Chapter 3

Functions and Continuity

This chapter is devoted to another central notion in analysis—the notion of a continuous
function. We will see that sums, product, quotients, and compositions of continuous
functions are continuous. If nothing is specified otherwise D will denote a finite union of
intervals.

Definition 3.1 Let D C R be a subset of R. A function is a map f: D — R.

(a) The set D is called the domain of f; we write D = D(f).

(b) If AC D, f(A):={f(x) | z € A} is called the image of A under f.

The function flA: A — R given by f[A(a) = f(a), a € A, is called the restriction of f
to A.

(c) If BC R, we call f~'(B) :={x € D| f(z) € B} the preimage of B under f.

(d) The graph of f is the set graph(f) := {(z, f(z)) | x € D}.

Later we will consider functions in a wider sense: From the complex numbers into complex
numbers and from F" into F™ where FF = R or IF = C.

We say that a function f: D — R is bounded, if f(D) C R is a bounded set of real
numbers, i.e. there is a C' > 0 such that | f(z)| < C for all x € D.

Example 3.1 (a) Polynomials and rational functions are the first main examples of
functions.

Given a real number ¢ € R. The function f: R — R defined by f(z) := c is called the
constant function. This is the general form of a polynomial of degree 0.

(b) idr: R — R, z — z is called the identity function (this is a special linear polyno-
mial).

(c) abs: R — R, z — |z is called the absolute value function; the image of f is
f(R) = Ry.
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The graphs of the constant, the identity, and absolute value functions.

3.1 Limits of a Function

Definition 3.2 (¢- definition) Let f: (a,b) — R be a function of the (possibly infi-
nite) interval (a,b) into R and z, such that a < o < b. We call A € R the limit of f in
zo (“The limit of f(z) is A as x approaches xy”; “f approaches A near z,”).

Given € > 0 there exists § > 0 such that z € (a,b) and 0 < |z — 2| < ¢
imply | f(z) — A| <e.

We write

lim f(z) = A.

T—T0

Roughly speaking, if z is close to zy, f(z) must be closed to A.

A
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Using quantifiers lim f(z) = A reads as

T—T0

Ve>03>0VzeD(f): O0<|z—x0|<0= |f(z)—A|<e.

Note that the formal negation of lim f(z) = A is

T—T0
de>0Vo>03JzeD(f): 0<|z—x0|<d and |f(z)—A|>e.

Proposition 3.1 (limit definition using sequences) Let f(z) and zo be as above.
Then lim f(z) = A if and only if for every sequence (x,) with =, € (a,b), T, # o
T—T0

for all n, and lim z, = zo we have lim f(z,) = A.
n—,oo n—oo
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Proof. Suppose lim,_,,, f(z) = A, and z,, = zo. Given € > 0 we find 6 > 0 such that
| f(z) —A| <eif 0 <|x—1zo| < d. Since z,, — 1w, there is a positive integer ngy such
that n > ng implies |z, — x| < 0. Therefore n > ngy implies | f(z,) — A| < e. That is,
lim,, o f(z,) = A.

Suppose that the condition of the proposition is fulfilled but lim,_,,, f(z) # A. Then
there is some ¢ > 0 such that for all 6 = 1/n, n € N, there is an z,, € (a,b) such that
0 < |zp—x0| < 1/m, but 0| f(z,) — A| > . We have constructed a sequence (z,),
Tn # o and x, — To as n — oo such that lim, ,. f(z,) # A which contradicts our

assumption. Hence lim f(z) = A. ]
T—>T0

3.1.1 One-sided Limits, Infinite Limits, and Limits at Infinity

Definition 3.3 (a) We are writing

lim f(z)=A

z—xo+0

if for all sequences (x,) with z,, > o and lim z, = xy, we have lim f(z,) = A. Some-
n—00 n—00

times we use the notation f(z,+0) in place of lim+0 f(z). We call f(zy+0) the right-hand
T—>T0

limit of f at zo or we say “A is the limit of f as x approaches z, from above (from the
right).”
Similarly one defines the left-hand limit of [ at x, z_l)iggl_o f(z) = A with x,, < z in place
of x, > xy. Sometimes we use the notation f(zo — 0).
(b) We are writing

lim f(z)=A

T—>+00
if for all sequences (z,) with lim z,, = +o0o we have lim f(z,) = A. Sometimes we use
n—o00 n—00

the notation f(+00). In a similar way we define lim f(z) = A.
T——00

(c) Finally, the notions of (a) and (b) still make sense in case A = +o00 and A = —o0.
For example,
o () = o0
if for all sequences (z,) with z,, < 2o and lim z, = zy we have lim f(z,) = —o0.
n—oo n—oo

Remark 3.1 All notions in the above definition can be given in ¢-§ or e-D or E-6 or
E-D languages using inequalities. For example, lim . f(z) = —o0 if and only if
T—>T0—

VE>036>0VezeD(f):0<zy—2r<6d = f(z)<—FE.
Similarly, lil_zl f(z) = +o0 if and only if
T—+00

VE>03D>0VzeD(f):2>D = f(z) > E.

The proves are along the lines of Proposition 3.1
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Example 3.2 (a) Let p(z) and ¢(z) be polynomials and a € R. Then

lim p(z) = p(a).
This immediately follows from Example2.3 (c) and Proposition3.1. Suppose moreover
that ¢(a) # 0. Let x,, — a as n — oo; then ¢(z,) — ¢(a) and the limit laws for sequences
give
p(zs) _ pla)

8, () ala)

By Proposition 3.1 this means

i 20) _ 110

svaq(z)  qa)
Hence, the limit of a rational function f(z) as z approaches a point a of the domain of f
is f(a).
1
(b) lim — = 0. For, let ¢ > 0; choose D = 1/e. Then > D = 1/¢ implies 0 < 1/z < €.

T—=>+00
This proves the claim.

(c) Consider the entier function f(x) = [z], defined in
Example2.6 (b). If n € Z, limof(x) = n — 1 whereas
T—n—

. n o Lo, —
;UEE}-O f(.fC) = n1 ‘

Proof. We use the -0 definition of the one-sided limits
to prove the first claim. Let ¢ > 0. Choose § = % then

f(x)=[x]

0O<n—z< % implies n — % < x < n and therefore . .
f(z) = n—1. In particular | f(z) —(n—1)| =0 < e. —
Similarly one proves lim f(z)=n. T —

z—n+0

Since the one-sided limits are different, lim f(z) does not exist.
r—n

Definition 3.4 Suppose we are given two functions f and g, both defined on (a,b). By
f+ g we mean the function which assigns to each point z of (a,b) the number f(z)+ g(z).
Similarly, we define the difference f — g, the product fg, and the quotient f/g, with the
understanding that the quotient is defined only at those points z at which g(z) # 0.

Proposition 3.2 Suppose that f and g are functions on (a,b), a < xo < b, and

lim f(z) = A4, lim g(z)= B.
T—>T0 T—>T0
Then
(a) lim f(x) = A" implies A’ = A.
T—T0
(b) Tim (f + 9)(a) = 4+ B;
T—20

(¢) lim (£g)(z) = AB;

(d) lim i(m) = é, if B#0.

T—>TQ g B

(¢) Jim [ f(x)| = Al.
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Proof. In view of Proposition3.1, all these assertions follow immediately from the
analogous properties of sequences, see Proposition 2.3. [

Remark 3.2 The above Proposition remains true if we replace (at the same time in all
places) x — z9g by x — 20+ 0, £ = 29 — 0, £ — +00, or £ — —o0. Moreover we can
replace A or B by +oo or by —oo provided the right members of (b), (c), (d) and (e) are
defined.

Note that 400 + (—00), 0 - 00, 0o/00, and A/0 are not defined.

The extended real number system consists of the real field R and two symbols, 400 and
—oo. We preserve the original order in R and define

-0 << 40

for every x € R.

It is the clear that +o00 is an upper bound of every subset of the extended real number
system, and every nonempty subset has a least upper bound. If, for example, F' is a set
of real numbers which is not bounded above in R, then sup F = +00 in the extended real
system. Exactly the same remarks apply to lower bounds.

The extended real system does not form a field, but it is customary to make the following
conventions:

(a) If z is real then
r+o0o=400, r—00=—-00, —=—=»0.

(b) If x > 0 then z - (+00) = 400 and z - (—00) = —o0.
(c) If x < 0 then z - (+00) = —oc0 and z - (—o0) = +o0.

When it is desired to make the distinction between the real numbers on the one hand and
the symbols +0c and —oo on the other hand quite explicit, the real numbers are called
finite.

In Homework 9.3 (a) and (b) you are invited to give explicit proves in two special cases.

Example 3.3 Let f(z) = p(z)/q(x) be a rational function with polynomials p(z) =
Yo axx® and g(z) = Y7 _, bxz® with real coefficients ay, and by, and of degree r and s,
respectively. Then

0, if r<s,
de - if r=s

lim f(z)=4"% ’
T+00 +oo, if r>s and >0,

—oo, if r>s and $<0.

The first two statements (r > s) follow from Example3.2 (b) together with Proposi-
tion 3.2. Namely, azz*" — 0 as z — +oo provided 0 < k < r. The statements for r > s
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follow from z"—° — 400 as £ — +oo and the above remark.

Note that
. [ 1\rts .
lim_f(2) = (-1 lim_f(2)
since
p(=z)  (=1)'a,2"+... (—1)r+ a,x” + ...
q(—z)  (—=1)%bszs + ... bszs + ...

3.2 Continuous Functions
Definition 3.5 Let f be a function and zo € D(f). We say that f is continuous at x¢ if
Ve>036>0VzeD(f): |z—x0|<d = | flz)— f(zo) | <e. (3.1)

We say that f is continuous in A C D(f) if f is continuous at all points zy € A.

Proposition 3.1 shows that the above definition of continuity in xy is equivalent to: For
all sequences (z,), T, € D(f), with lim z, = zy, lim f(x,) = f(xo). In other words, f
n—0o0 n—oo

is continuous at xg if lim f(x) = f(zo).
T—T0

Example 3.4 (a) In example 3.2 we have seen that every polynomial is continuous in R
and every rational functions f is continuous in their domain D(f).

f(z) = |z| is continuous in R.

(b) Continuity is a local property: If two functions f, g: D — R coincide in a neighborhood
U:(x9) C D of some point xq, then f is continuous at z if and only if g is continuous at
xo.

(¢) f(z) = [z] is continuous in R\ Z. If z, is not an integer, then n < xy < n+1 for some
n € N and f(z) = n coincides with a constant function in a neighborhood z € U.(z).
By (b), f is continuous at zo. If g = n € Z, lim,_,,[z] does not exist; hence f is not
continuous at2 n.

-1
(d) f(ac):x 1 if x #1 and f(1) = 1. Then f is not continuous at xy = 1 since
x_
lim " (e 1) =2 1= f(1
Boor e =2Ai=s0)

There are two reasons for a function not being continuous at zo. First, lim,_,,, f(z) does
not exist. Secondly, f has a limit at zo but lim,_,,, f(x) # f(z0).

Proposition 3.3 Suppose f,g: D — R are continuous at xo € D. Then f + g and fg
are also continuous at xo. If g(xo) # 0, then f/g is continuous at x.

The proof is obvious from Proposition 3.2.
The set C(D) of continuous function on D C R form a commutative algebra with 1.
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Proposition 3.4 Let f: D — R and g: E — R functions with f(D) C E. Suppose f is
continuous at a € D, and g is continuous at b = f(a) € E. Then the composite function
go f: D — R s continuous at a.

Proof. Let (z,) be a sequence with z, € D and lim, . z,, = a. Since f is continuous
at a, lim, , f(z,) = b. Since g is continuous at b, lim, ,. g(f(z,)) = g¢(b); hence
go f(xzy,) — go f(a). This completes the proof. n

3.2.1 The Intermediate Value Theorem

In this paragraph, [a,b] C R is a closed, bounded interval, a,b € R.
The intermediate value theorem is the basis for several existence theorems in analysis. It
is again equivalent to the order completeness of R.

Theorem 3.5 (Intermediate Value Theorem) Let f: [a,b] — R be a continuous

function and 7 a real number between f(a) and f(b). Then there ezists ¢ € [a, b] such that
fle)=n.

A The statement is clear from the graphical presentation. Nev-
| ertheless, it needs a proof since pictures do not prove any-
v/ ‘ thing. The statement is wrong for rational numbers. For
| example, let D = {r € Q |1 <z <2} and f(z) = 2* — 2.
a, Then f(1) = —1 and f(2) = 2 but there is no p € D with
f(p) = 0 since 2 has no rational square root.

Proof. Without loss of generality suppose f(a) < f(b). Starting with [a1,b] = [a, b], we

successively construct a nested sequence of intervals [a,, b, such that f(a,) <y < f(by).

As in the proof of Proposition 2.10, the [a,, b,] is one of the two halfintervals [a, 1, m]

and [m, b, 1] where m = (a, 1 + b, 1)/2 is the midpoint of the (n — 1)st interval. By
Proposition 2.9 the monotonic sequences (a,) and (b,) both converge to a common point
c. Since f is continuous,

n—oQ n—oQ n—o0 n—oQ
By Proposition 2.14 (2.14), f(a,) <y < f(b,) implies
lim f(a,) <~y < lim f(b,);
n—r00 n—00

Hence, v = f(c). ]

Example 3.5 (a) We again show the existence of the nth root of a positive real number
a > 0, n € N. By Example 3.2, the polynomial p(z) = 2™ — a is continuous in R. We find
p(0) = —a < 0 and by Bernoulli’s inequality

p(l4a)=1+a)"—a>1+(n—-1)a>1>0.



72 3 Functions and Continuity

Theorem 3.5 shows that p has a root in the interval (0,1 + a).

(b) A polynomial p of odd degree with real coefficients has a real zero. Namely, by
Example 3.3, if the leading coefficient a, of p is positive, zli)lzloo p(z) = —oo and zlgIolo p(z) =
+o0o. Hence there are a and b with a < b and p(a) < 0 < p(b). Therefore, there is a
¢ € (a, b) such that p(c) = 0.

There are polynomials of even degree having no real zeros. For example f(z) = 22* + 1.

3.2.2 Continuous Functions on Compact Sets — The Theorem
about Maximum and Minimum

Continuous functions on compact domains have special properties of fundamental signifi-
cance. For instance, the theorem about maximum and minimum guarantees the existence
of solutions in many extremal problems.

Before we can start we need some topological notions—closed and compact sets.

Definition 3.6 A subset A C Ror A C Cis called closed if for every convergent sequence
(an) of elements of A, a, € A, the limit of (a,) also belongs to A. The empty set is also
closed.

Examples for closed subsets in R are the closed intervals [a, b], (—o0,b], [a,+00), and R
itself. This follows from the fact that for every convergent sequence (z,) with a < z,, < b,
a < limz, <b. The open interval (a,b) and the half-closed interval (a, b] are not closed,
since the sequence z,, = a + (b — a)/n converges to a & (a, b].

Examples for closed subsets in C are half-planes {z € C | Rez > a}, {z € C | Imz <
a}, a € R, closed discs {z € C | |[z— 2| < r}, 20 € C, r > 0, and the unit circle
St={z€eC||z]=1}

Remark 3.3 If £ C R is closed and a@ = sup E exists in R then a € E and hence
a =max E.
For, by the properties of the supremum, for every 1/n there exists z,, € F such that

a—— <z, <a.
n
This implies 0 < o — z, < 1/n which shows that z,, tends to a. Since F is closed, a € E.

Lemma 3.6 (a) The union of finitely many closed sets is closed.
(b) The intersection of any family of closed sets is closed.

Proof. (a) It suffices to prove the statement for two closed sets A and B, the general case
is by induction. Suppose (z,) is a convergent to x sequence with z,, € AUB. At least one
of the given sets, say A, contains infinitely many elements z,, forming a subsequence. By
Proposition 2.7 (2.7) (z,_x) also converges to z. Since A is closed z € A, and moreover
r € AUB.
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(b) A family A of sets is just a set of sets. We define the union and the intersection of A
as

UA={z34€ A:z € A},
(JA={z|VAec A:z € A}.

If the family A is finite, say A = {A4,..., A, } we write

k=1
If the family A is indexed by the positive integers I = N or an arbitrary set I, A = {4, |
ainl} we write

NA=[)A.

acl

If z, € [, Aa converges to z, then z, € A, for every . Since A, is closed, z € A, for
every a. Hence z € (N, Aq- n

Definition 3.7 A subset K C C is called compact if every sequence (z,) of elements of
K has a subsequence converging to some point z of K.

The next proposition gives a nice criterion for compactness in R and C. It is also true in
R™ and C™ but not in infinit-dimensional spaces.

Proposition 3.7 A subset K C C s compact if and only if it is bounded and closed.

The closed finite intervals [a, b] is compact. The closed disc and the unit circle are compact.
All finite unions of these sets are compact. The half-lines and half-planes are not compact.
Proof. Suppose first that K is closed and bounded and that (z,) is a sequence of elements
of K. Since K and therefore (z,) is bounded Bolzano—Weierstrafl implies that (z,) has a
convergent to some point z subsequence. Since K is closed, z € K. Hence, K is compact.
Conversely, suppose first that K is not closed. Then there exists a convergent to some
z sequence (z,) of elements of K with z ¢ K. However, every subsequence of (z,) also
converges to z ¢ K. Hence, K is not compact.

Suppose now that K is not bounded. Then there exists a sequence (z,) in K with
| zn | > n. This sequence has no convergent subsequence; K is not compact. [

Lemma 3.8 (a) The union of finitely many compact sets is compact.
(b) The intersection of an arbitrary family of compact sets is compact.
(c) The intersection AN K of a closed set A and a compact set K is compact.

Proof. All statements are immediate from the Proposition 3.7 and Lemma 3.6. [
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Proposition 3.9 If f is continuous and K is compact then f(K) is compact.

Proof. Let (f(x,)) be any sequence in f(K). Since (x,) is a sequence in the compact set
K, by definition, it has a subsequence (z,,) converging to z € K. Since f is continuous,
(f(zy,) converges to f(x) € f(K). Hence, f(K) is compact. ]

Theorem 3.10 (Theorem of Weierstral about Maximum and Minimum) Let
K be a bounded and closed subset of R and f: K — R a continuous function. Put

M :=sup f(z) and m = 1é11f{f(ac)
zeK K
Then f is bounded, and there exist points p,q € K with f(p) = M and f(q) = m.

In other words: A continuous function on a compact set attains its maximum and its
minimum.

Proof. The image f(K) of the compact set K is compact; inparticular f(K) is bounded.
Hence, both M and m are finite real numbers. Since f(K) is closed, M € f(K) by
Remark 3.3. Hence there exist p € K such that f(p) = M. The same argument works for
m. [

Proposition 3.11 Suppose that f: K — Y 1is a continuous bijective mapping of a com-
pact set K onto the set Y = f(K) C R. Then the inverse mapping f~': Y — K defined

by
i f@) =2, zeK
s a continuous function.

Proof. Suppose (y,) is a sequence in Y converging to y € Y. We will show that
ftyn) — fy). Set x, := f(y,) and. Since (x,) is a sequence inside a com-
pact set 7}?01?5 has subsequence (z,,) converging to some point limit point z, € K. Since
f is continuous,

lim f(2n,) = f(z0).

k—00

On the other hand (y,,) converges to y. Hence zo = f '(y) by the uniqueness of the
limit of (y,,). This shows that f '(y) is the only limit point of (z,); therefore (z,)
converges to x. ]

Remark 3.4 Here is an application of the above proposition. Since the power function
p(z) = 2™, n € N, is continuous and bijective on the compact set [0,d?], a € R, the
inverse function ¢(y) = /¥ is continuous on [0,a]. Together with Proposition3.4 we

obtain .
lim z; = (lim acn) , for se Q.

n—oo n—oo
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Definition 3.8 A function f: D — R is called uniformly continuous if for every € > 0
there exists a 0 > 0 such that for all z,2' € D |z — 2’| < § implies | f(z) — f(z') | < e.

Let us consider the differences between the concepts of continuity and uniform continuity.
First, uniform continuity is a property of a function on a set, whereas continuity can be
defined in a single point. To ask whether or not a given function is uniformly continuous
at a certain point is meaningless. Second, if f is continuous on X, then it is possible to
find, for each £ > 0 and for each point p, a number § > 0 having the property specified
in Definition 3.5. This é depends on € and on p. If f is, however, uniformly continuous
on X, then it is possible, for each £ > 0 to find one § > 0 which will do for all possible
points p of X.

Evidently, every uniformly continuous function is continuous. That the two concepts are
equivalent on compact set follows from the next proposition.

Proposition 3.12 Let f: K — R be a continuous function on a compact set K C R.
Then f is uniformly continuous on K.

Proof. Suppose to the contrary that f is not uniformly continuous. Then there exists
g9 > 0 without matching § > 0; for every positive integer n € N there exists a pair of
points z,, z), with |z, —z, | < 1/n but | f(z,) — f(z]) | > €. By the compactness of
K, (x,) has a subsequence converging to some point £ € K. Since |z, — z!,| < 1/n, the

sequence (z!

1) also converges to £. Hence

im f(zn,) = f(€) = lim f(z),)

k—00 k—00

which contradicts | f(z,) — f(xl) | > o for all n. n

Example 3.6 We give an example of a continuous
bounded function f on the interval [0,1) not being
uniformly continuous. We define f to be picewise lin-
ear. For, let (z,) be strictly increasing sequence with
z1 = 0, o = 2/3, and limz,, = supz, = 1. Define
f(@an—1) = 0 and f(z2,) = xoy for all positive integers
n € N.

This function f is not uniformly continuous. Indeed,
let ¢ = % To every 6 > 0 choose n € N such that

Topt1 — Tan < 0.

Xq X X3 X4

Then . 1
| f(m2n11) = f(2on) | = 720 > 5
This shows that f is not uniformly continuous.
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Discontinuities

If z is a point in the domain of a function f at which f is not continuous, we say f is
discontinuous at x or f has a discontinuity at x. It is customary to divide discontinuities
into two types.

Definition 3.9 Let f: (a,0) — R be a function which is discontinuous at a point z.
If the one-sided limits lim,_, ;40 f(2) and lim,_,,, o f(x) exist, then f is said to have a
simple discontinuity or a discontinuity of the first kind. Otherwise the discontinuity is
said to be of the second kind.

Example 3.7 (a) f(z) = sign(z) is continuous on R\{0} since it is locally constant.
Moreover, f(0+0) =1 and f(0 — 0) = —1. Hence, sign(z) has a simple discontinuity at
zo = 0. (b) Define f(z) = 0 if x is rational, and f(z) = 1 if z is irrational. Then f has
a discontinuity of the second kind at every point z since neither f(z + 0) nor f(z — 0)
exists.

(c) Define

Consider the two sequences

1
— and vy, = —,

5 T nm nm

ITp =

Then both sequences (z,) and (y,) approach 0 from above but lim, , f(z,) = 1 and
lim,, o f(yn) = 0; hence f(0+ 0) does not exist. Therefore f has a discontinuity of the
second kind at x = 0. We have not yet shown that sinz is a continuous function. This
will be done in Section 3.5.

3.3 Monotonic Functions

Definition 3.10 Let f be a real function on the interval (a,b). Then f is said to be
monotonically increasing on (a,b) if a < z < y < b implies f(z) < f(y). If the last
inequality is reversed, we obtain the definition of a monotonically decreasing function. The
class of monotonic functions consists of both the increasing and the decreasing functions.
If a <z <y < bimplies f(z) < f(y), the function is said to be strictly increasing.
Similarly, strictly decreasing functions are defined.

Theorem 3.13 Let f be a monotonically increasing function on (a,b). Then f(xz + 0)
and f(x — 0) ezist at every point x of (a,b). More precisely,

sup f(t)=f(z—0)< f(z) < f(z+0) = infb)f(t). (3.2)

te(a,z) te(z
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Furthermore, ifa < x <y < b, then

fz+0) < f(y—0). (3.3)
Analogous results evidently hold for monotonically decreasing functions.

Proof. See Appendix B to this chapter. [

Corollary 3.14 Monotonic functions have no discontinuities of the second kind.

Lemma 3.15 A strictly increasing function f: X — R is injective. Thus, it has an
inverse function f~1: f(X) — R which is also strictly increasing.
A similar statement holds for strictly decreasing functions.

Proof. If 1 # x5 then z; < x5 or x; > x5 so that f(z;) < f(z2) or f(z1) > f(xe),
respectively. Hence, f(x1) # f(z2), and f is injective. Therefore f~! exists, and f~! is
also strictly increasing, by the above inequalities. [

Combining Lemma 3.15 and Proposition 3.11 we obtain

Corollary 3.16 Let f: X — R be a strictly increasing continuous function. Then
7 f(X) = R is also a strictly increasing continuous function.

Q 19. Suppose, f is a real valued function defined on R which satisfies

hm(f(z +h) — f(z —h)) = f(z)

h—0

for every x € R. Does this imply that f is continuous?

3.4 The Exponential and the Logarithmic Functions

In this section we are dealing with the exponential function which is one of the most
important in analysis. We use the exponential series to define the function. We will see
that this definition is consistent with the definition e® using Definition 1.9.

Definition 3.11 For z € C put
z
E(x)=) . (3.4)

Proposition 3.17 The radius of convergence of the exponential series (3.4) is R = +o0,
1. e. the series converges absolutely for all z € C. We can estimate the remainder term

o =Y g, 27 /K as follows

20z" n+1

()| < =

(3.5)
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Proof. The ratio test gives convergence for all z € C, see Example 2.12. We have

e 2| Eli K 5
‘7( o (n+1)(n+2)+"'+(n+1)---(n+k)+')

Applying Proposition 2.29 (Cauchy product) on multiplication of absolutely convergent
series, we obtain

n=0 m=0 n=0 k=0
[e9) n
1 A (z+w)"
=D 2\ ) =
n=0 n k=0 n=0 n

which gives us the important addition formula

E(z+w) = FE(z)E(w), zweC. (3.6)
One consequence is that

E(z)E(—z) = E(0) =1, zeC. (3.7)

This shows that E(z) # 0 for all z. By (3.4), E(x) > 0 if x > 0; hence (3.7) shows E(z) >
0 for all real z. By (3.4), lim,_,o, E(z) = +00; hence (3.7) shows that lim,_,_, E(z) = 0.
By (3.4), 0 < z < y implies that E(x) < E(y); by (3.7), it follows that E(—y) < E(—x);
hence, E is strictly increasing on the whole real axis.

The addition formula also shows that

Hm(E(z + h) — E(2)) = E(2) lim(E(k) — 1) = E(z) -0 =0, (3.8)

h—0 h—0
where limy_,o E(h) = 1 directly follows from (3.5) namely

Zh— =|r(h)|<2|h| if |h|<1.

B -11=| 35

n=1

Hence, E(z) is continuous for all z.
Iteration of (3.6) gives

E(zi+ -4 2,) = E(21) --- E(2p). (3.9)
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Let us take 2z = --- = 2, = 1. Since F(1) = e by (2.18), we obtain
E(n)=¢", neN. (3.10)
If p = m/n, where m,n are positive integers, then
E(p)" = E(pn) = E(m) = €™, (3.11)
so that
E(p)=¢’, pe Q. (3.12)

It follows from (3.7) that E(—p) = e ? if p is positive and rational. Thus (3.12) holds for

all rational p. In Definition 1.9 we suggested the definition

z¥ =sup{2? | p <y,p € Q},

(3.13)

where £ > 1 and y is any real number. Since E is continuous and increasing, (3.12) shows

that

E(z) =¢€".

(3.14)

for all real . The notation exp(z) is often used in place of e*. (3.14) is a much more
convenient starting point for the investigation of the properties of e*. We now revert to
the customary notation, €%, in place of F(z) and summarize what we have proved so far.

Proposition 3.18 Let e® be defined on R by (3.4) and (3.14). Then

a) €® is continuous for all x.
b) e is a strictly increasing function and e* > 0.

d) lim e*=+o0, lim €* =0.
T—+00 T——00

e) lim R for every n € N.

z—+o00 e%
Proof. We have already proved (a) to (d); (3.4) shows that

gg""’l

~ (n+1)!

for x > 0, so that

" (n+1)!
<

e’ T

I

and (e) follows. Part (e) shows that e” tends faster to +o0o than any power of z, as

xr — +0Q.
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Since e, x € R, is a strictly increasing continuous function, by Corollary 3.16 e has an
strictly increasing continuous inverse function logy, log: R, \{0} — R. log is defined by

ey =y y >0, (3.15)
or, equivalently, by
log(e®) =z, zeR. (3.16)
Writing v = €® and v = ¥, (3.6) gives
log(uv) = log(e”e¥) = log(e™™¥) =z + v,
such that
log(uv) = logu + logv, u > 0,v>0. (3.17)

This shows that log has the familiar property which makes the logarithm useful for com-
putations. Another customary notation for log z is In x. Proposition 3.18 shows that

lim logz =400, lim logz = —o0.
r—+00 x—040

We summarize what we have proved so far.

Proposition 3.19 Let the logarithm log: Ry \{0} — R be the inverse function to the
exponential function €*. Then

a) log is continuous on Ry \{0}.
b) log is strictly increasing.
c) log(uv) =logu + logv for u,v > 0.

d) wl_lgloo logz = +o0, wl_l}gr}ro logz = —o0.

N N N N

It is easily seen from (3.15) that

a" = e 108? (3.18)
if x > 0 and n is an integer. Similarly, if m is a positive integer, we have
=em (3.19)
Combining (3.18) and (3.19), we obtain

1% = e 1087 (3.20)

for any rational o. We now define z® for any real o and z > 0, by (3.20). The continuity
and monotonicity of e* and log x show that this definition leads to the same result as the
previously suggested one.
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3.5 Trigonometric Functions

Simple Trig Functions
e

‘,// \ / / \\ In this section we define the trigonometric functions using
/ s “ the exponential function e?.
[
\ Definition 3.12 For z € C define
IR A B 4 ] Loz | i . Lose iz
cosz == (e"+e7*), sinz=_— (e —e?) (3.21)
o \ / 2 2i
\ i o/
\ o/ N/ such that
\ // . \//
e'? = cosz+isinz (Euler formula) (3.22)

Sine
Cosine

Proposition 3.20 (a) The functions sinz and cosz can be considered as power series
which absolutely converge for all z € C:

_OO(_]')nQW,_ 12 14 16
COSZ—ZO @2n)! z —1—52 —1—@,2 —az + — -
. (3.23)
Sinzzzﬂz%*'l:3_1234_125__1_...
“ (2n+1)! 3! 5! )
(b) sinz and cosx are real valued and continuous on R, where cosz is an even and sinz
is an odd function, i. e. cos(—x) = cosz, sin(—z) = —sinz. We have
sin 7 + cos®z = 1; (3.24)

cos(z + y) = cosx cosy — sin x sin y;
. (z+y) - Y ny (3.25)
sin(z 4+ y) = sinz cosy + cos x sin y.

Proof. (a) Inserting iz into (3.4) in place of z and using (i) = (i, —1, —i,1,i,—1,...), we
have

S g
~ nl k) =~ (2k + 1)!
Inserting —iz into (3.4) in place of z we have
U N B L& 22k
e :;1 — :g(_l) @ —1;(—1) BRI

Inserting this into (3.21) proves (a).

(b) Since the exponential function is continuous on C, sin z and cos z are also continuous
on C. In particular, their restrictions to R are continuous. Now let z € R, theniz = —iz.
By Homework 11.3 and (3.21) we obtain

(eiz +ei_"> = Re (eiz)

1 /. — 1
CoOST = 3 (e”“ —i—e””) = 3
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and similarly
sinz = Im (e””) .
Hence, sinz and cosx are real for real x.

For z € R we have |¢!?| = 1. Namely by (3.7) and

i Homework 11.3
|~ el

i sinx

so that for z € R

0 €S X 1

e | =1. (3.26)

On the other hand, the Euler formula and the fact
that cosx and sin z are real give

1= |e””‘ = |cosz +isinz | = cos’z + sin® z.

Hence, e = cosz + isinz is a point on the unit circle in the complex plane, and cosz
and sin x are its coordinates.

It is trivial from the definition that cos(—z) = cosz and sin(—z) = —sin z for all z € C.
The addition laws for sinx and cos x follow from (3.6) applied to e (@+¥)  This completes
the proof of (b). m

Lemma 3.21 There exists a unique number 7 € (0,2) such that cosT = 0. We define
the number m by

T =2T. (3.27)

The proof is based on the following Lemma.

Lemma 3.22
(a) 0<z<V6 implies sinz > 0. (3.28)
(b) 0<z<V2 implies 0<cosz, (3.29)
0<sing <z < 0L (3.30)
cos T
cos’x < N —:xQ' (3.31)

(c) cosz is strictly decreasing on [0, w|; whereas sinx is strictly increasing on [—m/2,7/2].

The proof of both lemmas is in the Appendix B to this chapter.
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By definition, cos(w/2) = 0; and (3.24) shows sin(7/2) = +1. By (3.28), sinn/2 = 1.
Thus €™/? =i, and the addition formula for e* gives

=1, &rl=1; (3.32)
hence,
el =e? 2 e C. (3.33)

Proposition 3.23 (a) The function e* is periodic with period 2mi.

We have € =1, z € R, if and only if v = 2kn, k € Z.

(b) The functions sin z and cos z are periodic with period 2.

The real zeros of the sine and cosine functions are {kn | k € Z} and {w/2 + kn | k € Z},
respectively.

Proof. We have already proved (a). (b) follows from (a) and (3.21). m

Proposition 3.24 For real x we have

n .’L‘2k
cosz = Z(-nk@ + Tonsa() (3.34)
k=0 )
n p $2k+1
SInxy = Z(—l) m + T’Qn+3($), (335)
k=0 )
where
‘ T ‘2n+2
‘ ‘2n+3
Proof. Let
x2n+2 .’1,'2
o =+ [1- 4o ).
an+2(2) (2n +2)! ( (2n+3)(2n +4) )
Put
2k

2n+3)2n+4)---2n+2(k+1))

ag ‘=

Then we have, by definition

x2n+2

T2n+2($):im(l—al-l-az—-i-"-).

Since

332

2n + 2k +1)(2n + 2k + 2)’

Qg = Gk—1(
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|z | < 2n+ 3 implies
1>a;>ay>--->0
and finally as in the proof of the Leibniz criterion
0<l—a;4+ay—as+—---<1.

Hence, | roni2(z) | < |z |”"T /(2n + 2)!. The estimate for the remainder of the sine series
is similar. -

Corollary 3.25

1 —cosz 1

@ I =y (339
. sinz
(b) ilit(l) - =1. (3.39)

Proof. (a) Consider the remainder term of order 3

3
Ed

. x .
sinz =z +r3(x), where |x|§7 if |z| <4
That is

) >
\smx—m\gT if |z|<4
sin x |z |

—1‘3— if |z] <4
z 6

Now (a) follows.
(b) Consider the remainder term of order 4 in the expansion of cos z

2 4
cosle—x——i—m(x) with |7"4(alc)\§ﬂ if |z|<65.
2 24
We obtain
1—coszx 1 7y 1 |z,
L R e L [P LA Y. < 5
‘ 2 ‘2 2|52t o I lelss

and (b) follows. m
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3.5.1 The Tangent and Cotangent Functions

Targem ‘ Cotﬁmgent )
| | \ \ ‘
| | | | |
| | | | \
J 3 J \ 37 | \
|
| y 2 “‘ “ y 2 “ “\
| | \ \
/ / \ \\ \
1 / \ 1 \ \
4 /5T A 1 2 / 4 43 T2 N A 1 2 3 4
/ -1 \ -1 "
/ / \ \\ ! \\
/ / \ \ \
[ - | L2 \
e‘ e“ ‘
s | \ 5] \
| | | | |
\ | \‘ \ \
| 41 | 4] |
For x # w/2 + km, k € Z, define
sin x
tanz = . (3.40)
cos
For z # km, k € Z, define
CoS &
cotx = ——. (3.41)
sin z

Lemma 3.26 (a) tanxz is continuous at * € R\{w/2 + kr | k € Z}, and
tan(z + ) = tanz;

(b) lim tanz =400, lim tanxz = —oo;
z—5—0 z—5+0

(c) tanz is strictly increasing on (—m/2,7/2);

Proof. (a) is clear by Proposition 3.3 since sin z and cosz are continuous. We show only

(c) and let (b) as an exercise. Let 0 < z < y < m/2. Then 0 < sinz < siny and
cosx > cosy > 0. Therefore

Hence, tan is strictly increasing on (0,7/2). Since tan(—z) = —tan(z), tan is strictly
increasing on the whole interval (—7/2,7/2). ]

Similarly as LLemma 3.26 one proves the next lemma.

Lemma 3.27 (a) cotz is continuous at x € R\{kw | k € Z}, and cot(x + ) = cot x;
(b) lim cotz = —o0, lim cotx = +o0;
z—0—-0 T—0+0

(c) cot x is strictly decreasing on (0, ).
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3.6 Inverse Trigonometric Functions

We have seen in Lemma 3.22 that cos z is strictly decreasing on [0, 7] and sin z is strictly
increasing on [—7/2, 7/2]. Obviously, the images are cos|0, 7| = sin[—n /2,7 /2] = [-1, 1].

Using Corollary 3.16 we obtain the inverse functions.

Arcosine and Arcsin

~

| <

Proposition 3.28 (and Definition) There exists the

e

1 08 -06 -04 -02 0| 02

11

arccos
arcsin

04 06 08 1

given by arcsin(sin z)
sin(arcsiny) = y, y € [—1,1].

wnverse function to cos

arccos: [—1,1] — [0, 7] (3.42)

given by arccos(cosx) =z, z € [0, 7] or cos(arccosy) = v,
y € [-1,1].
. and continuous.

The function arccosx is strictly decreasing

There exists the inverse function to sin

arcsin: [—1,1] — [-7/2,7/2] (3.43)

[—7/2,7/2] or
The function arcsinzx is

r, x €

strictly increasing and continuous.

Note that arcsin z+arccosx = 7/2if x € [—1, 1]. Indeed, let y = arcsinz; then z = siny =
cos(m/2 —y). Since y € [0,7|, /2 —y € [—7/2,7/2], and we have arccosz = 7/2 — y.
Therefore y + arccosx = /2.

Arctangent and

3+

Arccotangent

arctan
arccot

By Lemma3.26, tanx is strictly increasing on
(—m/2,7/2). Therefore, there exists the inverse
function on the image tan(—m/2,7/2) = R.

Proposition 3.29 (and Definition) There ez-
ists the inverse function to tan

arctan: R — (—n/2,7/2) (3.44)

given by arctan(tanx) = z, z € (—n/2,7/2) or
tan(arctany) =y, y € R. The function arctan x
s strictly increasing and continuous.

There exists the inverse function to cot x

arccot : R — (0, 7) (3.45)

given by arccot (cot x) z, r € (0,m) or
cot(arccoty) = y, y € R. The function arccot x
18 strictly decreasing and continuous.
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3.7 Hyperbolic Functions

Hyperbolic Cosine and Sine

The functions

) er —e™”
sinhz = 5 (3.46)
e’ e’ "
coshz = —y (3.47)
e’ —e* sinhz
: tanhz = (3.48)
2 ] 1 e +e % coshuz
1] e +e * coshzx
' cothz = , (3.49)
et —e ® Sinx
—24
. are called hyperbolic sine, hyperbolic cosine, hy-
perbolic tangent, and hyperbolic cotangent, respec-
tively. There are many analogies between these
X functions and their ordinary trigonometric coun-
— Ccos
sinh terparts.
Hyperbolic Tangent Hyperboligpmgngent
1 I \
/ ||
] ,/ y |
0.5 // N \ -
,//
-3 2 -1 0“/“’" 1 2 3 -3 -2 -1 1 2 3
/““J T~ =
los N\
/
/ )
_ 1 lg

The functions sinh z and tanh z are strictly increasing with sinh(R) = R and tanh(R) =
(—1,1). Hence, their inverse functions are defined on R and on (—1, 1), respectively, and
are also strictly increasing and continuous. The function

arsinh: R - R (3.50)
is given by arsinh (sinh(z)) = z, € R or sinh(arsinh (y)) =y, y € R.
The function
artanh : (—1,1) - R (3.51)

is defined by artanh (tanh(z)) =z, z € R or tanh(artanh (y)) =y, y € (—1,1).

The function cosh is strictly increasing on the half line R, with cosh(R;) = [1,00).
Hence, the inverse function is defined on [1,00) taking values in Ry. It is also strictly
increasing and continuous.

arcosh : [1,00) = R4 (3.52)
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is defined via arcosh (cosh(z)) = z, x > 0 or by cosh(arcosh (y)) =y, y > 1.

The function coth is strictly decreasing on the z < 0 and on z > 0 with coth(R\0) =
R\ [—1, 1]. Hence, the inverse function is defined on R\[—1,1] taking values in R\O0. It
is also strictly decreasing and continuous.

arcoth : R\[-1,1] = R (3.53)

is defined via arcoth (coth(z)) = z,  # 0 or by coth(arcoth (y)) =y, y < =1 or y > 1.

3.8 Appendix B

Proof of Theorem 3.13. By hypothesis, the set {f(t) | a < t < z} is bounded above
by f(z), and therefore has a least upper bound which we shall denote by A. Evidently
A < f(z). We have to show that A = f(z — 0).

Let ¢ > 0 be given. It follows from the definition of A as a least upper bound that there
exists 0 > 0 such that a < x — § < = and

A—e< f(z—96) <A (3.54)
Since f is monotonic, we have
flx=90) < ft) <A, if z—d<ti<um. (3.55)
Combining (3.54) and (3.55), we see that
|f(t)—Al<e if z-d<t<u.

Hence f(z —0) = A.
The second half of (3.2) is proved in precisely the same way. Next, if a < z <y < b, we
see from (3.2) that

f(x+0)= inf f(t)= inf f(¢). (3.56)

T<t<b T<t<y

The last equality is obtained by applying (3.2) to (a,y) instead of (a,b). Similarly,

fly—0) = sup f(t) = sup f(2). (3.57)
a<lt<y z<lt<y
Comparison of the (3.56) and (3.57) gives (3.3). n

Proof of Lemma 3.22. (a) By (3.23)

1 1 1
cosx = <1—§x2) 42t <E_E$2) 4een,

0 < 2 < +/2 implies 1 — 2%/2 > 0 and, moreover 1/(2n)! — 22/(2n+2)! > 0 for all n € N;

hence C(z) > 0.
By (3.23),
1 1 1
sinx = x (1—§x2> + 25 (E— ﬁxj) 4o,
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Now,

1 1 1
1—§x2>0<:>:1:<\/6, a—ﬁx2>0<:>x<\/42,....

Hence, S(z) > 0if 0 < x < v/6. This gives (3.28). Similarly,

1 1 1 1
. N B [
Tr—sinr =g <3! 5!33)—1-36 (7! 9!x>+ ,

and we obtain sinz < z if 0 < x < +/20. Finally we have to check whether
sinx — x cosx > 0; equivalently

? 1 1 1 1 1 1
3 5 7
0<a (5_5)_'% (E_§>+$ (@_ﬁ>_+
2

Now v/10 > = > 0 implies

2n 2n+2 50
— T
@2n+1)!  (2n+ 3)!

for all n € N. This completes the proof of (a)
(b) Using (3.24), we get

0<zcosz <sinz = 0 < z?cos’z < sin’z
1

=— 2%cos?’r +cos’r <1 = cos’z < ;
1+ 22

(c) In the proof of Lemma3.21 (see below) we will see that cosz is strictly decreasing
in (0,7/2). By (3.24), sinz = /1 — cos?x is strictly increasing. Since sinx is an odd
function, sinz is strictly increasing on [—m/2,7/2]. Since cosz = —sin(z — 7/2), the
statement for cosz follows. ]

Proof of Lemma 8.21. cos0 = 1. By the Lemma 3.22, cos? 1 < 1/2. By the double angle
formula for cosine, cos2 = 2cos?1 — 1 < 0. By continuity of cosz and Theorem 3.5, cos
has a zero 7 in the interval (0, 2).

CcoOST — cosy = —2sin (x_—;—y) sin (x ; y) .

So that by Lemma3.22 0 < z < y < 2 implies 0 < sin((z + y)/2) and sin((z — y)/2) < 0;
therefore cosz > cosy. Hence, cosz is strictly decreasing on (0,2). The zero 7 is

By addition laws,

therefore unique. n
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3.8.1 Estimates for 7

This is an application of Proposition 3.24. For numerical calculations it is convenient to
use the following order of operations

cose = ((((W“) <2n—2_)in—3>“) (2n—453(0;n—5)“)”'

—x2

First we compute cos 1.5 and cos 1.6. Choosing n = 7 we obtain

2 2 2 2 2 2 2
_ T 1 1) 22 1) 28 1
o ((((((182+>132+)90+>56+>30+)12+>2+

+ 1 + T16(.T).

By Proposition 3.24

‘x‘lﬁ

16!

|r6(2) | < <09-1071 if |z|<1.6.

The calculations give
cos 1.5 = 0.07073720163 £ 20 - 107" > 0,cos 1.6 = —0.02919952239 + 20 - 10~ < 0.

By the itermediate value theorem, 1.5 < 7/2 < 1.6.

Now we compute cos x for two values of z which are close
to the linear interpolation

1.
a=15+01— 10 o
cosl.b —cosl.6

is a\ |16 cos 1.5707 = 0.000096326273 = 20 - 10" > 0,
| cos 1.5708 = —0.00000367326 = 20 - 10! < 0.

cos 1.6
Hence, 1.5707 < /2 < 1.5708.
The next linear interpolation gives

cos 1.5707
=1. ) 1 =1. 26...
b 5707 + 0.0000 o5 1707 — cos 1708 570796326

cos 1.570796326 = 0.00000000073 +20 - 10~ > 0,
cos 1.570796327 = —0.00000000027 + 20 - 10~ '* < 0.

Therefore 1.570796326 < 7/2 < 1.570796327 so that

7 = 3.141592653 + 107°.



