Chapter 8

Calculus of Functions of Several
Variables

In this chapter we consider functions f: U — R or f: U — R™ where U C R" is an open
set. In Proposition 6.17, we collected the main properties of continuous functions f. Now
we will study differentiation and integration of such functions in more detail

The Norm of a linear Mapping

Proposition 8.1 Let T € L(R", R™) be a linear mapping of euclidean spaces.
(a) Then there exists some C > 0 such that

ITz|| < C ||z||, for allz e R". (8.1)

(b) T is uniformly continuous on R™.

Proof. (a) Using the standard bases of R" and R™ we identify 7" with its matrix T = (a;;),
Te; =3 " ajje;. For x = (z4,...,x,) we have

n n
Tx= E A1jTjy - - -y E Amjlj |
=1 =1

hence by the Cauchy—Schwarz inequality we have

Tl =373 o< 373 a3 s = () 31 = il
i=1 j=1 =1 j=1 j=1 irj =1
where C = /3 a;. Consequently,
|Tz]] < Cl=|.
(b) Let € > 0. Put 6 = ¢/C with the above C. Then ||z — y|| < ¢ implies

[Tz = Ty|| = [|T(z —y)|| < Cllz =yl <&,
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196 8 Calculus of Functions of Several Variables

which proves (b). ]
Any linear operator T' € L(E, F) from a normed vector space E into a normed vector
space F' such that (8.1) holds for some C' > 0 is called bounded.

Definition 8.1 Let V and W normed vector spaces and A € L(V,W). The smallest
number C' with (8.1) is called the norm of the linear map A and is denoted by ||A]|.

|A|| = inf{C | ||[Az| < C||z|| for all z € V}. (8.2)
By definition,
[ Azl < [IA[] [l - (8.3)

Let T € L(R™, R™) be a linear mapping. One can show that

T
17 = sup L2 o ity = sup 7).
a0 |1zl jey= o<1

8.1 Partial Derivatives

We consider functions f: U — R where U C R" is an open set. We want to find
derivatives “one variable at a time.”

Definition 8.2 Let U C R” be open and f: U — R a real function. Then f is called
partial differentiable at a = (ay, ..., a,) € U with respect to the ith coordinate if the limit

D; f(a) :limf(al,...,ai+h,...,an)—f(al,...,an)

h—0 h (84)

exists where h is real and sufficiently small (such that (a1,...,a; + h,...,a,) € U).
D, f(x) is called the ith partial derivative of f at a. We also use the notations

0 0f(a) _
= 50 = 51 = (o)

D;f(a)

It is important that D;f(a) is the ordinary derivative of a certain function; in fact, if
g(z) = f(ay,...,z,...,a,), then D;f(a) = ¢'(a;). That is, D;f(a) is the slope of the
tangent line at (a, f(a)) to the curve obtained by intersecting the graph of f with the
plane z; = a;, j # i. It also means that computation of D;f(a) is a problem we can
already solve.

Example 8.1 (a) f(z,y) = sin(zy?). Then D, f(x,y) = y%cos(xy?) and Dyf(z,y) =
22y cos(xy?).
(b) Consider the radius function r: R" — R

r(z) = llzlly = /2t + - + 23,
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x = (z1,...,2,) € R". Then r is partial differentiable on R™\ 0 with

or Z;

oz () = (@) x # 0. (8.5)

Indeed, the function

J© =yJei+-+e -t a2
is differentiable, where x1,...,2; 1,21, ..., %, are considered to be constant. Using the

chain rule one obtains (with £ = x;)

or ’ 1 2§ Z;

— () = — = —
(c) Let f: (0,+00) — R be differentiable. The composition z — f(r(z)) (with the above
radius function r) is denoted by f(r), it is partial differentiable on R™\0. The chain rule

gives
0 or
G f 0 =F50 =

(d) Partial differentiability does not imply continuity. Deﬁne

fz,y) = {% =, (z,y) #(0,0),

0, (z,y) = (0,0)
Obviously, f is partial differentiable on R?\ 0. Indeed,
h,0
9 0,0) = 1im L9 im0 = 0.
oz h—0 h—0

Since f is symmetric in z and y, 3 or (0 0) = 0, too. However, f is not continuous at 0
since f(e,&) = 1/(4€?) becomes large as ¢ tends to 0.

Remark 8.1 In the next section we will become acquainted with stronger notion of dif-
ferentiability which implies continuity. In particular, a continuously partial differentiable
function is continuous.

Definition 8.3 Let U C R"™ be open and f: U — R partial differentiable. The vector

rad 0) = (32 @)oo (o)) (55)

is called the gradient of f at z € U.

Example 8.2 (a) For the radius function r(z) defined in Example 8.1 (b) we have
gradr(z) = —

Note that x/r is a unit vector (of the euclidean norm 1) in the direction z. With the
notations of Example 8.1 (c),

grad f(r) = f'(r)~.
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(b) Let f,g: U — R be partial differentiable functions. Then we have the following
product rule

grad (fg) = g grad f + f grad g. (8.7)
This is immediate from the product rule for functions of one variable

o, .. of . 0g

(c) f(z,y) = x¥. Then grad f(z,y) = ((y — 1)z¥~!, 2¥ log z).

Notation. Instead of grad f one also writes Vf (“Nabla f”). V is a vector-valued differ-

ential operator:
0 0
V=—...,m—|.
(6%1 ’ ’ 8$n)

Definition 8.4 Let U C R". A wector field on U is a mapping

v=(v1,...,0,): U—R" (8.8)

To every point x € U there is associated a vector v(z) € R™.
If the vector field v is partial differentiable (i. e. all components v; are partial differentiable)
then

n
81),‘

—1 O;

dive = (8.9)

1

is called the divergence of the vector field v.

Formally the divergence of v can be written as a scalar product of V and v
dive = (V,v) = Xn: iv
T i=1 Oz; "

The product rule gives the following rule for the divergence. Let f: U — R a partial
differentiable function and
v=(v1,...,0,): U =R

a partial differentiable vector field, then

0 _of 0v;
a—xi(fvz‘) = a5, v+ f oz,
Summation over i gives
div (fv) = (grad f,v) + fdivo. (8.10)

Using the nabla operator this can be rewritten as

(V, fo) =(Vfv)+ f({V,0).
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Example 8.3 Let F': R"\0 — R" be the vector field F'(z) = £, r = ||z||. Since

d]vgjzzgmZ =n and <.T,.7)>:T’2,
T
=1

Example 8.2 gives

1 1 —1
divzz<grad—,x>+—divx=<—£3,:1:>+E=n .
r r r r r

8.1.1 Higher Derivatives

Let U C R™ be open and f: U — R a partial differentiable function. If all partial deriva-
tives D;f: U — R are again partial differentiable, f is called twice partial differentiable.
We can form the partial derivatives D;D; f of the second order.

More general, f: U — R is said to be (k + 1)-times partial differentiable if it is k-times
partial differentiable and all partial derivatives of order &

Th—1
are partial differentiable.

A function f: U — R is said to be k-times continuously partial differentiable if it is k-
times partial differentiable and all partial derivatives of order less than or equal to k are
continuous. The set of all such functions on U is denoted by C*(U).

We also use the notation

0% f 0% f
= fow, D;Dif = =% D, ---D;
0x;0z; foiajs DiDif p) e o

ok f
2

D;D;f = - Y7
iDif x; 0x;, -+ -0z,

Example. Let f(z,y) = sin(zy?). One easily sees that

fyo = [y = 2y cos(zy®) — y”sin(zy®)2zy.

Proposition 8.2 (Schwarz’s Lemma) Let U C R" be open and f: U — R be twice
continuously partial differentiable.
Then for every a € U and all 1,5 =1,...,n we have

D;D,f(a) = D.D, (a). (8.11)

Proof. Without loss of generality we assume n = 2,7 =1, j = 2, and a = 0; we write (x,y)
in place of (z1,25). Since U is open, there is a small square of length 2§ > 0 completely
contained in U:

{(z,y) e R?* | |z| <4, |y| <} CU.

For fixed y € Us(0) define the function F': (—0,d) — R via

F(z) = f(z,y) — f(z,0).
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By the mean value theorem (Theorem 4.9) there is a £ with || < |z | such that
F(z) = F(0) = zF'(£).

But F'(&) = D1f(&,y) — D1f(£,0). Applying the mean value theorem to the function
y+— Dy(&,y), there is an n with || < |y | and

Dif(&,y) — D1f(£,0) = DaDi (&, n)y.

Altogether we have

f(@,y) = f(,0) = £(0,y) + £(0,0) = D D1 f (€, m)zy. (8.12)
The same arguments but starting with the function G(y) = f(z,y) — f(0,y) show the
existence of ¢ and ' with |&'| < |z |, |n'| <|y| and

f(@,y) — f(2,0) — £(0,y) + £(0,0) = DiDof (€', ) zy. (8.13)
From (8.12) and (8.13) for zy # 0 it follows that

D2D1f(§a 77) = D1D2(§Ia 77’)

If (x,y) approaches (0,0) so do (£,n) and (&',7n'). Since DyD;f and D;Dsyf are both
continuous it follows from the above equation

Dngf(O, 0) = D1D2f(0, 0)-

Corollary 8.3 Let U C R"™ be open and f: U — R™ be k-times continuously partial
differentiable. Then

Dy, --- Dy, f = Di'/r(k) o 'Diwu)f

for every permutation m of 1,...,k.

Proof. The proof is by induction on £ using the fact that any permutation can be written
as a product of transpositions (j <> j + 1). m

Example 8.4 Let U C R? be open and let v: U — R? be a partial differentiable vector
field. One defines a new vector field curlv: U — R?, the curl of v by

<61)3 8’02 8’1)1 8’1)3 8’1)2 81)1 )
curlv = .

— — — 8.14
8332 a.’Eg’ 8333 8$1’ 8951 8$2 ( )

Formally one can think of curlv as being the vector product of V and v

€1 €2 €3
— —|0 9 _o
curlv =V xv = o] P25 Dog|’

(%1 V2 U3
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where e, ey, and ez are the unit vectors in R3. By Proposition8.2, if f: U — R has
continuous second partial derivatives then

curl grad f = 0. (8.15)

Indeed, the first coordinate of curl grad f is by definition
0* f *f

(9.%‘28333 B a$36$2 =0

The other two components are obtained by cyclic permutation of the indices.
We have found: curlv = 0 is a necessary condition for a continuously partial differentiable
vector field v: U — R? to be the gradient of a function f: U — R.

8.1.2 The Laplacian

Let U C R™ be open and f: U — R has continuous partial second derivatives. Put

o f *f
Af = di A L | 1
f = div grad f or? ++ a2’ (8.16)
and call 52 5
A= — 1+ ...
0r? Tt oz

the Laplacian or Laplace operator. The Laplacian plays a fundamental role in mathemat-
ical physics. The equation Af = 0 is called the potential equation; its solution are the
harmonic functions.

If f depends on an additional time variable ¢, f: U xI — R, (z,t) — f(z,t) one considers
the so called wave equation

1 0%f
Af — —— 2 — 1
and the so called heat equation
10f
Af ———=0. 8.18
f=1a (8.18)

Example 8.5 (a) Let f: (0,+00) — R be twice continuously differentiable. We want to
compute the Laplacian Af(r), r = ||z||, x € R"\0. By Example 8.2 we have

grad /() = f'(r) ",

and by the product rule and Example 8.3 we obtain
Af(r) = div grad £(r) = ( grad f'(r), =) + f'(r) div >

= (FroT )+t

r X
- —
rr
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thus Af(r) = f"(r) + %= f'(r). In particular,
1

rn—2

Alogr =0, if n=2.

A

=0,

(b) We show that F': (R*\0) x R — R given by
1
F(z,t) = ;cos(r —ct), 1=z

is a solution of the wave equation (8.17)—of course, there are a lot of other solutions.
According to the above example we have

0> 20 cos(r—ct)
AF=|—+-—) ——=.
<(‘3r2 * r 87‘) r
Since
0 cos(r—ct) _ sin(r—ct) cos(r—ct)
or r B r r? ’
0 cos(r — ct) _ _cos(r —ct) N 2sin(r — ct) N 2cos(r — ct)’
or? T T 72 73
we have .
AF — _cos(r—c )
r
On the other hand,
0% cos(r —ct) _ cos(r —ct)
ot? r B r ’

and the assertion follows.

8.2 Differentiation

In this section we define (total) differentiability of a function f from R" to R™. Roughly
speaking, f is differentiable (at some point) if it can be approximated by a linear map-
ping. In contrast to partial differentiability we need not to refer to single coordinates.
Differentiable functions are continuous. In this section U always denotes an open subset
of R™. The vector space of linear mappings f of a vector space V into a vector space W
will be denoted by L(V, W).
Motivation: If f: R — R is differentiable at x € R and f'(z) = a, then
) r+h)— f(r)—azx
lim f(z+h) hf (z)
Definition 8.5 The mapping f: U — R™ is said to be differentiable at a point x € U
if there exist a linear map A: R™ — R™ such that

i I (& +h) = f(z) — Ah|| _
h—0 &

The linear map A € L(R",R™) is called the derivative of f at  and will be denoted by
Df(z).

=0.

0. (8.19)
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Remarks 8.2 (a) In case n = m =1 this notion coincides with the ordinary differentia-
bility of a function.

(b) If it exists, the linear map A is unique, see [9, 2-1 Theorem]; we refer to the euclidean
norm. However switching to other norms does not change the linear map A.

(c) It is often convenient to consider the matrix of Df(z) with respect to the
usual bases of R™ and R™. This m x n matrix A = (a;;), 1 =1,...,m, j =1,...,n
is called the Jacobian matriz of f at x, and denoted by f'(z). Using column vectors,
h = (hy,...,h,)" the map Ah is then simply given by matrix multiplication

ar ... Q1n hl
Ah=

am1  --- Qmnp hn

By Proposition 6.12 the limit

1
lim o (£ + ) = f(x) = AB).

exists and is equal to 0 if and only if the limit of every coordinate (i = 1,...,m) exists
and is 0

i iy (=gt =0, i=1m
We see, f is differentiable at x if and only if all f;, ¢ = 1,..., m, are differentiable at x.

fi(@)

In this case
fl(x) = :
[ ()
(d) Define a function ¢,: U — R™ (depending on both z and h) by
f(@+h) = f(z)+ Ah+ @u(h).
Then f is differentiable if and only if

[ex(M

T

cf. Proposition 4.2.

Example 8.6 Let us consider the function f: R? — R defined by f(z,y) = g(x) where
g is differentiable on R. Then A = D f(a,b) satisfies A(z,y) = ¢'(a)x (the corresponding
1 x 2-matrix is f'(a,b) = (¢'(a) 0)). To prove this, note that

| fla+h,b+ k)= flab) = A(hk)| _ [g(a+h)—g(a) = g'(a)h]
(R, Bl (R, Bl '
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Since ||(h, k)|| > | h | we continue

< g(a+h]1_g(a) _gl(a) )

But this term tends to 0 as h — 0 by the definition of ¢’'(a). We conclude that
(hik)—0 (R, K]

which proves the claim.

(b) Let C = (cij) € M(n x n,R) be a symmetric n X n matrix and define f: R* — R by

=0,

f(z) =(z,Cx) = chx:r], = (21,...,2,) €R"

t,j=1
If a, h € R™ we have

fla+h)={a+h,C(a+ h)) = {a,Ca) + (h,Ca) + {a, Ch) + (h, Ch)
= (a,Ca) + 2(Ca, h) + (h,Ch)
= f(a) + (v, h) + ¢(h),
where v = 2Ca and ¢(h) = (h,Ch). Since, by the Cauchy—Schwarz inequality,
[o(h) [ < IRILICRI < IRIICI BN < [ICIHIRI®,

limhﬂoﬁ = 0. This proves f to be differentiable at a € R"™ with derivative A,
A € L(R", R), and Az = (2Ca, ). The Jacobian matrix is a row vector f’(a) = (2Ca)".

Lemma 8.4 Let f: U — R™ differentiable at x, then f is continuous at x.
Proof. Define ¢,(h) as in Remarks8.2 (d) with Df(z) = A, then
li =
lim [0, (1) = 0
since f is differentiable at x. This gives
lim (x4 h) = £(z) + lim Ah + lim ¢, (k) = f(2).

This shows continuity. [

8.2.1 Basic Theorems
Proposition 8.5 Let f: U — R™, f(z) = (fi(z),..., fm(z)) be differentiable at

a=(ay,...,a,) € U. Then all partial derivatives %w@, i=1,...m, 7 =1,...,n ez
J
ist and the Jacobian matriz f'(a) takes the form
oh N
ox1 "' Oz
. > dfi(a
ro=|: f@= (%), (521
Ot Ot z; e

o cc dan ji=1,....n
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Proof. Let A = (A;;)

= f'(a) be the Jacobian matrix of f at a. Inserting h = te; =
0,...,t,...,0) into (8.20)

(see Remark 8.2 (d)) we have since ||h|| = |¢| and hj = ty;
o Wila+tes) = fila) = 30, Aihall

0=1
-0 [e;]]
_1m|fz(a15aa]+taaan)_fz(a)_tA1j|
t—0 |t|
— m fi(al,...,aj-i-t,...,an)—fi(a)_Aij
t—0 t
= — A .
a.’L'j Y
Hence A;; = ag;(a)' [
J

Example 8.7 (a) Special case n = 1; let f: (a,b) - R™, f(z) = (fi(x),..., fm(z))"
differentiable. Then f'(z) = (f{(x),..., f,,(z))" is the Jacobian matrix of f at x. It is a
column vector. It is also the tangent vector to the curve f at x.

Special case m = 1; let f: U — R be differentiable. Then

7@ = (L@ g @) = srad ).

It is a row vector and gives a linear functional on R"™ which linearly associates to each

vector y = (y1,-..,¥s)" € R™ a real number
Y1
Df(z) | : | = (grad f(z Z fo; (
Yn

(b) Let f: R® — R? be given by

_ (2 =3xy’ + 2
f(xa Y, Z) - (f17 fZ) - < sin(:cyz2) )
Then
fl( )_ (8(flaf2)) . ( 31‘2_3:1/2 —6.’13y 1 >
LA = oz, y,2)) \wz?cos(wy?z) x2%cos(xy®z) 2xyzcos(wy?z))”

Remark 8.3 Note that the existence of all partial derivatives does not imply the exis-
tence of f'(a). Recall Example8.1(d). There was given a function having partial deriva-
tives at the origin not being continuous at (0,0), and hence not being differentiable at
(0,0). However, the next proposition shows that the converse is true provided all partial
derivatives are continuous.

We say that f is continuously differentiable at x if f is differentiable in a neighborhood
of z and the assignment z — f’(z) is continuous.
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Proposition 8.6 Let f: U — R™ be continuously partial differentiable at a point a € U.
Then f is continuously differentiable at a.

The proof in case n = 2, m = 1 is in the appendix to this chapter.

Theorem 8.7 (Chain Rule) If f: R®* — R™ is differentiable at a point a and
g: R™ — RP is differentiable at f(a), then the composition gof: R™ — RP is differen-
tiable at a and

D(g°f)(a) = Dg(f(a))>Df(a). (8.22)
In matrix notation this equation can be written as
(9°f)'(a) = ¢'(f(a)) - f'(a). (8.23)

Proof. Let b = f(a), A = Df(a), and B = Dg(f(a)). If we define functions ¢, ¢, and p
by

o(x) = f(z) — f(a) — Az — a), (8.24)
Y(y) = g(y) — g9(b) — B(y —b), (8-25)
p(z) = g°f(z) — g°f(a) — B-A(z — a) (8.26)
then
o)l I[Pl _
Pl —all =" Sy o (520
and we have to show that
o le@l

z=a [|lz — all

)
p(z) = g(f(x)) = g(f(a)) = BA(z — a) = g(f(2)) — 9(f(a)) — B(f(z) - f(a) — ¢(2))
p(x) =[9(f(2)) —9(f(a)) = B(f(2) = f(a))] + Byp(z)
p(x) = (f(z)) + B(e(z)).

Using ||Tz|| < ||T|| ||z]| (see Proposition 8.1) this shows

le@)|l - ol @Dl IBe@ll - IvWI [If(z) = fla)]
|

lo—af = o~ fe—al Sly-bl  [c—ad

()l

+ 1Bl Iz —al|

Inserting (8.24) again into the above equation we continue

_ lv@Il | lle() + Az — o) +1IB| ()l

=t Ta—al lo —a]
_ Wl { le@l lo(@)]
S bHQM—xH*Wﬂ>+“mHm—aw

All terms on the right side tend to 0 as x approaches a. This completes the proof. [
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Corollary 8.8 Ifk =gof, A= f'(a), B=¢'(f(a)), and C = k'(a), then

O(ky,... kp)\ [ O(g1,---,9p) (f1,---, fm)
(8(x1,...,xn)) N <6(y1,...,ym)) 8(x1,...,xn)> (8.28)
0 r( 3 i .
8x] " (a) = Zazz 83;() r=1,....p,7=1,.... 1 (8.29)

Proof. This is immediate by inserting the Jacobian matrix f'(a) = <6f"@> (8.21) into
(8.23) . n

Example 8.8 (a) Let f(u,v) = w, v = g(z,y) = 22 + y* v = h(z,y) = xy, and
= f(g(-T, y)a h(a:,y)) = (-T2 + yQ)xy = $3y + $2y3.

0z 8_f dg 8_f %_ — 9m2 2 2
9 8x+8v 5 =" 2z +u-y =22y +y(z® +y°)

oz
g—z = 32%y + ¢
(b) Let f(u,v) = u®, u(t) = v(t) = t. Then F(t) = f(u(t),v(t)) = t' and

F'(t) = g—iu'(t) + g—‘zv'(t) =vu’ ' 1+u"logu-1

=t-t" ! +logtt’ = t'(logt + 1).

8.3 Taylor’s Formula

The Jacobian matrix gives an approximation of a function f by a linear function. Taylor’s
formula generalizes this concept of approximation to higher order. We consider quadratic
approximation of f to determine local extrema.

8.3.1 Directional Derivatives

Definition 8.6 Let f: U — R be a function, a € U, and z € R™ a unit vector, ||z|| = 1.
The directional derivative of f at a in the direction of the unit vector z is the limit

(D () — tim £ 12) = £ ()

t—0 t

(8.30)

Note that for z = e; we have D, f = D;f = 5=~

Proposition 8.9 Let f: U — R be continuously differentiable. The for every a € U and
every unit vector x € R, ||z|| = 1, we have

Dy f(a) = (x, grad f(a)) (8.31)
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Proof. Define g: R — R™ by
g(t) =a+tr = (a1 +txy,...,a, + tz,).
For sufficiently small ¢t € R, say |¢| < ¢, the function
h: RS R LR,
h(t) = f(g(t)) = flay +txy, ..., a, + tx,)

is defined. We compute A'(¢) using the chain rule.

= 4 (q; + tz;) = z; and ¢(0) = q, it follows

Since g(t) =

W (t) = Z %(a + tz) 25, (8.32)
Z fa;(a)z; = (x, grad f(a)).

On the other hand, by definition of the directional derivative

H(0) =i MO ROy flar i) 2 1) _ gy ey,
t—0 t t—0 t
This completes the proof. [

Corollary 8.10 Let f: U — R be k-times continuously differentiable, a € U and x € R"
such that the whole segment a + tx, t € [0,1] is contained in U.

Then the function h: [0,1] = R, h(t) = f(a + tz) is k-times continuously differentiable,
where

Z Di, --- Dy, f(a+ to)z;, - -z, (8.33)
B1yeenylp=1
In particular

81 yeeeylp=1

Proof. The proof is by induction on k. For k£ = 1 it is exactly the statement of the
Proposition. We demonstrate the step from k =1 to k£ = 2. By (8.32)

" d [0
h”(t) — Z E ( f(gx_: tx)) i,

1=1

n n 9
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In the second line we applied the chain rule to h(t) = fa; (@ +tx). ]

For brevity we use the following notation for the term on the right of (8.34):
W9(0) = (@ V) fl@)= Y, Dy Dif(a)zy i,

Remark 8.4 (Geometric meaning of grad f) If grad f(z) # 0, the angle 6 between
v and grad f(z) is defined and

Dyf(x) = (v, grad f(z)) = || grad f(«)|| cos 6.

It follows that D, f(z) becomes maximal if v and grad f(z) have the same direction
(0 = 0). Hence the vector grad f(z) points in the direction of maximal slope of f.

For example f(z,y) v/1—22—192 has

grad f(z,y) = (\/1_$2y2’ \/1z2y2)' This

corresponds to the picture that the maximal

| - slope on the upper unit half-sphere is in di-
\_// rection to the north pole (0,0, 1).

8.3.2 Taylor’s Formula

Theorem 8.11 Let f: U — R be (k+1)-times continuously differentiable, a € U, x € R"
such that a +tx € U for allt € [0,1]. Then there exists 6 € [0, 1] such that

k
1
fla+z) = mgo — (@ V)" f(a) + (k I (z V)1 f(a + 0x) (8.35)
f(a-i—x) =f(a)+2$f$l 2' szx]farza:]
i=1 2,7=1
Z Ty, - ‘xik+1fwi1'"$ik+1 (a+ 6z).

Proof. Consider the function A: [0,1] — R, h(t) = f(a + tz). By Corollary8.10, h is a
(k+1)-times continuously differentiable. By Taylor’s theorem for functions in one variable
(Theorem4.15 with z = 1 and a = 0 therein) Thm 4.15, we have

E gm0)  g*+D (g
e

By Corollary 8.10 for m = 1,...,k we have
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and
o) _ 1

(k+1)!  (k+1)!

the assertion follows. n

(z V) f(a + 0z);

It is often convenient to substitute z := x + a. Then the Taylor expansion reads

Zi (x — a) mf(a)+;'((:c—a)V)(k+1)f(a+9(az—a))
— (k-}-l).

+Z fml 2' Z _aj)fmimj(a)+"'+

,j=1

1
(k‘ + 1) Z (xh - a’i1) T (mik-',-l - aik+1)fxil'"$ik+l (a + 9($ - a’))

k41

Let us abbreviate the remainder term by

Z Tiy ** Tigy faiy iy, (0 F 0T).

Z17 Zk+1

Rii1(a, x)

We write the Taylor formula for the case n =2, k = 3:
fla+z,b+y) = f(a,b) + (fz(a,b)x + f,(a,b)y) +
gy (el 0027 + 262y 0,0) 5y + 0, D)7) +
+ % (foze(a,0)2® + 3 fozy(a, 0)2y + 3fuyy(a,b)zy® + fyuy f(a,b)y?)) + Ra(a, z).

Corollary 8.12 (Mean Value Theorem) Let f: U — R be continuously differen-
tiable, a € U, x € R"™ such that a +tx € U for allt € [0,1]. Then there exists 6 € [0, 1]
such that

fla+z)— f(a) = ZDjf(a—l-Ha:) z; = (grad f(a + 0z),z) . (8.36)

Proof. This is the special case k£ = 0. n

Corollary 8.13 Let f: U — R be k times continuously differentiable, a € U, x € R"
such that a +tx € U for all t € [0,1]. Then there exists p: U — R such that

flatz)=) —@V)"f(a) + pla), (8.37)

where
W0
220 |||
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In case k£ =1 this is exactly the characterization of differentiability from Remark 8.2 (d).

Remarks 8.5 (a) With the above notations let
(z V)

m)!

P () = f(a).

Then P, is a homogeneous polynomial of degree m in the set of variables z = (x1, ..., zy)
and we have

fla+2) =" Pu() + ¢(x),

m=0

le@ll _

=0 |af|*

where

Let us consider in more detail the cases m = 0,1, 2.

Py(a) = 2 (J;!(a)xo ~ f(a).

P, is the constant polynomial with value f(a).

Case m = 0.

Case m = 1. We have
Pi(z) =) D;f(a)z; = (grad f(a), z)
j=1

Using Corollary 8.13 the first order approximation of a continuously differentiable function
is

fla+z) = f(a) + (grad f(a),z) + p(z), lim —-~ =0. (8.38)
The linearization of f at a is
l(x) = f(a) + (grad f(a),z — a),

Bt = £(0) + 3 (@) — ).

The graph of this linear function z,.; = ¢(z) is the hyperplane through (a, f(a)) which
touches the graph of f.
Case m = 2. .

1

Hence, Py(x) is a quadratic form with the corresponding matrix (%DiDj (a)).

Definition 8.7 Let f: U — R be twice continuously differentiable. The Hessian matriz
of f at a € U is the n X n-matrix

(Hess f)(a) = (D:D; f(a)); (8.39)

ij=1"
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The Hessian matrix is symmetric.

As a special case of Corollary 8.13 (m = 2) we have for f € C*(U)

fla+z) = f(a) + (grad f(a),z) + % (x, Hess f(a)x) + ¢(x), (8.40)
where
pla) _ o
70 |||

Example 8.9 (a) We compute the Taylor expansion of f(z,y) = coszsiny at (0,0) to
the third order. We have

fz = —sinzsiny, fy = cosx cosy,
fz(0,0) =0, f4(0,0) =1,
fzz = —coszxsiny, fyy = —coszsiny, fzy = —sinzcosy
fl‘l‘(oao) = Oa fyy(oao) = Oa fzy(oao) = 0
fazy = — COST COS Y, fyyy = — cos T cos y,
fwwy(o,o) = _la fyyy(oao) - _15 fwyy(oao) - fwww(oao) =0.

Inserting this gives

f(@,y) =y + = (=32 — y*) + Ru(z,y;0).

The same result can be obtained by multiplying the Taylor series for cosz and sin y:

2 g Y3 1 i
1— 4+ ... L 4 =y= 2ty =L ...
( ST )(y 3] ) Yoty T g

(b) The Taylor series of f(z,y) = e at (0,0) is

o0 2\n
zy? _ (zy?) _ 2 124
e —Z o —1+xy+2xy+ ;
it converges all over R? to f.

8.4 Extrema of Functions of Several Variables

Definition 8.8 Let f: U — R be a function. The point x € U is called local mazimum
(minimum) of f if there exists a neighborhood V' C U of = such that

f@)> fly) (f(z) < fly)) forallyeV.
A local extremum is either a local maximum or a local minimum.

Proposition 8.14 Let f: U — R be partial differentiable. If f has a local extremum at
xz € U then grad f(z) = 0.
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Proof. For ¢+ = 1,...,n consider the function

This is a differentiable function of one variable, defined on a certain interval (—¢,¢). If f
has an extremum at z, then g; has an extremum at ¢ = 0. By Proposition4.7

9;(0) = 0.
0 f(z+te;

Since ¢4(0) = lim_, t)_f @) — f, («) and i was arbitrary, it follows that

gradf(:v) = (sz(ﬂt), T an($)) = 0.

Example 8.10 Let f(z,y) = /22+y? and U = {(z,y) | 2> + y* < 1}. Then
grad f(z,y) = (—z/r,—y/r) = 0if z = y = 0. If f has an extremum in U then at
the origin.

To obtain a sufficient criterion for the existence of local extrema we have to consider the
Hessian matrix. Before, we need some facts from Linear Algebra.

Definition 8.9 Let A be a real, symmetric n X n-matrix (a;; = a;;). The corresponding
quadratic form

Qz) = Z ai;zrix; = (x, Az)

ij=1
is called
positive definite if Q(x) > 0 for all x # 0,
negative definite if Q(x) <0 for all x # 0,
indefinite if Q(x) >0, Q(y) < 0 for some z, v,
positive semidefinite if Q(z) > 0 for all x,

negative semidefinite if Q(x) < 0 for all z.

Also, we say that the corresponding matrix A has the above properties.

Example 8.11 Let n =2, Q(z) = Q(z1,Z2). Then Q:(x) = 3z2+T7x2 is positive definite,
Qa(x) = —2? — 222 is negative definite, Q3(x) = x? — 223 is indefinite, Q4(x) = z? is
positive semidefinite, and Qs(x) = —x3 is negative semidefinite.

Proposition 8.15 (Sylvester) Let A be a real symmetric n X n-matriz and Q(x) =

(z, Ax) the corresponding quadratic form. For k=1,--- n let
a1 A1k
Ak = E 3 Dk - det Ak.
Ak1 Qkk

Let A\, ..., )\, be the eigenvalues of A. Then
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(a) @ is positive definite if and only if Ay > 0, Ao > 0,..., A, > 0. This is the
case if and only if D1 >0, Dy >0, ..., D, > 0.

(b) Q(x) is negative definite if and only if \y < 0, Ao <0, ... A\, < 0. This
is the case if and only if (—1)*Dy >0 for allk =1,...,n.

(c) Q(z) is indefinite if and only if, A has both positive and negative eigenval-
ues.

Proposition 8.16 Let f: U — R be twice continuously differentiable and let
grad f(a) =0 at some point a € U.

(a) If Hess f(a) is positive definite, then f has a local minimum at a.
(b) If Hess f(a) is negative definite, then f has a local mazimum at a.
(c) If Hess f(a) is indefinite, then f has not a local extremum at a.

Proof. By (8.40) and since grad f(a) =0,
fla+3) = f(a) + 5 (&, A2) + (z), (8.41)
where A = Hess f(a)

plz) _
=0 |||

bl

see Corollary8.13. (a) Let A be positive definite. Since the unit sphere S = {x € R" |
|z|| = 1} is compact and the map z — (z, Ax) is continuous, the function attains its
minimum, say «, on S,

a = min{(z, Az) | x € S} > 0.

We show that
(z, Az) > o|z||®, forallzeU. (8.42)

This is obvious in case x = 0. If x is nonzero, y = z/ ||z|| € S and therefore

0 < ) = (5 1) = o )

el lll EdlR

and (8.42) follows.
Now choose ¢ > 0 such that

lz]I*,  if flal] < 6.
From (8.41) and (8.42) it follows
o
fla+z) > f(a)+ 7 =,

hence
fla+x)> f(a), if 0<|az| <34,
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and f has a local minimum at a.

(b) If A = Hess f(a) is negative definite, consider — f in place of f and apply (a).

(c) Let A = Hess f(a) indefinite. We have to show that in every neighborhood of a there
exist 2’ and z" such that f(z") < f(a) < f(2'). Since A is indefinite, there is a vector
xz € R™\0 such that (x, Az) = a > 0. Then for small ¢ we have

1
fla+ta) = f(a) + 5 {ta, Ata) + p(tz) = f(a) + gﬁ + ().
If ¢ is small enough, |p(tz) | < ¢¢?, hence
fla+tx) > f(a), if 0<|t]|<o.

Similarly, if y € R™\ 0 satisfies (y, Ay) < 0, for sufficiently small ¢t we have f(a+ty) < f(a).
n

Example 8.12 z = f(x,y) = 42?2 — y*, U = {(z,y) | 2 + y* < 1} (a hyperbolic
paraboloid). We find

D f=8r=0, Dof=-2y=0 implies z =y =0.

Further,

f;c;c fwy
fyw fyy

The form is indefinite; the function has not an extremum at the origin (0, 0).
We want to determine the global extrema on the closed unit disc U = {(z,y) | 22+y? < 1}.

_‘8 0

= 16 < 0.
. _2‘ 6<0

Since there are no local extrema in the inner region, the global extrema are attained on
the boundary z? +y? = 1. Solving for 4> = 1 —2? we find g(z) = 42? — (1 —2?) =522 -1
which has local minima at x = 0, y = +1. Solving for z? =1 — y? , h(y) = 4 — 5y? has
local maxima at y = 0, z = £1. Finally, the global maxima and minima are f(£1,0) =4
and f(0,41) = —1, respectively.

Remark 8.6 To compute the global extrema of a function f € C?*(K) where K is a
compact subset of R" we have

(a) to compute the local extrema on the interior of K;
(b) to compute the global extrema on the boundary 0K

If f has no partial derivatives at some points one has to consider these points separately.
Later we will give a method to solve (b).

Example 8.13 Find the local and global extrema of f(z,y) = 2%y on G = {(z,y) € R? |
2 +y? < 1}.
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We have f € C®(G). Since grad f = (fs, fy) = (2zy, 2?) local extrema can appear only
on the y-axis x = 0, y is arbitrary. The Hessian matrix is

Hess f(0,y) = (fm fwy) = (;i 25)‘ = (251 8) )
=0 =0

fwy fyy
This matrix is positive semidefinite in case y > 0, negative semidefinite in case y < 0
and 0 at (0,0). Hence, the above criterion gives no answer. We have to apply the
definition directly. In case y > 0 we have f(z,y) = z?y > 0 for all x. In particular
f(z,y) > f(0,y) = 0. Hence (0,y) is a local minimum. Similarly, in case y < 0, f(z,y) <
f(0,y) = 0 for all . Hence, f has a local maximum at (0,y), y < 0. However f takes
both positive and negative values in a neighborhood of (0,0), for example f(g,¢) = &*

and f(e,—) = —e®. Thus (0,0) is not a local extremum.
We have to consider the boundary 2% + y? = 1. Inserting 22 = 1 — y? we obtain

9W) = f@ Y apyemy = Y|y e = A=y =y -9, |y[ <1

We compute the local extrema of the boundary z? + y* = 1 (note, that the circle has no
boundary, such that the local extrema are actually the global extrema).

] 1
Jd(y)=1-3y>=0, —.

|y|=\/?—)

Since ¢”(1/v/3) < 0 and ¢"(—1/4/3) > 0, ¢ attains its maximum 5 Aty = 1/4/3. Since

this is greater than the local maximum of f at (0,y), y > 0, f attains its global maximum

at the two points
2 1
Mo, = :I:\/j,— ,
b2 ( 3\/§>

where f(M; o) = 2%y = % g attains its minimum —% at y = —1/+/3. Since this is

less than the local minimum of f at (0,y), y < 0, f attains its global minimum at the
2

two points
N
myo = - ——,
2 3 V3
where f(mi) = 2%y = —;2-.

The arithmetic-geometric mean inequality shows the same result for x,y > 0:

P4y B2+ (22
3 3 ~\22

1 S 2) : s 2y < 2

— = —— T —.

3= Yy Y= 3 \/g

In Homework 25.5 there is an example where Hess f(0, 0) is positive semidefinite; however,
(0,0) is not a local minimum.
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8.5 The Inverse Mapping Theorem

Suppose that f: R — R is differentiable on an open set U C R, containing a € U, and
f'(a) # 0. If f'(a) > 0, then there is an open interval V' C U containing a such that
f'(x) > 0 for all x € V. Thus f is strictly increasing on V' and therefore injective with
an inverse function g defined on some open interval W containing f(a). Moreover g is
differentiable (see Proposition4.5) and ¢'(y) = 1/f'(x) if f(z) = y. An analogous result
in higher dimensions is more involved but the result is very important.

Theorem 8.17 (Inverse Mapping Theorem) Suppose that f: R" — R™ is continu-
ously differentiable on an open set U containing a, and det f'(a) # 0. Then there is an
open set V. C U containing a and an open set W containing f(a) such that f: V — W has
a continuous inverse g: W — V' which is differentiable and for ally € W. For y = f(z)
we have

J(y)=(f') ", Dyly)=(Df(x))™" (8.43)
For the proof see [8, 9.24 Theorem] or [9, 2-11].

Corollary 8.18 Let U C R™ be open, f: U — R"™ continuously differentiable and
det f'(x) #0 for all x € U. Then f(U) is open in R"

Definition 8.10 Let f: R™ — R" be continuously differentiable at x,
fl@)=f(z1,. . zn) = (i@, - xn)s ooy fu(Tr, -0 X))

then we call

a(fla"'afn)
O(z1,...,%n)

(z) = det f'(z) = det (%@’?) n (8.44)

the Jacobian of f at zx.

Remarks 8.7 (a) One main part is to show that there is an open set V' C U which is
mapped onto an open set W. This is not true for continuous mappings. For example sin
maps the open interval (0, 27) onto the closed set [—1,1]. Note that sinz does not satisfy
the assumptions of the corollary since sin’(7/2) = cos(7/2) = 0.

(b) From linear algebra it is well known that the Jacobian matrix f'(x) is invertible if and
only if its determinant det f'(x) is non-zero.

(c) Let us reformulate the statement of the theorem. Suppose

= f1($1: .- '7xn)7
Yo = f2($1: s axn)a

Yn = fn(xla ce ,.’L’n)
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is a system of n equations in n variables x,...,z,; y1, ..., Y, are given in a neighborhood
W of f(a). Under the assumptions of the theorem, there exists a unique solution x = g(y)
of this system of equations

T = gl(yla .- 'ayn),
Ty = g2(y13 - 'ayn)a

Tp = gn(ylv H 7yn)

in a certain neighborhood (z1, ..., z,) € U of a. Note that the theorem states the existence
of such a solution. It doesn’t provide an explicit formula.

(d) It should be noted that the inverse function g may exist even if det f’(z) = 0. For
example f: R — R, defined by f(x) = z3 has f'(0) = 0; however g(y) = /z is inverse to
f(z). One thing is certain if det f'(a) = 0 then g cannot be differentiable at f(a). If g
were differentiable at f(a), the chain rule applied to ¢g(f(z)) = = would give

and consequently
det ¢'(f(a)) det f'(a) = detid =1

contradicting det f'(a) = 0.

(e) Note that the theorem states that under the given assumptions f is locally invertible.
There is no information about the existence of an inverse function g to f on a fixed open
set. See Example8.14 (a) below.

Example 8.14 (a) Let x = r cos ¢ and y = 7 sin ¢ be the polar coordinates in R?. More
precisely, let

o= ()= (), g

7 sin ¢

The Jacobian is
oz, y) |z
or,e)  |ur Yy

Let f(ro,v0) = (zo,%0) # (0,0), then ry # 0 and the Jacobian of f at (ry, @) is non-zero.
Since all partial derivatives of f with respect to r and ¢ exist and they are continuous on
R?, the assumptions of the theorem are satisfied. Hence, in a neighborhood U of (z, yo)
there exists a continuously differentiable inverse function r = r(z,y), ¢ = ¢(z,y). In

cos@ —rsing
singp rcose

this case, the function can be given explicitly, r = /22 + y2, ¢ = arg(z,y). We want to
compute the Jacobian matrix of the inverse function. Since the inverse matrix

-1

cosp —rsing _( cosp sin ¢
sing rcosy N —%sincp %coscp



8.6 The Implicit Function Theorem 219

we obtain by the theorem

o)) _((ese  sinp ) _ (i
/ — = = z°+y \/Z‘ +y N
e = (565) = (Tary Sony |

Y T
2 +y2 x2 +y2

in particular, the second row gives the partial derivatives of the argument function with
respect to  and y

0arg(z,y) —y darg(z,y) z

ox a2 4 y? oy a4y

Note that we have not determined the explicit form of the argument function which is not
unique since f(r, p+2km) = f(r, @), for all k € Z. However, the gradient takes always the
above form. Note that det f'(r, ¢) # 0 for all r # 0 is not sufficient for f to be injective
on R*\ {(0,0)}.

(b) Let f: R?* — R? be given by (u,v) = f(z,y) where

u(z,y) =sinz —cosy, wv(zr,y) = —cosz+siny.
Since
a P T i . .
(v, 0) e = cosxwcosy — sinzsiny = cos(z + y)
0(z,y) |vs vy sinx cosy
f is locally invertible at (zo,y0) = (%, —7%) since the Jacobian at (zo,y) is cos0 =
1 # 0. Since f(%,—Z) = (0,—/2), the inverse function g(u,v) = (z,y) is defined in a

neighborhood of (0, —1/2) and the Jacobian matrix of g at (0, —v/2) is

1\t 1L

I 1 1=

V2 V2 V2 V2
Note that at point (7, %) the Jacobian of f vanishes. There is indeed no neighborhood of
(Z,%) where f is injective since for all ¢ € R

T
(F+65-1)=1(57) =00

8.6 The Implicit Function Theorem

Consider the function f: R* — R defined by f(x,y) = 22 +y?—1. If we choose (a, b) with
a # —1,1, there are open intervals A and B containig a and b with the following property:
if z € A, there is a unique y € B with f(x,y) = 0. We can therefore define a function
g: A — B by the condition g(z) € B and f(z,g(z)) = 0. If b > 0 then g(z) = V1 — 22
if b < 0 then g(x) = —/1 — 72. Both functions g are differentiable. These functions are
said to be defined implicitly by the equation f(x,y) = 0.

More generally we may ask the following: If f: R® x R — R and f(a,...,a,,b) =0
when can we find for each (zi1,...,2,) near (aq,...,a,) a unique y near b such that
f(z1,...,2,,y) =07 The answer is provided by the following theorem.



220 8 Calculus of Functions of Several Variables

Theorem 8.19 Suppose that f: R" x R™ — R™, f = f(x,y), is continuously differ-
entiable in an open set containing (a,b) € R"™™ and f(a,b) = 0. Let M(z,y) be the
m X m-matrix

(Datif'(2,9)) = (H(x,y)) = (%ﬁ) , dj=1,...,m.  (845)

If det M (a,b) # 0 there is an open set A C R™ containing a and an open set B C R™
containing b with the following properties: There exists a unique continuously differentiable
function g: A — B such that

(a) g(a) =0,
(b) f(z,g(z)) =0 for all z € A.

The Jacobian matriz ¢'(x) is given by

a(%klgx)) :_Z(M(xag(x))_l)kl'%xf(x)), k=1,...,m,j:1, ;1

=1

Proof. Define F': R x R™ — R" x R™ by F(z,y) = (z, f(z,y)). Let M = M(a,b). Then

F'(a,b) = (0]1" 0;;) = det F'(a,b) = det M # 0.

By the inverse mapping theorem Theorem 8.17 there exists an open set W C R"™ x R™
containing F'(a,b) = (a,0) and an open set V' C R™ x R™ containing (a, b) which may be
of the form A x B such that F': A x B — W has a differentiable inverse h: W — A x B.
Clearly, h is of the form h(z,y) = (z, k(z,y)) for some differentiable function & (since F'
is of this form). Let pp: R™ x R™ — R™, pa(x,y) = y be the projection onto the second
argument. Then pyoF' = f and therefore

f(@, k(z,y)) = foh(z,y) = (p2F)°h(z,y)
= pZO(FOh)(‘rE’ y) = p2(‘7‘" y) =Y.

Thus f(z, k(x,0)) = 0; in other words we can define g(z) = k(z, 0).
Since g is differentiable, it is easy to find the Jacobian matrix. In fact, since f;(z, g(z)) = 0,
1 =1,...n, taking the partial derivative af on both sides gives by the chain rule

01i(x,9(@)) i 0fi(w,g(x)) dgi(a)

0= 0z, — Oy 0z
0fi(x, 9(x)) gr () 0fi(x, 9(x))
e (32) |5

0
(afz z g ) (agk )
0z
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Since det M(a,b) # 0, det M(z,y) # 0 in a small neighborhood of (a,b). Hence
M (z,g(x)) is invertible and we can multiply the preceding equation from the left by
M(z,g(x)) " which gives (8.46). m

Remarks 8.8 (a) The theorem gives a sufficient condition for “locally” solving the sys-
tem of equations

0:fl(xla"'axnayla"'ym)a

0:fm(mla"'axnvyla"'vym)

with given xy,...,x, for yi, ..., Ym.

(b) We rewrite the statement in case n = m = 1: If f(z,y) is continously differentiable
on an open set G C R? which contains (a,b) and f(a,b) = 0. If fy(a,b) # 0 then
there exist d,& > 0 such that the following holds: for every x € Us(a) there exists a
unique y = g(x) € U.(b) with f(z,y) = 0. We have g(a) = b; the function y = g(z) is
continuously differentiable with

fo(z,9(x))

9@ == G gl@)

Be careful, note f;(z,g(z)) # %g(w,g(z)).
Example 8.15 (a) Let f(z,y) =sin(z + y) + e™ — 1. Note that f(0,0) = 0. Since
f4(0,0) = cos(z +y) + ze™| 5 =cos0+0=17#0
f(z,y) = 0 can uniquely be solved for y = g(z) in a neighborhood of z = 0,y = 0. Further
f2(0,0) = cos(z +y) + ye™| 4 = 1.

By Remark 8.8 (b)

"z) = — fo(@,y) _ cos(z +g(z)) +9(z) e?9(@)
fy(xa y) y=g() COS($ + g(x)) + T ezg(z)

In particular ¢'(0) = —1.
Remark. Differentiating the equation f; + f,¢' = 0 we obtain

0= foo+ fwygl + (fyw + fyygl)gl + fyg”

g" = _fl (fmc + wayg, + f:l/y(gl)Q)
Yy

g,, _fwwf5+2fwyfwfy_fyyfx2.

, fz f:l:j
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Since
fww(oa 0) = - sin(a; + y) + yZemy‘(O,O) =0,
f(0,0) = —sin(z +y) + 2% | =0,
f2y(0,0) = —sin(z + y) + e™(1 + 2y)| o) = 1,
we obtain ¢”(0) = 2. Therefore the Taylor expansion of g(x) around 0 reads
g(z) =z + 2% + r3(2).
(b)

fi(z,y,2) =2* + 4> + 92 — 1 =0, ellipsoid,
fo(z,y,2) =c+y+2 =0, plane

Find y = y(x) and z = z(z) around z = 0.
Inserting x = 0 into the two equations we find

1
424922 =1, y4+2=0, = 13’=1= = .
Y Y Y [y Vi
We choose y = 1/4/13. We have
(f1,f2 %fl % ‘8?/ 182
Pl = = 8y — 18z = 26y # 0.
afs

Hence f = 0 is uniquely solvable for y = y(z), z = z(z) in a certain neighborhood of
r =0,y = 1//13. Geometrically, (z,y(z), 2(z)) is a curve in R?, the intersection of the
ellipsoid f; = 0 with the plane fy = 0.
We compute y' and z'. Differentiation of f;(z,y(x),z(x)) =0, i =1,2 gives
2z + 8yy' + 1827 =0,
1+y' +2 =0

Inserting y' = —1 — 2’ into the first equation gives 2x — 8y — 8yz’ + 182z’ = 0; hence

,  Ady—=x 9zt
9z — 4y’ 4= 92 — 4y

In particular, at (0, /T %) the tangent vector to the curve (z,y(z),z(z)) is

1
(1,4'(0), 2'(0)) = (1, -9/13,9/13).

(c) Let y(t) = (z(t),y(t)) be a differentiable curve v € C?([0,1]) in R?. Suppose in
a neighborhood of ¢ = 0 the curve describes a function y = g(z). Find the Taylor
polynomial of degree 2 of g at zo = z(0).

Inserting the curve into the equation y = g(z) we have y(¢) = g(z(t)). Differentiation
gives

! . ":2

Y=gz, j=4g"t"+4¢'%
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Thus

! _g " _g_gli_gj_iy
g(x) - 3-27 g (‘/E) - ,;E2 - i3

Now we have the Taylor ploynomial of g at x

(o) (z — x0)>

Ty(g)(x) = zo + ¢'(x0) (x — x0) +

8.7 Level Set, Normal Vector, and Lagrange Multi-
plier

8.7.1 Level Sets

As an application of the implicit function theorem we give another geometric interpreta-
tion of the gradient grad f to be the normal vector to the level set. As usual, U C R" is
open.

Definition 8.11 Let f: U — R be differentiable. For ¢ € R define the level set U, =
{zeU| f()=c}.

This set may be empty, may consist of a single point (in case of local extrema) or, in
the “generic” case, U, it is a (n — 1)-dimensional surface. {U. | ¢ € R} is family of
non-intersecting subsets of U which cover U.

Proposition 8.20 Let f: U — R be continuously differentiable, f(a) = ¢, and
grad f(a) # 0. Then the tangent hyperplane to the level set U, at a is given by

f(a)=c

n

0=> fula)(@i—a), or (8.47)

=1

0= (grad f(a),z — a). (8.48)

Note that the second equation means that the tangent hyperplane is orthogonal to
grad f(a). A vector which is orthogonal to the tangent hyperplane is called a normal
vector to the given surface.

Proof. Consider U, in a neighborhood of a to be the graph of a function which is implicitly
given by f(z) = c. Since grad f(a) # 0 at least one coordinate of the gradient grad f(a)
is nonzero. Without loss of generality we may assume that f,, (a) # 0. By the implicit
function theorem we may solve f(z) = ¢ in a neighborhood of z = a locally for z,, say

Tp = g(xla .- -:xnfl)-
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Define the tangent hyperplane to be the graph of the linearization of g at (a1, ..., a, 1,a,).
By Remark 8.5 8.5 with @ = (a1, ...,a,-1), Z = (21, ...,%n_1), the hyperplane is given by

zn = g(a) + (grad g(a),z) . (8.49)
Since f(a,g(@)) = ¢, by the implicit function theorem
dg(a) _  fa,(a)

= , =1,....,n—1.
Oz, Jz.(a)
Inserting this into (8.49) we have
1 n—1
Ty — Qp = — fe.(@)(z; —a
o (@) o J( )(z; i)

Multiplication by —f, (a) gives

~Fun@)(on = ) = 3 foy o)y~ ) = 0 = (grad f(a), ).

8.7.2 Lagrange Multiplier

This is a method to find local extrema of a function under certain constraints.
Consider the following problem: Find local extremma of a function f(z,y) of two variables
where z and y are not independent from each other but satisfy the constraint

o(z,y) = 0.

Suppose further that f and ¢ are continuously differentiable. Note that the level sets
U.={(z,y) € R? | f(z,y) = c} form a family of non-intersecting curves in the plane.

A We have to find the curve f(z,y) = c intersect-
A ing the constraint curve ¢(x,y) = 0 where c is as
o large or as small as possible. Usually f = ¢ in-

tersects ¢ = 0 if ¢ monotonically changes. How-

ever if ¢ is maximal, the curve f = ¢ touches the

graph ¢ = 0. In other words, the tangent lines

coincide. This means that the defining normal

vectors to the tangent lines are scalar multiples

$=0 of each other.

Theorem 8.21 Let f,p: U — R, U C R" s open, be continuously differentiable and f
has a local extrema at a € U under the constraint p(x) = 0. Suppose that grad p(a) # 0.
Then there exists a real number \ such that

grad f(a) = Agrad ¢(a).
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This number A is called Lagrange multiplier.

Proof. The idea is to solve the constraint ¢(z) = 0 for one variable and to consider
the “free” extremum problem with one variable less. Suppose without loss of generality
that ¢, (a) # 0. By the implicit function theorm we can solve ¢(z) = 0 for z,, =
g(x1,...,2,-1) in a neighborhood of x = a. Differentiating ¢(Z, g(Z)) = 0 and inserting
a = (@, a,) as before we have

¢z;(a) + 0z, (a)ge; (@) =0, j=1,...,n—1 (8.50)
Since h(z) = f(Z, g(%)) has a local extremum at @ all partial derivatives of h vanish at a:
fo;(@) + fo,(a)ge; (@) =0, j=1,...,n—1. (8.51)

Setting A = f; (a)/¢s, (a) and comparing (8.50) and (8.51) we find

fzj(a):)\é%j(a)a .7:]-77”_1

Since by definition, f, (a) = Ay, (a) we finally obtain grad f(a) = Agrad ¢(a) which
completes the proof. [

Example 8.16 (a) Let A = (a;;) be a real symmetric n x n-matrix, and define
f(x) = (z,Az) =}, ;a;ziz;. We aks for the local extrema of f on the unit sphere
st ={x e R" | ||zl = 1}.

This constraint can be written as ¢(z) = ||z]|* =1 = 3.*, 22 — 1 = 0. Suppose that f
attains a local minimum at a € S"~!. By Example 8.6 (b)

grad f(a) = 2A(a).

On the other hand
grad p(a) = (224, ...,2z,)|,_, = 2a.

I=a

By Theorem 8.21 there exists a real number \; such that
grad f(a) = 2A(a) = A grad ¢(a) = 2a,

Hence A(a) = Aia; that is, A is an eigenvalue of A and a the corresponding eigenvector.
In particular, A has a real eigenvalue. Since S"! has no boundary, the global minimum
is also a local one. We find: if f(a) = (a, A(a)) = (a, Aa) = A is the global minimum, A
is the smallest eigenvalue.

(b) Let a be the point of a hypersurface M = {z | ¢(x) = 0} with minimal distance to a
given point b ¢ M. Then the line through a and b is orthogonal to M.

Indeed, the function f(z) = ||z — b||” attains its minimum under the condition ¢(z) = 0
at a. By the Theorem, there is a real number A such that

grad f(a) = 2(a — b) = Agrad ¢(a).

The assertion follows since by Proposition 8.20 grad ¢(a) is orthogonal to M at a and
b — a, the direction of the line through a and b is a multiple of it.
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Theorem 8.22 (Lagrange’s Multiplier Rule) Let f,o;: U — R, i = 1,...,m,
m < n, be continuously differentiable functions. Let M = {x € U | ¢1(x) = -+ =
om(z) = 0} and suppose that f has a local extrema at a under the constraints a € M.
Suppose further that the Jacobian m X n-matriz ¢'(a) has rank m.

Then there exist real numbers A1, ..., A\, such that

grad f(a) = grad (A1¢1 + - + Ampm) (a) = 0.

Note that the rank condition ensures that there is a choice of m variables out of z4, ..., z,
such that the Jacobian of ¢4, ..., ¢, with respect to this set of variable is nonzero at a.

8.8 Integrals depending on Parameters

Problem: Define I(y) = fab f(z,y) dz; what are the relations between properties of f(z,y)
and of I(y) for example with respect to continuity and differentiability.

8.8.1 Continuity of I(y)

Proposition 8.23 Let f(z,y) be continuous on the rectangle R = [a,b] X [c, d].
Then I(y) = f:f(:v,y) dz is continuous on [c,d].

Proof. Let € > 0. Since f is continuous on the compact set R, f is uniformly continuous on
R (see Proposition 6.23). Hence, there is a § > 0 such that |z — 2’| <d and |y —¢'| < 0
and (z,y), (z',y') € R imply

| flz,y) = f2',y) | <e.

Therefore, |y — yo | < 0 and y, yo € [c, d] imply

T(y) — I(yo) | = /(ﬂ%w—fmwmdxésﬁ—@-

This shows continuity of I(y) at yo. m

For example, I(y) = f1

o arctan % dx is continuous for y > 0.

8.8.2 Differentiation of Integrals

Proposition 8.24 Let f(z,y) be defined on R = [a, b] X [c, d] and continuous as a function
of x for every fized y. Suppose that f,(z,y) exists for all (z,y) € R and is continuous as
a function of the two variables x and y.

Then I(y) is differentiable and

1= [ fenar= [ hena
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Proof. This prove was not carried out in the lecture.

Since f,(z,y) is continuous, it is uniformly continuous on R. Hence there exists § > 0
such that |2’ — 2" | < 0 and |y — y" | < 0 imply | f, (2, ") — fy(«",y") | < . We have for
|h| <0

(y0+h yO / fy z yO dac ‘/ ( x y0+h f(iayO) _fy($;y0)> dz

< / (@50 + OB) — f (2, 90) | dz < £(b—a)

Mean value theorem ./,

for some 0 € (0,1). Hence,

Jim L0+ h; — 1) _ I'(yo) = / fy(@,0) dz

h—0

In case of variable integration limits we have the following theorem.

Proposition 8.25 Let f(x,y) be as in Proposition 8.24. Let a(y) and B(y) be differen-
tiable on [c d, and suppose that a([c, d]) and B([c,d]) are contained in [a,b].
Let 1(y fﬁ f(z,y)dx. Then I(y) is differentiable and

B(y)
I'(y) = fy(z,y)de +B' (W) F(By),y) = (y)flaly),y). (8.52)

a(y)

Proof. Let F(y,u,v) = [ f(z,y)dx; then I(y) = F(y,(y),B(y)). The fundamental
theorem of calculus yields

d of [*
a—lj(y,u,v)=—f/ [z, y)dz = f(v,y),

(8.53)
0
OF = ([ i) = st
By the chain rule, the previous proposition and (8.53) we have
oF oF oF
I'ly) = 9y W o), BW) + 5 (v, o), B)) a'(y) + 5 (v, ), B(y)) B(y)
By)

= fy(z,y) dz + o' (y) (= f(ey), y) + B' (W) f(BWY),y)-

a(y)
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8.8.3 Improper Integrals with Parameters

Suppose that the improper integral faoo f(z,y) dzx exists for y € [c, d].

Definition 8.12 We say that the improper integral faoo f(z,y)dz converges uniformly
with respect to y on [c, d] if for every & > 0 there is an Ag > 0 such that A > Ay implies

/:Of(x,y)dx

<eg

‘I(y)—/aAf(x,y)dx

for all y € [c, d].

Note that the Cauchy and Weierstraf criteria (see Proposition 7.1 and Theorem 7.3) for
uniform convergence of series of functions also hold for improper parametric integrals.
For example the theorem of Weierstral now reads as follows.

Proposition 8.26 Suppose that faA f(z,y)dz exists for all A > a and y € [c,d]. Suppose
further that | f(z,y) | < ¢(z) for all x> a and [~ ¢(z)dz converges.
Then faoo f(z,y)dz converges uniformly with respect to y € [c,d].

The following example was not carried out in the lecture.

Example 8.17 I(y) = [ e ™zYy? dz converges uniformly on [2,4] since
| f(z,y) | = [ e ™a%y? | < e >2'4? = o(x).

and [;° e 222442 dz < oo converges.

If we add the assumption of uniform convergence then the preceding theorems remain
true for improper integrals.

Proposition 8.27 Let f(z,y) be continuous on {(z,y) € R? | a <z < 00, ¢ < y < d}.
Suppose that I(y) = [ f(z,y) dz converges uniformly with respect to y € [c, d].
Then I(y) is continuous on [c,d|.

Proof. This proof was not carried out in the lecture. Let £ > 0. Since the improper
integral converges uniformly, there exists Ay > 0 such that for all A > Ay we have

‘/Aoof(:v,y)dx

for all y € [c,d]. Let A > Ay be fixed. On {(z,y) e R? |a <z < A, c<y<d} f(z,v)
is uniformly continuous; hence there is a § > 0 such that |2’ — 2" | < dand |y —¢y"| < ¢

<eg

implies

|f($l’ yl) _ f(./E”,y") ‘ <

A—a
Therefore,

A
€
/\f(x,y)—f(x,yo)\dx<A_a(A—a)ze, for |y—uyo| <o.
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Finally,

|I<y>—1(yo>\:(LA+Aw)|f<x,y>—f(x,yo>\szs for |y —yol <6

We skip the proof of the following proposition.

Proposition 8.28 Let f,(x,y) be continuous on {(z,y) | a <z < o0, c <y <d}, f(z,y)
continuous with respect to x for all fized y € [ccarryout d].

Suppose that for all y € [c,d] the integral I(y f f(z,y)dz exists and the integral
fa fy(x,y) dx converges uniformly wzth respect toy € [c,d].
Then I(y) is differentiable and I'(y) = [ f,(z,y) dz.

The following examples were not carried out in the lecture.

Example 8.18 (a) I(y) = 34%@: is differentiable by Proposition8.24 since

fy(z,y) = M x = cos(zy) is continuous. Hence

4 . . ‘
4
I'(y) = / cos(zy)dz = sin(zy) _ sindy sin 3y'
s Yy 3 Yy Y

(b) I(y) = S 62’y dz is differentiable with

logy
siny 9 p2 = 1 | \
I'(y) = / z7e® Y dx + cosye? Y — Zeyllogy)®
logy Yy
fo e~ cos (2yz)dz. f(z,y) = —a cos(2yz), fy(a:,y) = —2zsin(2yz) oz’

converges uniformly with respect to y since
| fy(@,y) | < 2067 < Ke™™/2.

Hence,
I'(y) = —/ 2z sin(2yz) e dz.
0

—xz2

Partial integration with u = sin(2yz), v = —e~ %" 2z gives v’ = 2y cos(2yz), v =e* and

A A
/ —e "2z sin(2yz) dz = sin2yd e~ — / 2y cos(2yz) e du.
0 0

As A — oo the first summand on the right tends to 0; thus I(y) satisfies the ordinary
differential equation

I'(y) = —2yI(y).

ODE: y = —2zxy; dy = —2zydz; dy/y = —2xdz. Integration yields logy = —z% + ¢;
2
y=ce”®
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The general solution is I(y) = Ce™¥". We determine the constant C. Insert y = 0. Since
1(0) = [ e dz = /7/2, we find

(d) The Gamma function is in C*(R.).
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