Chapter 5

Integration

In the first section of this chapter derivatives will not apper! Roughly speaking, integration
generalizes “addition”. The formula distance = velocity x time is only valid for constant
velocity. The right formula is s = ftzl v(t)dt. We need integrals to compute length of
curves, areas of surfaces, and volumes.

The study of integrals requires a long preparation, but once this preliminary work has
been completed, integrals will be an invaluable tool for creating new functions, and the
derivative will reappear more powerful than ever. The relation between the integral and
derivatives is given in the Fundamental Theorem of Calculus.

The integral formalizes a simple intuitive concept—that of area. It is not a surprise that
to learn the definition of an intuitive concept can present great difficulties—“area” is
certainly not an exception.

5.1 The Riemann—Stieltjes Integral

In this section we will only define the area of some very special regions—those which are
bounded by the horizontal axis, the vertical lines through (a,0) and (b,0) and the graph
of a function f such that f(z) > 0 for all x in [a,b]. If f is negative on a subinterval of
[a, b], the integral will represent the difference of the areas above and below the z-axis.

All intervals [a, b] are finite intervals.

Definition 5.1 Let [a,b] be an interval. By a partition of [a,b] we mean a finite set of
points xg, x1, - . ., T, Where

a=x9 <1 <:--<zxg, =0

We write

Axi:xi—xi,l, 1,:1,,7’L
Now suppose f is a bounded real function defined on [a, b]. Corresponding to each parti-
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110 5 Integration

tion P of [a,b] we put

M; = sup{f(z) | = € [wia, x:]}

mi = inf{f () | 2 € o1, 2]} (5.2)
U(P,f) = i MAz;, L(P,f)= imimi, (5.3)
and finally h h
7 fdz = infU(P, f), (5.4)
/ e = sup L(P. ). (5.5)

where the infimum and supremum are taken over all partitions P of [a,b]. The left
members of (5.4) and (5.5) are called the upper and lower Riemann integrals of f over
[a, b], respectively.

If the upper and lower integrals are equal, we say that f Riemann-integrable on [a, b] and
we write f € R (that is R denotes the Riemann-integrable functions), and we denote the
common value of (5.4) and (5.5) by

b b
/ fdz or by / f(z)dz. (5.6)
This is the Riemann integral of f over [a, b].

Since f is bounded, there exist two numbers m and M such that m < f(z) < M for all
x € [a,b]. Hence for every partition P

m(b—a) < L(f,P) < U(f, P) < M(b— a),

so that the numbers L(P, f) and U(P, f) form a bounded set. This shows that the upper
and the lower integrals are defined for every bounded function f. The question of their
equality, and hence the question of the integrability of f, is a more delicate one. Instead
of investigating it separately for the Riemann integral, we shall immediately consider a
more general situation.

Definition 5.2 Let a be a monotonically increasing function on [a,b] (since a(a) and
a(b) are finite, it follows that « is bounded on [a, b]). Corresponding to each partition P
of [a, b], we write

Ao, = afz;) — a(xi_q).

It is clear that Acq; > 0. For any real function f which is bounded on [a, b] we put

U(P, f, a) = zn:MiAOéi, (57)
i=1

L(Pa fa a/) = ZmiAaia (58)
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where M; and m; have the same meaning as in Definition 5.1, and we define

—b

/ fda = inf U(P, f, ), (5.9)
b

/ fda=supU(P, f,«), (5.10)

where the infimum and the supremum are taken over all partitions P.
If the left members of (5.9) and (5.10) are equal, we denote their common value by

b b
/ fda or sometimes by / f(z)da(x). (5.11)

This is the Riemann—Stieltjes integral (or simply the Stieltjes integral) of f with respect
to «, over [a,b]. If (5.11) exists, we say that f is integrable with respect to « in the
Riemann sence, and write f € R(«).

By taking «(x) = z, the Riemann integral is seen to be a special case of the Riemann—
Stieltjes integral. Let us mention explicitely, that in the general case, o need not even be
continuous.

We shall now investigate the existence of the integral (5.11). Without saying so every
time, f will be assumed real and bounded, and « increasing on [a, b]; and we shall write

J in place of f;

Definition 5.3 We say that a partition P* is a refinement of the partition P if P* D P
(that is, every point of P is a point of P*). Given two partitions, P; and P,, we say that
P* is their common refinement it P* = P, U Ps.

Lemma 5.1 If P* is a refinement of P, then
L(P, f,a) < L(P*, f,a) and U(P, f,a) > UP", f, ). (5.12)

Proof. We only prove the first inequality of (5.12); the proof of the second one is analogous.
Suppose first that P* contains just one point more than P. Let this extra point be x*,
and suppose z;_1 < z* < x;, where z;_; and z; are two consecutive points of P. Put

wy = inf{f(x) | z € [x;_1, 2]}, wo=inf{f(z) |z € [z, x;]}.
Clearly, w; > m; and we > m;, where, as before, m; = inf{f(z) | z € [x; 1, 2;]}. Hence

L(P*, f,a) = L(P, f, o) = wi(a(z") — a(zi1)) + wa(e(z:) — az?)) — mi(e(z:) — a(zi1))
= (w1 —mg)(e(z”) — efwiz1)) + (w2 — mi)(a(zi) — a(z”)) 2 0.

If P* contains k points more than P, we repeat this reasoning k times, and arrive at
(5.12). [
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/bfdaSYZfda.

Proof. Let P* be the common refinement of two partitions P, and P,. By Lemma 5.1

Proposition 5.2

L(P, f,a) < L(P*, f,a) <U(P*, f,a) < U(Py, f, a).
Hence
L(Plaf:a) SU(PZafaa’)' (513)

If P, is fixed and the supremum is taken over all P;, (5.13) gives
[faa<u(Pt0) (5.14)

The proposition follows by taking the infimum over all P, in (5.14). m

Proposition 5.3 (Riemann criterion) f € R(«) on [a,b] if and only if for everye > 0
there exists a partition P such that

U(P, f,a) — L(P, f,a) < e. (5.15)

Proof. For every P we have
P fa) < [fda< [fda<UPfa)

Thus (5.15) implies

0§/fda—/fda<e.

since the above inequality can be satisfied for every € > 0, we have

/fda:/fda,
that is f € R(a).

Conversely, suppose f € R(«), and let € > 0 be given. Then there exist partitions P; and
P, such that

(5.16)

DN ™

U(Pg,f,a)—/fda<g, /fda—L(Pl,f,a)<

We choose P to be the common refinement of P, and P,. Then Lemma 5.1, together with
(5.16), shows that

U(P.f,0) SUPs fo0) < [ fdat 5 < L(R, o)+ < L(P.fa) +=
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so that (5.15) holds for this partition P. m
Proposition 5.3 furnishes a convenient criterion for integrability. Before we apply it, we
state some closely related facts.

Lemma 5.4 (a) If (5.15) holds for P and some €, then (5.15) holds with the same ¢ for
every refinement of P.
(b) If (5.15) holds for P = {xy, ..., x,} and if s;, t; are arbitrary points in [x;_1,x;], then

Z | f(s4) i) | Aa; < €.
(c) If f € R(«) and the hypotheses of (b) hold, then

—/abfda

Proof. Lemmab5.1 implies (a). Under the assumptions made in (b), both f(s;) and f(¢;)
lie in [mi, Mz], so that | f(SZ) - f(tz) | S Mz —m,;. Thus

< E.

Z\f f(si) | Aa; <U(P, f, @) — L(P, f, ),

which proves (b). The obvious inequalities

L(P, f, ) <Zf YAw; < U(P, f,a)
and )

L(P.fa) < [ fda<UPf0)

prove (c). n

Theorem 5.5 If f is continuous on [a,b] then f € R(a) on [a,b].

Proof. Let £ > 0 be given. Choose n > 0 so that
((b) — a(a))n <e.

Since f is uniformly continuous on [a, b] (Proposition 3.12), there exists a 6 > 0 such that
| flz) = ft)[ <n (5.17)

if ,t € [a,b] and |z —t| < 0. If P is any partition of [a, b] such that Az; < § for all 4,
then (5.17) implies that

M;—m;<n, i=1,...,n (5.18)
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and therefore

n

U(P, f,a) — L(P, f,a) = Z(MZ —m;)Aaq; < nz Aca; = n(a(b) — ala)) < e.

i=1 i=1

By Proposition 5.3, f € R(«). n

Example 5.1 (a) The proof of Theorem 5.5 together with Lemma 5.4 shows that

Zf )Aa; — /abfda

<eg

We compute I = f: sinxdx. Let ¢ > 0. Since sinz is continuous, f € R. There exists
d > 0 such that |z —t| < 0 implies

inz —sint| < . 5.19
|sinz — sint | 4 (5.19)
In this case (5.15) is satisfied and consequently
n b
Zsin(ti)Axi - / sinzdzr | <e
i=1 a
for every partition P with Axz; < 46,i=1,...,n
For we choose an equidistant partition of [a,b], z; = a + (b — a)i/n, i = 0,...,n. Then
N2
h = Az; = (b—a)/n and the condition (5.19) is satisfied provided n > . We have

£
(cf. Homework 4.4)

;sin x; Azx; = Zsm a+ih)h = 3em h/2 22 sin h/2 sin(a + ih)

= Senh/2 Si:h/2 2:; (cos(a+ (i —1/2)h) — cos(a + (i + 1/2)h))

h
= 55 n73 e (cos(a+ h/2) — cos(a + (n+ 1/2)h))
h/2
= G iz (cos(a + h/2) — cos(b+ h/2)))

Since limy,_,¢sin h/h = 1 and cos z is continuous, we find that the above expression tends
to cosa — cos b. Hence fab sinz dx = cosa — cosb.
(b) For x € [a, b] define

R x € Q,
O P

We will show f ¢ R. Let P be any partition of [a, b]. Since any interval contains rational
as well as irrational points, m; = 0 and M; = 1 for all i. Hence L(P, f) = 0 whereas
UP, f) =37, Az; = b— a. We conclude that the upper and lower Riemann integrals
don’t coincide; f & R.
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Proposition 5.6 If f is monotonic on [a,b], and « is continuous on [a, b], then f € R(«).

A
a (3 Let ¢ > 0 be given. For any pos-
! itive integer n, choose a partition
/o such that
L
ot a(b) — ala
Proof. // b Aa; = (b) ()’ i=1....n
I : toa ! n
I | E : P This is possible by the intermediate
| | | .
: E S value theorem (Theorem 3.5) since
' L 5 > a is continuous.
a Xl X2 Xn-l

We suppose that f is monotonically increasing (the proof is analogous in the other case).
Then

Mi :f(iL'z), ms; :f(.’L'Z'_l), ’L: 1,...,71,

so that
U(P, 1,00~ 1P, £,0) = "D S50 — (o)
i=1
= 2O )~ pa <2
if n is taken large enough. By Proposition5.3, f € R(«). m

Without proofs which can be found in [8, pp. 126 —128] we note the following facts.

Proposition 5.7 If f is bounded on [a,b], f has finitely many points of discontinuity on
[a,b], and « is continuous at every point at which f is discontinuous. Then f € R(a).

Proposition 5.8 If f € R(«) on [a,b], m < f(z) < M, ¢ is continuous on [m, M|, and
h(z) = o(f(x)) on [a,b]. Then h € R() on [a,b].

Proof. Let ¢ > 0. Since ¢ is uniformly continuous on [m, M], there exists § > 0 such that
d<eand |p(s)—pt)| <eif |s—t]| < and [s,t € [m, M].
Since f € R(«), there exists a partition P = {xg,z1,...,Z,} of [a, ] such that

UP, f,a) — L(P, f,a) < 62 (5.20)

Let M; and m; have the same meaning as in Definition 5.1, and let M} and m; the
analogous numbers for h. Divide the numbers 1,2,...,n into two classes: ¢ € A if
M;—m; <6 and i € B if M;—m; > ¢. For i € A our choice of § shows that M} —m} < ¢.
For i € B, M} —m} < 2K where K = sup{| p(t)| | m <t < M}. By (5.20), we have

i€B i€B
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so that ) .. p Ay < 4. It follows that

U(P,h,a) = L(P,h,a) = > (M} —m})Aa; + Y (M] — m})Aa; <
e(a(d) —ala)) + 2K < e(a(b) — ala) + 2K).

Since ¢ was arbitrary, Proposition 5.3 implies that A € R(«). n

Remark 5.1 A bounded function f is Riemann-integrable on [a,b] if and only if f is
continuous almost everywhere on [a, b]. (The proof of this fact can be found in [8, Theo-
rem 11.33]).

“Almost everywhere” means that the discontinuities form a set of (Lebesgue) measure
0. A set M C R has measure 0 if for given £ > 0 there exist intervals I,,, n € N such
that M C U,enIn and >, .| In| < €. Here, |I| denotes the length of the interval.
Examples of sets of measure 0 are finite sets, countable sets, and the Cantor set (which
is uncountable).

5.1.1 Properties of the Integral

Proposition 5.9 (a) If fi1, fo € R(«) on [a,b] then fi + fo € R(a), cf € R(a) for every
constant ¢ and

/ab(f1+f2)doz=/abf1da+/abf2doz, /abcfdazc/abfda,

(b) If f1, f2 € R(e) and fi(z) < fao(x) on [a,b], then

/abfldaﬁ/abﬁda-

(¢) If f € R(a) on [a,b] and if a < ¢ < b, then f € R(c) on [a,c] and on [c,b], and

/abfdoz:/acfda—i—/cbfda.

(d) If f € R(«) on [a,b] and | f(x)| < M on [a,b], then

‘/abfdoz

(e) If f € R(a) and f € R(e), than f € R(a + ) and

/ab fd(ar + ag) = /ab fdaq + /ab fdao;

if f € R(a) and c is a positive constant, then f € R(ca) and

/abfd(ca):c/abfda.

< M(a(b) — afa)).
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Proof. If f = f; + f, and P is any partition of [a, b], we have
L(Paflva) +L(P7f2:a) S L(Pafva) S U(P,f,Of) S U(P7f17a) +U(P,f2,06) (522)

since 1nf fi + 1nff2 < 1nf(f1 + f2) and sup fi+ sup fo> sup(f1 + f2).

If f, € IR( ) and fa € IR( ), let € >0 be given. There are partitons P;, j = 1,2, such
that

U(Pjvfjaa) - L(Pjvfjaa) <e
These inequalities persist if P; and P, are replaced by their common refinement P. Then
(5.22) implies
U(Paf,a) _L(Pafaa/) <2

which proves that f € R(a). With the same P we have

U(P,fj,a)</fjda+e, j=1,2;

hence (5.22) implies

/fdagU(P,f,a)</f1da+/f2da+2g.

Since € was arbitrary, we conclude that

/fdaﬁ/flda—i—/fzdoz. (5.23)

If we replace f; and fs in (5.23) by —f; and — fs, respectively, the inequality is reversed,
and the equality is proved.
(b) Put f = f1 — fo. It suffices to prove that [ fda > 0. For every partition P we have
m; > 0 since f > 0. Hence

/fda > L(P, f,0) = Y miAa; >0
=1

since in addition Aa; = a(z;) — a(z;—1) > 0 (« is increasing).

The proofs of the other assertions are so similar that we omit the details. In part (c) the
point is that (by passing to refinements) we may restrict ourselves to partitions which
contain the point ¢, in approximating [ f de, cf. Homework 14.5. [

Proposition 5.10 If f,g € R(a) on [a,b], then

(a) fa € R(o); ,, ,,
(b) £ € R(a) and‘/afda <[1flda
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Proof. If we take ¢(t) = t*, Proposition 5.8 shows that f2 € R(a) if f € R(a). The
identity
4fg=(f+9*—(f—g)’

completes the proof of (a).
If we take (t) = |t|, Proposition 5.8 shows that | f| € R(«). Choose ¢ = +1 so that

¢ [ fda > 0. Then
‘/fda :c/fda:/cfdag/\f\da,

since £f < | f]. ]

The wunit step function or Heaviside function 6(z) is defined by #(z) = 0 if < 0 and
f(z) =1if z > 0.

Example 5.2 If a < s < b, f is bounded on [a,b], f is continuous at s, and a(x) =
O(z — s), then
b
| #da= 1.

For the proof, consider the partition P withn =3;a =2y < 1 < s =29 < £3 = b. Then
Aa1 = Aa/g = 0, AOZQ = 1, and

U(Pafva):M% L(Pafaa):mZ-

Since f is continuous at s, we see that M, and my converge to f(s) as z — s.

Proposition 5.11 Suppose ¢, > 0 for all positive integers
n € N, Y ¢, converges, (s,) is a sequence of distinct points

in (a,b), and
- o
a(z) = Z cnf(x — 85,). (5.24) _ e
n=1 Cl: i : |
Let f be continuous on [a,b]. Then 5 §2 s, S

/ fda = chf(sn). (5.25)

Proof. The comparison test shows that the series (5.24) converges for every z. Its sum «
is evidently an increasing function with a(a) = 0 and a(b) = > ¢,. Let € > 0 be given,
choose N so that o

Y w<e

n=N-+1
Put

ap(z) = Zc,ﬂ(m — 8p), oa(z)= Z cnf(x — $p).
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By Proposition 5.9 and Example 5.2

b N
/ dezl:chf(sn).
a n=1

Since as(b) — as(a) < €, by Proposition 5.9 (d),

/abfdozz

where M = sup| f(x)|. Since a = oy + ay it follows that

< Me,

N
/ fda = caf(sn)| < Me.
n=1
If we let N — oo we obtain (5.25). m

Proposition 5.12 Assume that « is increasing and o/ € R on [a,b]. Let f be a bounded
real function on [a,b].
Then f € R(«) if and only if fo! € R. In that case

/abfda - /abf(x)a'(ac) dz. (5.26)

The statement remains true if a is continuous on [a,b] and differentiable up to finitely
many points ci,Cy, . .. Cp.

Proof. Let € > 0 be given and apply the Riemann criterion Proposition 5.3 to «': There
is a partition P = {xy,...,z,} of [a,b] such that

U(P,d') — L(P,d) < e. (5.27)
The mean value theorem furnishes points t; € [z; 1, x;] such that
Aai = a'(ti)Axi, for i= 1, ..., N

If s; € [332'_1,$i], then
Z |/ (s;) — o (t;) | Az < & (5.28)

by (5.27) and Lemma 5.4 (b). Put M = sup| f(x)|. Since

n

Z SZ AO!Z Zf Sz A‘Tz

=1
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it follows from (5.28) that

D f(s)da; =Y f(sial (s) Az | < Me. (5.29)

In particular,

Zf(si)Aai < U(P, fa') + Me,

i=1
for all choices of s; € [x;_1, z;], so that
U(P, f,a) <U(P, fd) + Me.
The same argument leads from (5.29) to
U(P, fo!) <U(P, f,a) + Me.
Thus
\U(P, f,a) —U(P, fa) | < Me. (5.30)

Now (5.28) remains true if P is replaced by any refinement. Hence (5.29) also remains

true. We conclude that
—b —b
‘/ fda—/ f(z)d (z) dz

7if da = 7if(x)o/ z)dx

for any bounded f. The equality for the lower integrals follows from (5.29) in exactly the
same way. The proposition follows. [

< Me.

But ¢ is arbitrary. Hence

We now summarize the two cases.
Proposition 5.13 Let f be continuous on |a,b]. FExcept for finitely many points
CoyCly .-y Cp With cg = a and ¢, = b there exists o' (x) which is continuous and bounded

on [a,b]\{co,...,cn}.
Then f € R(a) and

/fda—/f dx+ch, (¢ +0) —ale; —0)) +
fa)(a(a+0) — a(a)) + f(b)(e(b) — a(b - 0)).
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Proof (Sketch of proof). (a) Note that A = a(c¢; +0) — a(c;) and A, = a(c;)a(e; — 0)
exist by Theorem 3.13. Define

n—1 k
ar(z) = Z AfO(z — ;) + Z —A70(c; — x).
i=0 i=1

(b) Then as = @ — vy is continuous.
(c) Since o is piecewise constant, o/ (x) = 0 for z # ¢. Hence o (z) = o/ (). for z # ¢;.
Applying Proposition 5.12 gives

/ Fday = / fobdz = / fo' dr.
/fdoz:/fd(al-i—aQ):/fa'd:v—i-/fdozl.

By Proposition 5.11

Further,

n—1

[ o =Y At () - S A (5.

i=1

Example 5.3 (a)

2 2 .’1,'42
/xdx3=/ z-322dr = 3= | =12.
0 0 4 |,

(b) f(z) = 2
z, 0<z <1,
7’ = 7
alz) = X
22 +10, 1<z<2,
64, T =2.

/0 fda = /0 fo' dz + F(1)(a(1+0) — a(1— 0)) + F(2)(a(2) — a2 — 0))

2
=/ IZ-ldfv—i—/ 2 2xdr + 1(11 — 1) + 4(64 — 14)
0 1

1 412

)

.733

3

1 1 5
104200 = -~ +8— = + 210 = 217-.
+10+ S t8—5+ .

0 1

Remark 5.2 The three preceding proposition show the flexibility of the Stieltjes process
of integration. If « is a pure step function, the integral reduces to an infinite series. If «
has an initegrable derivative, the integral reduces to the ordinary Riemann integral. This
makes it possible to study series and integral simultaneously, rather than separately.
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5.2 Integration and Differentiation

We shall see that integration and differentiation are, in a certain sense, inverse operations.

Theorem 5.14 Let f € R on [a,b]. For a <z < b put

Flz) = /xf(t) dr.

Then F is continuous on |a,b|; furthermore, if f is continuous at zo € [a,b] then F is
differentiable at xy and

FI(.’E()) = f(.’l?())
Proof. Since f € R, f is bounded. Suppose | f(t)| < M on [a,b]. If a <z < y < b, then

Y
70)-F) = [ 0] < o=
by Proposition 5.9 (¢) and (d). Given € > 0, we see that
| F(y) — F(z)] <,

provided that |y — 2| < ¢/M. This proves continuity (and, in fact, uniform continuity)
of F.
Now suppose that f is continuous at xy. Given € > 0, choose § > 0 such that

[ f(t) = flzo) | <e
if |t — 29| <0, t € [a,b]. Hence, if
To—0<s<zyp<t<zy+d, and a<s<t<b,

we have by Proposition 5.9 (d)

F(t,)fij(s) ) ‘ _ tis / (f(w) = f(z)) du | <e.
It follows that F'(x¢) = f(zo)- ]

Definition 5.4 A function F': D — R is called an antiderivative or a primitive of a
function f: D — R if F is differentiable and F’ = f.

Remarks 5.3 (a) There exist functions f not having an antiderivative, for example
f(x) =1ifz > 0and f(zr) = 0if z < 0. f has a simple discontinuity at 0; but by
Corollary 4.18 derivatives cannot have simple discontinuities.

(b) The antiderivative F' of a function f (if it exists) is unique up to an additive constant.
More precisely, if F is a antiderivative, then Fj(z) = F(z) + ¢ is also a antiderivative of
f- If F and G are antiderivatives of f, then there is a constant ¢ so that F(z) — G(z) = c.
The first part is obvious since Fj(z) = F'(z) + ¢ = f(x). Suppose F and G are an-
tiderivatives of f. Put H(z) = F(x) — G(z); then H'(z) = 0 and H(x) is constant by
Corollary 4.11.
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:/}@mx:/fm.

The function f is called the integrand. Integration and differentiation are inverse to each

other:
& [t@ar=s@. [ 1@ de=f)

Theorem 5.15 (Fundamental Theorem of Calculus) If f € R on [a,b] and if F is
an antiderivative of f on [a,b|, then

/f@Mx:F@—Fm)

Proof. By Theorem5.14 G(z) = [ f(z) dz is differentiable with G’ = F' = f. By the
above remark the antlderlvatlve is unique up to a constant, hence F(z) — G(z) = C.
Since G(a f f(z)dz = 0 we obtain

Notation for the antiderivative:

F(b) = F(a) = (G(b) + C) — (G(a) + C) = G(b) — G(a) = / f(z)dz

Proposition 5.16 Let f,p: [a,b] — R be continuous functions and ¢ > 0. Then there
erists £ € [a,b] such that

[ @et) s = 1) [ olw)d. (531

In particular, in case ¢ =1 we have
b
[ @ =)0~ a)
for some £ € [a, b].

Proof. Put m = inf{f(z) | z € [a,b]} and M = sup{f(z) | z € [a,b]}. Since ¢ > 0 we
obtain mf < vp < M f. By Proposition 5.9 (a) and (b) we have

/ M</f MSML%@M

Hence there is a p € [m, M] such that

jf F(z)p(z) dz = jcbw($)dx.

Since f is continuous on [a, b] the intermediate value theorem Theorem 3.5 ensures that
there is a £ with p = f(£). The claim follows. ]
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5.3 Antiderivatives

5.3.1 Table of Antiderivatives

By differentiating the right hand side one gets the left hand side of the table.

function domain antiderivative
1
@ e R\{-1},2>0 atl
x o {-1}, = a+1$
1
- z<0 or >0 log |z |
e’ reC e”
X a'w
a a>0,a#1,zeC
loga
sin z —Ccosx
COS ¥ sin
1
—5 z € C\{kr |k eZ} cotx
sin® z
1 T
5 xEC\{—+k7r|k€Z} tan
COs* & 2
1
T+ z€eR arctan x
x
1
— z€eR arsinh z = log(z + V22 + 1)
V14 x?
1
S — z€eR,|z|<1 arcsin z
V1 — 2
1
T r<—1 or z>1 log(z + V2 — 1)
x —_

5.3.2 Integration Rules

The aim of this subsection is to calculate antiderivatives of composed functions using
antiderivatives of (already known) simpler functions.
Notation:

Proposition 5.17 (a) Let f and g be functions with antiderivatives F and G, respec-
tively. Then af(z) + bg(z), a,b € R, has the antiderivative aF(x) + bG(z).

/(af +bg)dz = a/ fdz+ b/gdx (Linearity.)

(b) If f and g are differentiable, and f(x)g'(z) has a antiderivative then f'(x)g(x) has a
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antiderivative, too:

/f'gdx = fg— /fg' dz, (Integration by parts.) (5.32)

If f and g are continuously differentiable on [a,b] then
b , b
/ flgdx = f(x)g(x)\a—/ fq'dz. (5.33)

(¢) If p: D — R is continuously differentiable with ¢(D) C I, and f: I — R has a
antiderivative F', then

/ F(o(2))¢' () dz = F(e(z)), (Change of variable.) (5.34)

If p: |a,b] = R is continuously differentiable with ¢([a,b]) C I and f: I — R is contin-

uous, then
©(b)
/ fle t)dt = f(z)d=x

©(a)

Proof. Since differentiation is linear, (a) follows.
(b) Differentiating the right hand side, we obtain

d
w9 /fg’ dz) = f'g+ f9'— fg' = f'g

which proves the statement.
(c) By the chain rule F(g(x)) is differentiable with

2 Ploe) = Fl@)d (@) = f(o(2)d @),

and (c) follows.
The statements about the Riemann integrals follow from the statements about an-
tiderivatives using the fundamental theorem of calculus. [

Corollary 5.18 Suppose F' is the antiderivative of f.

/f ar +b)d F(ax +b), a#0; (5.35)
/Z((x)) dz =log|g(z)|, (g differentiable and g(x) #0). (5.36)

Example 5.4 (a) The antiderivative of a polymnomial. If p(z) = Y }_, axz®, then

Jp@)de =370 5 .
(b) Put f (x) =¢€" and g(x) =z, then f(z) =€” and ¢'(z) = 1 and we obtain

/xewdm:xe”—/l-e‘”dx:ew(:c—1).
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(c) I =(0,00). [logzdz = [1-logzdz =zlogz — [z1dzr =zxlogzs —x.
(d)

1
/arctanxdx:/1-arctanxdxzacarctanx—/xi dx
1+ 22

1 1 2y 1
zxarctanx—5/(1—:_722)dx::rarctan:r—510g(1+x2).

In the last equation we made use of (5.36).
(e) Recurrent computation of integrals.

dz
I, = | —————, N.
/ (1+ z2)n ne

I _/(1+x2)—x2_1 _/ x2dx
n (1+z2)» n—1 (1+22)"

I; = arctanz.

X

Putu:x,v’:m.ThenU’zland
v—/ zdz 1 (1+4a2%)"
A+ 2 1-n
Hence,
2\1-n
I”:I"‘l_%x(lr—xrg _2(11—n)/(1+x2)1_ndx
I = T +2n—3171.

(2n—2)(1+22)»1 2pn—-2""

5.3.3 Integration of Rational Functions

We will give a useful method to compute antiderivatives of an arbitrary rational function.
Consider a rational function p/q where p and ¢ are polinomials. We will assume that
degp < degq; for otherwise we can express p/q as a polynomial function plus a rational
function which is of this form, for eample

2

1
= 1 .
p— T+ +a:—1

Polynomials

We need some preliminary facts on polynomials which are stated here without proof.

Theorem 5.19 (Fundamental Theorem of Algebra) FEvery polynomial p with com-
plex coefficients which is of degree n > 1 has a complex root, i. e. there exists a complex
number z such that p(z) = 0.
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Lemma 5.20 (Long Division) Let p and g be polynomials, then there exist unique poly-
nomials r and s such that
p=gqs—+r, degr <deggq.

Lemma 5.21 Let p be a complex polynomial of degree n > 1 and leading coefficient a,,.
Then there ezist n uniquely determined numbers z1, ..., z, (which may be equal) such that

p(z) =an(z —21)(z — 22) - - (2 — 2n)-

Proof. We use induction over n and the two preceding statements. In case n = 1 the
linear polynomial p(z) = az + b can be written in the desired form

p(z) =a (z - %b) with the unique root z; = —g.
Suppose the statement is true for all polynomials of degree n — 1. We will show it for
degree n polynomials. For, let z, be a complex root of p which exists by Theorem 5.19;
p(2z,) = 0. Using long division of p by the linear polynomial ¢(z) = z — 2z, we obtain
a quotient polynomial p;(z) and a remainder polynomial r(z) of degree 0 (a constant
polynomial) such that

p(e) = (2 = 2)pa(2) + 7(2).
Inserting z = z, gives p(z,) = 0 = r(z,); hence the constant r vanishes and we have
p(z) = (z — za)p1(2)
with a polynomial p;(z) of degree n — 1. Applying the induction hypothesis to p; the

statement follows. n

A root « of p is said to be a root of multiplicity k, k € N, if « appears exactly k£ times
among the zeros z1, 29, ..., 2.

If p is a real polynomial and « is a root of multiplicity £ of p then @ is also a root of
multiplicity & of p. Using this fact, the real version of Lemma5.21 is as follows.

Lemma 5.22 Let g be a real polynomial of degree n with leading coefficient a,. Then

there exist real numbers oy, B;,7; and multiplicities r;,s; € N, i =1,...,k, 7 =1,...,1
such that
k !
q(z) = an H(»’U —ay)" 1_[(352 — 28T + ;).
i=1 j=1

We assume that the quadratic factors cannot be factored further; this means
B:—7;<0, j=1,...,L

Of course, degq =Y. r; + Zj 255 =n.
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Example 5.5 (a) 12 —4 = (22 +2)(22 = 2) = (z — V2)(z + V2)(z — iV2)(z +iV?2) =
(z —V2)(z +V2)(2? + 2)

(b) 3 + 2 — 2. One can guess the first zero z; = 1. Using long division one gets

x3 +r -2 =(@x-1)(*+2+2)
—(z° —a?)
2 4z =2
—(@* -z )
2 =2
—(2z -2)
0

There are no further real zeros of z2 + z + 2.

5.3.4 Partial Fraction Decomposition

Proposition 5.23 Let p(z) and q(x) be real polynomials with degp < degq. There exist
real numbers Ay, Bjs, and Cjs such that

x b " Bjsz + Cjs
@:Z(Z(m_a >+Z(Z _2ﬁ;+%)s) (5.37)

r=1 s

where the o, Bj, v;, ri, and s; have the same meaning as in Lemma 5.22.

Example 5.6
z—1 1 2z +1 3 dx
= — — de==] -~ ( e
! /x2+x+1 o 2/x2+x+1 x+2/ 1\? 3
T+ 5| + =
2 4
1 3 du
= =1 2 H—= ] ——=
o2 og(z®+x+1) 2/u2~|—§
1 r+ 1
= —log(z® +x+1) — ——arctan 2,
where we used
/ dx 1 T
——— = —arctan —.
24+a?2 a a

Summarizing the results,

7 2 1 1 1
I=_2"+-log|z—1|+ = log(x + 2+ 1) — —=arctan —(2z + 1).

2 3 V3 V3
5.3.5 Other Classes of Elementary Integrable Functions

An elementary function is the compositions of rational, exponential, trigonometric func-
tions and their inverse functions, for example

esin(\/Efl)

z+logz

flz) =
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A function is called elementary integrable if it has an elementary antiderivative. Rational
functions are elementary integrable. “Most” functions are not elementary integrable as

2 e 1 sin x
€ ’ ) ; :
x log x x
They define “new” functions
z 2
W(z) == / e 7 dt, (Gaussian integral),
0
li(z) d (integral logarithm)
i(z) :=
o logt & &
¢ dz e .
F(p, k) == (elliptic integral of the first kind),
0 1 — k2sin’z

¢
E(p, k) := / V1 —k2sin?xdx  (elliptic integral of the second kind).
0

[ R(cosz,sinz) dz

. x
Let R(u,v) be a rational function in two variables u and v. We substitute u = tan ok

Then
2u 1 — u? 2du

714_“2, COS$:71+U2, $:1+u2

, 1—u? 2u 2du
/R(cosx,smx)dx:/R<1+u2,1+u2) T :/Rl(u)du

with another rational function Ry (u).

sinx =

Hence

| R(z, Vaz + b) dz

The substitution

t=+Var+b
yields x = (t" — b)/a, dz = nt""'dt/a, and therefore

" —b
a

/R(x, Vaz +b)dz = ﬁ/R( ,t) =1 dt.

| R(z, vaxz? + 2bx + c) dz

Using the method of complete squares the above integral can be written in one of the
three basic forms

/R(t, V2 +1)dt, /R(t, V2 —1)dt, /R(t, V1—12)dt.
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Further substitutions

t = sinh u, t2 4+ 1 = cosh u, dt = cosh udu,
t = +cosh u, t? — 1 = sinhu, dt = £ sinh u du,
t = +cosu, 1—12 =sinu, dt = Fsinudu

reduce the integral to already known integrals.

Example 5.7 The trapezoid rule. Let f: [0,1] — R be twice continuously differentiable.
Then there exists £ € [0, 1] such that

! 1 1
| @) de =57+ £1) = 57(0) (539)
0
Proof. Let ¢(z) = 3z(1 — z) such that ¢(z) > 0 for z € [0,1], ¢'(z) = 1 — =z, and
¢"(z) = —1. Using integration by parts twice as well as Theorem 5.16 we find

/Olf(m) dz = —/01 ¢"(z)f(z)dz = —¢'(2) f(2)]o + /01 () f'(z) dz

(f(0)+ /(1) + so(w)f’(fv)lé—/o p(z)f"(z) dz

(F0) + £(1)) = £"(€) / o(z) dz

0

N[ DN = DN =

(F(0) + F1)) — 15 F(€).

5.3.6 Inequalities

Besides the triangle inequality ‘ fab fdoz‘ < fab | f| da which was shown in Proposi-
tion 5.10 we can formulate Holder’s, Minkowski’s, and the Cauchy—Schwarz inequalities
for Riemann—Stieltjes integrals. For, let p > 0 be a fixed positive real number and o an
increasing function on [a, b]. For f € R(«) define the LP-norm

i, = ([ 170 da); | (539

Proposition 5.24 (a) Cauchy—Schwarz inequality. Suppose f,g € R(«), then

‘/abfgda s/ablfgldag\//ab\fﬁda\//abm?da or (5.40)

b
[ 171 da <11, Nl (541
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1 1
(b) Holder’s inequality. Let p and q be positive real numbers such that — + — = 1. If
p 4q

f,9 € R(«), then
b
[ foda

(c) Minkowski’s inequality. Let p > 1 and f,g € R(«a), then

1 +gll, < WIfIl, + llgll, - (5.43)

Proof. We prove (b). The other two statements are consequences, their proofs are along the
lines in Section 1.3. The main idea is to approximate the integral on the left by Riemann
sums and use Holder’s inequality (1.19). Let € > 0; without loss of generality, let f, g > 0.
By Proposition 5.10 fg, f?, g7 € R(«) and by Proposition 5.3 there exist partitions Py, P,
and Pj of [a,b] such that U(fg, Pi,a) — L(fg, P1,a) <&, U(fP, Py,a) — L(f?, P, ) < ¢,
and U(g?, Ps,a) — L(g%, P, ) < €. Let P = {zy,21,...,2,} be the common refinement
of P;, P, and P;. By Lemma5.4 (a) and (c)

b
< / (fal da < |I£1, lgll, - (5.42)

b n
[ fada< Yo a)e)sa; + e (5:44)

. -

S Ft)P A < / frda + e, (5.45)

i=1 a

n b
Zg(ti)qAai < / glda + ¢, (5.46)
i=1 e

for any t; € [x; 1, z;]. Using the two preceding inequalities and Hoélder’s inequality (1.19)

we have
Zf(ti)Aozi%g(t,-)Aoz; < (Z f(ti)PAaZ) ’ (Z g(ti)‘lezi> ‘1
i=1 i=1 i=1
b - b .
< (/ f”da-ﬁ-e) (/ qua—i-e) )
By (5.44),

1

b n b ]1_7 b L
/ fgda<Z(fg)(t,-)Aa,~+e< </ f”da+s) (/ qua+6) +e€.
a i=1 a a

Since ¢ > 0 was arbitrary, the claim follows. n

5.4 Improper Integrals

The notion of the Riemann integral defined so far is apparently too tight for some applica-
tions: we can integrate only over finite intervals and the functions are necessarily bounded.
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If the integration interval is unbounded or the function to integrate is unbounded we speak
about improper integrals. We consider three cases: one limit of the integral is infinite; the
function is not defined at one of the end points a or b of the interval; both a and b are
critical points (either infinity or the function is not defined there).

5.4.1 Integrals on unbounded intervals

Definition 5.5 Suppose f € R on [a, b] for all b > a where a is fixed. Define

/aoo fl@)dz = lim /ab f(z)dz (5.47)

if this limit exists (and is finite). In that case, we say that the integral on the left converges.
If it also converges if f has been replaced by | f |, it is said to converge absolutely.

Obviously, if an integral converges absolutely, then it converges where

/:ofdx s/ﬂmlfldx-

b
Similarly, one defines / f(z)dz. Moreover,

/_Zfdx::/_iofdaﬁ—f—/ooofdx

if both integrals on the right side converge.

o
d
Example 5.8 (a) The integral / —f converges for s > 1 and diverges for 0 < s < 1.
1

T
Indeed,
/Rdx_ N S A S AR
o8 1—s a5l s—1 Rs=1 -

0, if s>1,
+00, if 0<s<1,

Since

it follows that

> d 1
/ @ _ , if s> 1.
0 1

(b)

o0
Hence / e ¥dz =1.
0
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o
Proposition 5.25 (Cauchy criterion) The improper integral fdx converges if

and only if for every € > 0 there exists some b > a such that for allac, d>b

‘/Cdfdx

Proof. The following Cauchy criterion for limits of functions is easily proved using se-

< €.

quences: The limit lim, ,,, F(z) exists if and only if

Ve>03R>0Vz,y>R:|F(x)—F(y)| <e.

Apply this criterion to the function F(t) = f(f f dz; this proves the assertion. [
Example 5.9 floo % dz. Partial integration with v = % and v’ = sinz yields v’ = —x%,

v = —cosz and

if ¢ and d are sufficiently large. Hence, floo % dx converges.
The integral does not converge absolutely. For non-negative integers n € Z, we have

(n+1)w 1 (n+1)w )
/ dmzi/ [sinz | do = ————;
- (n+ D7 Sz (n+ 17

(n—|—1)7r 9 n 1
dx > — —_—
/0 x_ﬁ;k—i-l

. . . . . o i
Since the harmonic series diverges, so does the integral fo | B ‘ dx.

sin

X

hence
sin x

X

Proposition 5.26 Suppose f € R is nonnegative, f > 0. Then faoofdx converges if
there exists C' > 0 such that

b
/fd:v<C, for all b> a.

The proof is similar to the proof of Lemma2.17 (c); we omit it. Analogous propositions
are true for integrals ffoo fdx.

Proposition 5.27 (Integral criterion for series) Assume that f € R is nonnegative
f > 0 and decreasing on [1,400). Then floofdx converges if and only if the series

Yoo, f(n) converges.
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Proof. Since f(n) < f(x) < f(n—1) forn—1<z <mn,

n)ﬁ/n fdz < f(n—1).

Summation over n = 2,3, ..., N yields

we [ rae<Y o,

If [° f dz converges the series Y >° | f(n) is bounded and therefore convergent.
Conversely, if >>° | f(n) converges, the integral flR fdz < 3> f(n) is bounded as
R — 00, hence convergent by Proposition 5.26. n

Example 5.10 Y >, W converges if and only if f;o a:(lodecc)a converges. The substi-

tution y = logx, dy = 7 gives
o z(logz)e log2 Y

which converges if and only if & > 1 (see Example 5.8).

5.4.2 Integrals of Unbounded Functions

Definition 5.6 Suppose [ is a real function on [a,b) and f € R on [a,t] for every ¢,

a <t <b. Define \ .
/ fdr = lim / fdx
a t—=b—0 /,

if the limit on the right exists. Similarly, one defines

b
/fdx— hm/fda:
a t—a

if f is unbounded at a and integrable on [t, b] for all ¢ with a < ¢ < b.

In both cases we say that fab fdx converges.

Example 5.11 (a)

dz 7r
= lim arcsin x\o = ll{nO arcsint = arcsin 1 = 3

1 dil? ) 1]
/0 \/]_—l'zztl}{r—l()/o \/1_:52 t—)l—O
(b)

1 g 1 1-all 1
x ' L dx = a#1 a<l
— = lim — = lim ¢ 7 |t ’ 7 =497 ’
0 T® 5040 [, o 15040 log \t , a=1 +o0, a>1.
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Remarks 5.4 (a) The analogous statements to Proposition 5.25 and Proposition 5.26 are
true for improper integrals f: fdz.
(b) If f is unbounded both at a and at b we define the improper integral

/abfdxz/acfdx—i-/cbfdx

if ¢ is between @ and b and both improper integrals on the right side exist.
(c) Also, if f is unbounded at a define

/aoofdx:/abfdx+/boofdx

if the two improper integrals on the right side exist.
(d) If f is unbounded in the interior of the interval [a, b], say at ¢, we define the improper

/abfdx:/acfda:—i-/cbfdx

if the two improper integrals on the right side exist. For example,

integral

Ude O dz Uodx . Eodx . Ude
= + = lim + lim

stz Ja /x| Jo x| 200 /] 200 (/]
= lim —2\/—:1:|t_1+ lim 2\/§|t1:4.

t—0—-0 t—0+0

5.4.3 The Gamma function

For x > 0 set
I(z) = / 1ot dt. (5.48)
0
By Example5.11, T'y(z) = fol t*~le~t dt converges since for every t > 0

t*le7t < 1 .
— tlf;v

By Example 5.8, I'y(z) = [t e ' dt converges since for every t >

1

z—1 _—t
e < 5

(S

Note that lim;_,, t*" e~ = 0 by Proposition 3.18. Hence, I'(z) is defined for every x > 0.

Proposition 5.28 Forn € N we have I'(n + 1) = n! and for every positive z,

2l'(z) =T(z +1). (5.49)
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Proof. Using integration by parts,

R = R
/ et dt = —te | +a / " le "t dt.

& 13

Taking the limits e — 040 and R — +oc one has I'(z+1) = zI'(x). Since by Example,5.8

(1) = / e tdt =1,
0
it follows from (5.49) that
F'n+1)=nl'(n)=---=nn—-1)(n—2)---T'(1) = n!

The T' function interpolates the factorial function n! which is defined only for positive
integers n. However, this property alone is not sufficient for a complete characterization
of the Gamma function. We need another property.

Let I C R be an interval. A positive function F': I — R is called logarithmic conver if
log F': I — R is convex, i.e. for every x,y € I and every A\, 0 < A < 1 we have

Fr+(1—X\y) < F(z) F(y)'™.

Proposition 5.29 The Gamma function is logarithmic conver.

Proof. Let x,y > 0 and 0 < A < 1 be given. Set p = 1/X and ¢ = 1/(1 — A\). Then
1/p+1/g =1 and we apply Hélder’s inequality to the functions

z—1 t y—1 _t

fRy=t7e>, glt)=t7e s

[ rwsae< ([ ey dt); (/ storar) g

Fgt) =t5tilet,  fP =1ole™t, g(t)? =¥l

and obtain

Note that

Taking the limts ¢ =+ 0 + 0 and R — 400 we obtain

r (% + g) < T(z)7T(y)s.

Remark 5.5 One can prove that a convex function (see Definition 4.4) is continuous, see
Proposition 5.35 in the appendix. Also, an increasing convex function of a convex function
f is convex, for example e/ is convex if f is. We conclude that I'(x) is continuous for
x> 0.



5.4 Improper Integrals 137

Theorem 5.30 Let F': (0,+00) — (0, +00) be a function with
(a) F(1) =1,
(b) F(z+1) =z2F(x),
(c) F is logarithmic convex.

Then F(z) =T'(x) for all z > 0.

The proof is in the appendix to this chapter.

Stirling’s Formula

We give an asymptotic formula for n! as n — co. We call two sequences (a,) and (b,) to

a
be asymptotically equal if lim — = 1, and we write a, ~ b,.
n—oo n

Proposition 5.31 (Stirling’s Formula) The asymptotical behavior of n! is

n n
n! ~ V2mn (—) .
e

Proof. Using the trapezoid rule (5.38) with f(z) = logz, f"(x) = —1/z® we have

kit 1 1
/k logzdz = i(logk—f—log(k-i-l))-i-@

with £ <& <k + 1. Summation over £k =1,...,n — 1 gives

n—1

/nl d —Enl k——ll —i——l 1
ogrdx = 0 ogn .
. 8 8 2 g 12 &
k=1 k=1

Since [logz dz = zlogz — z (integration by parts), we have

n—1

& 1 1 1
nlogn—n+1:Zlogk—§logn+52?
k=1 k=1 "k

= 1
Zlogk = (n—l— 5) logn —n + vy,
k=1

where v, = 1 — % ZZ;} é Exponentiating both sides of the equation we find with

C'IL — e'Yn
1

nl=n"t2e"c,. (5.50)

Since 0 < 1/&2 < 1/k?, the limit

21
v=lmo=1-3

exists, and so the limit ¢ = lim ¢, = €”.
n—oo
The proof that ¢, — /27 uses Wallis’s product formula for 7 and is found in the
n—oQ
appendix. [
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5.5 Integration of Vector-Valued Functions

A mapping v: [a,b] — R¥, v(t) = (71(t),...,1(t)) is said to be continuous if all the
mappings v;, ¢ = 1,...,k, are continuous. Moreover, if all the 7, are differentiable, we

write 7'(£) = (Yi(#), - - -, % (t))-

Definition 5.7 Let f1,..., fr be real functions on [a,b] and let f = (f1,..., fx) be the
correponding mapping from [a, b] into RF. If a increases on [a, b], to say that f € R(«)
means that f; € R(«) for j = 1,..., k. In this case we define

/abfda: (/abflda,...,/abfkda).

In other words fab f da is the point in R* whose jth coordinate is fab fjda. It is clear
that parts (a), (c), and (e) of Proposition 5.9 are valid for these vector valued integrals;
we simply apply the earlier results to each coordinate. The same is true for Proposi-
tion 5.12, Theorem 5.14, and Theorem 5.15. To illustrate this, we state the analog of the
fundamental theorem of calculus.

Theorem 5.32 If f = (f1,..., fx) € R on[a,b] and if F = (F1,..., Fy) is an antideriva-
tive of f on |a,b], then

b
/ f(z)dz = F(b) - F(a).
The analog of Proposition 5.10 (b) offers some new features.

Proposition 5.33 If f = (f1,..., fr) € R(a) on [a,b] then || f|| € R(a) and
b
/ fda

IFll = (F24 f2+ -+ £2)F

By Proposition 5.10 (a) each of the functions f? belong to R(«a); hence so does their sum.
Since the square-root is a continuous function on the positive half line. If we apply
Proposition 5.8 we see ||f|| € R(«).

To prove (5.51), put y = (y1,.-.,yx) with y; = [ f;do. Then we have y = [ fda, and

k k k
Il =320 =Y 0ws [ fyda= [ 3" s do
Jj=1 j=1 j=1

By the Cauchy—Schwarz inequality,

b
< [ 17 da. (5.51)

Proof. By (5.39)

Zyjfj(t) <[lyllF @I ¢ €la,b].
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Inserting this into the preceding equation, the monotony of the integral gives

lol’* < ol [ 111 o

If y =0, (5.51) is trivial. If y # 0, division by ||y|| gives (5.51). ]

Integration of Complex Valued Functions

This is a special case of the above arguments with k& = 2. Let u,v: [a,b] — R real
functions. The function ¢ = u +iv: [a,b] — C is said to be integrable if u,v € R on [a, b

b b b
/god:cz/udx-l—i/ vdz.

The fundamental theorem of calculus holds: If the complex function ¢ is Riemann inte-

and we set

grable, ¢ € R on [a, b] and F(z) is an antiderivative of ¢, then

/ o(z)dz = F(b) — F(a).

Proof. Let F' = U + iV be the antiderivative of ¢ where U’ = u and V' = v. By the
fundamental theorem of calculus

/godxz/ udx-l—i/ vdz = U(b) = Ula) +i(V(b) = V(a) = F(B) — Fla).

Example:

5.6 Applications

5.6.1 Curves in R¥

We consider concrete geometric objects, curves in R¥. We define the tangent vector, the
angle between intersecting curves, and the arc length.

Definition 5.8 A continuous mapping v: [a,b] — R¥ is called a curve in R*. If y(a) =
~(b), ~v is said to be a closed curve.

Of course, a curve is given by a k-tupel v = (y1,...,7) where ;: [a,b] — R are contin-
uous functions. It should be noted that we define a curve to be a mapping, not a point
set. Of course, with each curve v in RF there is associated a subset of R*, namely the
range of 7, but different curves may have the same range.
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Example 5.12 (a) A circle of radius > 0 with midpoint at the origin is described by
the curve
v:[0,27] = R?, 7(t) = (rcost,rsint).
Note that 7: [0,47] — R? with J(¢) = v(t) has the same range but is different from +.
(b) Let a, v € R¥, v # 0, be given. The map
v:R—=RF yt)=tv+a
describes the line in R¥ through a with direction v.
(¢) If f: [a,b] = R is a continuous function, the graph of f can be thought as a curve in
R2:
v a0 = R? (1) = (8, f(1)-
Definition 5.9 Let ~: [a,b] — R* be a differentiable curve. For ¢ € [a, b] we call

7)) = @), %)
the tangent vector of the curve vy at ¢.

A differentiable curve is said to be regular if +'(t) # 0 for all ¢ € [a,b]. If 7'(to) = 0, 7 is
singular at tg.

If «y is regular, we also consider the unit tangent vector v'(t)/ ||v'(¢)||-

Remark 5.6 Physical interpretation. Let t the time variable and s(¢) the coordinates of
a point moving in R*. In this picture v(t) = s'(t) is the velocity vector of the moving
point. The instantaneous velocity is the euclidean norm of v(t)

ol = /54 (52 + - + s, (2)2.

The acceleration vector is the second derivative of s(t), a(t) = v'(t) = s"(¢).

Example 5.13 (a) Newton’s knot. The curve v: R — R? given by (t) = (£*—1,t3—1) is
not injective since y(—1) = (1) = (0,0) = xo. The point z, is a double point of the curve.
In general v has two different tangent lines at a double point. Since v'(t) = (2t,3t2 — 1)
we have 7/(—1) = (=2,2) and 7/(1) = (2, 2). The curve is regular since 7/(t) # 0 for all .
(b) Neil’s parabola. Let v: R — R? be given by ~(t) = (¢%,t*). Since +/(t) = (2t, 3t?),
the origin is the only singular point.

Definition 5.10 Let v;: I; — R*, i = 1,2, be two regular curves with v, () = v2(t2).
The angle of intersection ¢ between the two curves 7; at t; is defined to be the angle
between the two tangent lines ] (1) and ~5(¢2). Hence,

(11(t1), (L))
I @D s ()
Example 5.14 Newton’s knot. 7,(t) = 7(t) = y(t) = (> — 1,t> — t). Since y(—1) =
v(1) = (0,0), the self-intersection angle ¢ satisfies

<(—2, 2)’ (2’ 2)>
8

cos p = © € [0,m7].

cos ¢ = =0,

hence ¢ = 90°, the intersection is orthogonal.
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Rectifiable Curves

We associate to each partition P = {zo,...,x,} of [a,b] and to each curve y the number
UPy) = (@) = ()l (5.52)
i=1

The ith term in this sum is the distance (in R*) of the points y(x; ;) and v(z;).

X4

Hence £(P, ) is the length of the polygonal
path with vertices y(xg),...,v(x,). As our
partition becomes finer and finer, this poly-
gon approaches the range of ¥ more and more
s closely.

This makes it seem reasonable to define the length of v as

£(v) = sup £(P,7)

where the supremum is taken over all partitions P of [a, b].

If ¢(y) < oo we say that v is rectifiable. In certain cases, ¢(7) is given by a Riemann
integral. We shall prove this for continuously differentiable curves, i.e. for curves v whose
derivative 7' is continuous.

Proposition 5.34 If 4 is continuous on [a,b], then v is rectifiable, and

aw=/anMt

Proof. If a < ;1 < x; < b, by Theorem5.32, y(z;) — y(z;-1) = fw’ v'(t) dt. Applying

Zi—1

/ wmﬂs/ I @l de.

i—

Proposition 5.33 we have

(i) = (i)l =

Hence b
(r) < [ v ol d

for every partition P of [a, b]. Consequently,

aws/nﬂMMt

To prove the opposite inequality, let € > 0 be given. Since +' is uniformly continuous on
[a, b], there exists § > 0 such that

17 (s) =" <& if [s—t]<0d.
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Let P be a partition with Ax; < ¢ for all 7. If z;_; <t < z; it follows that

I O < 1Y ()l + &

Hence
/ 1Y (O dt < ||y (z:)[] Az; + e Az
Ti_1

[ =) - ) dtH T oA,

Ti—1

/ 2 (t) dtH 4

< 1Y (@i) = ' (ziz1)|| + 2eAx;.

<

/zi (Y () —+'(t)) dtH + el

Ti—1

If we add these inequalities, we obtain

/ 1Y ()| dt < £(P,7y) + 2e(b—a) < £(y) + 2e(b — a).

Since ¢ was arbitrary,

| v <.

This completes the proof. [
as ] Example 5.15 (a) The position
2] of a bulge in a bicycle tire as

it rolls down the street can be
parametrized by an angle 6 as

o T = = = s s shown in the figure.

+0) = (a(ﬁ—sinﬁ))‘

a(l — cosf)

This curve is called a cycloud.
Find the distance travelled by the bulge for 0 < 6 < 27.

Using 1 — cos f = 2sin? g we have
7' () = a(1 — cos b, sin §)
I/ (0] = a\/(l — co0s0)? + sin?§ = av/2 — 2cos
0
= av/2V/1 — cosf = 2asin 3




5.6 Applications 143

Therefore,

27 ) 0 0
() = 2a sin —df = 4a ( cos -
. 2 )

(b) The arc element ds. Formally the arc element of a

2w

= 4a(— cos T + cos 0) = 8a.
0

plane differentiable curve can be computed using the
pythagorean theorem

v (ds)? = (dz)* + (dy)?> = ds = v/ dz? + dy?

dy?
ds=4d \/1—}——
dx s z dz2?

ds=+/1+ (f'(z))? da.

Using Example 5.12 (c) for graphs of functions this can be made rigorous. Since

I @I = I, £ @) = v1+ (1)

ds

we have by Proposition,5.34
b
() = [ VI PP

5.6.2 The Cosmopolitan Integral

Originally we introduced the Riemann integral in order to find the area under the graph
of a function, but the integral is more versatile than that. In the previous subsection we
expressed the length of a curve using integrals.

Rotation around the z-axis

There are some very special solids whose vol-
umes can be expressed by integrals. The sim-

plest such solid V' is a “volume of revolution”
obtained by revolving the region under the

graph of f > 0 on [a, b] around the horizon-
tal axis.

Let P = {xzo,...,z,} be a partition of [a, b] and let m; and M; have the same meaning as
in Definition 5.1. Then

ﬂmf (x; — x5 1)
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is the volume of a disc that lies inside the colid V. Similarly, 7 M? (x; — z; 1) is the
volume of a disc that contains the part of V' between x;_; and x;. Consequently

n n
7r Z miAz; < vol(V) <7 Z M?Awx;.
i=1 i=1
But the sums are just the lower and upper sums for f? on [a, b]:

wL(P, f*) < vol(V) < nU(P, f?).

Consequently, if f2 € R, the volume of V must be given by

b
vol(V) = / (@) da. (5.53)
This method is referred to as the “disc method.”

Example 5.16 We compute the volume of the ellipsoid obtained by revolving the graph

of the ellipse
2 P
ol _|_ b_2 -1

around the z-axis. We have y? = f(:z:)2 = b? (1 - —) hence

‘ g i 2a®\ 4
vol(V) = 7Tb2/ 1- 2 Y de=mb? (2 - 2 4 =7b® | 2a — ) R
a a? 3a? a 3a? 3

Rotation around the y-axis

\ Suppose the solid V' is obtained by rotating the

region under the graph f around the vertical axis.
V' is the solid left over when we start with a big

_/‘/% cylinder of radius b and take away both a small

Tk

\ cylinder of radius a and and a solid V; sitting in
the top of V. In this case we assume a > 0 as
well as f > 0.
For a partition P = {zg,...,z,} of [a,b] we consider “shells” obtained by rotating the

rectangle with base [z;_1,z;] and height m; or M; . Adding the volumes of these shells

n
Zmﬂr(xi—xi 1)? < vol(V <ZM7T T — T 1)%,
i=1

which can be written as

we obtain

WZTTLZ i+ xio1)(x; — xi-1) < vol(V) <7rZM i+ xio1) (@ — xi1)-

=1
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By Lemma 5.4 each of the sum
Z m; x;Azx; and Z m; X1 Ax;
i=1 i=1

can be made closed to fab zf(z)dz by choosing Azx; small enough. The same is true for
the sums with M;. So we find that

b
vol(V') = 27r/ zf(z) dz; (5.54)
this is the so called “shell method” of finding volumes.

Example 5.17 Find the volume of a cone of height h obtained by rotating the graph of

y = —mz + h, m > 0, around the y-axis. The radius of the bottom is R = h/m. We have
A

R h

R 1 1
V= 27r/ z(—mz + h)dz =27 (—gmx?’ + §hx2>
0

0 y=-mx+h

1 1
—9 = 3 _hZ
7r< 3mR+2R)

1
= §7TR2]'L -

Surface Areas

The surface areas of certain curved regions can also be expressed in terms of integrals.
We review some elementary geometry. Recall that the surface area of the frustum of a
cone is A = m(ry + r2)s where ry,ry are the radii of the top and bottom circles and s
is the slant height. If the graph of a positive function f revolves around the z-axis, we
obtain the area element of the band to be equal to the circumference 27 f(x) times the

width ds.
dA =2nf(x) ds =2nf(x)/1+ (f'(x))? dx.

The area of a surface formed by revolving the graph of f around the horizontal axis is

A= 27r/ FEVI T (f@) de (5.55)

Example 5.18 Bands of equal width on a sphere have equal area. The shere of radius r
is obtained by revolving the graph of y = f(z) = v/r2 — 22 on [—r,r]| around the z-axis.
Fix a and b with —r < a < b < r; we have

2z 2 x? r?
1 ! 2-1 - | =1 — )
+(f (x)) + <2m) +T2—1‘2 r2 — g2

Hence,

b
rdz
A= 27r/a Vr? — xQ\/ﬁ = 27r(b— a).
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In particular, the area of the band depends on b — a only. The full sphere with b —a = 2r
has the area 4mr?.

5.7 Appendix D

Proposition 5.35 Every convez function f: (a,b) = R, —oc < a < b < +o0, is contin-
UOUS.

Proof. Let z € (a,b); choose a finite subinterval (z1,z2) with a < 21 < & < 29 < b. Since
f(x) < Af(z1)+ (1= A)f(z2), A €[0,1], f is bounded above on [z, z2]. Chosing x3 with
21 < x3 < z the convexity of f implies

f(x3) — f(1) < f(x) — f(x1) — f(z) > f(x3) — f(1)

T3 — T1 o T — T T3 — T

(x — x1).

This means that f is bounded below on [z3, 23] by a linear function; hence f is bounded
on [z3, ], say | f(z)| < C on [z3, x5
The convexity implies

F(3eemeza-n) <
— f(z) = fle—h) <
Iteration yields
Flo— (v = 1)h) = fla —vh) < flz+h) = f(z) < fla+vh) = f(a+ (v = Dh).
Summing up over v = 1,...,n we have
F(&) = o —nh) <n(f(a+ ) — f(2)) < flz +nh) — [(a)
— (@)~ fa— ) < f@+ )~ f(@) < - (o +nh) — f(z)

Let € > 0 be given; choose n € N such that 2C'/n < ¢ and choose h such that z3 <
r —nh < x < x4+ nh < xy. The above inequality then implies

) - f@)| <2 <e

This shows continuity of f at x. [

If g is an increasing convex function and f is a convex function, then gof is convex since
fOx +py) < Af(2) + pf(y), A+ p=1, A, p >0, implies

g(f Az + py)) < g(Mf(z) + pg(x)) < Ag(f(2)) + ng(f(y)).

Proof of Theorem 5.30. Since I'(z) has the properties (a), (b), and (c) it suffices to prove
that F' is uniquely determined by (a), (b), and (c). By (b),

F(x+n)=F(x)z(z+1)---(z+n)
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for every positive z and every positive integer n. In particular F(n + 1) = n! and it
suffices to show that F(z) is uniquely determined for every z with z € (0,1). Since
n+z=(1—xz)n+xz(n+1) from (c) it follows

Fin+z) < F(n)""F(n+1)" = F(n)""F0n)*n® = (n—1)n"
Similarly, from n+1=z(n+2z) + (1 — z)((n + 1 + z) it follows
nl=Fn+1)<Fn+z)Fn+1+z2) *=Fn+z)(n+z) "
Combining both inequalities,
nln+z)* ' < Fn+x) < (n—1)n°

and moreover

nl(n + x)* 1 (n—1)In®

n(T) 1= < F(x) < =:b,(x).
an(7) zz+1)---(x+n—-1) — (x)_:v(a;—kl)---(a;—i-n—l) (=)
Since ZZ((?) = gz:_f);;: converges to 1 as n — oo,
—1)In®
F(z) = lim —— ("= D"
n—oo x(x + 1)+ (x 4+ n)
Hence F' is uniquely determined. [
Proof of ¢, — v2m. We defined the sequence ¢, via
nl =n"t1e ", (5.56)
Using (5.50) we have
ca _ (nD)*V2n(2n)* 3 22n(n!)?
Con  m2HL(2n)! 77 \/n(2n)!
and lim,,_, % = % = c¢. Using Wallis’s product formula for 7
o1 4K? 2-2-4-4 - - 2n-2n
=92 = lim 2 .
m=2]] ey = Jm 1:335----2n— 1)(2n + 1) (5:57)

we have

n 2 % . Y 2-2-.- 2
(21—[ 4k ) _ 5 24---2n 1 22.42... (2n)

S S 3.5...(2n_1)\/m:m'2.3.4...(2n—1)(2n)
1 227 (n))?
e 1 @)
such that ()
V= lim ot

Consequently, ¢ = /27 which completes the proof. [
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