Chapter 6

Basic Topology

In the study of functions of several variables we need some topological notions like neigh-
borhood, open set, closed set, and compactness.

6.1 Finite, Countable, and Uncountable Sets

Definition 6.1 If there exists a 1-1 mapping of the set A onto the the B (a bijection),
we say that A and B have the same cardinal number (the same cardinality or A and B
are equivalent) and we write A ~ B.

This relation clearly has the following properties:

(R) It is reflexive: A ~ A.
(S) It is symmetric: If A ~ B then B ~ A.
(R) It is transitive: If A~ B and B ~ C, then A ~ C.

Any such relation with these three properties is called an equivalence relation.

Definition 6.2 For any nonnegative integer n € Ny let N, be the set {1,2,...,n}. For
any set A we say that:

(a) A is finite if A ~ N, for some n. The empty set & is also considered to
be finite.

(b) A is infinite if A is not finite.

(c) A is countable if A ~ N.

(d) A is uncountable if A is neither finite nor countable.

(e) A is at most countable if A is finite or countable.

For finite sets A and B we evidently have A ~ B if A and B have the same number of
elements. For infinite sets, however, the idea of “having the same number of elements”
becomes quite vague, whereas the notion of 1-1 correspondence retains its clarity.

Example 6.1 Z is countable. Indeed, the arrangement
0,1,-1,2,-2,3,-3,...
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150 6 Basic Topology

gives a bijection between N and Z. Explicitly, the bijection f: N — 7Z is given by
f@2n)=mn, f2n—-1)=-n+1,neN.

We see that an infinite set can be equivalent to one of its proper subsets. The set X is
infinite if and only if X is equivalent to one of its proper subsets. Any countable set can
be arranged in a sequence.

Proposition 6.1 Fvery infinite subset of a countable set A is countable.

Proof. Suppose E C A is an infinite subset. Arrange the elements of A in a sequence (z,)
of distinct elements. Construct a subsequence (z,,) as follows. Let n; be the smallest

positive integer with x,, € E. Having chosen z,,,%,,,...,Zn,_,, let ng be the smallest
integer greater than n,_; such that z,, € E. Putting f(k) = z,, we obtain a bijection
between N and FE. n

Roughly speaking, the theorem shows that countable sets represent the “smallest” infinity:
No uncountable set can be a subset of a countable set.

Theorem 6.2 (Cantor’s First Diagonal Process) Let (E,) n € N, be a sequence of
countable sets, and put
S= | En.

neN
Then S is countable.
Proof. Let every set E, be arranged in a sequence (z,x), k = 1,2,..., and consider the
infinite array
T — Z12 T3 — T4
vd / v /
T21 T29 To3 Loy
NS v /"
T31 T32 T33 T34
vd / Ve
Ta1 T42 T43 Ta4
NS
Ts1

in which the elements of E,, form the nth row. The array contains all elements of S. As
indicated by arrows, these elements can be arranged in a sequence

Z11, %12, 21,31, L22,T13,L14, - - - (6-1)

If any two of the sets E, have elements in common, these will appear more than
once in (6.1). Hence there is a subset 7" of N such that 7" ~ S which shows that S is
at most countable. Since Fy C S and F is infinite, S is infinite and thus countable. [
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Proposition 6.3 Let A be a countable set and let B,, be the set off all n-tuples (a1, ..., ay,)
where a;, € A and the elements aq, ..., a, need not to be distinct. Then B, is countable.

Proof. We use induction on n. That Bj is countable is evident since B; = A. The elements
of B,, are of the form

(b,a), b€ B, 1,a€ A

For every fixed b, the set of pairs (b, a) is a set equivalent to A, and hence countable. Thus
B,, is the union of a countable set of countable set. By Theorem 6.2, B, is countable.
[

Corollary 6.4 The set QQ of all rational numbers is countable.

Proof. We apply the above theorem with n = 2, noting that every rational number r is
of the form r = p/q where p and ¢ are integers. The set of pairs (p,¢) and therefore the
set of fractions p/q is countable. n

Theorem 6.5 (Cantor’s Second Diagonal Process) Let A be the set of all sequences
whose elements are the digits 0 and 1. This set A is uncountable.

Proof. Suppose to the contrary that A is countable and arrange the elements of A in a
sequence (s,)nen of distinct elements of A. We construct a sequence s as follows. If the
nth element in s, is 1 we let the nth digit of s be 0, and vice versa. Then the sequence s
differs from every member sq, s9,... at least in one place; hence s ¢ A—a contradiction
since s is indeed an element of A. This proves, A is uncountable. [

To illustrate the proof let s, = (an1, ana, ... ) be the nth sequence of digits anx € {0, 1}.
Suppose the sequence (a11,ago, as3, das,-..) of diagonal elements of the array anx is
(0,1,1,0,...), then we choose s to be the “complementary” sequence s = (1,0,0,1,...).
This sequence s can’t be s; since the sequence s differs in the first element from sy, also, s
differs in the second element from s, and so on. Thus, s is not contained in the sequence
of elements of A.

Corollary 6.6 R s uncountable.

Proof. Using the binary expansion of real numbers of the interval I = [0,1) we see
that every element of s € A, s = (a1, as,...), corresponds to a real number z € I,
x = Y .2, a,/2". There are only countably many pairs of sequences (having zeros or
ones in the end) corresponding the same x. [
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6.2 Metric Spaces and Normed Spaces

Definition 6.3 A set X is said to be a metric space if for any two points x,y € X there
is associated a real number d(z,y), called the distance of x and y such that

(a) d(z,y) > 0 and d(z,y) = 0 if and only if z = y;

(b) d(z,y) = d(y, z);

(c) d(z,y) < d(z,z) +d(z,y) for any z € X (triangle inequality).

Any function d with these three properties is called a distance function or metric on X.

Example 6.2 (a) C, R, Q, Z, and any subsets of these sets are metric spaces with

d(z,y) = |y —=z|.
(b) The real plane R? is a metric space with respect to

da((71,22), (Y1, 92)) = \/(331 —22)% + (y1 — 10)%
di((w1,22), (Y1, 92)) = |21 — 22 [ + |11 — 92|

d is called the euclidean metric.

(c) Let X be a set. Define
1, if x#uy,
d(z,y) = { _
0, if z=uy.

Then (X, d) becomes a metric space.

Definition 6.4 Let E be a vector space over C (or R). Suppose on E there is given
a real-valued function which associates to each x € E a real number ||z|| such that the
following three conditions are satisfied:

(i) ||z|| > 0 for every x € E, and ||z|| = 0 if and only if z = 0,
(ii) ||Az|| = | M| ||z|| for all A € C (in R, resp.)
(i) ||z +y|| < ||l=]| + |ly||, forall z,y € E.

Then FE is called a normed (vector) space and ||z|| is the norm of z.

Clearly, every normed vector space E' is a metric space if we put

d(z,y) = ||z —yl|.

Example 6.3 (a) F = R*. We define an inner product (or scalar product) of two vectors
= (21,...,2x) and y = (y1,--.,¥), T,y € R* by

k
(T,y)=2-y= Zl“zyz
i=1

and the (euclidean) norm of x by

|lz|| = V& -z = (Z xf) : (6.2)
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The vector space R* together with the above inner product and norm is called euclidean
k-space. Minkowski’s inequality (Proposition 1.35) with p = 2 shows that (iii) is satisfied.
We define an inner product (or scalar product) of two vectors x = (z1,...,xx) and y =

(yla"'ayk)a z,y € (Dk by
k
(x,y) :x'yzzx_iyi
=1

and a norm of = by

lz|| = Vz -z = <Z|x |2> . (6.3)

Sometimes we write ||z||, in place of ||z|| to emphasize that we are dealing with the inner
product norm. Sometimes C* with this inner product and this norm is called unitary k-
space. Note that the inner product on C* is linear in the second argument and anti-linear
in the first argument.

There are other possibilities to define a norm on E. Let p > 1

|zlloo = sup |zi|, supremum norm

i=1,...,
1
k »
lll, = (lez |p> :
i=1
We show that [|z]|, indeed defines a norm on R¥ or C*. It is obvious that ||z||, > 0. Let

|||, = 0, then S ¥ | ;[P = 0 which implies z; = 0 for every i = 1,...,k; hence z = 0.
Moreover

k 1/p k 1/p k 1/p
||)\$||p=<2|/\$i\p> =(Z|)\|p|fvi\p> =|A|<Z\$ilp> = [All«ll,-
i=1 i=1 i=1

Finally, Minkowski’s inequality (see Proposition 1.35 and Corollary 1.36) gives ||z + y||, <

(b) E = C([a,b]). Let p > 1. Then

[fllee = sup [f(z)],

z€[a,b]

1711, = (/b ok dt) g

define norms on E. Note that || f||, < Vb —a ||f||,-
() B =ty ={(2,) | .2, |2 |” < 00}. Then

00 3
2
lz]], = (Z\xn\ )
n=1

defines a norm on /5.
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6.3 Basic Notions

Definition 6.5 Let X be a metric space with metric d. All points and subsets mentioned
below are understood to be elements and subsets of X.

(a) The set U.(z) = {y | d(z,y) < e} with some ¢ > 0 is called the
g-neighborhood of x. The number ¢ is called the radius of the neighborhood
U.(x).

(b) A point p is an interior or inner point of E if there is a neighborhood
U.(p) completely contained in E. E is open if every point of F is an interior
point.

(¢) A point p is called an accumulation or limit point of E if every neighborhood
of p has a point ¢ # p such that ¢ € E.

(d) E is said to be closed if every accumulation point of E' is a point of E. The
closure of E (denoted by E) is E together with all accumulation points of E.
In other words p € E, if and only if every neighborhood of z has a non-empty
intersection with FE.

(e) The complement of E (denoted by E*°) is the set of all points p € X such
that p ¢ E.

(f) E is bounded if there exists a real number M such that d(z,y) < M for all
z,y € B.

(g) E is dense in X if every point of X is an accumulation point of E or a
point of E (or both), i.e. E = X.

Example 6.4 (a) (a,b) C R is an open set. Indeed, for every x € (a,b) we have U.(z) C
(a,b) if € is small enough, say ¢ < min{|z —a|,|z — b|}. Hence, z is an inner point of
(a,b). Since x was arbitrary, (a,b) is open.

[a,b) is not open since a is not an inner point of [a,b). Indeed, U.(a) C [a,b) for every
e > 0.

a is an accumulation point of both (a, b) and [a, b). This is true since every neighborhood
U.(a), e < b—a, has a+¢/2 € (a,b) (resp. in [a, b)) which is different from a. The closure
E of both sets (a,b) and [a,b) is [a,b]. By the description of the closure E of E in (g)
it is clear that E D [a,b]. For any point 2 ¢ [a,b] we find a neighborhood U, (x) with
U.(r) N [a,b) = @; hence z & E.

The set of rational numbers @ is dense in R. Indeed, every neighborhood U, (r) of every
real number r contains a rational number, see Proposition 1.11 (b).

For the real line one can prove: Every open set is the at most countable union of disjoint
open intervals. A similar description for closed subsets of R is false. There is no similar
description of open subsets of R¥, k > 2.

(b) For every metric space X, both the whole space X and the empty set & are open as
well as closed.

(c) Let B = {z € R¥ | ||z||, < 1} be the open unit ball in R*. B is open (see Lemma 6.7
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below); B is not closed. For example, o = (1,0,...,0) is an accumulation point of B
since z, = (1 —1/n,0,...,0) is a sequence of elements of B converging to xy, however,
zo & B. The accumulation points of B are B = {z € R¥ | ||z||, < 1}. This is also the
closure of B in RF.

e (d) Consider E = C([a, b]) with the supremum norm.

a

Lemma 6.7 Every neighborhood U,.(p), r > 0, of a point p is an open set.

Proof. Let g € U,(p). Then there exists € > 0 such that d(¢,p) =r — €.
We will show that U.(q) C U,(p). For, let x € U.(q). Then by the
triangle inequality we have

Then g € E is in the e-neighborhood of a function
f € F if and only if

VA | f(t)—g(t)| <e, forall z € a,bl.

d(z,p) <d(z,q) +d(g,p) <e+(r—e)=r.

Hence z € U,(p) and ¢ is an interior point of U,(p). Since ¢ was
arbitrary, U, (p) is open. n

Remarks 6.1 (a) If p is an accumulation point of a set E, then every neighborhood of p
contains infinitely many points of F.
(b) A finite set has no accumulation points.

Example 6.5 (a) The open complex unit disc, {z € C | |z]| < 1}.
(b) The closed unit disc, {z € C | | z| < 1}.

(c) A finite set.

(d) The set Z of all integers.

(e) {1/n | n € N}.

(f) The set C of all complex numbers.

(g) The interval (a,b).

Here (d), (e), and (g) are regarded as subsets of R. Some properties of these sets are
tabulated below:

Closed Open Bounded
No Yes Yes

Yes No Yes

Yes No Yes

Yes No No

No No Yes

Yes Yes No

No Yes Yes

o o
S~— N

= @D o

NN N N N SN N
Q.
~—

a2
S—r
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Proposition 6.8 A subset E C X of a metric space X is open if and only if its comple-
ment E° is closed.

Proof. First, suppose E° is closed. Choose x € E. Then x ¢ E°, and z is not an
accumulation point of E°. Hence there exists a neighborhood U of x such that U N E° is
empty, that is U C E. Thus x is an interior point of E and E' is open.

Next, suppose that F is open. Let z be an accumulation point of E°. Then every
neighborhood of x contains a point of E€, so that x is not an interior point of E. Since
FE is open, this means that z € E°. It follows that E° is closed. [

Lemma 6.9 Let X be a set and {E,} a family of subsets of X. Then

(U Ea> = ﬂ E: (de Morgan’s rule). (6.4)

Using (A¢)¢ = A for all subsets A C X we obtain de Morgan’s second rule by taking the

complement of (6.4):
(ﬂ Ea> =JE:.

Proof. Let A and B be the left and right members of (6.4), respectively. If z € A, then
z ¢ U, Fa, hence z & E, for every a. Thus, z € E for any «, so that z € B.

Conversely, if z € B then z € EY for every «, hence « ¢ E, for any «, hence z ¢ |, Ea,
so that © € A; thus B C A. It follows that A = B. n

Proposition 6.10
(a) For any collection {G4} of open sets, |J, Go is open.
(b) For any collection {F,} of closed sets, [, Fa is closed.

(c) For any finite collection G1,...,Gy of open sets, m G is open.

i=1
(d) For any finite collection Fy, ..., F, of closed sets, U F; s closed.

i=1
Proof. Put G =, G,. If © € G, then z € G, for some «. Since z is an interior point of
G, z is also an interior point of G, and G is open. This proves (a).
By (6.4) and since F( is open, (a) implies that (), F,)® = U, F< is open. Hence by
Proposition 6.8, (), Fa is closed.
Next, put H = (), Gi;. For any x € H there exist neighborhoods U,,(z) such that
U, (z) CGiyi=1,...,n. Put r :=min{ry,...,r,}. Then U,(z) C G, fori=1,...,n, so
that U,(z) C H, and H is open.

By taking complements, (d) follows from (c): (U E) = ﬂ F?. ]
i=1 i=1
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Example 6.6 In parts (c) and (d) of the preceding proposition, the finiteness of the
collection is essential. For let G,, = (—1/n,1/n), n € N. Then G, is an open subset of
R. Put G =),en G- Then G = {0} consists of a single point and is therefore not an
open subset of R. Similarly, the union of an infinite collection of closed sets need not to
be closed.

6.3.1 Topological Spaces

Forgetting about the metric d and taking the open sets as the basic notion we arrive at
the notion of a topological space.

Definition 6.6 Let X be a set. A family T of subsets of X is called a topology on X if

(a) @, X € 7.
(D) U,V T, then UNV €T,
(c) fFC T then UF €.

Recall that |JF = {z | IF € F: z € F'} is the union of the family F. The elements of
T are called open sets of X. A subset F of X is said to be closed if E€ € T. A subset U
of X is called a neighborhood of a point x € X if there is an open set G with + € G C U.
Every metric space is a topological space.

Proposition 6.11 Let Ey = (E,||-||;,), ¢ = 1,2, be normed vector spaces such that there
exist positive numbers ci,co > 0 with

callzll, < llzlly L e2||zlly, forall x€ E. (6.5)
Then Ey and Eo have the same topology, 1. e. G is open in Ey if and only if G is open in
E,.

Proof. Condition (6.5) is obviously symmetric with respect to £y and Es since ||z, /c2 <
llz]|; < ||z, /e1- It is sufficient to show the following: If ||z||, < c¢||z||; then every open
set G C E, is also open in F; (we say that the topology of E; is stronger or finer than
the topology of Fy since E; has more open sets).
For, let p € G C E,, then p is an inner point and there is a neighborhood U?(p) = {z |
|z — pll, < e} contained in G'. We will show that U], (p) C UZ(p).

2 €U,(p) = |l —pll, <e/e = |lz—plly <cllz—pl, <c- % =e.

We conclude U}, (p) C UZ(p) C G, and p is an inner point of G C Ej. m

Example 6.7 (a) The normed vector spaces (E,|-||,), p € [1,00], E = R* or E = C¥,
are equivalent as topological vector spaces. Since

k k
lzlf, < Y el <Y llelll, = kil .
=1 =1

2]l < llzl, < VE ]l - (6.6)
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This shows that (E, ||-||,) and (E, [|-[|,,) have the same open sets.

(b) The inequality
1fll, < Vb —a [l flle

in Example6.3 (b) shows that the supremum norm on C([a,b]) defines a finer topology
than the LP-norm. The topologies are not equivalent.

6.4 Limits and Continuity

In this section we generalize the notions of convergent sequences and continuous functions
to arbitrary metric spaces.

Definition 6.7 Let X be a metric space and (z,) a sequence of elements of X. We say
that (z,) converges to x € X if for every neighborhood U, € > 0, of x there exists an

ng € N such that n > ng implies z,, € U,. We write lim z, = x or z,, — xz; formally
n—,oo n—oo

Ve>0 dng e N Vn>ng: z, € Uc(z).

We have lim z,, = x if and only if, the sequence of real numbers (d(x,,z)) converges to
O0asn —>nc>_oﬂ,DO lim d(z,,z) =0.

Note that a sﬁgso;t F' of a metric space X is closed if and only if F' contains all limits of
convergent sequences (z,), x, € F. That is, our first definition of a closed set F C R
given in Definition 3.6 works in arbitrary metric spaces.

The following Proposition is quite analogous to Proposition 2.31 with £ = 2.

Proposition 6.12 Let (z,,) be a sequence of vectors of the euclidean space R,

Tp = (xnla S axnk)'
Then (z,) converges to a = (a1, ...,a;) € R* if and only if
lim 2, =a;, t=1,...,k.
n—oo

Proof. Suppose that lim x, = a. Given € > 0 there is an ny € N such that n > ng implies
n—0oQ

|z, — al|, < e. Thus, for i =1,...,k we have
| Tpi — a; | < ||2n — a”z <&

hence lim z,; = q;.
n—o0

Conversely, suppose that lim x,; = a; for : = 1,..., k. Given ¢ > 0 there are ng; € N
n— 00
such that n > ny implies .
| Tpi — Q4 | < —.

vk

For n > max{ngi,...,ng} we have (see (6.6))
lzn — all, < VE ||z, — all, <.

hence lim z, = a. =
n—00
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Corollary 6.13 Let B C R* be a bounded subset and (z,,) a sequence of elements of B.
Then (x,,) has a converging subsequence.

Proof. Since B is bounded all coordinates of B are bounded; hence there is a subsequence

(:US)) of (z,) such that the first coordinate converges. Further, there is a subsequence (xg))

of (2% such that the second coordinate converges. Finally there is a subsequence (")
of (:U(kfl)) such that all coordinates converge. By the above proposition the subsequence
(z¥)) converges in R »

The same statement is true for subsets B C CF.

Definition 6.8 Let (X, d) be a metric space. A sequence (z,) of elements of X is said to
be a Cauchy sequence if for every € > 0 there exists a positive integer ng € N such that

d(Tp, m) <e forall m,n > ny.

A metric space is said to be complete if every Cauchy sequence converges.
A complete normed vector space is called a Banach space.

Proposition 6.14 The euclidean k-space RF is complete.
Proof. Let (z), Zn = (Tp1, ..., Tnk), be a Cauchy sequence in R¥. Since
| Tni — T | < [T — T

for every ¢ = 1,...,k, the sequences (z,;),en are Cauchy sequences in R. Since R is
complete (Proposition 2.16), (z,;) converges and so does (z,) by Proposition 6.12. =

Note that the unitary k-space CF is also complete.

Q 20. Consider the normed vector spaces E; = (R, ||[|;), j = 1,2, cc.

Prove that a sequence (z,), T, € R¥, converges in F) if and only if it converges in Ey if
and only if it converges in F.

Definition 6.9 (e-0 definition) A mapping f: X — Y from the metric space X into
the metric space Y is said to be continuous at a € X if for every £ > 0 there exists 6 > 0
such that for every x € X

d(z,a) <6 implies d(f(z),f(a)) <e. (6.7)
The mapping f is said to be continuous on X if f is continuous at every point a of X.

As in the case of real functions we have an equivalent characterization of continuous
functions using sequences. The proof is completely the same as the proof of Proposition
3.13.1; we omit it.

Proposition 6.15 A mapping f: X — Y from the metric space X into the metric space
Y s continuous at a point a € X if and only if

lim f(z) = f(a) (63

i. e. if for any sequence (x,), x, € X, x, # a, with lim z, = a, lim f(z,) = f(a).
n—o0 n—oo
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Proposition 6.16 The composition of two continuous mappings is continuous.

The proof is completely the same as in the real case (see Proposition 3.4) and we omit it.

Proposition 6.17 (a) The projection mapping p;: RE — R, i« = 1,...,k, given by
pi(Z1, ..., xK) = ; 1S conlinuous.

(b) Let U C R* be open and f,g: U — R continuous functions on U. Then f + g, fg,
| f|, and, f/g (9 # 0) are continuous functions on U.

(¢) Let X be a metric space. A mapping

f: (fla"'afk): X%Rk
s continuous if and only if all components f;: X — R, 1 =1,...,k, are continuous.

Proof. (a) Let () be a sequence converging to a = (ay,...,a;) € R¥. Then the sequence
(pi(z,)) converges to a; = p;(a) by Proposition 6.12. This shows continuity of p; at a.
(b) The proofs are quite similar to the proofs in the real case, see Proposition2.3. As a
sample we carry out the proof in case fg. Let a € U and put M = max{| f(a) |, | f(b) |}
Let € > 0, € < 3M?2, be given. Since f and g are continuous at a, there exists § > 0 such
that

|z —a|| <d implies |f(z)— f(a)|< L,
o M (6.9)
|z —al| <§ implies |g(z)—g(a)| < YR

Note that

fo(z) = fg(a) = (f(z) — f(a))(g(z) — 9(a)) + f(a)(9(z) — g(a)) + 9(a)(f(z) — f(a)).

Taking the absolute value of the above identity, using the triangle inequality as well as
(6.9) we have that ||z — a|| < § implies

| f9(x)—Ffg(a) | < | f(z)=f(a)[[g(z)—g(a) [+ f(a)|[9(x) —g(a) |+ g(a) || f(z) — f(a) |
g2 € £ e € €
< 9M2+M3M+M3M S§+§+g—6.
This proves continuity of fg at a.
(c) Suppose first that f is continuous at a € X. Since f; = p;°of, fi is continuous by the
result of (a) and Proposition 6.16.
Suppose now that all the f;, i = 1,...,k, are continuous at a. Let (z,), , # a, be a
sequence in X with lim, ,, z, = a in X. Since f; is continuous, the sequences (f;(z,)) of
numbers converge to f;(a). By Proposition 6.12, the sequence of vectors f(z,) converges

to f(a); hence f is continuous at a. m

Example 6.8 Let f: R?® — R? be given by

sin ——ZEe
f(x,y,z) — ( 22 +y2+22+1 ) )

log |z +y* + 2>+ 1|
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Then f is continuous on U. Indeed, since product, sum, and composition of contin-

uous functions are continuous, /x%+y2+ 22 + 1 is a continuous function on R®. We

also made use of Proposition 6.17 (a); the coordinate functions z, y, and z are continu-
$2+ez

/w2+y2+22+1

|22 +y>+22+1] >0, foz,y,2) = log|z®> +y?+ 2% + 1| is continuous. By Proposi-
tion 6.17 (¢) f is continuous.

ous. Since the denominator is nonzero, fi(z,y,2) = sin is continuous. Since

We give the topological description of continuous functions.

Proposition 6.18 Let X and Y be metric spaces. A mapping f: X — Y is continuous
if and only if the preimage of any open set in'Y s open in X.

Proof. Suppose that f is continuous and G C Y is open. If f~1(G) = @, there is nothing
to prove; the empty set is open. Otherwise there exists zo € f (G), and therefore
f(zo) € G. Since G is open, there is ¢ > 0 such that U.(f(zo)) C G. Since f is continuous
in zg, to € there exists § > 0 such that = € Us(zo) implies f(z) € Us(f(zo)) C G. That
is, Us(zo) C f (@), and z( is an inner point of f~!(G); hence f1(G) is open.

Suppose now that the condition of the proposition is fulfilled. We will show that f
is continuous. Fix zy € X and ¢ > 0. Since G = U.(f(zy)) is open by Lemma6.7,
f~Y@G) is open by assumption. In particular, zo € f~!(G) is an inner point. Hence,
there exists § > 0 such that Us(zg) C f~}(G). Tt follows that f(Us(zo)) C U.(xo);
this means that f is continuous at zy. Since xy was arbitrary, f is continuous on X. [

Remark 6.2 Since the complement of an open set is a closed set, it is obvious that the
proposition holds if we replace “open set” by “closed set.”

In general, the image of an open set under a continuous function need not to be open;
consider for example f(x) = sinz and G = (0, 27) which is open; however, f((0,27)) =
[—1,1] is not open.

Definition 6.10 Two metric spaces X and Y are said to be homeomorphic if there ex-
ists a bijective continuous mapping f: X — Y such that its inverse mapping is also
continuous.

Example 6.9 (a) The mapping f: R — (—1,1), f(z) = 2arctanz is continuous and
bijective and its inverse g: (—1,1) —» R, z = g(y) = tan (%y) is also continuous. Hence,
(—1,1) and R are homeomorphic.

(b) The two intervals [0,1) and [0, 1] are not homeomorphic. There is no continuous
surjective mapping f: [0,1] — [0, 1) since the image of a compact set under a continuous

mapping is compact, see Proposition 6.22 below.

6.5 Compact Sets

By an open cover of a set E in a metric space X we mean a collection {G,} of open
subsets of X such that £ C |, Ga-
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Definition 6.11 (Covering definition) A subset K of a metric space X is said to be
compact if every open cover contains a finite subcover. More explicitly, if {G,} is an open
cover of K, then there are finitely many indices a4, ..., a, such that

K CGg U---UGh,,.

The notion of compactness is of great importance in analysis, especially in connection with
continuity. In Proposition 6.19 below we will see that the above definition of compactness
is equivalent to the one already given in Definition 3.7 for subsets of R and C. Note that
the definition does not state that a set is compact if there exists a finite open cover—the
whole space X is open and a cover consisting of only one member. Instead, every open
cover has a finite subcover.

Example 6.10 (a) It is clear that every finite set is compact.
(b) Let (x,) be a converging to x sequence in a metric space X. Then

A={z,|neN}u{z}

is compact.

Proof. Let {G,} be any open cover of A. In particular, the limit point x is covered by,
say, Gg. Then there is an ng € N such that z,, € G, for every n > ng. Finally, x; is
covered by some Gy, k =1,...,ny — 1. Hence the collection

{Gk|k:0,1,...,n0—1}

is a finite subcover of A; therefore A is compact. n

Proposition 6.19 A subset K of a metric space X is compact if and only if every se-
quence in K contains a convergent in K subsequence.

Proof. (a) Let K be compact and suppose to the contrary that (z,) is a sequence in
K without any convergent to some point of K subsequence. Then every x € K has a
neighborhood U, containing only finitely many elements of the sequence (z,). (Otherwise
x would be a limit point of (z,) and there were a converging to x subsequence.) By
construction,
Kc|JU.
r€X

Since K is compact, there are finitely many points ¥, ..., y, € K with
KcU,U---uUl,,.

Since every U, contains only finitely many elements of (z,), there are only finitely many
elements of (z,,) in K—a contradiction.
(b) The proof is an the appendix to this chapter. m
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Corollary 6.20 (Heine—Borel) A subset K of R¥ or C* is compact if and only if K is
bounded and closed.

Proof. Suppose K is closed and bounded. Let (z,) be a sequence in K. By Corollary 6.13
(z,) has a convergent subsequence. Since K is closed, the limit is in K. By the above
proposition K is compact.

The proof of the converse direction is completely the same as in Proposition 3.7. [

The following Proposition is also an easy consequence of Proposition 6.19. But we give
an independent proof based on the covering definition of compactness in the appendix.

Proposition 6.21 (a) A compact subset of a metric space is closed and bounded.
(b) A closed subsets of a compact set is compact.

As in the real case (see Proposition 3.9 and Theorem 3.10) we have the analogous results
for metric spaces.

Proposition 6.22 Let X be a compact metric space.
(a) Let f: X — Y be a continuous mapping into the metric space Y. Then f(X) is
compact.
(b) Let f: X — R a continuous mapping. Then f is bounded and attains its mazimum
and minimum, that is there are points p and q in X such that

flp) = ig)gf(x), fg) = inf f(z).
Proof. (a) Let {G,} be an open covering of f(X). By Proposition6.18 f1(G,) is open
for every a. Hence, {f~'(G,)} is an open cover of X. Since X is compact there is an
open subcover of X, say {f ' (Gq,),---, f ' (Ga,)}. Then {Gq,...,Gq,} is a finite
subcover of {G,} covering f(X). Hence, f(X) is compact. We skip (b). ]

Similarly as for real function we have the following proposition about uniform continuity.
The proof is in the appendix.

Proposition 6.23 Let f: K — R be a continuous function on a compact set K C R.
Then f is uniformly continuous on K.

Q 21. For z,y € R define

di(z,y) = (z —y)?,

da(z,y) = /|72 —y|,

ds(z,y) = |2 —

dy(z,y) = [z —2y],
|z —y|

d —

5(-T,y) 1+|$—y"

de(x,y) = arctan(z — y).

Determine for each of these, whether it is a metric or not.
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6.6 Appendix E

Proof of Proposition 6.21. (a) Let K be a compact subset of a metric space X. We shall
prove that the complement of K is an open subset of X.

Suppose that p € X, p € K. If ¢ € K, let V¢ and U(q) be neighborhoods of p and ¢,
respectively, of radius less than d(p,q)/2. Since K is compact, there are finitely many
points ¢1,...,q, in K such that

KCcUyU---UU, = U.

fV=Van...NnV% then V is a neighborhood of p which does not intersect U. Hence
U C K¢, so that p is an interior point of K¢, and K is closed. We show that K is bounded.
Let € > 0 be given. Since K is compact the open cover {U.(z) | z € K} of K has a finite
subcover, say {U.(z1),...,Us(z,)}. Let U = J_, Uc(z;), then the maximal distance of
two points  and y in U is bounded by

2e + Z d(zi, x;).

1<i<j<n

This completes the proof of (a).

(b) Suppose FF C K C X, F is closed in X, and K is compact. Let {U®} be an open
cover of F. Since F° is open, {U%, F°} is an open cover {2 of K. Since K is compact,
there is a finite subcover @ of (2, which covers K. If F° is a member of @, we may
remove it from & and still retain an open cover of F'. Thus we have shown that a finite
subcollection of {U*} covers F. =

Proof of Proposition 6.19 (b). This direction is hard to proof. It does not work in arbitrary
topological spaces and essentially uses that X is a metric space. The prove is roughly
along the lines of Exercises 22 to 26 in [8]. We give the proof of Bredon (see [1, 9.4
Theorem))

Suppose that every sequence in K contains a converging in K subsequence.

1) K contains a countable dense set. For, we show that for every € > 0, K can be covered
by a finite number of e-balls (¢ is fixed). Suppose, this is not true, i.e. K can’t be
covered by any finite number of e-balls. Then we construct a sequence (z,) as follows.
Take an arbitrary x;. Suppose z1,...,x, are already found; since K is not covered by a
finite number of e-balls, we find z,,,; which distance to every preceding element of the
sequence is greater than or equal to €. Consider a limit point x of this sequence and an
¢ /2-neighborhood U of z. Almost all elements of a suitable subsequence of (z,) belong
to U, say z, and x, with s > r. Since both are in U their distance is less than . But this
contradicts the construction of the sequence.

Now take the union of all those finite sets corresponding to € = 1/n, n € N. This is a
countable dense set of K.

2) Any open cover {U,} of K has a countable subcover. Let x € K be given. Since
{Ua}aer is an open cover of K we find § € I and n € N such that U,,,(z) C U,. Further,
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since {z;};en is dense in K, we find i,n € N such that d(z,z;) < 1/n. By the triangle
inequality
x € Ul/n(:vl-) C Ug/n(x) C U/j.

To each of the countably many Ui, (z;) choose one Ug D Uy n(x;). This is a countable
subcover of {U,}.

3) Rename the countable open subcover by {V, },en and consider the decreasing sequence
C,, of closed sets

Co=K\|[JV&, C1DCyD---.
k=1
If C), = @ we have found a finite subcover, namely Vi, V5, ..., V,. Suppose that all the C,,
are nonempty, say x, € C,. Further, let  be the limit of the subsequence (z,,). Since
Tn; € Cp, for all n; > m and Cy, is closed, z € Cp, for all m. Hence z € (),,cx Cm-

However,
(Cu=K\|JVa=2.
meN meN
This contradiction completes the proof. [

Proof of Proposition 6.23. Let £ > 0 be given. Since f is continuous, we can associate to
each point p € K a positive number §(p) such that ¢ € KNUy ) (p) implies | f(q) — f(p) | <

e/2. Let J(p) ={q¢ € K | [p—q| <d(p)/2}.
Since p € J(p), the collection {J(p) | p € K} is an open cover of K; and since K is
compact, there is a finite set of points pq,...,p, in K such that

K CJp)U---UJ(pn). (6.10)

We put 6 := ;min{é(p1),...,6(p,)}. Then 6 > 0. Now let p and ¢ be points of K with
|z —y| < 6. By (6.10), there is an integer m, 1 < m < n, such that p € J(p,,); hence

[P = Pm| < %5(pm),
and we also have
(0= pn| <1p=al +1p=pn| <5+ 36(om) < 6(om).
Finally, continuity at p,, gives

| f(0) = F@) [ <1 f(p) = flom) [+ ] flom) — f(@) | <e.

This completes the proof. [
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