Chapter 4

Differentiation

4.1 The Derivative of a Function

We define the derivative of a function and prove the main properties like product, quotient
and chain rule. We relate the derivative of a function with the derivative of its inverse
function. We prove the mean value theorem and consider local extrema. Taylor’s theorem
will be formulated.

Definition 4.1 Let f: (a,b) — R be a function and zy € (a,b). If the limit
o @)~ ()

4.1

exists, we call f differentiable at xy. The limit is denoted by f'(zq). We say f is differ-
entiable if f is differentiable at every point x € (a,b). We thus have associated to every
function f a function f’ whose domain is the set of points o where the limit (4.1) exists;
f'is called the derivative of f.

Sometimes the Leibniz notation is used to denote the derivative of f

df(zo)
dz

Fao) = L = Sy,

B) —
Remarks 4.1 (a) Replacing h := z — 2y we see that f'(zo) = ’llirr(l) f(@o + i)z f(xo).
%
(b) The limits

lim f(zo+h) — f(ﬂio)’ lim f(xo+ h) — f(zo)
h=30—0 h h—0+0 h

are called left-hand and right-hand derivatives of f in xq, respectively. In particular for
f: [a,b] = R, we can consider the right-hand derivative at a and the left-hand derivative
at b.

Example 4.1 (a) For f(z) = c the constant function
f(@) — f(xo) c—c

T—T0 T — Xo z—z0 T — Ty
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92 4 Differentiation

(b) For f(z) = z, .

f'(zo) = lim =1

T—=To T — T

(c) The slope of the tangent line. Given a function f: (a,b) — R which is differentiable
in zo. Then f'(x) is the slope of the tangent line to the graph of f through the point

(o, f(m0)).

The slopes of the two secant lines are

My = tan oy = f(z2) — f(xo), my = f(x1) — f(ﬂﬁo).
T9 — Zo L1 — To

f(X2)

One can see: If x approaches zj, the secant line

through (¢, f(z0)) and (z, f(x)) approaches the tan-

gent line through (zg, f(zo)). Hence, the slope of the

tangent line is the limit of the slopes of the secant

f(x1)

f(Xo)

lines if x approaches xg:

£(2) = Fwo)

T—T0 Tr — ‘/'UO

Proposition 4.1 Let f be defined on (a,b). If f is differentiable at a point xy € (a,b),
then f is continuous at xg.

Proof. By Proposition 3.2 we have

lim (f(z) — f(zo)) = lim (x — x9) = f'(wo) lim (z — 29) = f'(zg) - 0= 0.

T—T0 T—T0 T — {L’O T—T0

The converse of this proposition is not true. For example f(x) = |z | is continuous in R

h
but differentiable in R\ {0} since lim |7 = 1 whereas lim — = —1. Later we will
h—0+0 h h—0—0

become aquainted with a function which is continuous on the whole line without being
differentiable at any point!

Proposition 4.2 Let f: (r,s) = R be a function and a € (r,s). Then [ is differentiable
at a if and only if there exists a number ¢ € R and a function ¢ defined in a neighborhood
of a such that

f(z) = fla) + (z = a)e + o(), (4.2)

where

lim v(z)

T—=a L — Q@

~0. (4.3)

In this case f'(a) = c.
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The proposition says that a function f differentiable at a can be approximated by a linear
function, in our case by

y = fla)+ (z —a)f'(a).
The graph of this linear function is the tangent line to the graph of f at the point (a, f(a)).

Later we will use this point of view to define differentiability of functions f: R" — R™.
Proof. Suppose first f satisfies (4.2) and (4.3). Then

T—ra Tr—a T—a Tr—a
Hence, f is differentiable at a with f'(a) = c.
Now, let f be differentiable at a with f'(a) = c¢. Put p(z) = f(z) — f(a) — (z — a) f'(a).

Then
i £0) _ gy L0~ 1)

T—=a L — Q T—a r—aQa

- f'(a)=0.

Proposition 4.3 Suppose f and g are defined on (a,b) and are differentible at a point
€ (a,b). Then f+g, fg, and f/g are differentiable at  and

(@) (f +9)(z) = f'(z) + ¢'(2);
(b) (fg)'(z) = f'(z)9(z) + f(2)g'(z);
(c) (i) (z) = f(w)g(w)( )f(w)g (z)

g

In (c), we assume that g(x) # 0.
Proof. (a) Since
(fto)e+h) = (f+9)w) _ fleth)—flz) glzth) —g)

h h h ’

the claim follows from Proposition 3.2.
Let h = fg and t be variable. Then

h(t) — h(z) = f(£)(9(t) — g(z)) + g(2)(f (1) — f(2))

h(ti:;l(m) £t )g(ti Z(ﬂﬁ) s )f(t)_i”( z)
Noting that f(¢) — f(z) as t — z, (b) follows.
Next let h = f/g. Then
B(t) —h(z) _ 58— 50 _ [(Be() — F@)g()
t—w t—w 9(z)g(t)(t — )
_ 1 f)y(@) — fz)g(x) + f(z)g(x) — f(x)g(?)
9(t)g(z) t—x
1 f(t) — f(z) g(t) — g(z)
= saem @G w22
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Letting t — z, and applying Propositions 3.2 and 4.1, we obtain (c). [

Example 4.2 (a) f(z) = z", n € Z. We will prove f'(z) = nz™ ! by induction on
n € N. The cases n = 0,1 are OK by Example4.1. Suppose the statement is true for
some fixed n. We will show that (z"*) = (n + 1)z".

By the product rule and the induction hypothesis

(" = (2" -z2) = ")z +2"(2)) =na" "t +2" = (n+ 1)z".

This proves the claim for positive integers n. For negative n consider f(z) = 1/x™" and
use the quotient rule.

(b) (e%) =e”.

(e*) =lim ———— = lim ———— =¢” lim © =e%; (4.4)

the last equation simply follows from Homework 11.4 (c).

(¢c) (sinz) = cosz, (cosz) = —sinz. Using sin(z + y) — sin(z — y) = 2cos () sin (y)
we have
i h) — si 2 cos ZZth gin 2
(sinz) = lim sine +h) = sinz = lim 2 2
h—0 h h—0 h
h sin &
= lim cos (:L‘-i——) lim ——=2.
h—0 2) 0 3

sin h

Since cosz is continuous and ’lliII(l) = 1 by Proposition 3.25 (b), we obtain (sinz)’ =
—

cosx. The proof for cos z is analogous.
1
(d) (tanz)" =
¢

0s2zx

. Using the quotiont rule for the function tan z = sin 2/ cos  we have

(sinz) cosz — sinx(cosx)’  cos’z +sin’x 1
(tanz) = = = :
cos? x cos? x cos? x

The next proposition deals with composite functions and is probably the most important
statement about derivatives.

Proposition 4.4 (Chain rule) Let g: (o, ) — R be differentiable at xo € (o, §) and
let f: (a,b) — R be differentiable at yo = g(xg) € (a,b). Then h = feoq is differentiable at
xg, and

W (zo) = f'(0)g' (o) (4.5)
Proof. We have
flg(z)) = flg(zo)) _ flg(x)) — f(g(20)) g(z) — g(x0)

T — X 9(x) — g(x0) x — Zg

FW = 7W0)  1(5) = 1a0)g' (@0).

— lim /
T—Z0 Y—Yo Y — Y
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Here we used that y = g(x) tends to yo = g(zo) as © — zo, since g is continuous at x.
n

Example 4.3 (a) Let f: R — R be differentiable; define F': R — R by F(z) := f(az+b)
with some a,b € R. Then
F'(z) = af'(az +b).

(b) % = ealogm_ Hence, (xa)l — (ealogx)/ — ealogxal — axa—l_
x

1
(c) Suppose f >0 and g =log f. Then ¢’ = f'?; hence f' = fg'.

Proposition 4.5 Let f: (a,b) — R be strictly monotonic and continuous. Suppose f is
differentiable at x. Then the inverse function g = f~': f((a,b)) — R is differentiable at
y = f(x) with

,( )_ 1 B 1
TV = @) ~ Flely)

Proof. Let (y,) C f((a,b)) be a sequence with y,, — y and y,, # y for all n. Put z, = g(y,)-
Since g is continuous (by Corollary 3.16), lim,, o, z,, = x. Since g is injective, z,, # z for
all n. We have

(4.6)

o 9n)—9ly) . Tz LI
e gy o () — f@) o L) Ja) — f(z)
Hence ¢'(y) =1/f'(z) =1/ (9(y))- -

We give some applications of this very useful proposition.

Example 4.4 In what follows f is the original function (with known derivative) and g
is the inverse function to f. We fix the notion y = f(z) and = = ¢(y).
(c) log: Ry \ {0} — R is the inverse function to f(z) = e*. By the above proposition

1 1 1

(logy)l = (ew), = e_w = &

(d) arcsin: [—1,1] — R is the inverse function to y = f(z) =sinz. If x € (—1,1) then

1 1

(aresin(y))’ = (sinz)  cosz’

Since y € [—1,1] implies z = arcsiny € [—n/2,7/2], cosz > 0. Therefore, cosz =
V1 —sin?z = /1 — y2. Hence
1

(arcsiny) =
l-y

, —l<y<l
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Note that the derivative is not defined at the endpoints y = —1 and y = 1.

()

1 1
arctany)’ = = = cos? 1.
( v) (tanz) L
COs“ T
Since y = tanx we have
) ) sinffz 1 —cos’z 1
Yy’ =tan“x = = = —
cos?x cos?x cos?zx
9 1
cos“r =
14+ y?
(arctany) = —
arctany) = .
Y
Fora > 0,a # 1 and x > 0 put
log x
log, x = .
loga

Then



4.2 The Derivatives of Elementary Functions

4.2 The Derivatives of Elementary Functions

function derivative
const. 0
z" (n € N) nx" !
z* (€ R,z > 0) az®!
e’ e’
a®, (a>0) a®loga
1
logx —
x
1 1
og. X
8a zloga
sin x COS T
COS X —sinz
1
tanx 5
cos? x
1
cotzx ——3
sin® z
sinh z cosh z
cosh z sinh z
1
tanh x 5
cosh” x
1
cothz -
sinh” z
. 1
arcsin x _—
V1—22
1
arccos S —
V1= z?
1
arctanx
1+ 22
1
arccot x —
1+ 22
inh 1
arsinh z —_—
Va2 +1
1
arcosh z
2 —1
tanh 1
artanh z
1— 22
1
arcoth z
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4.2.1 Derivatives of Higher Order
Let f: D — R be differentiable. If the derivative f': D — R is differentiable at = € D,

then L
T8 _ pria) = (1)

is called the second derivative of f at x. Similarly, one defines inductively higher order

derivatives. Continuing in this manner, we obtain functions

f, fl, f”, f(3), B .,f(k)

each of which is the derivative of the preceding one. f(™ is called the nth derivative of f
or the derivative of order n of f. We also use the Leibniz notation

0w = 0 () g,

Definition 4.2 Let D C R and k € N a positive integer. We denote by C¥(D) the set of
all functions f: D — R such that f®)(z) exists for all z € D and f%*)(z) is continuous.
Obviously C(D) > CY(D) D C*(D) D ---. Further, we set

C=(D) = (] CH(D). (4.7)

kEN
f € CE(D) is called k times continuously differentiable.

Using induction over n, one proves the following proposition.

Proposition 4.6 (Leibniz formula) Let f and g be n times differentiable. Then fg is
n times differentiable with

(@)™ =3 (1) 19a)g o). (45)

k=0

4.3 Local Extrema and the Mean Value Theorem

Many properties of a function f like monotony, convexity, and existence of local extrema
can be studied using the derivative f’. From estimates for f’ we obtain estimates for the
growth of f.

Definition 4.3 Let f: [a,b] = R be a function. We say that f has a local mazimum at
the point &, € € (a,b), if there exists 6 > 0 such that f(z) < f(§) for all z € [a, b] with
|z — €| < d. Local minima are defined likewise.

We say that & is a local extremum if it is either a local maximum or a local minimum.

Proposition 4.7 Let f be defined on [a,b]. If f has a local extremum at a point & € (a,b),
and if f'(&) exists, then f'(§) = 0.
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Proof. Suppose f has a local maximum at £. According with the definition choose § > 0
such that
a<E—0<E<SEFI<D.

If&E—-90 <z <§ then

Letting z — &, we see that f'(£) > 0.
Ifé&E<x <&+ 0, then

f@) - 1O _,

x—& -
Letting z — &, we see that f'(£) < 0. Hence, f'(£) = 0. [
Remarks 4.2 (a) f'(z) = 0 is a necessary but not a sufficient condition for a local

extremum in z. For example f(z) = 23 has f’(z) = 0, but 23 has no local extremum.
(b) If f attains its local extrema at the boundary, like f(z) = z on [0, 1], we do not have

') =0

Theorem 4.8 (Rolle’s Theorem) Let f: [a,b] — R be continuous with f(a)
and let f be differentiable in (a,b). Then there exists a point £ € (a,b) with f'(£§) =

f(0)

In particular, between two zeros of a differentiable function there is a zero of its derivative.
Proof. If f is the constant function, the theorem is trivial since f'(z) = 0 on (a,b).
Otherwise, there exists zo € (a,b) such that f(zo) > f(a) or f(xzy) < f(a). Then f
attains its maximum or minimum, respectively, at a point £ € (a,b). By Proposition 4.7,

f,(g) =0. [

Theorem 4.9 (Mean Value Theorem) Let f: [a,b] — R be continuous and differen-
tiable in (a,b). Then there erists a point & € (a,b) such that

f(b) = f(a)

P& === (4.9)

Geometrically, the mean value theorem states that there
exists a tangent line through some point (£, f(£)) which is
parallel to the secant line AB, A = (a, f(a)), B = (b, f(b)).

. : b
Proof. Define the function F': [a,b] — R via
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Then F is continuous in [a, b] and differentiable in (a,b) and F(a) = f(a) = F(b). By
Rolle’s theorem there exists a point £ € (a,b) such that F'(£) = 0. Since

f(b) — f(a)

b—a

F'(&) = f'(€) -

the claim follows. -

Theorem 4.10 (Generalized Mean Value Theorem) Let f and g be continuous
functions on [a,b] which are differentiable on (a,b). Then there exists a point & € (a,b)
such that

Proof. Put
h(t) = (f(b) — f(a))g(t) — (9(b) — g(a))f(1).
Then h is continuous in [a, b] and differentiable in (a, b) and
h(a) = f(b)g(a) — f(a)g(b) = h(b).

Again, Rolle’s theorem shows that there exists & € (a,b) such that h'(§) = 0. The
theorem follows. n

Corollary 4.11 Suppose f is differentiable on (a,b).

If f'(x) > 0 for all x € (a,b), then f in monotonically increasing.
If f'(x) =0 for all z € (a,b), then f is constant.
If f'(z) <0 for all x in (a,b), then f is monotonically decreasing.

Proof. All conclusions can be read off from the equality
fl@) = f(t) = (z =) f'(¢)

which is valid for each pair z,t, a < t < z < b and for some £ € (¢, ). n

4.3.1 Local Extrema and Convexity

Proposition 4.12 Let f: (a,b) — R be differentiable and suppose f"(£) exists at a point
€€ (a,b). If
f(¢) =0 and f"(&) >0,

then f has a local minimum at &. Similarly, if

f'€)=0 and f"(¢) <0,

f has a local mazimum at .
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Remark 4.3 The condition of Proposition4.12 is sufficient but not necessary for the
existence of a local extremum. For example, f(z) = z* has a local minimum at z = 0,
but f”(0) = 0.

Proof. We consider the case f”(£) > 0; the proof of the other case is analogous. Since

f//(g) = lim fl(x) - fl(g)

> 0.
T x—g

By Homework 10.4 there exists ¢ > 0 such that

f'(z) = f'(€)
r—£

Since f'(€) = 0 it follows that

>0, forallzwith 0<|z—¢&|<d.

fllx) <0 if E-6<z<E,
flz)>0 if &<z <&+

Hence, by Corollary4.11, f is decreasing at (£ — 0,€) and increasing at (£,€ + 0).
Therefore, f has a local minimum at &. [

Definition 4.4 A function f: (a,b) —» R is

said to be convez if for all z,y € (a,b) and

all A € [0,1]

fOa+ (1= X)) < M(@) + (1= X)f ().
(4.10)

0 x+(1- A)y)

A function f is said to be concave if —f is

A X+ Ay y
convex.

Proposition 4.13 Suppose f: (a,b) — R is twice differentiable. Then f is convez if and
only if f"(x) > 0 for all x € (a,b).

Proof. The proof is in Appendix C to this chapter. n

4.4 L’Hospital’s Rule

Theorem 4.14 (L’Hospital’s Rule) Suppose f and g are differentiable in (a,b) and
g(x) # 0 for all z € (a,b), where —oo < a < b < 400. Suppose

f@) _ 4 (4.11)

r—a+0 g' (3;')
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If
(a) wgg}rof(x) = wggr}rog(x) =0 or (4.12)
(b)  lim f(z) = lim g(z)=+oo, (4.13)
then
L f@) _
xBi&O 0@ A. (4.14)

The analogous statements are of course also true if x — b — 0, or if g(x) — —oo.

Proof. First we consider the case of finite a € R. (a) One can extend the definition of f
and g via f(a) = g(a) = 0. Then f and g are continuous at a. By the generalized mean
value theorem, for every x € (a,b) there exists a £ € (a,x) such that

flz) = fla) _ flx) _ [(§)

g(x) —gla) g(z) (&)

If x approaches a then £ also approaches a, and (a) follows.
(b) Given € > 0 choose 6 > 0 such that

e
‘ g0 4

if t € (a,a + §). By the generalized mean value theorem for any z,y € (a,a + §) with

T #y,

‘<5

f(z) = f(y)
‘ 9(x) — g(y) A‘ =
We have
f@) _ f@) — )l 5
g(z)  g(x)—gly)1- %

The right factor tends to 1 as x approaches a, in particular there exists §; > 0 with ; < §
such that z € (a,a + d;) implies

f@) fl@)—f(y) ‘
‘ 9@ 9@ —gly) |~
Further, the triangle inequality gives
e
‘ m — A ‘ < 2

This proves (b).
The case £ — 400 can be reduced to the limit process y — 0 + 0 using the substitution
y=1/x. ]

L’Hospital’s rule aplies also applies in the cases A = +00 and A = —o0.
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sinzx COS T

Example 4.5 (a) lim = lim = 1.
z—=0 I 1ac—>0 1
1
) Tim —YT ofim BE g L o
2040 1 —cosx  ==0+0sinz  2-040 2y/rsinz

(© 1

1 =

lim zlogzx = lim O?U = lim %= lim —z=0.
z—0+0 z—0+0 p z—0+0 -2 z—0+0

Remark 4.4 It is easy to transform other indefinite expressions to 0 or — of I’Hospital’s
00
rule.

0-c0: f-g=

@ 1=~

Q [

I

L 7

co—o00: f—g=
f9
00: f9=e9lel,

Similarly, expressions of the form 1*° and oc® can be transformed.

4.5 Taylor’s Theorem

The aim of this section is to show how n times differentiable functions can be approximated
by polynomials of degree n.
First consider a polynomial p(z) = a,z" + - - - + a1 + ap. We compute

a2 '+ (n— 1ap_12" 2+ -+ ay,

n
nn —1Daz" 2+ (n—1)(n = 2)ap_12" 2 + - - + 2a,,

P (z) = n! ay.

Inserting = = 0 gives p(0) = ao, p'(0) = ay, p"(0) = 2ay, ..., p™(0) = nla,. Hence,
"0 "0 (n) 0
p(z) :p(0)+p1(' )x+p2(' ):c2+-"+p7n,( )x” (4.15)

Now, fix a € R and let ¢(z) = p(x + a). Since ¢*)(0) = p*)(a), (4.15) gives

n_ (g
q

pa+a) = gfa) = S 00

k=0 )

" pk)

_ p(a)
p(x+a) = L
k=0

" )(g
p(z) = Z () (z — a)*. (4.16)
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Theorem 4.15 (Taylor’s Theorem) Suppose f is a real function on [r,s], n € N, f™
is continuous on [r, s], f™tV(t) exists for all t € (r,s). Let a and x be distinct points of
[r, s] and define

n k) (g
P,(z) :Zf k( )(:U—a)k. (4.17)

Then there exists a point & between x and a such that

fe(E)

T (x —a)"*. (4.18)

f(z) = Pa(z) +
For n = 0, this is just the mean value theorem. P,(z) is called the nth Taylor polynomial
of f at x = a, and the second summand of (4.18)

f(n+1)(§) (.’L’ o (I,)n+1

By (2, a) = (n+1)!

is called the Lagrange remainder term.

In general, the theorem shows that f can be approximated by a polynomial of degree n,
and that (4.18) allows to estimate the error, if we know the bounds of | f"1)(z) |.
Proof. Consider a and x to be fixed; let M be the number defined by

f(z) = Py(z) + M(z — a)™**
and put
gt) = f(t) = Pu(t) = M(t —a)"™, for r<t<s. (4.19)

We have to show that (n + 1)!M = f(**)(€) for some & between a and z. By (4.17) and
(4.19),

g(n—l—l)(t) _ f(n—l—l)(t) _ (n + 1)!M, for r<t<s. (4-20)

Hence the proof will be complete if we can show that g("*Y(¢) = 0 for some ¢ between a
and z.
Since P¥(a) = f®(a) for k =0,1,...,n, we have

g9(a) = ¢'(a) = --- = g"(a) = 0.

Our choice of M shows that g(z) = 0, so that ¢'(£&) = 0 for some & between a and =z,
by Rolle’s theorem. Since ¢'(a) = 0 we conclude similarly that ¢”(£;) = 0 for some &
between @ and &;. After n + 1 steps we arrive at the conclusion that ¢t (&,,1) = 0 for
some &, 1 between a and &,, that is, between a and z. [
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Definition 4.5 Suppose that f is a real function defined on [r, s] such that f(™)(t) exists
for all t € (r,s) and all n € N. Let z and a points of [r, s]. Then

k) (g
Ti(z) =) [(a) (z — a)* (4.21)

is called the Taylor series of f at a.

Remarks 4.5 (a) The radius r of convergence of a Taylor series can be 0.
(b) If T converges, it may happen that Ty(z) # f(x). If Tf(x) at a point a converges to
f(x) in a certain neighborhood U, (a), r > 0, f is called to be analytic at a.

Example 4.6 We give an example for (b). Define f: R — R via

e~/ if ©#0,
flz) = .
0, if z=0.

We will show that f € C*°(R) with f*)(0) = 0. For we will prove by induction on n that
there exists a polynomial p, such that

F™(x) = pa G) ez #0

and f(0) = 0. For n = 0 the statement is clear taking po(z) = 1. Suppose the statement
is true for n. First, let z # 0 then

e (o2 - (2 ()2 ()

Choose ppy1(t) = —pl,(8)t + 2p, ()13
Secondly,
M) (p) — f) 1) = 1/k? ,
£ (g) = ti LW SOy PG e o,

h—0 h h—0 h z—+o0

where we used Proposition 2.5 in the last equality.
Hence Ty = 0 at 0—the Taylor series is identically 0—and T(x) does not converge to
f(z) in a neigborhood of 0.

4.5.1 Examples of Taylor Series

(a) Power series coincide with their Taylor series.

r __ n _
e —E o z € R, E 2" =T z € (-1,1)

(b) f(z) = log(1 + z), see Homework 13.5.
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(¢) flz)=(1+2)* a€ R, a =0. We have
f®(z) = a(a—1) - (a—k+1)(1+2)*7*, in particular f®(0) = a(a—1)--- (a—k+1).

Therefore,

n
(1+2)° =
k=1

ala—1)---(a—k+1)
k!

¥ + R, () (4.22)

The quotient test shows that the corresponding power series converges for |z | < 1. Con-
sider the Lagrange remainder term with 0 < ¢ <x <1 and n+1 > «a. Then

< Y et < “ Y=o
n—+1 n+1

(1+2)* = i (a) 2 0<z<1. (4.23)

n

«

1 a—n—1,n+1
n+1>( +9) o

Rusto)| = (

as n — oo. Hence,

n=0

(4.23) is called the binomial series. Its radius of convergence is R = 1. Looking at other
forms of the remainder term gives that (4.23) holds for —1 < z < 1.
(d) y = f(z) = arctanz. Since y' = 1/(1 4+ z?) and y" = —2z/(1 + 2?)* we see that

y'(1+2%) = 1.

Differentiating this n times and using Leibniz’s formula, Proposition 4.6 we have

S W)+ ae o (7) =

k=0

This yields

0, if n =2k,
y™(0) =
(=D)*(2k)!, if n=2k+1.
Therefore,
—~ (=1)* o
arctanx = w1’ + Ropio(z). (4.24)
k=0

One can prove that —1 < x < 1 implies Ra, 2(z) — 0 as n — oo. In particular, x = 1

gives
7r_1 1+1 n
4 3 5 ’
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Corollary 4.16 (to the mean value theorem) Let f: R — R be a differentiable
function with

f'(z) =cf(x) foralzeR, (4.25)
where ¢ € R is a fired number. Let A = f(0). Then
f(z) = Ae®  for all z € R. (4.26)

Proof. Consider F(z) = f(z)e~“*. Using the product rule for derivatives and (4.25) we
obtain

F'(z) = fi(z)e” + f(z)(=c)e™ = (f'(z) — cf'(z)) ™ = 0.
By Corollary 4.11, F(z) is constant. Since F'(0) = f(0) = A, F(z) = A for all x € R; the
statement follows. n

The Continuity of derivatives

We have seen that there exist derivatives f' which are not continuous at some point.
However, not every function is a derivative. In particular, derivatives which exist at every
point of an interval have one important property: The intermediate value theorem holds.
The precise statement follows.

Proposition 4.17 Suppose f is differentiable on [a,b] and suppose f'(a) < A < f'(b).
Then there is a point x € (a,b) such that f'(z) = .

Proof. Put g(t) = f(t)— At. Then g is differentiable and ¢’(a) < 0. Therefore, g(¢1) < g(a)
for some t; € (a,b). Similarly, ¢'(b) > 0, so that g(t2) < g(b) for some t; € (a,b).
Hence, ¢ attains its minimum in the open interval (a,b) in some point z € (a,b). By
Proposition 4.7, ¢’'(x) = 0. Hence, f'(z) = . n

Corollary 4.18 If f is differentiable on [a,b], then f' cannot have discontinuities of the
first kind.

Proof of Proposition 4.13. (a) Suppose first that f” > 0 for all z. By Corollary 4.11, f’
is increasing. Let a <z <y <band A € [0,1]. Putt =Xz + (1 —A)y. Thenz <t <y
and by the mean value theorem there exist & € (z,t) and & € (¢,y) such that

HO=16) _ pig) < pigy = L0250
Sincet—z=(1—-A)(y—=z) and y — t = A(y — z) it follows that
1) = f@) _ T) ~ 1)
1-Xx = A

= f(t) S Af(x) + (1= A)f(y).
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Hence, f is convex.
(b) Let f: (a,b) — R be convex and twice differentiable. Suppose to the contrary
f"(x9) < 0 for some g € (a,b). Let ¢ = f'(xo); put

p(z) = fz) = (2 — zo)c.

Then ¢: (a,b) — R is twice differentiable with ¢'(x¢) = 0 and ¢"(z¢) < 0. Hence, by
Proposition 4.12, ¢ has a local maximum in x,. By definition, there is a 6 > 0 such that
Us(xg) C (a,b) and

@(xo — 0) < p(20),  P(z0 + ) < (o).

It follows that
Flao) = plz0) > 5 (plao = 8) + olao +5)) = 5 (f(zo —8) + f(z0 +3) .

This contradicts the convexity of f if we set © =9 — 9, y = z¢+ 9, and A = 1/2. n



