Tn | < nel
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since all summands in parentheses are positive. Hence, (z,) is a Cauchy sequence and
converges.

2.3 Series

Definition 2.8 Given a sequence (a,), we associate with (a,) a sequence (s;), where
n
sn:Zakzal—i-ag—l-----l—an.
k=1

For (s,) we also use the symbol

> ak, (2.11)
k=1

and we call it an infinite series or just a series. The numbers s, are called the partial
sums of the series. If (s,) converges to s, we say that the series converges, and write

()
E ap = S.
k=1

The number s is called the sum of the series.

Remarks 2.4 (a) The sum of a series should be clearly understood as the limit of the
sequence of partial sums; it is not simply obtained by addition.

(b) If (s,) diverges, the series is said to be divergent.

(c) The symbol Y77, a, means both, the sequence of partial sums as well as the limit of
this sequence (if it exists). Sometimes we use series of the form ZZOZ,CO ax, ko € N. We
simply write ) ay if there is no ambiguity.

oo

1
Example 2.9 (1) Z — is divergent. This is the harmonic series.
n

n=1
o0
1
2 —1)"*1Z is convergent. It is an example of an alternating series (the summands
n g
n=1

are changing their signs, and the absolute value of the summands form a decreasing to 0
sequence).

o
(3) Zq” is called the geometric series. It is convergent for |q| < 1 with > °¢" = Iqu
n=0

This is easily seen from Y ,_,¢" = (1 —¢"*!)/(1 —gq). The series is divergent for | ¢ | > 1.
The general formula in case |g| < 1 is

oo n0
Y et = fq . (2.12)
—q

n=no
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2.3.1 Properties of Convergent Series

Lemma 2.17 (1) If Y °° | a, is convergent, then Y_,°  ay is convergent for any m € N.
(2) If 3" ay is convergent, then the sequence r,, := Y, ay tends to 0.

(3) If (an) is a sequence of nonnegative real numbers, then Y a, converges if and only if
the partial sums are bounded.

Proof. (1) is obvious. We prove (2). Suppose Y 7° a, is convergent. By (1) r, = > .2 1 ax
is also a convergent series for all n. We have
o0 n o0
Z ag = Z ay + Z g,
k=1 k=1 k=n+1
== s=S,+T,
= I, =5 — Sy
= limr,=s—-—s5=0.

n—oo

(3) Suppose a,, > 0, then s,11 = s, + apy1 > S,. Hence, (s,) is an increasing sequence.
By Proposition 2.6, (s,) converges.
The other direction is trivial since every convergent sequence is bounded. [

Proposition 2.18 (Cauchy criterion) ) a, converges if and only if for every e > 0
there is an integer ng € N such that

<e (2.13)

n
> o
k=m

if m,n > ng.

Proof. Clear from Proposition 2.16. n

Corollary 2.19 If Y a, converges, then (a,) converges to 0.

Proof. Take m = n in (2.13); this becomes |a, | < €. Hence (a,) tends to 0. n

Proposition 2.20 (Comparison test) (a) If |a,| < Cb, for some C > 0 and for
almost all n € N, and if Y b, converges, then > a, converges.

(b) If a, > Cdy, > 0 for some C > 0 and for almost all n, and if Y_ d, diverges, then
> a, diverges.

Proof. (a) Suppose n > n; implies |a, | < Cb,. Given £ > 0, there exists ny > n; such
that m,n > ng implies

ibk < 8/0
k=m
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by the Cauchy criterion. Hence

n n n
Zak §Z|ak\§20bk<€,
k=m k=m k=m

and (a) follows by the Cauchy criterion.
(b) follows from (a), for if > a,, converges, so must Y d,. ]

2.3.2 Operations with Convergent Series

Definition 2.9 If ) a, and )b, are series, we define sums and differences as follows

San £ by =Y (a, £b,) and ¢ a, ==Y cay,, c € R.
Let ¢p := Y p_; Gkby_kt1, then > ¢, is called the Cauchy product of )" a,, and Y b,,.

If Y a, and Y b, are convergent, it is easy to see that > "(an +b,) = > " an + D7 by
and Y 7 ca, = ¢ 7 an.

Caution, the product series ) ¢, need not to be convergent.

Q 17. Let a,, := b, :== (—1)"/y/n. Show that > a, and >_ b, are convergent but >_ ¢, is
not convergent, when ¢, =Y _, agbp_g11-

2.3.3 Series of Nonnegative Numbers
Proposition 2.21 (Compression Theorem) Suppose a; > as > -+ > 0. Then the

(e o]
series E a, converges if and only if the series

n=1

Z 2% aor = a1 + 2as + 4aq + 8ag + - - - (2.14)
k=0
converges.

Proof. By Lemma 2.17 (3) it suffices to consider boundedness of the partial sums. Let

sn=a1+ -+ ay,

te = a1 + 2as + - - - + 2Faqr.
For n < 2k

sn < a1+ (a2 +as) + -+ (agr + -+ aghrrq)
sn < a1+ 2as + -+ - + 2Fag = 1. (2.15)

On the other hand, if n > 2%,
Sp > 01+ ag+ (a3 + ag) + -+ (Age-141 + -+ + agk)

1
Sp > §a1 +as+2a4 4+ 25 g

1
Sn 2 Stk (2.16)
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By (2.15) and (2.16), the sequences s,, and tj are either both bounded or both unbounded.
This completes the proof. [

1
Example 2.10 (a) ) — converges if p > 1 and diverges if p < 1.
If p <0, divergence follows from Corollary 2.19. If p > 0 Proposition 2.21 is applicable,

o 1 o
D Ao =) 2k
k=0 2P k=0

Now, 277 < 1if and only if p > 1, and the result follows by comparison with the geometric

and we are led to the series

series.

(b) If p> 1,

2.17
Zn logn ( )

n=2

converges; if p < 1, the series diverges. “logn” denotes the logarithm to the base e.
1
If p < O, W > pos

Now let p > 0. By Lemma1.37 (b), logn < log(n + 1). Hence (n(logn)?) increases and
1/(n(logn))? decreases; we can apply Proposition2.21 to (2.17). This leads us to the

series
> 1 1
ok . —
Z log2k kZ1 (klog2)» log2 kgk ’

and the assertion follows from example (a).

and divergence follows by comparison with the harmonic series.

This procedure can evidently be continued. For instance Y - ,1/(nlognloglogn) di-
verges, whereas Y - . 1/(nlogn(loglogn)?) converges.

2.3.4 The Number e
We define
2.1
2;5- (2.18)

where 0! = 1! = 1 by definition. Since

1 1 1

— 141 e =

S I R I - S B S
11 1
L4144 5+ + 5

the series converges and the definition makes sense. In fact, the series converges very
rapidly and allows us to compute e with great accuracy. It is of interest to note that e
can also defined by means of another limit process.
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Proposition 2.22

1 n
e = lim (1 + —) . (2.19)
n—oQ n
Proof. Let
Sp = —, tn:(1+—>
! n
k=0
By the binomial theorem,
1 nn-1 1 nn-1)n-2) 1 nn—1)---1 1
K I T 3! wT T T W

—1+1+111+11112+
o 21 n 3! n n

Hence, t, < s,, so that

lim ¢, <e, (2.20)

by Proposition 2.14. Next if n > m,

1 1 1 1 m—1
th> 1414+ (1—=)+ o+ —(1-=] 1~ .
21 n m! n n

Let n — oo, keeping m fixed. We get

1 1
lim ¢, > 14+1+ 54+ — = sp.
n—oo 2! m!
Letting m — oo, we finally get
e < lim ¢,. (2.21)
n—oo
The proposition follows from (2.20) and (2.21). ]

The rapidity with which the series Y 1/n! converges can be estimated as follows.

1 1
_ — + + .-
TR T )T (nr2)!
1 P SR S 1 11
(n+1)! n+1 (n+1)2 S+ D! 1-—25 aln
so that

0<e—s,<—. (2.22)
n
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We use the preceding inequality to compute e. For n =9 we find

1 1 1 1 1 1 1 1
=14+1+-4+-4+=—4+—+ — = 2.718281526...
So= it ot T 51 T 120 T 720 T 5040 T 40,320 T 362, 880
(2.23)
By (2.22)
< 3.1
€ Sg 107
such that the first six digits of e in (2.23) are correct.
Proposition 2.23 e is irrational.
Proof. Suppose e is rational, say e = p/q with positive integers p and ¢. By (2.22)
1
0<qgl(e—sg) < p (2.24)

By our assumption, gle is an integer. Since

ls. =gl l1+1 1 1
q'sq=q' | 1+ +§+--'+a

is also an integer, we see that ¢!(e — s,) is an integer. Since ¢ > 1, (2.24) implies the
existence of an integer between 0 and 1 which is absurd. [

2.3.5 The Root and the Ratio Tests

Theorem 2.24 (Root Test) Given Y. a,, put a = lim {/|a, |.
n—oo
Then

(a) if « < 1, >  a, converges;
(b) if « > 1, > a, diverges;
(c) if a =1, the test gives no information.

In other words: (a) Y a, converges, if there exists ¢ < 1 such that {/|a, | < ¢ for almost
all n. (b) Y a, diverges if {/|a, | > 1 for infinitely many n.
Proof. If a < 1 choose 8 such that o < f < 1, and an integer ngy such that

Ve, | < 8

for n > ng (such ng exists since « is the supremum of the limit set of ({/|ay |)). That is,
n > ng implies

[an | < 5"
Since 0 < 8 < 1, ) B" converges. Convergence of Y a, now follows from the comparison
test.
If @ > 1 there is a subsequence (a,,) such that "/|an, | — «. Hence |a,| > 1 for
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infinitely many n, so that the necessary condition for convergence, a,, — 0, fails.

1 1
To pro ider th i — and —. F h of th i =1, but th
p ‘ve (c) consider the series Z ~ an Z —- For each of the series o , but the
first diverges, the second converges. [

Theorem 2.25 (Ratio Test) The series Y ay,

Gnt1
an

(a) converges if lim <1,

n—00

(b) diverges if ‘ aZH > 1 for all but finitely many n.

n

Unt1
Qn

< ¢ for almost all n.

In other words, ) a, converges if there is a ¢ < 1 such that ‘

Corollary 2.26 The series Y ay,

(a) converges if lim o+l | o q,
Qp
b) diverges if lim | 2| > 1.
(b) diverg
n

Proof of the corollary.  If (any1/a,) converges, the limit coincides with the upper
limit and (a) follows from the theorem. If (a,i1/a,) converges to some a > 1,
then U.(a), ¢ = (a — 1)/2, contains almost all element of the quotient sequence. In
particular, almost all quotients are greater than 1 and (b) follows from the theorem. [

Proof of Theorem 2.25. 1f condition (a) holds, we can find § < 1 and an integer m such

that n > m implies

an+1
a"ﬂ

< B.

In particular,

|mir | < Blam],

|am+2|<ﬁ‘am+1‘<ﬁ2|am‘a

|aTn+p|<Bp‘am|-

That is,
|an‘ < ‘am|ﬁ_mﬁn
for n > m, and (a) follows from the comparison test, since »_ 5™ converges.

If |ani1| > |an| for n > ny, it is easily seen that the condition a, — 0 does not hold,
and (b) follows. m
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Remark 2.5 Homework 7.5 shows that in (b) “all but finitely many” cannot be replaced
by the weaker assumption “infinitely many.”

Example 2.11 (a) The series Y .- ,n?/2" converges since, if n > 3,

)22 1 1\? 1 1\2
:(n+) :—<1+—) §§(1+—> :§<1-
n

2ntlp2 2 3 9

Ap+1
an

(b) Consider the series

1 1 1 1 1 1 1

S T T I B —
SR VI TR TR T TR
1
where lim Ont1 =3 im 2+ — 2, but lim /a,, = % The root test indicates convergence;
n, ap

the ratio test does not apply

Q 18. Consider the series

1+1+1+1+1+1+
2 3 32 33

v a"rLa an’

The ratio test is frequently easier to apply than the root test. However, the root test has
wider scope.

Remark 2.6 For any sequence (c,) of positive real numbers,

— c
lim < lim /¢, < hm e, < lim il

n—oo Cp n—00 n—=o0  Cp

For the proof, see [7, 3.37 Theorem|. In particular, if lim Cnt1

exists, then lim /¢, also
Cn

exists and both limits coincide.

Proposition 2.27 (Leibniz criterion) Let Y b, be an alternating sum, i. e. » b, =
S (=1)"*"a, with a decreasing sequence of positive numbers a; > ay > --- > 0. If
lima, =0 then ) b, converges.

Proof. The proof is quite the same as in Example 2.8 (b). We find for the partial sums s,
of > by

|Sn__8mw S am+1

if n > m. Since (a,) tends to 0, the Cauchy criterion applies to (s,). Hence, > b, is
convergent. ]
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2.3.6 Absolute Convergence

The series > a, is said to converge absolutely if the series | a,, | converges.

Proposition 2.28 If > a, converges absolutely, then > a, converges.

Proof. The assertion follows from the inequality

n n
Dok <D ol
k=m k=m

plus the Cauchy criterion. n

Remarks 2.7 For series with positive terms, absolute convergence is the same as conver-
gence. If > a,, converges but ) | a, | diverges, we say that > a, converges nonabsolutely.
For instance Y (—1)""!/n converges nonabsolutely. The comparison test as well as the
root and the ratio tests, is really a test for absolute convergence and cannot give any
information about nonabsolutely convergent series.

We shall see that we may operate with absolutely convergent series very much as with
finite sums. We may multiply them, we may change the order in which the additions
are carried out without effecting the sum of the series. But for nonabsolutely convergent
sequences this is no longer true and more care has to be taken when dealing with them.

o
Proposition 2.29 If Y a, converges absolutely with Zan = A, > b, converges,

n=0
an =B, ¢, = Zakbn_k, ne;.
n=0 k=0
Then -
ch = AB
n=0
Proof. Put
An: ag, anzbka C’n ::ch: /Bn:Bn_B
k=0 k=0 k=0
Then
Crn = agby + (agby + a1bg) + - - - + (agbn, + a1y 1 + - - - + anbo)
=aoB, +a1B,_1 + -+ a,By
= ag(B + Bn) + a1(B + Bn1) + -+ + an(B + fo)
- AnB + U'Oﬁn + a/lﬁnfl +---+ a/nﬁﬂ-
Put

Tn = aoﬁn + a'lﬁnfl + - Gnﬁo-
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We wish to show that C,, — AB. Since A,B — AB, it suffices to show that =, — 0.
Since Y a, converges absolutely,

gk

= | an |

Il
<)

n

exists. Let ¢ > 0 be given. Since Y b, = B, 3, — 0. Hence, we can choose ng such that
| B | < e for n > ny, in which case

|'7n | < |ﬁ0an + -+ ﬁnoa’n—no | + |5n0+1an—n0+1 + -+ ﬁnao |

S |/60an +- 4+ ﬁnoan—no | + .

Keeping ng fixed, and letting n — co. By Proposition 2.14 and by lima,,_;, = 0 for fixed
k=0,...,n9, we get
lim |7,| < ce.

n—0Q

Since ¢ is arbitrary, lim |+, | = 0, and lim~, = 0 follows. ]

2.3.7 Decimal Expansion of Real Numbers

Proposition 2.30 (a) Let « be a real number with 0 < « < 1. Then there exists a
sequence (ay,), an, € {0,1,2,...,9} such that

a=> a,10™" (2.25)
n=1

The sequence (a,) is called a decimal expansion of a.
(b) Given a sequence (ay), ax € {0,1,...,9}, then there exists a real number o € [0, 1]

such that
o0
o= Z a, 107",
n=1

Proof. (b) Comparison with the geometric series yields

107" < 0"= 2.~ =1
;a" 0 —9; 0 10 1-1/10

Hence the series Y - | a,10™™ converges to some « € [0, 1].
(a) Given « € [0, 1) we use induction to construct a sequence (a,) with (2.25) and

n
Sn<a<s,+10", where s,= Z a 107
k=1

First, cut [0, 1] into 10 pieces I; := [j/10,(j + 1)/10), 7 = 0,...,9, of equal length. If
a € I;, put a; := j. Then,
a;

= - < —.
S1 10_a<51+10
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Suppose a1, ..., a, are already constructed and
S <a<s,+10 "

Consider the intervals I; := [s, + 7/10" s, + (j + 1)/10™*Y), 5 = 0,...,9. There is
exactly one j such that a € I;. Put a,4; := j, then

an+1 ant1+1
10n+1 S @ < Sp+ 10n+1

Spa1 < @ < Spi1 + 107 L

Sp +

The induction step is complete. By construction |« — s, | < 107", that is, lims, = a.
[

Remarks 2.8 (a) The proof shows that any real number « € [0, 1) can be approximated
by rational numbers.

(b) The construction avoids decimal expansion of the form o =...a9999..., a < 9, and
gives instead @ = ...(a+ 1)000.... It gives a bijective correspondence between the real
numbers of the interval [0, 1) and the sequences (a,), a, € {0,1,...,9}, not ending with
nines.

(c) It is not difficult to see that o € [0,1) is rational if and only if there exist positive
integers ny and p such that n > ng implies a,, = a,4,—the decimal expansion is periodic
from ng on.

2.3.8 Complex Sequences and Series

Almost all notions and theorems carry over from real sequences to complex sequences.
For example

A sequence (z,) of complex numbers converges to z if for every (real) ¢ > 0
there exists a positive integer ng € N such that n > ngy implies

|z — 2| <e.

The following proposition shows that convergence a complex sequence can be reduced to
the convergence of two real sequences.

Proposition 2.31 The complex sequence (z,) converges to some complex number z if
and only if the real sequences (Rez,) converges to Rez and the real sequence (Im z,)
converges to Im z.

Proof. Using the (complex) limit law lim(z, + ¢) = ¢+ limz, it is easy to see that we
can restrict ourselves to the case z = 0. Suppose first z, — 0. Proposition 1.24 (d) gives
| Rez,| < |z,|. Hence Rez, tends to 0 as n — oo. Similarly, | Imz,| < |z,| and
therefore Im z, — 0.
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Suppose now z,, := Rez, — 0 and y, := Imz, — 0 as n goes to infinity. Since
g
|z > =22 + 12, | 20| = 0 as n — oo; this implies z, — 0. m

Since the complex field C is not an ordered field, all notions and propositions where the
order is involved do not make sense for complex series or they need modifications. The
sandwich theorem does not hold; there is no notion of monotonic sequences, upper and
lower limits. But still there are bounded sequences (| z, | < C), limit points, subsequences,
Cauchy sequences, series, and absolute convergence. The following theorems are true for
complex sequences, t0o:

Proposition 1, 2, 3, 7, 8, 10, 13, 15, 16.

The Bolzano-Weierstrafi Theorem for bounded complex sequences (z,) can be proved by
considering the real and the imaginary sequences (Re z,) and (Im z,) separately.
The comparison test for series now reads:

(a) If |a, | < C|by, | for some C' > 0 and for almost all n € N, and if >_ | by, |
converges, then ) a, converges.

(b) If |a,| > C|d,| for some C > 0 and for almost all n, and if ) |d, |
diverges, then )" a, diverges.

The Cauchy criterion, the root, and the ratio tests are true for complex series as well.
Proposition 28,29 are true for complex series.

2.3.9 Power Series

Definition 2.10 Given a sequence (c,) of complex numbers, the series

Z Cp 2" (2.26)
is called a power series. The numbers ¢, are called the coefficients of the series; z is a

complex number.

In general, the series will converge or diverge, depending on the choice of z. More specif-
ically, with every power series there is associated a circle with center 0, the circle of
convergence, such that (2.26) converges if z is in the interior of the circle and diverges if
z is in the exterior.

Theorem 2.32 Given a power series »  c,2", put

a=lim {/|c,|, R=
n—oo

Ifa=0, R=+00; ifa =400, R=0. Then Y c,2™ converges if | z| < R, and diverges
if | 2| > R.

é. (2.27)
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The behavior on the circle of convergence cannot be described so simple.
Proof. Put a, = c,2™ and apply the root test:

n n
Alm \/|an|——|z|711m Ve | = =

This gives convergence if | z| < R and divergence if | z| > R. m

The nonnegative number R is called the radius of convergence.

Example 2.12 (a) The series Y n"z" has R = 0.
(b) The series Z Z—' has R = +oo. (In this case the ratio test is easier to apply than the
n!

root test. Indeed,

) n! . 1
= lim — = lim —— =0
n—00 (n—{—l)! n—oom, + 1

Cnt1

a = lim
n—oo

Y

Cn

and therefore R = 400. )
(c) The series > 2™ has R = 1. If | z| = 1 diverges since (2™) does not tend to 0. This
generalizes the geometric series; formula (2.12) still holds if | ¢ | < 1:

Fall) -2

n=2

(d) The series > z"/n has R = 1. It diverges if z = 1. It converges for all other z with
| z| =1 (without proof).

(e) The series Y_ 2"/n? has R = 1. It converges for all z with |z | = 1 by the comparison
test, since | 2" /n?| = 1/n2.

2.3.10 Rearrangements

Definition 2.11 Let 0: N — N be a bijective mapping, that is in the sequence
(o(1),0(2),...) every positive integer appears once and only once. Putting

a;:aa(n), (n:1,2,...),

we say that Y a] is a rearrangement of > ay,.

If (s,) and (s],) are the partial sums of ) a, and a rearrangement Y a, of > a,, it is
easily seen that, in general, these two sequences consist of entirely different numbers.
We are led to the problem of determining under what conditions all rearrangements of a
convergent series will converge and whether the sums are necessarily the same.

Example 2.13 (a) Consider the convergent series

o0 _ln—l—l 1 1
Z( r),, S R S (2.28)
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and one of its rearrangements
If s is the sum of (2.28) then s > 0 since

R

We will show that (2.29) converges to s’ = s/2. Namely

(2.29)

)
1 1 1 1 1 1 1
v=a=(1-3)-3+(G-5) s+ G-1w) m
1
=3
1
=3

Since s # 0, s’ # s. Hence, there exist rearrangements which converge; however to a

different limit.
(b) Consider the following rearrangement of the series (2.28)

ZCLIZI—E—FE—E—}—
" 2 3 4
1 1 1

+(5+%)—5+

1

T
91113 15) 8

1

T (.
41 243 ontl ]

Since for every positive integer n > 10

LI Lo 1 > >
41 243 o+l —1) 2042 o+l 427 4 2427 5

the rearranged series diverges to +o00.

myz

1 1 1 1

Without proof (see [7, 3.54 Theorem|) we remark the following surprising theorem. It
shows (together with the Proposition2.34) that the absolute convergence of a series is
necessary and sufficient for every rearrangement to be convergent (to the same limit).

Proposition 2.33 Let Y a, be a series of real numbers which

converges, but not abso-

lutely. Suppose —oo < a < [ < 400. Then there exists a rearrangement »_ a,, with

partial sums s, such that

. ' T 1
lim s, =, lim s, =/.
n—00 n—00
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Proposition 2.34 If Y a, is a series of complex numbers which converges absolutely,
then every rearrangement of »  a, converges, and they all converge to the same sum.

Proof. Let Y al be a rearrangement with partial sums s/,. Given ¢ > 0, by the Cauchy
criterion for the series Y | a, | there exists ny € N such that n > m > ng implies

D lag| <e. (2.30)
k=m

Now choose p such that the integers 1,2,...,ny are all contained in the set
o(1),0(2),...,0(p).
{172a .- 'anO} - {0-(1)a0-(2)’ . ,U(p)}

Then, if n > p, the numbers a4, as, ..., a,, will cancel in the difference s, — s, so that
n n n n
| sp— s, | = Zak—Zag(k) < z +a | < Z lag | <&,
k=1 k=1 k=no+1 k=no+1

by (2.30). Hence (s),) converges to the same sum as (s,).
The same argument shows that ) a/ also absolutely converges. [
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