Chapter 7

Sequences and Series of Functions

In the present chapter we confine our attention to complex-valued functions (including
the real-valued), although many of the theorems and proofs which follow extend to vector-
valued functions without difficulty and even to mappings into general metric spaces. We
stay within this simple framework in order to focus attention on the most important
aspects of the problem that arise when limit processes are interchanged.

7.1 Discussion of the Main Problem

Definition 7.1 Suppose (f,), n € N, is a sequence of functions defined on a set F, and
suppose that the sequence of numbers (f,,(z)) converges for every x € E. We can then
define a function f by

f(z) = nh_)ngo fulz), z€E. (7.1)

Under these circumstances we say that (f,,) convergeson E and f is the limit (or the limit
function) of (f,). Sometimes we say that “(f,) converges pointwise to f on E” if (7.1)
holds. Similarly, if > f,(z) converges for every x € E, and if we define

fl@)=>fulz), z€E, (7.2)

the function f is called the sum of the series ) f,.

The main problem which arises is to determine whether important properties of the func-
tions f, are preserved under the limit operations (7.1) and (7.2). For instance, if the
functions f, are continuous, or differentiable, or integrable, is the same true of the limit
function? What are the relations between f] and f', say, or between the integrals of f,
and that of f? To say that f is continuous at x means

lim £ (£) = f(z).

Hence, to ask whether the limit of a sequence of continuous functions is continuous is the
same as to ask whether

lim lim f,(¢) = lim lim f,(¢) (7.3)

t—T n—oo n—oo t—=x
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168 7 Sequences and Series of Functions

i.e. whether the order in which limit processes are carried out is immaterial. @~ We
shall now show by means of several examples that limit processes cannot in general be
interchanged without affecting the result. Afterwards, we shall prove that under certain
conditions the order in which limit operations are carried out is inessential.

Example 7.1 (a) Our first example, and the simplest one, concerns a “double sequence.”
For positive integers m,n € N let

m

T m4n

Smn

Then, for fixed n

lim s, =1,
m—»00

so that lim lim s,,, = 1. On the other hand, for every fixed m,
n—o0 m—0oo

lim s,,, =0,

n—0oQ
so that lim lim s,,, = 0.
m—0o0 N—0Q
(b) Let
e R, neN
fn(m)_(l—{—:EQ)"’ T € ’ne 3
and consider
o0 o0 2
z
= " = —_ 7.4
1@ =310 =Y (74

Since f,(0) = 0, we have f(0) = 0. For z # 0, the last series is a convergent geometric
series with sum 1 + z2. Hence

0, z =0,
fe) = {1+x2, x #0,

so that a convergent sum of continuous functions may have a discontinuous sum.

(c) Let

sin(nx)
\/ﬁ ’

f(z) = lim f,(z) =0. Then f'(z) =0, and

n—oo

fulz) = r€R,neN, (7.5)

fal@) = v/ncos(nz),

so that (f}) does not converge to f'. For instance

J4(0) = Vi — oo

n—o0
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as n — oo, whereas f'(0) = 0. Note that (f,,) converges uniformly to 0.
(d) Let

ful@)=n’z(1-2»)", x€(0,1,n€eN. (7.6)
For 0 < z <1 we have lim,,_,, f,(z) = 0. Since f,,(0) = 0 we see that

lim f,(z) =0 z€][0,1]. (7.7)

n—0o0

A simple calculation shows that

! 1
/ (1 —2*)"dr =
0

2n+ 2
Thus
2
/ fnlz = omi2 — 400
as n — oo. If, in (7.6), we replace n? by n, (7.7) still holds, but we now have
! 1
B Jy = e Ty

whereas

/01 (73520 fn(x)) dz = 0.

Thus the limit of the integral need not to be equal the integral of the limit, even if both
are finite.

After these examples, which show what can go wrong if limit processes are interchanged
carelessly, we now define a new notion of convergence, stronger than pointwise convergence
as defined in Definition 7.1, which will enable us to arrive at positive results.

7.2 Uniform Convergence

Definition 7.2 We say that a sequence of functions (f,) converges uniformly on E to a
function f if for every ¢ > 0 there is a positive integer ny such that n > ng implies

| fu(@) = fl2)[ < e (7.8)
for all x € E. We write f, = f on E.

It is clear that every uniformly convergent sequence is pointwise convergent. Quite ex-
plicitly, the difference between the two concepts is this: If (f,) converges pointwise on E
to a function f, for every € > 0 and for every x € E, there exists an integer ny depending
on both ¢ and x € E such that (7.8) holds if n > ng. If (f,) converges uniformly on E it
is possible, for each € > 0 to find one integer ny which will do for all x € E.
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We say that the series Y f,,(x) converges uniformly on E if the sequence (s,(z)) of partial
sums defined by

sn(@) =) filw)
i=1
converges uniformly on F.

Proposition 7.1 (Cauchy criterion) (a) The sequence of functions (f,) defined on E
converges uniformly on E if and only if for every € > 0 there is an integer ng such that
n,m > ng and x € E imply

(b) The series of functions Z gr(x) defined on E converges uniformly on E' if and only

k=1
if for every € > 0 there is an integer ny such that n,m > ny and x € E imply

> al(@)

Proof. Suppose (f,,) converges uniformly on E and let f be the limit function. Then there
is an integer ng such that n > ng, x € E implies

<e.

| fa(z) = fl2)] <

)

N M

so that
| fo(@) = frn(@) | < | ful®) = f(@) [+ ] fn(z) = f(2) [ <€

ifm,n>ng, x €FE.

Conversely, suppose the Cauchy condition holds. By Proposition2.16, the sequence
(fn(x)) converges for every z to a limit which may we call f(z). Thus the sequence
(fn) converges pointwise on E to f. We have to prove that the convergence is uniform.
Let € > 0 be given, choose ng such that (7.9) holds. Fix n and let m — oo in (7.9). Since
fm(z) = f(x) as m — oo this gives

| fu(z) — fz)| <e

for every n > ng and x € F.
(b) immediately follows from (a) with fn(z) =Y 7_; gi(z). n

Example 7.2 Let f: R — R be defined by

fl@)=>" e (7.10)
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If f(z) exists, so does f(z + 27) = f(z), and f(0) = 0. We will show that the series

converges uniformly on [§, 27 — §] for every ¢ > 0. For, put

sn(z) = zn:sin kxr = Im <z": eik‘”) .
k=1 k=1

If § <z <27 — x we have

ei(n—|—1)z _ eiz 9 1 1

[ sn(2) | <

IN

n
§ : elkm
k=1

- < — - = =
eir _ 1 — | eiz/2 _ o—iz/2 | sin % sin g

5"

Note that | Imz| < |z| and | €| = 1. Since sin £ > sin § for §/2 < /2 < 7 — 6/2 we

have for 0 < m < n

n

sin kx
>

(VAN
=,
s =
NS
VR

1 1 1 1 1 2
<——- + + =)< —
sing \m n+1l n+1 m msin 5

The right side becomes arbitrary small as m — oco. Using Proposition 7.1 (b) uniform

convergence of (7.10) on [§, 2m — §] follows. Moreover f is continuous on [0, 27 — §] by

Theorem 7.4 below.
In the section on Fourier series we will see that

and f(xz + 2nm) = f(z) for all n € Z.

The following criterion is sometimes useful.

Proposition 7.2 Suppose

lim f,(z) = f(z), z€kE.

n—oo

Put
M, =sup| fo(z) — f(z)].

zelE

Then f, = f uniformly on E if and only if M,, — 0 as n — .
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Proof. Suppose the criterion of the proposition is satisfied. To € > 0 choose ng such that
n > ng implies M,, < . Then we have

|fn($)—f(x)|§g, nznOa iL'EE,

and (f,) converges uniformly to f. The other direction is also immediate. n

Theorem 7.3 (Weierstraf}) Suppose (f,) is a sequence of functions defined on E, and
suppose

| fa(2)| < Myn, z€E,neN. (7.11)

Then »_ fn converges uniformly on E if > M, converges.

Proof. If >~ M,, converges, then, for arbitrary ¢ > 0 there exists ng such that m,n > ny

implies
Zfz(x) < ZMZ <e, z€FL.
i=m i=m
Uniform convergence now follows from Proposition 7.1. [

7.2.1 Uniform Convergence and Continuity

Theorem 7.4 Let E C C be a subset and f,,: E — C, n € N, be a sequence of continuous
functions on E uniformly converging to some function f: E — C.
Then f is continuous on F.

Proof. Let a € E and € > 0 be given. Since f, = f there is an r € N such that
| fr(z)— f(z)| <e/3 forall ze€kFE.
Since f, is continuous on E, there exists § > 0 such that |z — a | < § implies
| fr(z) = fla) | < /3.
Hence |z — a| < 0 implies
| f(z) = fa) | < | f(z) = fr(@) [+ [ fr(2) = frla) [ + | fr(a) — f(a) | <

This proves the assertion. [

The converse is not true; that is, a sequence of continuous functions may converge to
a continuous function; although the convergence is not uniform. Example7.1 (e) is of
this kind. Example7.1(b) and (c) show that continuity of f, alone (without uniform
convergence) may give a discontinuous limit function f.

We give a first application to power series.
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Proposition 7.5 Let

o0

Zanz”, a, € C (7.12)

n=0

be a power series with radius of convergence R > 0.

(a) Then (7.12) converges uniformly on the compact disc {z | | z| < r} for every r with
0<r<R.

(b) The power series

o0

Znanz"_1

n=0
has the same radius of convergence R as the series (7.12) and hence also converges uni-
formly on the compact disc {z | |z | < r}.

Proof. Choose s such that
1 1 1

<s<R&=->->— 7.13
ree r s R (7.13)
Since lim o ¥/|an | = 1/R, Homework 6.3 (a) shows that
1
V| a,| < — for all but finitely many n.
s

Hence |a, | < 1/s™ if n > ng, and we can replace
1 n
"< — 2" < (5) ="
s S
if n > ng where 0 < ¢ < 1. By Theorem 7.3 and convergence of the geometric series,
(7.12) converges uniformly on the disc |z | <7 < R.
(b) This simply follows from the fact that

lim Q/("+1)|an+1|=n]i_{lgo\/nn+17@o Via, | = a.

n—oo

Remark 7.1 (a) A power series defines a continuous functions on |z | < R.
(b) Note that the power series in general does not converge uniformly on the whole open
disc of convergence | z| < R. As an example, consider the geometric series

@)=t = 34 2l <L
k=0

1—2

_n_

—+7 and we obtain, using Bernoulli’s inequality,

To € =1 and every n € N choose z, =

(1oL ) sy L hence —1— > 1 (7.14)
2z =|1— -n =1-z n . .
" n+1) — n+1 " 1—2,
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so that
n-l . 1 = i Zn
) B _ B _ — 5
‘ Sn l(zn) f(Zn) | ;ZTL 1— Zn ;Zﬂ 1-— Zn (734)

The geometric series doesn’t converge uniformly on the whole open unit disc.

Definition 7.3 If X is a metric space C(X) will denote the set of all continuous, bounded
functions with domain X. We associate with each f € C(X) its supremum norm

[flloe = lFIl = sup | f(2)]. (7.15)
zeX

Since f is assumed to be bounded, ||f|| < co. Note that boundedness of X is redundant
if X is a compact metric space (Proposition 6.22). Thus C(X) contains of all continuous
functions in that case.

It is clear that C(X) is a vector space since the sum of bounded functions is again a
bounded function (see the triangle inequality below) and the sum of continuous functions
is a continuous function (see Proposition6.17). We show that || f]|_, is indeed a norm on
C(X).

(i) Obviously, || f||,, > 0 since the absolute value | f(z) | is nonnegative. Further ||0| = 0.
Suppose now || f|| = 0. This implies | f(z) | = 0 for all z; hence f = 0.

(ii) Clearly, for every (real or complex) number A we have

IAfll = sup | Af(z) [ = | A[ sup | f(z) [ = | Al
zeX zeX
(iii) If h = f + g then
(W) [ <[ f(z) |+ 1g(@) | <[ fII+llgll, = eX;

hence
£+ gll < I f1l + llgll -

We have thus made C(X) into a normed vector space. Proposition 7.2 can be rephrased
as

A sequence (f,) converges to f with respect to the norm in C(X) if and only
if fn— f uniformly on X.

Accordingly, closed subsets of C(X) are sometimes called uniformly closed, the closure of
aset A C C(X) is called the uniform closure, and so on.

Theorem 7.6 The above norm makes C(X) into a Banach space (a complete normed
space).

Proof. Let (f,) be a Cauchy sequence of C(X). This means to every ¢ > 0 corresponds
an ng € N such that n,m > ny implies || f, — fi|| < . It follows by Proposition 7.1 that
there is a function f with domain X to which (f,,) converges uniformly. By Theorem 7.4,
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f is continuous. Moreover, f is bounded, since there is an n such that | f(z) — f,(z)| < 1

for all z € X, and f,, is bounded.

Thus f € C(X), and since f, — f uniformly on X, we have ||f — fn|]| = 0 as n — oc.
u

7.2.2 Uniform Convergence and Integration

Theorem 7.7 Let o be an increasing function on [a,b]. Suppose f, € R(a) on [a,b] for
all n € N and suppose f, — f uniformly on [a,b]. Then f € R(«) on [a,b] and

b b
/ fda= li_)m fnda. (7.16)
Proof. Put
en = sup | fu(z) — f(2)].
z€[a,b]
Then

fn_‘sngfgfn+5n,

so that the upper and the lower integrals of f satisfy

/a (fa—en)da < / fda < 7f dov < / (fa + 22 da (7.17)

Hence, o
0< /fda - Zfda < 2e,(a(b) — afa)).

Since ¢, — 0 as n — oo (Proposition 7.2), the upper and the lower integrals of f are
equal. Thus f € R(«). Another application of (7.17) yields

‘/abfda—/abfnda

This implies (7.16). =

< en((a(b) — a(a)).

Corollary 7.8 If f, € R(«) on [a,b] and if the series
f@) =) falz), a<z<b
n=1

converges uniformly on |a, b, then

/bfdazf: bfndoz.

n=1"7a
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In other words, the series may be integrated term by term.

Example 7.3 (a) For every real t € (—1,1) we have
tZ t3 0 (_1)n71
log(l+t)=t——+-F--= —1". 7.18
og(l+t)=t—+<F Z_} ; (7.18)

Proof. In Homework 13.5 (a) there was computed the Taylor series

of log(1 + z) and it was shown that T'(z) = log(1 + z) if z € (0,1).
By Proposition 7.5 the geometric series Z(—l)"az” converges uniformly to the function

n=0
——on [—r,7] for all 0 < r < 1. By Theorem 7.7 we have for all ¢t € [—r, 7]

1—|—:c
—_— t —_—
log(1 +1t) = log(1+z)|, = /0 T / "dx

S [arandn =y ED i(‘”“tn
= — €T T = =
n=0v0 :on+1 0 p=1 n
=
(b) For |t| < 1 we have
t3 t5 o t2n+1
tant =t ——~+ —F--- = 1" 7.19
arctan 575 T ;( U (7.19)

As in the previous example we use the uniform convergence of the geometric series on
[—r, 7] for every 0 < r < 1 that allows to exchange integration and summation

(e}

(e} t n
— 2 _ 2n _ (_1) 2n+1
aur(:tant—/0 1+ 22 / )l dr = E (—1)n/ z dx—ngzo 72n—|—1t .

n=0 0

Note that you are, in general, not allowed to insert ¢ = 1 into the equations (7.18) and
(7.19). However, the following proposition (the proof is in the appendix to this chapter)
fills this gap.

Proposition 7.9 (Abel’s Limit Theorem) Let Y > a, a convergent series of real
numbers.
Then the power series

o
= E an,z"
n=0

converges for x € [0,1] and is continuous on [0, 1].
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As a consequence of the above proposition we have

11 1 (1)t
log2=1—-+_-—-F...= ) 2
o8 2737 1] HZ:; n
s 1 1 1 = (=1)"
]+ 4= _

4 37577 nz::OQnJrl

Q 22. Define f,(z) = %e_m/n, neN, zeR,.

Prove that (f,(z)) converges uniformly to 0 on R,. However

o0

lim fndx =1.

n—oo 0
Hint. Use € > 1+ z + 22/2 for z € Ry and consider when seeking a suitable n the two
cases * < n and x > n parallel.
Solution.  Since €* > 1+ z + 2?/2 we have for z > 0

‘ x

xz
n2(142+2)

x
n2en n2+nx+x2/2"
Given ¢ > 0 choose n > 1/e. In case x < n use n® + nz + z°/2 > n® and therefore

X

<e. 7.20
n? + nx + x2/2 ¢ (7.20)

S|

<33<

In case > n, n? + nr + 2*/2 > 2?/2, and we have

z z 2 2
< <-< — < 2e. 7.21
n2+nx+x2/2‘_x2/2_x_n ¢ (7.21)

By (7.20) and (7.21) we have forn > 1/e and allz > 0, | f,(z) | < 2¢ which shows uniform
convergence of (f,) to 0 on R,.

Integration by parts with u =z, ' =1, v' = e /", and v = —ne */" gives
R . - R
/ we~ /" dz = 1 —nxe_’“/”‘R—l—n/ e2/™ dy
o n? n2 0 o
1
= (=nRe™ /" 4 n (—ne /™ 4 n))
n

One can see that for every fixed R the term on the right tends to 0 as n — co. On the

other hand -
/ fodr = lim (1 — weR/n> =1,
0

R—o0 n

which proves the second assertion.
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Q 23. Compute the sum of the series

Q 24. For z € (—1,1) compute the sum of the series

o0 o0 o0 .fL‘n
E n?z™, E n3z", E —.
n
n=1 n=1 n=0

7.2.3 Uniform Convergence and Differentiation

We have already seen, in Example 7.1 (¢) that uniform convergence of (f,,) implies nothing
about the sequence (f;). Thus stronger hypothesis are required for for the assertion that

fn — f implies f! — f'.

Theorem 7.10 Suppose (f,) is a sequence of continuously differentiable functions on
[a,b] (pointwise) converging to some function f. Suppose further that (f!) converges
uniformly on [a,b].

Then f is differentiable and on |a,b], and

fi(z) = lim fi(z), a<z<b. (7.22)

Proof. Put g(z) = lim,_,« f!(z), then g is continuous by Theorem 7.4. By the Theo-
remb5.14 Thm. 5.14 |

fa(z) = fula) + /w f(t) dt.

([ nea)

converges on [a, b] to [ g(t) dt. Therefore,

By Theorem 7.7 the sequence

ﬂ@=ﬂ@+/%@w.

Differentiation yields f'(z) = g(z) (Theorem 5.14 Thm. 5.14), which completes the proof.
u

Remark 7.2 (a) Note that under the assumption of the theorem it follows that (f,)
uniformly converges to f.

(b) For a more general result (without the additional assumption of continuity of f)
see [8, 7.17 Theorem]|.
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Corollary 7.11 Let f(z) = Y a,z™ be a power series with radius R of convergence.

Then for all x with x € (—R, R) we have
fl(z) = Znanx"’l. (7.23)
n=1
Proof. This is immediate from Theorem 7.10 and Proposition 7.5 (b). ]

Example 7.4 For z € (—1,1) we have

Since the geometric series f(z) = > - z" equals 1/(1 — z) on (—1,1) by Corollary 7.11

we have
1 B 1 I_OO nI_OO nil
1-z2 \1-z —Z(x)—zm )
n=1

n=1

Multiplying the preceding equation by x gives the result.

Corollary 7.12 Let f(z) = Y  a,x™ be a power series with radius R of convergence.
Then f is infinitely often differentiable on the interval (—R, R) and we have

1 n
ay = Hf( )(0), n € Ny. (7.24)
In particular, f coincides with its Taylor series.
Proof. Iterated application of Corollary 7.11 yields

F9e) = o= 1)<+ (0 =+ D™

n==k

In particular,

F®(0)
K

These are exactly the Taylor coefficients of f. [

f®(0) = klag, thatis a; =

Note that these two corollaries are also true for complex power series. However, we haven’t
defined complex differentiability, yet. We obtain that f(z) = >, a,2" is infinitely often
differentiable on the disc D = {z | | 2| < R}; and f coincides on D with its Taylor series
around 0.



180 7 Sequences and Series of Functions

7.3 Stone—Weierstraf} Theorem

The main part of this section is to prove that a continuous function on a compact interval
can be uniformly approximated by polynomials. This theorem has a nice generalization:
A characterization of certain dense subalgebras of C(X) where X is an arbitrary compact
set.

A linear subspace A of C(X) is a called a subalgebra if A contains the constant function
1 and f,g € A implies f-g € A.

We say A separates the points of X if given any two different points = and y in X there
is a function f € A such that f(z) # f(y).

Example 7.5 (a) If X = [0,1], the set of polynomials form a subalgebra of C(X) since
the product of two polynomials is again a polynomial. Also, the convergent on [0, 1] power
series f(z) =Y an,z™ form a subalgebra of C(X).

The polynomials f in the variables z and 1/z,i.e. f(z) =) a,z™ form a subalgebra
of C([1,2]).

(b) Let X =[0,1] x [0,1] and A ={f € C(X) | f(z,y) = g(x+y),9 € C([0,2])}. Then A
is a subalgebra of C(X) which does not separate the points of X since f((0,1)) = f((1,0))
for all f € A. We need more functions in A to separate the points of X.

(c) Let X as above and consider

A={feCX)| filz,y) =g(x+y) or faz,y)=g(x—1y), g€ C(0,2])}ug

Then A separates the points of X. For, if (z1,y;) and (29, y2) satisfy z1 + y1 # 2 + o

choose g(z) = z and we find fi(71,91) # f(22,y2). If 71 — y1 # T9 — yo then fo(z1,91) #
fo(x2,y2). However, if 21 +y; = x2 + y» and x1 — y; = T2 — Yo, then the points are equal.

Our first goal is to show that every closed subalgebra A of C(X) contains square roots,
more precisely, f € A implies \/f € A.
For, note that the binomial series

Vi—t=(1-1t)2 = i(—n" (i)t” = iant”

n=0

e
3
Il
TN\
N
N——
Il
N —
—~
N
I
[u—y
~—
—
N
|
3
_|_
[u—y
~—

.n! = (—1)"_1m (2”71_ 1)'

converges uniformly on [0, 1] since by Stirling’s formula there exists a constant C' with

a, < C—, né€N,

3
[N][e8 =

see Homework 21.3. Note that it is easy to see that the binomial series has radius of
convergence R = 1 (using the quotient test), so that it converges uniformly on any closed
subinterval of (—1,1). But we need more, the uniform convergence on [0, 1].
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Proposition 7.13 Let X be a compact metric space and A a (uniformly) closed subalge-
bra of C(X). If f € A, f >0, then \/f € A.

Proof. Without loss of generality we may assume that 0 < f <1 (replace f by f/ || fll.)-
Put g=1— f,then f=1—gand 0 < g < 1. We have

V@) =V1-g)=1-> ang(x)" (7.25)

Since | a,g(z)" | < Cn~%? and > n~%?2 converges, Theorem 7.3 ensures the uniform con-
vergence of (7.25). Since all partial sums are in A and A is uniformly closed, v/f € A.
]

Let us denote by C(X,R) and C(X, C) the space of bounded continuous real valued and
complex valued functions on X, respectively.

Theorem 7.14 (Stone—Weierstrafl) Let X be a compact metric space and A a uni-
formly closed subalgebra of C(X,R) such that A separates the points of X.
Then A = C(X,R).

Proof. By Proposition7.13 f € A implies | f| = y/f%? € A. Therefore f,g € A implies
that

(f+g+1f-gl)

N | =

(f+g—1[f—gl), max(f,g)=

N | =

min(f, g) =

are also contained in A.
Let z,y € X be different points; by assumption there exists h € A such that h(z) # h(y).
Since 1 € A for every A, 4 € R we see that

g(t) = i+ (A= o)

isin A and g(z) = A, g(y) = p.
Now let ¢ > 0, f € C(X), and z,y € X, z # y, be given. By the above argument there
exists a function f,, € A such that f,,(z) = f(z) and fy,(y) = f(y). Then

Uy ={§ € X | fay(§) < f(§) + ¢}

is an open neighborhood of y (We can write

Uy ={& | (o — F)(€) < £} = (fo — )7 (=00, €)).

Since fgy — f is continuous and (co,e) is open, the preimage U, is open.  Since
fzy(y) = fly) < fy) +¢,y € Uy.) Since X is compact there exist yi,...,y, € X such that
X =U;Uy;. Put hy =min{fs,; | j=1,...,n} then h, € A and we have h,(z) = f(z)
and h,(t) < f(t) + ¢ for all t € X (Since ¢ € X there is some 7, 1 <4 < n, such that ¢ € U,,.
Hence hy(t) < fz4,(t) < f(t)+¢.) So far we have found a set of lower bounds h, € A which
are close to f. We are going to find a close upper bound of f in A. The set

Ve={6€ X | hy(€) > f(&) — ¢}
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is an open neighborhood of x. Since X is compact there exist x1,...,x,, € X such that
X =", Vs and we set g = max{h,, | k=1,...,m}. Then g € A with

f—e<g<f+e.

Hence, ||f — gl|, <&, i.e. every e-neighborhood of f contains elements of A (namely g).
Thus f € A= A. .

Theorem 7.15 Let X be a compact metric space and A a uniformly closed subalgebra of
C(X,C) such that

(i) A separates the points of X;
(ii) f € A implies f € A.

Then A = C(X, C).

Proof. Set Ag = {Ref | f € A}. Since Ref = i(f + f), (ii) implies that A4, is a
subalgebra of A. Since

Im f = Re (=if), (7.26)

{Imf | f € A} and A = Ay + iA,. We show that A, separates the
points of X. Suppose z # y and f(x) # f(y) for some f € A. Hence
Re f(z) + ilm f(z) # Ref(y) + ilmf(y). If Ref(x) # Ref(y) we are done.
Otherwise Im f(z) # Im f(y). By (7.26), Re(—if) € Ay separates z andy. Since A, is
a closed subalgebra of C(X, R) separating the points of X, from Theorem 7.14 it follows
that A9 = C(X,R). Therefore, A = C(X,R) +iC(X,R) = C(X, C). n

Theorem 7.16 (Approximation Theorem of Weierstrafl) Let X be a nonempty
compact subset of R™. Then any continuous function on X s the uniform limit of poly-
nomials on X.

Proof. We consider the cases of real-valued and the complex-valued continuous functions
at the same time. Let z = (x1,...,2,) € X. Put

P(X,R)={f € C(X,R) | f(= Zakl Ky TE0h gk o€ Xk € Ny, gy, € R)}

finite
P(X,C)={feCX,C) | f(z Zakl ko T Th? - xb w € X, ki € No, agyok, € C}
finite
and let A be the uniform closure of P(X). Then A is a closed subalgebra of C(X). Note
that both P(X,R) and P(X,C) separate the points of X: If y # z are two different

points in X. Then z = (21,...,2,) and y = (y1,...,¥y,) differ at at least one coordinate,
say z; # y;. Then the polynomial p(x) = z; separates z from y. Theorem 7.14 shows that
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A=C(X,R).
Let f(2) =3 pnite Ohyokn T h? - - - 2kn € P(X, C) with complex coefficients ay,..r,. Then

fz) = f(2) = Z Tk, T4 257 - - Ty

finite

is also in P(X, C). By Theorem7.15 A = C(X, C). [

The same statement is true for compact subsets X C C".

Remarks 7.3 (a) If X is a nonempty compact subset of C' a (complex-valued) contin-
uous function on X can be uniformly approximated by complex polynomials in z and

zZ:
Q(X) = {f eCX) | flz) = Z a2’ 2%, n € Ny, aj € (D} :
Jyk=0
Note that z =z 4+ iy, zZ =2z — iy, x = %(z—i—?) and y = %(z — Z) with real z,y gives a
bijection between Q(X) and P(X,C), where X is viewed as a subset of R2.
(b) If St = {z € C | |z| = 1} is the unit circle, any continuous function on S' can be
uniformly approximated by the functions

T(S) = {feC(sl) | f(2) =) ¥ | neNo, ay e@}.
k=—n
This is immediate from (a) and z = 27! on S*.
(c¢) A complex-valued function on R is said to be periodic with period L if

flx+L)= f(x), forall ze€R.

Obviously, f(x +nL) = f(x) for all z € R and n € Z. Changing the variable we can
restrict ourselves to periodic functions with period 27. Indeed, if f has period L then

Flz) = f <£7T x)

has period 27. From F' we come back to f using the formula f(z) = F(2nz/L). In the
remainder of this chapter every periodic function has period 2.

Any complex-valued periodic continuous function on R is the uniform limit of trigono-
metric polynomials

T(C) = {f €CR) | f(z) = > axe™ | n € Ny, a; € @}

k=—n

This is immediate from (b) since any periodic function f(z) on R can be identified using

z = €% with a continuous function g(z) = f(x) on the unit circle S. For example, g(z) = 22

on the circle S' corresponds to the periodic function

flx)=g(z) =2* = (ei‘”)2 = %% = cos 2z +isin2z = (cos +isinz)?,
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The function cosz on R corresponds to (z +1/2)/2.
(d) Any real-valued periodic continuous function on R is the uniform limit of trigonometric
polynomials

Qo

5 + Zak coskx + by sinkx, ay, by € R}.

k=1

T(R) ={f€CR) | f(z) =

This is immediate from (¢) and T(R) = Re (T'(C)) = Im (T(QC)).

7.4 Fourier Series

In this section we consider basic notions and results of the theory of Fourier series. The
question is to write a periodic function as a series of cos kx and sin kx, £ € N. In contrast
to Taylor expansions the periodic function need not to be infinitely often differentiable.
Two Fourier series may have the same behavior in one interval, but may behave in different
ways in some other interval. We have here a very striking contrast between Fourier series
and power series.

Special periodic functions are the trigonometric polynomials.

Definition 7.4 A function f: R — R is called trigonometric polynomial if there are real
numbers ay, by, £ =0,...,n with

f(z) = % + Z ay cos kx + by sin kx. (7.27)
k=1

The coefficients a; and b, are uniquely determined by f since

1 2w
ak:—/ f(x)coskxdx, k=0,1,...,n,
T Jo

2 (7.28)
1 Y3
by, = —/ f(z)sinkzdz, k=1,...,n.
T™Jo
This is immediate from
2
/ coskx sinmxdx =0,
0271'
/ coskx cosmx dr = woy,y,, k,m €N, (7.29)
0

2T
/ sin kxz sinmx dx = mogm,
0

where 0, = 1 if £k = m and dg,, = 0 if £ # m is the so called Kronecker symbol, see
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Homework 21.4. For example, if m > 1 we have

1 27 1 2w ao n
— dr = — — k by sin k d
7T/0 f(z) cosmzx dx /0 (2 +Zakcos x + by sinkzx | cosma dx

™
k=1

n 2w
(Z / (ag cos kx cos mz + by, sin kx cos mx) dx)
k=1"0

= — ( E a'kﬂ'&km> = Q-
™
k=1

Sometimes it is useful to consider complex trigonometric polynomials. Using the formulas
expressing cos z and sin z in terms of € and e '* we can write the above polynomial (7.27)

N | =

—_

fl@) =Y ce*, (7.30)

where ¢y = ag/2 and

1 1
ck:§(ak—ibk), c,kzi(ak—{—ibk), kZl

To obtain the coefficients ¢, using integration we need the notion of an integral of a
complex-valued function, see Section 5.5. If m # 0 we have

b N
elm.’L‘ d./I,l — '_elml'
o im

If a =0 and b =27 and m € Z we obtain

om 0, € 7\ {0},
/ e dy = { " {0} (7.31)
0

a

2r, m=0.

We conclude,
1 2 —ikx
Cp = — flx)e ™ dz, k=0,%+1,...,%n.
2 Jo

Definition 7.5 Let f: R — C be a periodic function with f € R on [0, 27]. We call

1 27 .
Cp = —/ flx)e % dz, keZ (7.32)
2 Jo
the Fourier coefficients of f, and the series
Z crel® (7.33)
k=—0o0

the Fourier series of f.
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The Fourier series can also be written as

Qo

5 + Z ay, cos kx + by sin kx. (7.34)

k=1

where a; and by are given by (7.28). One can ask whether the Fourier series of a function
converges to the function itself. It is easy to see: If the function f is the uniform limit of
a series of trigonometric polynomials

o0

fl@) =) we* (7.35)

k=—o00

then f coincides with its Fourier series. Indeed, since the series (7.35) converges uniformly,
by Proposition 7.7 we can change the order of summation and integration and obtain

Cp = i o i ,.Ymeimz e—ilcz dr
2 Jo

1 S _271' )
"o Z / Y€ "R dg = .
0

m=—0oQ

In general, the Fourier series of f neither converges uniformly nor pointwise to f. For
Fourier series convergence with respect to the L2-norm

1 2m %
1= (55 [ 177 a2) (736

is the appropriate notion.

7.4.1 A Scalar Product on the Periodic Functions

Let V' be the linear space of periodic functions f: R — C, f € R on [0, 27]. We introduce
an inner product on V' by

1 2w
(h9) =5 | T@o@ds, fgev.
m™Jo
One easily checks the following properties for f,g,h € V, A\, u € C.

(f+g,h)=(f,h)+{g,h),
(f,g+h)=(f,9)+(f,h),
(M, pg) =M (f,9),

(f,9) =g, f)-

For every f € V we have (f, f) = 1/(2r) ["| f|” dz > 0. However, (f, f) = 0 does
not imply f = 0 (you can change f at finitely many points without any impact on
(f, ). If f €V is continuous, then (f, f) = 0 implies f = 0, see Homework 14.3. Put
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”f”2:: <faf)

Note that in the mathematical literature the inner product in L?(X) is often linear in the
first component and antilinear in the second component. Define for £ € Z the periodic
function e;: R — C by e;(x) = ¢**, the Fourier coefficients of f € V take the form

Ck:<ekaf>a ke 7.
From (7.31) it follows that the functions ey, k € 7Z, satisfy
(ex, er) = Ogi- (7.37)

Any such subset {e; | £ € N} of an inner product space V satisfying (7.37) is called an
orthonormal system (ONS). Using ey (z) = cos kx+isin kz the real orthogonality relations
(7.29) immediately follow from (7.37).
Note that the notions of convergent and Cauchy sequences as defined in Section 6.2 still
makes sense; however, the limit in V' is not unique. Let f,, f € V, we say that (f,)
converges to f in Ly (denoted by f, W f) if
2

Tim I, = £, = 0.

Explicitly

1 27
o [ | fale) = f@)]” dz — 0.

271' 0 n—o00

Lemma 7.17 Suppose f € V has the Fourier coefficients cx, k € Z and let v, € C be
arbitrary. Then

<

f- Z VkCk

k=—n k=—n

Hf— Z Cr€k

2 2
, (7.38)

2 2

and equality holds if and only if ¢y, = v for all k. Further,

f= Z CrCk

k=—n

2

=l = > e[ (7.39)

2 k=—n

Proof. Let ) always denote Z . Put g, = > vkex. Then

k=—n

(Frga) = (£;Dwer) = L lfren) = Lawn

and (e, gn) = Yk such that
<gnagn) = Z | Yk |2 .

Noting that [a —b | = (a — b)(@—b) = |a |’ + | b|* — @ — ab, it follows that
=11l = X @ — X e + 2w
= [IF1l; =X ex "+ X [ — e (7.40)
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which is evidently minimized if and only if 7x = ¢,. Inserting this into (7.40), equation
(7.39) follows. m

Corollary 7.18 (Bessel’s Inequality) Under the assumptions of the above lemma we
have

o0 1 2w
> el g [ 11 (7.41)
k=—00

Proof. By the lemma, for every n € N we have

n
Do le P <IIfll-

k=—n

Taking the limit n — co shows the assertion. [

Note that Lemma7.17 implies that the Fourier series > "p- _ cxex of f converges in L? to
f if and only if

Yo Ll =1If1;- (7.42)

k=—00

Our first main result is that (7.42) is indeed true for any f € V. Let use write

su(f) = sa(f32) = D ce™ (7.43)

denotes the nth partial sum.

Theorem 7.19 (Parseval’s Completeness Theorem) The ONS{e; | k € Z} is com-
plete. More precisely, if f,g € V with

o o0
Fro ) cker, g~ > rer,

k=—o00 k=—00
then
1 2w 9
0 Jim s [ 1= =0, (7.44)
1 2 _ o
(i) g/o Fgdz= > T, (7.45)
k=—00
1 2m 2 - ) CI,2 1 >
(iii) 2—/ | fI" dx = Z len | = ZO +3 Z(ai +b2)  Parseval’s formula.
T Jo k=—00 k=1

(7.46)
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Proof. Let € > 0 be given. Since f € R on [0, 27| there exists a continuous function h € V
such that

1/ = hlly <&, (7.47)

see Homework 16.5. By Remarks 7.3 (c), there is a trigonometric polynomial p, such that
| h(z) — p(z) | < ¢ for all z. Note that for k& € V' continuous,

9 1 27 9 1 27 9 9
kI3 == [ 1kPaz< o [ IRIZ do= kI,
T Jo T Jo
Hence
|h—pll, <e (7.48)
If p has degree ny, Lemma 7.17 shows that
|1h — sn(h)||, < ||[h—p|l, forall n > n,. (7.49)

By Bessel’s inequality (Corollary 7.18), ||s,(k)||, < ||£||5, ¥ € V. This gives with A — f in
place of k

[8n(h = )lly = llsa(h) = sulHlly < NI = flly <& (7.50)
Now the triangle inequality for [|-||, combined with (7.48), (7.49), and (7.50) gives
1f = sn(Dlly <N = hlly + [ = sn(W)]] + [Isn(h) = sa()I] <3¢ (1 2> o).
This proves (7.44).

We have
<Sn(f)ag> = <chekag> :ZQ<ek:g) :ZQ’YIC (751)
By the Cauchy-Schwarz inequality we have
[(f,9) = (sn(), 9 | = 1{f = sa(f), ) | <WIF = su( D)2 9l (7.52)
which tends to 0 as n — oo, by (7.44). Comparing (7.51) and (7.52) gives (7.45). Finally,
(7.46) is the special case of (7.45) with g = f. ]

Example 7.6 (a) Consider the periodic function f € V given by

1 0<zx<m

J(@) = {—1, T <x<2T.

Since f is an odd function the coefficients a; vanish (see Homework 22.1). We compute
the Fourier coefficients b,. end nein

0, if k is even,

2 [T 2 2
b :—/ sinkxdr = — (—coskz|T = — ((-1)""' +1) =
SR | b= (D ) L if ks odd..
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The Fourier series of f reads

4 SN sin(2n + 1)z
fN;ZQ.

o 2n+1

Noting that

2_“3 1 2 | 52
Z|Ck\ —Z+§Z(%+ o)

kEZ neN

Parseval’s formula gives

o0

2 1 2m 2_8 _.8 _
||f||2:% o dl'—l— Zb W—Z 2n+ = ﬁ81:>81_

nE]N

oo| A

9]
n=1 n?

Now we can compute s = Y . Since this series converges absolutely we are allowed
to rearrange the elements in such a way that we first add all the odd terms, which gives

s1 and then all the even terms which gives so. Using s; = 72/8 we find

s§=S So =S

! 0=t 2 62
. 1 . S
S = 80+_ _2+_+ —$1+Z
S——351 6

(b) Fix a € [0,27] and consider f € V with

1 [ a
The Fourier coefficients of f are cg = — / dr = — and
21 J, 2T

_ _ 1 ¢ —ikx _; —ika __
ck—(ek,f)—%r/oe dx—QWk(e 1), k # 0.

Ifk#£0,
1 ika
|Ck‘2:4ﬁ2k2 (1_ek)(1_

hence Parseval’s formula gives

_ikay _ L —coska
)= o
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where s = Y 1/k% On the other hand

1 [ a
2

Hence, (7.44) reads

k=1
coska a®> ar 7w (a—m)? 7°
w1 276 1 1o ([T
k=1
Since the series

. cos kx
> i (7.54)
k=1

converges uniformly on R (use Theorem 7.3 and )", 1/k? is an upper bound) (7.54) is the
Fourier series of the function

.\ 2
%—7{—2, z € [0, 27].

Since the term by term differentiated series converges uniformly on [§, 27 — 4], see Exam-
ple 7.2, we obtain

_oosinkx_i cos kx '_ ($—7T)2_7T_2 I_x_w
LT 2 ) 4 12) 2

1 =1

which is true for z € (0, 27).

Theorem 7.20 Let f: R — R be a continuous periodic function which is piecewise
continuously differentiable, i. e. there exists a partition {to,...,t.} of [0,2n] such that
fllti—1,t:] is continuously differentiable.

Then the Fourier series of f converges uniformly to f.

Proof. Let @;: [t;_1,t;] — R denote the continuous derivative of f|[t;_1,%;] and p: R = R
the periodic function that coincides with ¢; on [t;_1, t;]. By Bessel’s inequality, the Fourier
coefficients 7, of ¢ satisfy

o
Yl < el < co.

k=—o00

If k # 0 the Fourier coefficients ¢, of f can be found using integration by parts from the

Fourier coeflicients of 7.
t ki
i —ikz
o —/t o(x)e dx) :
i—1

i—

[ i@ean =1 (et

i
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Hence summation over ¢ = 1,...,r yields,
1 2 . 1 T t; .
Cp = —/ flz)e *dy = — / f(z)e ** dxy
21 J, 2m Zz_; tiy
. 2m .
-1 —ikx —1k
=5 i o(x)e x ?

Note that the term .

> fwe

vanishes since f is continuous and f(27) = f(0). Since for o, 8 € C we have |af| <

%(\a\2+|ﬁ\2), we obtain
1 1 )
‘Ck‘§§<—|k|2+|fyk|>.

o o0
1
Since both E w2 and g | vk |” converge,

k=1 k=—00

ti—1

o0

Z lep | < 0.

k=—o0

Thus, the Fourier series converges uniformly to a continuous function g (see Theorem 7.4).
Since the Fourier series converges both to f and to g in the L? norm, ||f — ¢||, = 0. Since
both f and ¢ are continuous, they coincide. This completes the proof. [

Note that for any f € V, the series ), , |ck * converges while the series D kez |k |
converges only if the Fourier series converges uniformly to f.

7.5 Appendix F

Proposition 7.21 There exists a real continuous function on the real line which is
nowhere differentiable.

Proof. Define
pz) =|z|, ze€l-11]

and extend the definition of ¢ to all real x by requiring periodicity
o +2) = p(z).

Then for all s,t € R,

[p(s) — ()| < |s—t]. (7.55)
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In particular, ¢ is continuous on R. Define

r@ =3 (3) etro), (7.56)
n=0
Since 0 < ¢ < 1, Theorem 7.3 shows that the series (7.56) converges uniformly on R. By
Theorem 7.4, f is continuous on R.

Now fix a real number z and a positive integer m € N. Put

!

T 2.4m

where the sign is chosen that no integer lies between 4™z and 4™(x + 6,,). This can be
done since 4™ | 6, | = 5. It follows that | p(4™z) — @(4™zx + 4™6,,) | = . Define

o = £ 00)) — )

Om

When n > m, then 479, is an even integer, so that v, = 0 by peridicity of ¢. When
0 <n <m, (7.55) implies | v, | < 4™. Since |7, | = 4™, we conclude that

f( +0m) — f(2) zm: (2) .

0.
m n=0

m—1
1
> 3" — 3"=—(3"+1).
> ; 5 (3" +1)
As m — 00, ,, — 0. It follows that f is not differentiable at x. [

Proof of Proposition 7.9. By Proposition 7.5, the series converges on (—1,1) and the limit
function is continuous there since the radius of convergence is at least 1, by assumption.
Hence it suffices to proof continuity at z = 1, i.e. that lim, 1 o f(z) = f(1). Put
Tn = Y pon Gk; then 7o = f(1) and r,4q — r, = —¢, for all nonnegative integers n € Z,
and lim,,_, o, r, = 0. Hence there is a constant C with |7, | < C and the series > > ;7 412"
converges for |z | < 1 by the comparison test. We have

o0 o o0
n __ n n+1
(1—1x) E T 2" = g Tn12" + E Tn1T
n=0 n=0 n=0

= ZT‘”+1.’L'H — Zrnl’n + 7"0 = — Z a,n.'L'n + f(].),
n=0 n=0 n=0
hence,
F) = f@) =1 —2) ) rapz™
n=0

Let € > 0 be given. Choose N € N such that n > N implies |7, | < e. Put § =¢/(CN);
then z € (1 — 4, 1) implies

|f(1)—f($)\S(1—56)Z_|7‘n+1\$"+(1—$)z\Tn+1|$"

<(1-2)CN+(1- x)er" = 2¢;
n=0
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hence f tends to f(1) asz — 1 —0. ]



