Chapter 4

Differentiation

4.1 The Derivative of a Function

We define the derivative of a function and prove the main properties like product, quotient and chain rule. We relate the derivative of a function with the derivative of its inverse function. We prove the mean value theorem and consider local extrema. Taylor's theorem will be formulated.

Definition 4.1 Let $f:(a,b)\to\mathbb{R}$ be a function and $x_0\in(a,b)$. If the limit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \tag{4.1}$$

exists, we call f differentiable at x_0 . The limit is denoted by $f'(x_0)$. We say f is differentiable if f is differentiable at every point $x \in (a, b)$. We thus have associated to every function f a function f' whose domain is the set of points x_0 where the limit (4.1) exists; f' is called the derivative of f.

Sometimes the Leibniz notation is used to denote the derivative of f

$$f'(x_0) = \frac{\mathrm{d}f(x_0)}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}f(x_0).$$

Remarks 4.1 (a) Replacing $h := x - x_0$ we see that $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$. (b) The limits

$$\lim_{h \to 0-0} \frac{f(x_0 + h) - f(x_0)}{h}, \quad \lim_{h \to 0+0} \frac{f(x_0 + h) - f(x_0)}{h}$$

are called left-hand and right-hand derivatives of f in x_0 , respectively. In particular for $f:[a,b]\to\mathbb{R}$, we can consider the right-hand derivative at a and the left-hand derivative at b.

Example 4.1 (a) For f(x) = c the constant function

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{c - c}{x - x_0} = 0.$$

(b) For
$$f(x) = x$$
,

$$f'(x_0) = \lim_{x \to x_0} \frac{x - x_0}{x - x_0} = 1.$$

(c) The slope of the tangent line. Given a function $f:(a,b)\to\mathbb{R}$ which is differentiable in x_0 . Then $f'(x_0)$ is the slope of the tangent line to the graph of f through the point $(x_0, f(x_0))$.

The slopes of the two secant lines are

$$m_2 = \tan \alpha_2 = \frac{f(x_2) - f(x_0)}{x_2 - x_0}, \quad m_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$

One can see: If x approaches x_0 , the secant line through $(x_0, f(x_0))$ and (x, f(x)) approaches the tangent line through $(x_0, f(x_0))$. Hence, the slope of the tangent line is the limit of the slopes of the secant lines if x approaches x_0 :

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Proposition 4.1 Let f be defined on (a,b). If f is differentiable at a point $x_0 \in (a,b)$, then f is continuous at x_0 .

Proof. By Proposition 3.2 we have

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) = f'(x_0) \lim_{x \to x_0} (x - x_0) = f'(x_0) \cdot 0 = 0.$$

The converse of this proposition is not true. For example f(x) = |x| is continuous in \mathbb{R} but differentiable in $\mathbb{R} \setminus \{0\}$ since $\lim_{h \to 0+0} \frac{|h|}{h} = 1$ whereas $\lim_{h \to 0-0} \frac{|h|}{h} = -1$. Later we will become aquainted with a function which is continuous on the whole line without being differentiable at any point!

Proposition 4.2 Let $f:(r,s) \to \mathbb{R}$ be a function and $a \in (r,s)$. Then f is differentiable at a if and only if there exists a number $c \in \mathbb{R}$ and a function φ defined in a neighborhood of a such that

$$f(x) = f(a) + (x - a)c + \varphi(x),$$
 (4.2)

where

$$\lim_{x \to a} \frac{\varphi(x)}{x - a} = 0. \tag{4.3}$$

In this case f'(a) = c.

The proposition says that a function f differentiable at a can be approximated by a linear function, in our case by

$$y = f(a) + (x - a)f'(a).$$

The graph of this linear function is the tangent line to the graph of f at the point (a, f(a)). Later we will use this point of view to define differentiability of functions $f: \mathbb{R}^n \to \mathbb{R}^m$. *Proof.* Suppose first f satisfies (4.2) and (4.3). Then

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \left(c + \frac{\varphi(x)}{x - a} \right) = c.$$

Hence, f is differentiable at a with f'(a) = c.

Now, let f be differentiable at a with f'(a) = c. Put $\varphi(x) = f(x) - f(a) - (x - a)f'(a)$. Then

$$\lim_{x \to a} \frac{\varphi(x)}{x - a} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} - f'(a) = 0.$$

Proposition 4.3 Suppose f and g are defined on (a, b) and are differentible at a point $x \in (a,b)$. Then f+g, fg, and f/g are differentiable at x and

(a)
$$(f+g)'(x) = f'(x) + g'(x);$$

(b)
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
;

(b)
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x);$$

(c) $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.$

In (c), we assume that $g(x) \neq 0$.

Proof. (a) Since

$$\frac{(f+g)(x+h) - (f+g)(x)}{h} = \frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h},$$

the claim follows from Proposition 3.2.

Let h = fg and t be variable. Then

$$h(t) - h(x) = f(t)(g(t) - g(x)) + g(x)(f(t) - f(x))$$
$$\frac{h(t) - h(x)}{t - x} = f(t)\frac{g(t) - g(x)}{t - x} + g(x)\frac{f(t) - f(x)}{t - x}.$$

Noting that $f(t) \to f(x)$ as $t \to x$, (b) follows.

Next let h = f/g. Then

$$\frac{h(t) - h(x)}{t - x} = \frac{\frac{f(t)}{g(t)} - \frac{f(x)}{g(x)}}{t - x} = \frac{f(t)g(x) - f(x)g(t)}{g(x)g(t)(t - x)}$$

$$= \frac{1}{g(t)g(x)} \frac{f(t)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(t)}{t - x}$$

$$= \frac{1}{g(t)g(x)} \left(g(x) \frac{f(t) - f(x)}{t - x} - f(x) \frac{g(t) - g(x)}{t - x}\right).$$

Letting $t \to x$, and applying Propositions 3.2 and 4.1, we obtain (c).

Example 4.2 (a) $f(x) = x^n$, $n \in \mathbb{Z}$. We will prove $f'(x) = nx^{n-1}$ by induction on $n \in \mathbb{N}$. The cases n = 0, 1 are OK by Example 4.1. Suppose the statement is true for some fixed n. We will show that $(x^{n+1})' = (n+1)x^n$.

By the product rule and the induction hypothesis

$$(x^{n+1})' = (x^n \cdot x)' = (x^n)'x + x^n(x') = nx^{n-1}x + x^n = (n+1)x^n.$$

This proves the claim for positive integers n. For negative n consider $f(x) = 1/x^{-n}$ and use the quotient rule.

(b) $(e^x)' = e^x$.

$$(e^{x})' = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h} = \lim_{h \to 0} \frac{e^{x}e^{h} - e^{x}}{h} = e^{x} \lim_{h \to 0} \frac{e^{h} - 1}{h} = e^{x}; \tag{4.4}$$

the last equation simply follows from Homework 11.4(c).

(c) $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$. Using $\sin(x+y) - \sin(x-y) = 2\cos(x)\sin(y)$ we have

$$(\sin x)' = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{2\cos\frac{2x+h}{2}\sin\frac{h}{2}}{h}$$
$$= \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right) \lim_{h \to 0} \frac{\sin\frac{h}{2}}{\frac{h}{2}}.$$

Since $\cos x$ is continuous and $\lim_{h\to 0} \frac{\sin h}{h} = 1$ by Proposition 3.25 (b), we obtain $(\sin x)' = \cos x$. The proof for $\cos x$ is analogous. (d) $(\tan x)' = \frac{1}{\cos^2 x}$. Using the quotient rule for the function $\tan x = \sin x/\cos x$ we have

$$(\tan x)' = \frac{(\sin x)' \cos x - \sin x (\cos x)'}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

The next proposition deals with composite functions and is probably the most important statement about derivatives.

Proposition 4.4 (Chain rule) Let $g: (\alpha, \beta) \to \mathbb{R}$ be differentiable at $x_0 \in (\alpha, \beta)$ and let $f:(a,b)\to\mathbb{R}$ be differentiable at $y_0=g(x_0)\in(a,b)$. Then $h=f\circ g$ is differentiable at x_0 , and

$$h'(x_0) = f'(y_0)g'(x_0). (4.5)$$

Proof. We have

$$\frac{f(g(x)) - f(g(x_0))}{x - x_0} = \frac{f(g(x)) - f(g(x_0))}{g(x) - g(x_0)} \frac{g(x) - g(x_0)}{x - x_0}$$

$$\xrightarrow[x \to x_0]{\lim_{x \to x_0} \frac{f(y) - f(y_0)}{y - y_0}} \cdot g'(x_0) = f'(y_0)g'(x_0).$$

Here we used that y = g(x) tends to $y_0 = g(x_0)$ as $x \to x_0$, since g is continuous at x_0 .

Example 4.3 (a) Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable; define $F: \mathbb{R} \to \mathbb{R}$ by F(x) := f(ax+b) with some $a, b \in \mathbb{R}$. Then

$$F'(x) = af'(ax + b).$$

- (b) $x^{\alpha} = e^{\alpha \log x}$. Hence, $(x^{\alpha})' = (e^{\alpha \log x})' = e^{\alpha \log x} \alpha \frac{1}{x} = \alpha x^{\alpha 1}$.
- (c) Suppose f > 0 and $g = \log f$. Then $g' = f' \frac{1}{f}$; hence f' = f g'.

Proposition 4.5 Let $f:(a,b) \to \mathbb{R}$ be strictly monotonic and continuous. Suppose f is differentiable at x. Then the inverse function $g = f^{-1}: f((a,b)) \to \mathbb{R}$ is differentiable at y = f(x) with

$$g'(y) = \frac{1}{f'(x)} = \frac{1}{f'(g(y))}. (4.6)$$

Proof. Let $(y_n) \subset f((a,b))$ be a sequence with $y_n \to y$ and $y_n \neq y$ for all n. Put $x_n = g(y_n)$. Since g is continuous (by Corollary 3.16), $\lim_{n\to\infty} x_n = x$. Since g is injective, $x_n \neq x$ for all n. We have

$$\lim_{n \to \infty} \frac{g(y_n) - g(y)}{y_n - y} = \lim_{n \to \infty} \frac{x_n - x}{f(x_n) - f(x)} = \lim_{n \to \infty} \frac{1}{\frac{f(x_n) - f(x)}{x_n - x}} = \frac{1}{f'(x)}.$$

Hence g'(y) = 1/f'(x) = 1/f'(g(y)).

We give some applications of this very useful proposition.

Example 4.4 In what follows f is the original function (with known derivative) and g is the inverse function to f. We fix the notion y = f(x) and x = g(y).

(c) log: $\mathbb{R}_+ \setminus \{0\} \to \mathbb{R}$ is the inverse function to $f(x) = e^x$. By the above proposition

$$(\log y)' = \frac{1}{(e^x)'} = \frac{1}{e^x} = \frac{1}{y}.$$

(d) $\arcsin: [-1,1] \to \mathbb{R}$ is the inverse function to $y = f(x) = \sin x$. If $x \in (-1,1)$ then

$$(\arcsin(y))' = \frac{1}{(\sin x)'} = \frac{1}{\cos x}.$$

Since $y \in [-1, 1]$ implies $x = \arcsin y \in [-\pi/2, \pi/2]$, $\cos x \ge 0$. Therefore, $\cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - y^2}$. Hence

$$(\arcsin y)' = \frac{1}{\sqrt{1 - y^2}}, -1 < y < 1.$$

Note that the derivative is not defined at the endpoints y = -1 and y = 1.

(e)

$$(\arctan y)' = \frac{1}{(\tan x)'} = \frac{1}{\frac{1}{\cos^2 x}} = \cos^2 x.$$

Since $y = \tan x$ we have

$$y^{2} = \tan^{2} x = \frac{\sin^{2} x}{\cos^{2} x} = \frac{1 - \cos^{2} x}{\cos^{2} x} = \frac{1}{\cos^{2} x} - 1$$
$$\cos^{2} x = \frac{1}{1 + y^{2}}$$
$$(\arctan y)' = \frac{1}{1 + y^{2}}.$$

For a > 0, $a \neq 1$ and x > 0 put

$$\log_a x = \frac{\log x}{\log a}.$$

Then

$$a^{\log_a x} = x = (\log_a a^x).$$

4.2 The Derivatives of Elementary Functions

function	derivative
const.	0
$x^n (n \in \mathbb{N})$	nx^{n-1}
$x^{\alpha} \left(\alpha \in \mathbb{R}, x > 0 \right)$	$\alpha x^{\alpha-1}$
e^x	e^x
a^x , $(a > 0)$	$a^x \log a$
$\log x$	$\frac{1}{x}$
108.	x
$\log_a x$	$\frac{1}{x \log a}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\frac{1}{\cos^2 x}$
$\cot x$	$-\frac{1}{\sin^2 x}$
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\tanh x$	$\frac{1}{\cosh^2 x}$
$\coth x$	$-\frac{1}{\sinh^2 x}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\arctan x$	$\frac{1}{1+x^2}$
$\operatorname{arccot} x$	$-\frac{1}{1+x^2}$
$\operatorname{arsinh} x$	$\frac{1}{\sqrt{x^2+1}}$
$\operatorname{arcosh} x$	$\frac{1}{\sqrt{x^2-1}}$
$\operatorname{artanh} x$	$\frac{1}{1-x^2}$
$\operatorname{arcoth} x$	$\frac{1}{1-x^2}$

4.2.1 Derivatives of Higher Order

Let $f: D \to \mathbb{R}$ be differentiable. If the derivative $f': D \to \mathbb{R}$ is differentiable at $x \in D$, then

$$\frac{\mathrm{d}^2 f(x)}{\mathrm{d}x^2} = f''(x) = (f')'(x)$$

is called the *second derivative* of f at x. Similarly, one defines inductively higher order derivatives. Continuing in this manner, we obtain functions

$$f, f', f'', f'', f^{(3)}, \ldots, f^{(k)}$$

each of which is the derivative of the preceding one. $f^{(n)}$ is called the *nth derivative* of f or the derivative of order n of f. We also use the Leibniz notation

$$f^{(k)}(x) = \frac{\mathrm{d}^k f(x)}{\mathrm{d}x^k} = \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^k f(x).$$

Definition 4.2 Let $D \subset \mathbb{R}$ and $k \in \mathbb{N}$ a positive integer. We denote by $C^k(D)$ the set of all functions $f: D \to \mathbb{R}$ such that $f^{(k)}(x)$ exists for all $x \in D$ and $f^{(k)}(x)$ is continuous. Obviously $C(D) \supset C^1(D) \supset C^2(D) \supset \cdots$. Further, we set

$$C^{\infty}(D) = \bigcap_{k \in \mathbb{N}} C^k(D). \tag{4.7}$$

 $f \in C^k(D)$ is called k times continuously differentiable.

Using induction over n, one proves the following proposition.

Proposition 4.6 (Leibniz formula) Let f and g be n times differentiable. Then fg is n times differentiable with

$$(f(x)g(x))^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x)g^{(n-k)}(x). \tag{4.8}$$

4.3 Local Extrema and the Mean Value Theorem

Many properties of a function f like monotony, convexity, and existence of local extrema can be studied using the derivative f'. From estimates for f' we obtain estimates for the growth of f.

Definition 4.3 Let $f: [a, b] \to \mathbb{R}$ be a function. We say that f has a *local maximum* at the point ξ , $\xi \in (a, b)$, if there exists $\delta > 0$ such that $f(x) \leq f(\xi)$ for all $x \in [a, b]$ with $|x - \xi| < \delta$. Local minima are defined likewise.

We say that ξ is a local extremum if it is either a local maximum or a local minimum.

Proposition 4.7 Let f be defined on [a,b]. If f has a local extremum at a point $\xi \in (a,b)$, and if $f'(\xi)$ exists, then $f'(\xi) = 0$.

Proof. Suppose f has a local maximum at ξ . According with the definition choose $\delta > 0$ such that

$$a < \xi - \delta < \xi < \xi + \delta < b$$
.

If $\xi - \delta < x < \xi$, then

$$\frac{f(x) - f(\xi)}{x - \xi} \ge 0.$$

Letting $x \to \xi$, we see that $f'(\xi) \ge 0$.

If $\xi < x < \xi + \delta$, then

$$\frac{f(x) - f(\xi)}{x - \xi} \le 0.$$

Letting $x \to \xi$, we see that $f'(\xi) \le 0$. Hence, $f'(\xi) = 0$.

Remarks 4.2 (a) f'(x) = 0 is a necessary but not a sufficient condition for a local extremum in x. For example $f(x) = x^3$ has f'(x) = 0, but x^3 has no local extremum. (b) If f attains its local extrema at the boundary, like f(x) = x on [0, 1], we do not have $f'(\xi) = 0$.

Theorem 4.8 (Rolle's Theorem) Let $f: [a, b] \to \mathbb{R}$ be continuous with f(a) = f(b) and let f be differentiable in (a, b). Then there exists a point $\xi \in (a, b)$ with $f'(\xi) = 0$.

In particular, between two zeros of a differentiable function there is a zero of its derivative. Proof. If f is the constant function, the theorem is trivial since $f'(x) \equiv 0$ on (a, b). Otherwise, there exists $x_0 \in (a, b)$ such that $f(x_0) > f(a)$ or $f(x_0) < f(a)$. Then f attains its maximum or minimum, respectively, at a point $\xi \in (a, b)$. By Proposition 4.7, $f'(\xi) = 0$.

Theorem 4.9 (Mean Value Theorem) Let $f:[a,b] \to \mathbb{R}$ be continuous and differentiable in (a,b). Then there exists a point $\xi \in (a,b)$ such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a} \tag{4.9}$$

Geometrically, the mean value theorem states that there exists a tangent line through some point $(\xi, f(\xi))$ which is parallel to the secant line AB, A = (a, f(a)), B = (b, f(b)).

Proof. Define the function $F: [a, b] \to \mathbb{R}$ via

$$F(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Then F is continuous in [a, b] and differentiable in (a, b) and F(a) = f(a) = F(b). By Rolle's theorem there exists a point $\xi \in (a, b)$ such that $F'(\xi) = 0$. Since

$$F'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a},$$

the claim follows.

Theorem 4.10 (Generalized Mean Value Theorem) Let f and g be continuous functions on [a, b] which are differentiable on (a, b). Then there exists a point $\xi \in (a, b)$ such that

$$(f(b) - f(a))g'(\xi) = (g(b) - g(a))f'(\xi).$$

Proof. Put

$$h(t) = (f(b) - f(a))g(t) - (g(b) - g(a))f(t).$$

Then h is continuous in [a, b] and differentiable in (a, b) and

$$h(a) = f(b)g(a) - f(a)g(b) = h(b).$$

Again, Rolle's theorem shows that there exists $\xi \in (a, b)$ such that $h'(\xi) = 0$. The theorem follows.

Corollary 4.11 Suppose f is differentiable on (a, b).

If $f'(x) \geq 0$ for all $x \in (a,b)$, then f in monotonically increasing.

If f'(x) = 0 for all $x \in (a, b)$, then f is constant.

If $f'(x) \leq 0$ for all x in (a,b), then f is monotonically decreasing.

Proof. All conclusions can be read off from the equality

$$f(x) - f(t) = (x - t)f'(\xi)$$

which is valid for each pair x, t, a < t < x < b and for some $\xi \in (t, x)$.

4.3.1 Local Extrema and Convexity

Proposition 4.12 Let $f:(a,b) \to \mathbb{R}$ be differentiable and suppose $f''(\xi)$ exists at a point $\xi \in (a,b)$. If

$$f'(\xi) = 0$$
 and $f''(\xi) > 0$,

then f has a local minimum at ξ . Similarly, if

$$f'(\xi) = 0 \quad and \quad f''(\xi) < 0,$$

f has a local maximum at ξ .

Remark 4.3 The condition of Proposition 4.12 is sufficient but not necessary for the existence of a local extremum. For example, $f(x) = x^4$ has a local minimum at x = 0, but f''(0) = 0.

Proof. We consider the case $f''(\xi) > 0$; the proof of the other case is analogous. Since

$$f''(\xi) = \lim_{x \to \xi} \frac{f'(x) - f'(\xi)}{x - \xi} > 0.$$

By Homework 10.4 there exists $\delta > 0$ such that

$$\frac{f'(x) - f'(\xi)}{x - \xi} > 0, \quad \text{for all } x \text{ with } \quad 0 < |x - \xi| < \delta.$$

Since $f'(\xi) = 0$ it follows that

$$f'(x) < 0$$
 if $\xi - \delta < x < \xi$,
 $f'(x) > 0$ if $\xi < x < \xi + \delta$.

Hence, by Corollary 4.11, f is decreasing at $(\xi - \delta, \xi)$ and increasing at $(\xi, \xi + \delta)$. Therefore, f has a local minimum at ξ .

Definition 4.4 A function $f:(a,b) \to \mathbb{R}$ is said to be *convex* if for all $x,y \in (a,b)$ and all $\lambda \in [0,1]$

$$f(\lambda x + (1 - \lambda))y) \le \lambda f(x) + (1 - \lambda)f(y).$$
(4.10)

A function f is said to be *concave* if -f is convex

Proposition 4.13 Suppose $f:(a,b) \to \mathbb{R}$ is twice differentiable. Then f is convex if and only if $f''(x) \geq 0$ for all $x \in (a,b)$.

Proof. The proof is in Appendix C to this chapter.

4.4 L'Hospital's Rule

Theorem 4.14 (L'Hospital's Rule) Suppose f and g are differentiable in (a, b) and $g(x) \neq 0$ for all $x \in (a, b)$, where $-\infty \leq a < b \leq +\infty$. Suppose

$$\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A. \tag{4.11}$$

If

(a)
$$\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = 0$$
 or (4.12)

(b)
$$\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = +\infty, \tag{4.13}$$

then

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = A. \tag{4.14}$$

The analogous statements are of course also true if $x \to b - 0$, or if $g(x) \to -\infty$.

Proof. First we consider the case of finite $a \in \mathbb{R}$. (a) One can extend the definition of f and g via f(a) = g(a) = 0. Then f and g are continuous at g. By the generalized mean value theorem, for every $g \in (a, b)$ there exists a $g \in (a, x)$ such that

$$\frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)}.$$

If x approaches a then ξ also approaches a, and (a) follows.

(b) Given $\varepsilon > 0$ choose $\delta > 0$ such that

$$\left| \frac{f'(t)}{g'(t)} - A \right| < \varepsilon$$

if $t \in (a, a + \delta)$. By the generalized mean value theorem for any $x, y \in (a, a + \delta)$ with $x \neq y$,

$$\left| \frac{f(x) - f(y)}{g(x) - g(y)} - A \right| < \varepsilon.$$

We have

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(y)}{g(x) - g(y)} \frac{1 - \frac{g(y)}{g(x)}}{1 - \frac{f(y)}{f(x)}}.$$

The right factor tends to 1 as x approaches a, in particular there exists $\delta_1 > 0$ with $\delta_1 < \delta$ such that $x \in (a, a + \delta_1)$ implies

$$\left| \frac{f(x)}{g(x)} - \frac{f(x) - f(y)}{g(x) - g(y)} \right| < \varepsilon.$$

Further, the triangle inequality gives

$$\left| \frac{f(x)}{g(x)} - A \right| < 2\varepsilon.$$

This proves (b).

The case $x \to +\infty$ can be reduced to the limit process $y \to 0+0$ using the substitution y = 1/x.

L'Hospital's rule aplies also applies in the cases $A = +\infty$ and $A = -\infty$.

Example 4.5 (a)
$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$$
.

(b)
$$\lim_{x \to 0+0} \frac{\sqrt{x}}{1 - \cos x} = \lim_{x \to 0+0} \frac{\frac{1}{2\sqrt{x}}}{\sin x} = \lim_{x \to 0+0} \frac{1}{2\sqrt{x}\sin x} = +\infty.$$
(c)

$$\lim_{x \to 0+0} x \log x = \lim_{x \to 0+0} \frac{\log x}{\frac{1}{x}} = \lim_{x \to 0+0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0+0} -x = 0.$$

Remark 4.4 It is easy to transform other indefinite expressions to $\frac{0}{0}$ or $\frac{\infty}{\infty}$ of l'Hospital's rule.

$$0 \cdot \infty : \quad f \cdot g = \frac{f}{\frac{1}{g}}$$

$$\infty - \infty : \quad f - g = \frac{\frac{1}{g} - \frac{1}{f}}{\frac{1}{fg}};$$

$$0^0 : \quad f^g = e^{g \log f}.$$

Similarly, expressions of the form 1^{∞} and ∞^0 can be transformed.

4.5 Taylor's Theorem

The aim of this section is to show how n times differentiable functions can be approximated by polynomials of degree n.

First consider a polynomial $p(x) = a_n x^n + \cdots + a_1 x + a_0$. We compute

$$p'(x) = na_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1,$$

$$p''(x) = n(n-1)a_n x^{n-2} + (n-1)(n-2)a_{n-1}x^{n-2} + \dots + 2a_2,$$

$$\vdots$$

$$p^{(n)}(x) = n! a_n.$$

Inserting x = 0 gives $p(0) = a_0$, $p'(0) = a_1$, $p''(0) = 2a_2$, ..., $p^{(n)}(0) = n!a_n$. Hence,

$$p(x) = p(0) + \frac{p''(0)}{1!}x + \frac{p''(0)}{2!}x^2 + \dots + \frac{p^{(n)}(0)}{n!}x^n.$$
 (4.15)

Now, fix $a \in \mathbb{R}$ and let q(x) = p(x+a). Since $q^{(k)}(0) = p^{(k)}(a)$, (4.15) gives

$$p(x+a) = q(x) = \sum_{k=0}^{n} \frac{q^{(k)}(0)}{k!} x^{k},$$
$$p(x+a) = \sum_{k=0}^{n} \frac{p^{(k)}(a)}{k!} x^{k}.$$

Replacing in the above equation x + a by x yields

$$p(x) = \sum_{k=0}^{n} \frac{p^{(k)}(a)}{k!} (x-a)^{k}.$$
 (4.16)

Theorem 4.15 (Taylor's Theorem) Suppose f is a real function on [r, s], $n \in \mathbb{N}$, $f^{(n)}$ is continuous on [r, s], $f^{(n+1)}(t)$ exists for all $t \in (r, s)$. Let a and x be distinct points of [r, s] and define

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k.$$
 (4.17)

Then there exists a point ξ between x and a such that

$$f(x) = P_n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$
 (4.18)

For n = 0, this is just the mean value theorem. $P_n(x)$ is called the *nth Taylor polynomial* of f at x = a, and the second summand of (4.18)

$$R_{n+1}(x,a) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

is called the Lagrange remainder term.

In general, the theorem shows that f can be approximated by a polynomial of degree n, and that (4.18) allows to estimate the error, if we know the bounds of $|f^{(n+1)}(x)|$. *Proof.* Consider a and x to be fixed; let M be the number defined by

$$f(x) = P_n(x) + M(x - a)^{n+1}$$

and put

$$g(t) = f(t) - P_n(t) - M(t - a)^{n+1}, \quad \text{for} \quad r \le t \le s.$$
(4.19)

We have to show that $(n+1)!M = f^{(n+1)}(\xi)$ for some ξ between a and x. By (4.17) and (4.19),

$$g^{(n+1)}(t) = f^{(n+1)}(t) - (n+1)!M, \quad \text{for} \quad r < t < s.$$
(4.20)

Hence the proof will be complete if we can show that $g^{(n+1)}(\xi) = 0$ for some ξ between a and x.

Since $P_n^{(k)}(a) = f^{(k)}(a)$ for k = 0, 1, ..., n, we have

$$g(a) = g'(a) = \dots = g^{(n)}(a) = 0.$$

Our choice of M shows that g(x) = 0, so that $g'(\xi_1) = 0$ for some ξ_1 between a and x, by Rolle's theorem. Since g'(a) = 0 we conclude similarly that $g''(\xi_2) = 0$ for some ξ_2 between a and ξ_1 . After n + 1 steps we arrive at the conclusion that $g^{(n+1)}(\xi_{n+1}) = 0$ for some ξ_{n+1} between a and ξ_n , that is, between a and x.

Definition 4.5 Suppose that f is a real function defined on [r, s] such that $f^{(n)}(t)$ exists for all $t \in (r, s)$ and all $n \in \mathbb{N}$. Let x and a points of [r, s]. Then

$$T_f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$$
 (4.21)

is called the $Taylor\ series$ of f at a.

Remarks 4.5 (a) The radius r of convergence of a Taylor series can be 0.

(b) If T_f converges, it may happen that $T_f(x) \neq f(x)$. If $T_f(x)$ at a point a converges to f(x) in a certain neighborhood $U_r(a)$, r > 0, f is called to be analytic at a.

Example 4.6 We give an example for (b). Define $f: \mathbb{R} \to \mathbb{R}$ via

$$f(x) = \begin{cases} e^{-1/x^2}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

We will show that $f \in C^{\infty}(\mathbb{R})$ with $f^{(k)}(0) = 0$. For we will prove by induction on n that there exists a polynomial p_n such that

$$f^{(n)}(x) = p_n\left(\frac{1}{x}\right)e^{-1/x^2}, \quad x \neq 0$$

and $f^{(n)}(0) = 0$. For n = 0 the statement is clear taking $p_0(x) \equiv 1$. Suppose the statement is true for n. First, let $x \neq 0$ then

$$f^{(n+1)}(x) = \left(p_n\left(\frac{1}{x}\right)e^{-1/x^2}\right)' = \left(-\frac{1}{x^2}p'_n\left(\frac{1}{x}\right) + \frac{2}{x^3}p_n\left(\frac{1}{x}\right)\right)e^{-1/x^2}.$$

Choose $p_{n+1}(t) = -p'_n(t)t^2 + 2p_n(t)t^3$. Secondly,

$$f^{(n+1)}(0) = \lim_{h \to 0} \frac{f^{(n)}(h) - f^{(n)}(0)}{h} = \lim_{h \to 0} \frac{p_n\left(\frac{1}{h}\right) e^{-1/h^2}}{h} = \lim_{x \to \pm \infty} x p_n(x) e^{-x^2} = 0,$$

where we used Proposition 2.5 in the last equality.

Hence $T_f \equiv 0$ at 0—the Taylor series is identically 0—and $T_f(x)$ does not converge to f(x) in a neighborhood of 0.

4.5.1 Examples of Taylor Series

(a) Power series coincide with their Taylor series.

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad x \in \mathbb{R}, \quad \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \quad x \in (-1,1).$$

(b) $f(x) = \log(1+x)$, see Homework 13.5.

(c) $f(x) = (1+x)^{\alpha}$, $\alpha \in \mathbb{R}$, a = 0. We have

$$f^{(k)}(x) = \alpha(\alpha - 1) \cdots (\alpha - k + 1)(1 + x)^{\alpha - k}, \quad \text{in particular} \quad f^{(k)}(0) = \alpha(\alpha - 1) \cdots (\alpha - k + 1).$$

Therefore,

$$(1+x)^{\alpha} = \sum_{k=1}^{n} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^{k} + R_{n}(x)$$
 (4.22)

The quotient test shows that the corresponding power series converges for |x| < 1. Consider the Lagrange remainder term with $0 < \xi < x < 1$ and $n+1 > \alpha$. Then

$$|R_{n+1}(x)| = \left| \binom{\alpha}{n+1} (1+\xi)^{\alpha-n-1} x^{n+1} \right| \le \left| \binom{\alpha}{n+1} x^{n+1} \right| \le \left| \binom{\alpha}{n+1} x^{n+1} \right| \longrightarrow 0$$

as $n \to \infty$. Hence,

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n, \quad 0 < x < 1.$$
 (4.23)

(4.23) is called the *binomial series*. Its radius of convergence is R = 1. Looking at other forms of the remainder term gives that (4.23) holds for -1 < x < 1.

(d)
$$y = f(x) = \arctan x$$
. Since $y' = 1/(1+x^2)$ and $y'' = -2x/(1+x^2)^2$ we see that

$$y'(1+x^2) = 1.$$

Differentiating this n times and using Leibniz's formula, Proposition 4.6 we have

$$\sum_{k=0}^{n} (y')^{(k)} (1+x^2)^{(n-k)} \binom{n}{k} = 0.$$

$$\implies \binom{n}{n} y^{(n+1)} (1+x^2) + \binom{n}{n-1} y^{(n)} 2x + \binom{n}{n-2} y^{(n-1)} 2 = 0;$$

$$x = 0: \quad y^{(n+1)} + n(n-1)y^{(n-1)} = 0.$$

This yields

$$y^{(n)}(0) = \begin{cases} 0, & \text{if } n = 2k, \\ (-1)^k (2k)!, & \text{if } n = 2k+1. \end{cases}$$

Therefore,

$$\arctan x = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} x^{2k+1} + R_{2n+2}(x). \tag{4.24}$$

One can prove that $-1 < x \le 1$ implies $R_{2n+2}(x) \to 0$ as $n \to \infty$. In particular, x = 1 gives

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - + \cdots$$

 $4.6 \quad Appendix C$ 107

4.6 Appendix C

Corollary 4.16 (to the mean value theorem) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with

$$f'(x) = cf(x)$$
 for all $x \in \mathbb{R}$, (4.25)

where $c \in \mathbb{R}$ is a fixed number. Let A = f(0). Then

$$f(x) = Ae^{cx}$$
 for all $x \in \mathbb{R}$. (4.26)

Proof. Consider $F(x) = f(x)e^{-cx}$. Using the product rule for derivatives and (4.25) we obtain

$$F'(x) = f'(x)e^{-cx} + f(x)(-c)e^{-cx} = (f'(x) - cf'(x))e^{-cx} = 0.$$

By Corollary 4.11, F(x) is constant. Since F(0) = f(0) = A, F(x) = A for all $x \in \mathbb{R}$; the statement follows.

The Continuity of derivatives

We have seen that there exist derivatives f' which are not continuous at some point. However, not every function is a derivative. In particular, derivatives which exist at every point of an interval have one important property: The intermediate value theorem holds. The precise statement follows.

Proposition 4.17 Suppose f is differentiable on [a,b] and suppose $f'(a) < \lambda < f'(b)$. Then there is a point $x \in (a,b)$ such that $f'(x) = \lambda$.

Proof. Put $g(t) = f(t) - \lambda t$. Then g is differentiable and g'(a) < 0. Therefore, $g(t_1) < g(a)$ for some $t_1 \in (a, b)$. Similarly, g'(b) > 0, so that $g(t_2) < g(b)$ for some $t_2 \in (a, b)$. Hence, g attains its minimum in the open interval (a, b) in some point $x \in (a, b)$. By Proposition 4.7, g'(x) = 0. Hence, $f'(x) = \lambda$.

Corollary 4.18 If f is differentiable on [a, b], then f' cannot have discontinuities of the first kind.

Proof of Proposition 4.13. (a) Suppose first that $f'' \ge 0$ for all x. By Corollary 4.11, f' is increasing. Let a < x < y < b and $\lambda \in [0,1]$. Put $t = \lambda x + (1-\lambda)y$. Then x < t < y and by the mean value theorem there exist $\xi_1 \in (x,t)$ and $\xi_2 \in (t,y)$ such that

$$\frac{f(t) - f(x)}{t - x} = f'(\xi_1) \le f'(\xi_2) = \frac{f(y) - f(t)}{y - t}.$$

Since $t - x = (1 - \lambda)(y - x)$ and $y - t = \lambda(y - x)$ it follows that

$$\frac{f(t) - f(x)}{1 - \lambda} \le \frac{f(y) - f(t)}{\lambda}$$
$$\implies f(t) \le \lambda f(x) + (1 - \lambda)f(y).$$

Hence, f is convex.

(b) Let $f:(a,b) \to \mathbb{R}$ be convex and twice differentiable. Suppose to the contrary $f''(x_0) < 0$ for some $x_0 \in (a,b)$. Let $c = f'(x_0)$; put

$$\varphi(x) = f(x) - (x - x_0)c.$$

Then $\varphi: (a,b) \to \mathbb{R}$ is twice differentiable with $\varphi'(x_0) = 0$ and $\varphi''(x_0) < 0$. Hence, by Proposition 4.12, φ has a local maximum in x_0 . By definition, there is a $\delta > 0$ such that $U_{\delta}(x_0) \subset (a,b)$ and

$$\varphi(x_0 - \delta) < \varphi(x_0), \quad \varphi(x_0 + \delta) < \varphi(x_0).$$

It follows that

$$f(x_0) = \varphi(x_0) > \frac{1}{2} (\varphi(x_0 - \delta) + \varphi(x_0 + \delta)) = \frac{1}{2} (f(x_0 - \delta) + f(x_0 + \delta)).$$

This contradicts the convexity of f if we set $x = x_0 - \delta$, $y = x_0 + \delta$, and $\lambda = 1/2$.