Chapter 9

Integration of Functions of Several
Variables

References to this chapter are [10, Section 4] which is quite elemantary and good accessible.
Another elementary approach is [9, Chapter 17] (part III). A more advanced but still
good accessible treatment is [13, Chapter 3]. This will be our main reference here. In
particular the main difference between content zero and measure zero is explained in full
detail. Rudin’s book [12] is not recommendable for an introduction to integration.

9.1 Basic Definition

The definition of the Riemann integral of a function f: A — R, where A C R" is a closed
rectangle, is so similar to that of the ordinary integral that a rapid treatment will be
given, see Section 5.1.
If nothing is specified otherwise, A denotes a rectangle. A rectangle A is the cartesian
product of n intervals,

A:[al,bl]X"'X[anabn]:{(ajl,"':xn)ERn|akgxk§bka ]{):1,,77,}

Recall that a partition of a closed interval [a, b] is a sequence ty,...,t; where a =ty <
t; < -+- <t = b. The partition divides the interval [a,b] in to k subintervals [t;_1,%;].
A partition of a rectangle [a,b1] X - -+ X [an, by] is a collection P = (Py,..., P,) where
each P; is a partition of the interval [a;, b;]. Suppose for example that P, = (to,..., )
is a partition of [a, b;] and Py, = (sy,...,$;) is a partition of [ay, by]. Then the partition
P = (P, P) of [a,b1] X [ag,by] divides the closed rectangle [aq,b1] X [ag, bs] into kl
subrectangles, a typical one being [t;_1,%;] X [sj_1,5;]. In general, if P, divides [a;, ;]
into NN; subintervals, then P = (Py,..., P,) divides [a1,b1] X - -+ X [an, b,] into Ny --- N,
subrectangles. These subrectangles will be called subrectangles of the partition P.
Suppose now A is a rectangle, f: A — R is a bounded function, and P is a partition of
A. For each subrectangle S of the partition let

mgs =inf{f(z) |z € S}, Mg =sup{f(z)|z € S},

231



232 9 Integration of Functions of Several Variables

and let v(S) be the volume of the rectangle S. Note that volume of the rectangle
A=lay, 1] X -+ X [an, by] is

v(A) = (b1 — a1)(by — az) - - - (b — ay,).
The lower and the upper sums of f for P are defined by

L(P, f) = st v(S) and U(P f) = ZMS v(S),

where the sum is taken over all subrectangles S of the partition P. Clearly, if f is bounded
with m < f(z) < M on the rectangle z € R,

mv(R) < L(P, f) SU(P, f) < Mv(R),

so that the numbers L(P, f) and U(P, f) form bounded sets. Lemmab.1 remains true;
the proof is completely the same.

Lemma 9.1 Suppose the partition P* is a refinement of P (that is, each subrectangle of
P* is contained in a subrectangle of P). Then

L(P,f) < L(P",f) and U(P",f) <U(P,f).

Corollary 9.2 If P and P' are any two partitions, then L(P, f) < U(P', f).

It follows from the above corollary that all lower sums are bounded above by any upper
sum and vice versa.

Definition 9.1 Let f: A — R be a bounded function. The function f is called Riemann
integrable on the rectangle A if

[ 5= swpn(r )y = mtw(r. ) = 7Af dz,

where the supremum and the infimum are taken over all partitions P of A. This common
number is the Riemann integral of f on A and is denoted by

/fda: or /f(a:l,...,xn)dacl---dxn.
A A

il ) fdx and T +f dz are called the lower and the upper integral of f on A, respectively.
They always exist. The set of integrable function on A is denoted by R(A).

As in the one dimensional case we have the following criterion.

Proposition 9.3 (Riemann Criterion) A bounded function f: A — R is integrable if
and only if for every e > 0 there exists a partition P of A such that U(P, f)—L(P, f) < ¢.
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Example 9.1 (a) Let f: A — R be a constant function f(z) = ¢. Then for any Partition
P and any subrectangle S we have mg = Mg = ¢, so that

L(P, f) = ch —ch(S)c:

Hence, [, cdz = cv(A).
(b) Let f:]0,1] x [0,1] = R be defined by

0, if = is rational,
f(z,y) = {

1, if x is irrational.

If P is a partition, then every subrectangle S will contain points (z,y) with z rational,
and also points (z,y) with z irrational. Hence mg = 0 and Mg =1, so

=> 0w(S) =

and

P f)=> 1v(S) =v(4) =v(0,1] x [0,1]) = 1.

Therefore, TAf dr=1#0= iAf dx and f is not integrable.

9.1.1 Properties of the Riemann Integral
We briefly write R for R(A).

Remark 9.1 (a) Ris a linear space and [, (-) dz is a linear functional, i.e. f,g € R
imply \f + pg € R for all A, p € R and

/A(/\f—i-ug)dac:/\/Afda:—i-u/Agdx.

(b) R is a lattice, i.e., f € R implies | f| € R. If f,g € R, then max{f, g} € R and
min{f, g} € R.

(c) Ris an algebra, i.e., f,g € Rimply fg € R.

‘/Afdx S/Alf\dx-
C(4) € R(A).

)
f) feR(A) and f(A) C [a,b], g € Cla,b]. Then gof € R(A).
)
)

(d) The triangle inequality holds:

(e
(
(g) If f € Rand f = g except at finitely many points, then g € R and fA fdx = ngdx
(h) Let f: A — R and let P be a partition of A. Then f € R(A) if and only if f[S is
integrable for each subrectangle S. In this case

/Afdxzzq:/sf[de.
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9.2 Integrable Functions

We are going to characterize integrable functions. For, we need the notion of a set of
content zero and of measure zero.

Definition 9.2 Let A be a subset of R".

(a) A has (n-dimensional) measure zero if for every € > 0 there exists a sequence (U;)ien
of closed rectangles U; which cover A such that > 2, v(U;) < e.

(b) A has (n-dimensional) content zero if for every € > 0 there exists a finite cover
{U1, ..., U} of A by closed rectangles such that Zle v(U;) < e.

Open rectangles can also be used in the definition.

Remark 9.2 (a) Any countable set has measure 0. If each (A;);en has measure 0 then
A=A UAyU--- has measure 0.

(b) If A has content 0, then A clearly has measure 0.

(c) If A is compact and has measure 0, then A has content 0. For, let ¢ > 0. Since A has
measure 0 there is a countable open covering (U, Us,...) of A such that ). v(U;) < e.
Since A is compact, there is a finite subcover, say Uy, ..., U, of A. Clearly >  v(U;) < e.
(d) If a < b all intervals from a to b (open, closed, half-open, ... ) don’t have measure 0
(in fact, their measure and content are b — a).

(e) The conclusion (c) is wrong if A is not compact. For example, let A = QU][0, 1]. Then
A has measure 0 since A is countable. Suppose, however A C [a1, b1]U---Ulay, by] =: Ay,
then A, is a closed set. Hence, A = [0,1] C A,. Since [0, 1] has nonzero content, so has
A.

Theorem 9.4 Let A be a closed rectangle and f: A — R a bounded function. Let
B ={z € A| fis discontinuous at x}.
Then f is integrable if and only if B is a set of measure 0.

For the proof see [13, 3-8 Theorem] or [12, Theorem 11.33].

We have so far dealt only with integrals of functions over rectangles. Integrals over other
sets are easily reduced to this type.

If C' C R", the characteristic function xc of C is defined by

() 1, x e,
) =
Xe 0, =zd&C.

Definition 9.3 Let f: C — R be bounded and A a rectangle, C C A. We call f
Riemann integrable on C if the product function f-xo: A — R is Riemann integrable on

/Cfdxz/Achdx.

This certainly occurs if both f and xc are integrable on A.

A. In this case we define

For every x € A exactly one of the following three cases occurs:
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(a) z has a neighborhood which is completely contained in C' (z is an inner point of C),

(b) = has a neighborhood which is completely contained in C°¢ (z is an inner point of

C°),

(c) every neighborhood of z intersects both C' and C°. In this case we say, z is the
boundary OC of C. By definition 0C = C N Ce.

By the above discussion, A is the disjoint union of two open and a closed set:
A=C°UoCuU(C°)".

Theorem 9.5 The characteristic function xc: A — R is integrable if and only if the
boundary of C' has measure 0.

Proof. Since the boundary 0C is closed and inside the bounded set, 0C is compact.
Suppose first x is an inner point of C'. Then there is an open set U C C containing x.
Thus xc¢(z) = 1 on = € U; clearly x¢ is continuous at x (since it is locally constant).
Similarly, if = is an inner point of C°, xc(x) is locally constant, namely x¢ = 0 in a
neighborhood of z. Hence x¢ is continuous at x. Finally, if x is in the boundary of
C for every open neighborhood U of z there is y; € UNC and y, € U N C*°, so that
Xc(y1) = 1 whereas xc(y2) = 0. Hence, x¢ is not continuous at . Thus, the set of
discontinuity of x is exactly the boundary 0C. The rest follows from Theorem 9.4. n

Definition 9.4 A bounded set C' whose boundary has measure 0 is called Jordan mea-
suralbe or simply a Jordan set. The integral fc 1dz is called the n-dimensional content
of C or the n-dimensional volume of C. Naturally, the one-dimensional volume in the
length, and the two-dimensional volume is the area.

A typical example of a Jordan measurable subset D of R"*! is
D={(z,y) |z € K,0<y < f(z)},

where K C R" is a compact set and f: K — R is continuous. In particular, the graph of
f has measure 0 in R™*!.

9.2.1 Fubini’s Theorem and Iterated Integrals

So far there was no method to compute multiple integrals.

Theorem 9.6 (Fubini’s Theorem) Let A C R™ and B C R™ be closed rectangles, and
let f: Ax B — R be integrable. For x € A let g,: B — R be defined by g.(y) = f(z,y)

and let
L - Oz dy = f ) ’

uw = [ = seow
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Then L(x) and U(x) are integrable on A and

o ([ o)
s i ([ )

The integrals on the right are called iterated integrals.

Proof. Let P4 be a partition of A and Py a partition of B. Together they give a partition
P of Ax B for which any subrectangle S is of the form S4 X Sg, where S, is a subrectangle
of the partition P4, and Sp is a subrectangle of the partition Pg. Thus

P f)= ngv(S) = Z Mg, xsp V(Sa X Sp)

= Z (Z Ms,xSp U(SB)) v(S4)-

Now, if z € S4, then clearly mg,xs,(f) < mg,(gs) since the reference set S, X Sp on
the left is bigger than the reference set {x} x Sp on the right. Consequently, for x € Sy
we have

SB SB
stAst v(Sp) < mg, (L(z))
S

Therefore,

> (Z M55 v(SB)) v(Sa) <Y ms, (£(2))v(Sa) = L(Pa, ).

Sa
We thus obtain
L(P, f) < L(P4, L) <U(Pa, L) SU(Ps, W) <U(P, f),
where the proof of the last inequality is entirely analogous to the proof of the first. Since

f is integrable, sup{L(P, f)} = inf{U(P, f)} = [,, 5 [ dzdy. Hence,

sup{L(P4,L)} =inf{U(P4,L)} = ; fdady.
xB

In other words, L(z) is integrable on A and [, . fdzdy = [, L(z)dz.
The assertion for U(x) follows similarly from the inequalities

L(P, f) < L(Pa, L) < L(Pa,U) < U(Pa,U) <U(P, f).
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Remarks 9.3 (a) A similar proof shows that

AxBf dedy :/B (lAf(fU,y) dx) dy =/B (7Af(x,y) da:) dy.

These integrals are called iterated integrals for f in the reverse order from those of the
theorem. The possibility of interchanging the orders of iterated integrals has many con-
sequences.

(b) In practice it is often the case that each g, is integrable so that [, . fdzdy =
[ ([ f(z,y)dy) dz. This certainly occurs if f is continuous.

(c) If A=1ay,by] x---x][an, b,] and f: A — R is sufficiently nice, we can apply Fubini’s
theorem repeatedly to obtain

/Afdx:/ajn (( :lf(acl,...,xn)d:vl) ) dz,.

(d) If C € A x B, Fubini’s theorem can be used to compute fcfd:c since this is by
definition [ axp S Xcdz. Here are two examples in case n = 2 and n = 3.
Let a < b and ¢(z) and 9 (z) continuous real valued functions

on [a, b] with p(z) < ¥(z) on [a,b]. Put
e

C={(zy) eR?[a<z<b ¢(z) <y <)}
Let f(z,y) be continuous on C. Then f is integrable on C and
¢ (x)
b [ (@) a .
[[rasw= ([ " sema) e
o a o(z)

G={(z,y,2) ER*|a <z <b, o(x) <y <Y(), alz,y) < z < B(z,y)},

Let

where all functions are sufficiently nice. Then

/// f(z,y,2) dedydz = /ab (/Jj) (/j:j) f(z,y, 2) dz) dy) dz.
G :

(e) Cavalieri’s Principle. Let A and B be Jordan sets in R® and let 4. = {(z,v) |
(z,y,c) € A}; B, is defined similar. Suppose each A. and B, is Jordan measurable (in
R?) and they have the same area.

Then A and B have the same volume.

y (11)

Example 9.2 (a) Let f(z,y) = zy and

C={(r,y) eR*|0<r<1,2° <y<z}
={(z,y) eR*|0<y <1,y <z <y}
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Then

T 1 1
dxz—/ (z* — 2°)dz
2 Jo

1 T 1 2
//xydxdy:/ / xydydxz/ v
¢ 0 Jaz? 0 2 =

1
zt 2

8 12

1 1 1

o 8 12 24

Interchanging the order of integration we obtain

1 vy L g2y
//:Uydxdyz/ / xydxdyz/ T3
¢ 0 Y 0

1

VY 1 1
=§/ (v* —y*) dy
y 0

_ y3 y4 . 1 1 _ 1

6 8|, 6 8 24

(b) Let G = {(z,y,2) € R®| z,y,2 >0, z+y+2z <1} and f(z,y,2) = 1/(z+y+2+1)>
The set G' can be parametrized as follows

/G/ Fadudz = /01 </0H (/Ol—m—y Itz izy + z)3> dy) o
- /01 (/0“” %(1 +x-_|-1y+ z)? - dy) de

(c) Let C = {(z,y) e R? | -2 <z <1, 22 <y < 2-—x}. We want to express
[[ f(z,y) dzdy as iterated integrals. Clearly,
D

//fda:dy:/_l2 dac/dyf(:c,y).

D

Interchanging the order of integration we have

//fd:cdyZ/O1 dy/_Zf(x,y)dx+/l4 dy/j/;f(iv,y)dx.
D

(d) Let f(x,y) = ¢¥/* and D the above region. Com-
pute the integral of f on D.

D can be parametrized as follows D = {(z,y) | 1 <
x <2,z <y< 2z} Hence,

(24)

12
(22

2 2T
//fda:dy:/ dx/ er dy
(11) i 1 T
2 ¥
:/ dx ze=
1

2x
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But trying to reverse the order of integration we encounter two problems. First, we must
break D in several regions:

2 Y 4 2
//fd:rdy:/ dy/ ey/wdx-i—/ dy/ e¥/® dz.
/s 1 1 2 y/2

This is not a serious problem. A greater problem is that e'/®

tive, so fly ev/® dz and ny/z e¥/* dz are very difficult to evaluate. In this example, there is

has no elementary antideriva-

a considerable advantage in one order of integration over the other.

9.3 Change of Variable

We want to generalize change of variables formula gg(g’)) f(z)dz = fab flg(v)d'(y) dy.
If Bg is the ball in R? with radius R around the origin we have in cartesian coordinates

R Vi N
fd«’fd?/dZZ/ dx/ dy/ dzf(z,y, 2).
é/ —R —VR2_x2 — /R2—x2—y2 ( )
R

Usually, the complicated limits yield hard computations. Here spherical coordinates are
appropriate.

To motivate the formula consider f = 1 and a linear transformation of variables g: R? —
R?, detg # 0, C = [0,1] x [0,1], and D = g(C). We want to compare the area of C,
[[ o dz =1 with the area of the transformed set D, [, dz. Let g(1,0) = (a1, az) and
9(0,1) = (b1, bo) it is easy to see that D is the parallelogram spanned by the two vectors
(a1,a2) and (by,by). Its area is

mm=p%Glfﬂ=mam.
2

Q2

This is true for any R"™ and any regular map, v(g(C)) = |det g | v(C).

Theorem 9.7 (Change of variable) Let C' and D be compact Jordan set in R"; let
M C C a set of measure 0. Let g: C'— D be continuously differentiable with the following

properties
(i) g is injective on C'\ M.

(ii) ¢'(x) is reqular on C\ M.

Let f: D — R be continuous.
Then

Aﬂ@@:lﬁ@@ﬂ%ﬁ#ﬁﬂu>m. (9.1)

ey Ty)

Remark 9.4 Why the absolute value of the Jacobian? In R! we don’t have the absolute
value. But in contrast to R™, n > 1, we have an orientation of the integration set

fabfdx:—fbafda:.
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For the proof see [12, 10.9 Theorem]. The main steps of the proof are: 1) In a small open
set g can be written as the composition of n “flips” and n “primitive mappings”. A flip
changes two variables z; and zj, wheras a primitive mapping H is equal to the identity
except for one variable, H(z) = xz + (h(z) — z)e,, where h: U — R.

2) If the statement is true for transformations S and 7, then it is true for the composition
SeT which follows from det(AB) = det A det B.

3) Use a partition of unity.

Example 9.3 (a) Polar coordinates. Let A = {(r,¢) |0 <7 < R,0 < ¢ < 27} be a
rectangle in polar coordinates. The mapping g(r,¢) = (z,y), £ = rcosy, y = rsing
maps this rectangle continuously differentiable onto the disc D with radius R. Let M =
{(r,¢) | » = 0}. Since ggfﬁg = r, the map ¢ is bijective and regular on R\ M. The
assumptions of the theorem are satisfied and we have

é/f(x,y) dzdy = é/ f(rcos g, rsin p)rdrdp

R p27
Fufini/o/o [ (r cos ¢, 7sinp)r drde.

(b) Spherical coordinates. Recall from the exercise class the spherical coordinates
r € [0,00), ¢ € [0,27], and 9 € [0, 7]

x = rsin cos ¢,

y = rsindsin p,

z =rcosd.
The Jacobian reads
Tr Ty Ty sinf¥cosp rcosvcosp —rsindsing
o(z,y, z) ) ) . ) 9 .
= |Yr Ys Y| = |sindsing rcosdsing rsindcosy | =r"sind
o(r, ¥, p) :
Zr 29 Zy cos —rsind 0
Sometimes one uses
a(x,y, Z) — —T‘ZSinﬁ
a(r, ¢, 9) '

Hence

1 2T m
///f(aﬁ,y,z)dxdydz:/ / / f(z,y, z)sin® 9 dr dp dd.
o Jo Jo

B

Compute the volume of the ellipsoid E given by u?/a®+v?/b?> +w?/c* = 1. We use scaled
spherical coordinates:

u = arsin v cos @,
v = brsin ¥ sin ¢,

w = cr cos v,
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where 7 € [0,1], ¥ € [0,7], ¢ € 0,27]. Since the rows of the spherical Jacobian matrix

ggf:g,’;% are simply multiplied by a, b, and c, respectively, we have

O(u, v, w)
o(r, 9, p)

Hence, if B; is the unit ball around 0 we have using iterated integrals

= /// dudvdw = abc/// r? sin ¥ drddde
2m
= abc/ drr? / dgp/ sin 9dv

= gabCQ’ﬂ' (—cos?)|g = ?abc

= aber? sin .

c) //(x2 + y*) dady where C is bounded by the four hyper-

c
bolaszy =1, 2y =2, 2> —y?> =1, 22 —y? = 4.

We change coordinates g(z,y) = (u, v)

u=uzxy, v=az>—1°

The Jacobian is

(u, v) y T
= —2
Day) 2w —2y) = 2T V)
The Jacobian of the inverse transform is
oz, y) 1

Ou,v) 2z +y?)
In the (u,v)-plane, the region is a rectangle D = {(u,v) e R? |1 <u <2, 1 <v <4}

Hence,
o(z, z? + y? 1 3
2 .2 _ 2 .2 _ - _°
//(a: +y)dxdy—//(x +y°) au. dudv = // 2T o) dudv 5 v(D) 5
c D

Physical Applications
If o(x) = p(x1, T2, x3) is a mass density of a solid C' C R?, then

m = / pdz is the mass of C and

/ z;p(r)de, i = .,3 are the coordinates of the mass center T of C.
m

The moments of inertia of C' are defined as follows

j ///(y2 + 2 pdzdydz, I, = ///(x2 + 2%)pdzdydz,I,,= ///(332 + y%)pdadydz,
c c ¢

Iy = /// zyp dzdydz, I, = /// zzpdzdydz, I, = /// yzpdzdydz.
c c c
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Here I,,, I,,, and I,, are the moments of inertia of the solid with respect to the z-axis,
y-axis, and z-axis, respectively.

Example 9.4 Compute the mass center of a homogeneous half-plate of radius R, C' =
{(z,9) [ 2* +y* < R%, y > 0}.

Solution. By the symmetry of C' with respect to the y-axis, = 0. Using polar coordinates
we find

1 I I 1 2R3
y:—//ydxdy:—/ / TSiIl(p’f‘d(pdT:—/ r?dr (—cosp) |y = ——.
m m Jo Jo m Jo m 3
c

Since the mass is proportional to the area, m = w%z and we find (0, 2£) is the mass center

3w
of the half-plate.

Q 25. Compute the volume of the region bounded by the two surfaces z = 22 + y? and
2?2 +y? 4+ 22 =2

Q 26. Compute the volume of the region which is bounded by the 5 surfaces |z |[+|y | = a
and 22 + 22 = a2, a > 0.

9.4 Surface integrals

9.4.1 Surfaces in R?

A domain G is an open and connected subset in R"™; connected means that for any two
points z and y in G, there exist points xg, z1,...,2; with g = 2 and x;, = y such that
every segment T; 12;, ¢ = 1,..., k, is completely contained in G.

Definition 9.5 Let G C R? be a domain and F': G — R? continuously differentiable.
The mapping F' as well as the set F = F(G) = {F(s,t) | (s,t) € G} is called an open
regular surface if the Jacobian matrix F'(s,t) has rank 2 for all (s,t) € G.

If
z(s, 1)
F(s,t) = | y(s,?) |,
z(s,t
the Jacobian matrix of F' is
Ts Tt
F'(s,t) =l vys w
Zs Rt

The two column vectors of F'(s,t) span the tangent plane to F' at (s, t):

or 0 0z
Dy F(s,t) = (a(s,t), B—Z(s,t), %(s,t)) ,

DyF (s, 1) = (%(s,t), %(s,t), %(s,t)) |
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Justification: Suppose (s,ty) € G where t; is fixed. Then y(s) = F\(s,ty) defines a curve
in F with tangent vector v'(s) = D1F(s,tp). Similarly, for fixed sy we obtain another
curve 5(t) = F(sg,t) with tangent vector 7'(t) = DoF'(so,t). Since F'(s,t) has rank 2 at
every point of G, the vectors D F' and Dy F are linearly independent; hence they span a
plane.

Definition 9.6 Let F': G — R? be an open regular surface, and (sg,%;) € G. Then
T = F(S(), t()) + OlDlF(So,t()) + ﬂDgF(So,to), a, B €eR

is called the tangent plane E to F at F(sg,tg). The line through F(sg,ty) which is
orthogonal to F is called the normal line to F at F(sg,tp).

Recall that the vector product ¥ x ¢ of vectors & = (x1, 22, x3) and ¥ = (y1, Y2, y3) from
R3 is the vector

€1 € e3
T X g: 1 To T3
Yo Y2 Y3

It is orthogonal to the plane spanned by the parallelogram P with edges ¥ and 3. Its
length is the area of the parallelogram P.
A vector which points in the direction of the normal line is

€1 €2 €3
DlF(So,to) X DQF(S(), to) = |Ts Ys Zs (92)
Ty Y 2t
5 DlF X DQF
n==x , 9.3
[D.F = D7 03

where 71 is a unit vector in the direction of the normal line.

Example 9.5 Let F' be given by the graph of a function f: G — R, namely F(z,y) =
(z,y, f(z,y)). By definition

DlF: (1:05 fz), DQF: (Oal,fy),

hence
€1 €2 €3
Dif x Dof = |1 0 fo| = (=fu, = [fys 1)-
0 1 fy

Therefore, the tangent plane has the equation

—fo(z — 20) = fy(y — %) + 1(z — 20) = 0.
Further, the unit normal vector to the tangent plane is
=+ (f:mfya_l) ]
Vi6i++1

Recall that the tangent plane to the graph of f at (zo, yo, f(zo, o)) is

(x — x0) f2(20, Y0) + (¥ — ¥0) fy (%0, Yo) = 2 — 2.
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9.4.2 The Area of a Surface

Let F' and & be as above. We assume that the continuous vector fields D F and Dy F' on
G can be extended to continuous functions on the closure G.

Definition 9.7 The number

ww:ﬁy:[ﬂmJyDﬁﬂ@a (9.4)
G

is called the area of F and of F.
We call

dS = ||DiF x D,F|| dsdt

the scalar surface element of F.

9.4.3 Scalar Surface Integrals

Let ¥ and F be as above, and f: F — R a continuous function on the compact subset

F c R3.
Definition 9.8 The number

//f(f) as = //f(F(s,t))HDlF(s,t) « Dy(s. )] dsdt

is called the scalar surface integral of f on .

Physical Application

(a) If p(z,v, ) is the mass density on a surface F, [[ pdS is the total mass of F.
F
(b) If o(Z) is a charge density on a surface F. Then

o(Z)
U(y) = ds(z yEF
(%) // 7= (@), J¢
F
is the potential generated by JF.

Proposition 9.8 Let M = {(z,y,2) € R?® | p < ||(z,y,2)|| < R} where R > p > 0. Let
f: M — R be continuous. Put S, = {(z,y,2) € R®| ||(z,y,2)|| =r}. Then

///fdxdydz=/pR dr //f(f)ds =/pRr2 //f(rf)dS(f) dr.
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Other Forms for dS
If F is given by F'(s,t) we have
dS = VEG — F2dsdt,
where
E=ul+y.+2, G=ua}+y+z, F=u2+yy+ 2%

Let the surface be given implicitly as F(z,y,z) = 0. Suppose F is locally solvable for z
in a neighborhood of some point (g, ¥, 2z0). Then the surface element (up to the sign) is

JEIF 21 I2 dF
ds = y dody = 1824

| F |
One checks that DFy x DF, = (F,, F,, F,)/F,.
Let the surface be given as the graph of a function (x,y, f(x,y)). Then

dS = /1 + f2 + f2dzdy.

Example 9.6 (a) We give two different form for the scalar surface element of a sphere.

given by

By the previous example, the sphere 22 + 42 + 2?2 = R? has surface element

ag = 1G22 4 g By,
2z z
If
r = Rcospsiny, y= Rsinpsiny, 2z = Rcos?,
we obtain
D, = Fy = R(cos ¢ cos 1, sin ¢ cos ¥, — sin ),
Dy = F, = R(—sinpsind, cos psin 1, 0),
D, x Dy = R*(cos @sin® ¥, sin ¢ sin” 9, sin 9 cos 9).
Hence,

dS = ||D; x Dy|| d¥dg = R?sin 9dddep.

)
i

W
27

(b) Compute the area of the solid which is bounded
by the two cylinders z? + 22 = a? and y? + 22 = a°.
The main problem is to get an idea of the geometry of
the solid with this boundary. In the figure there is 1/8
of the surface with ¢ = 1. This F can be parametrized
as follows
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Since ¥ is the graph of the function f(z,y) = va? — 22,

2

dS = /14 f2 + f2dxdy = \/1+2x7+0dxdy= dedy.
a 2 2

— x? a? —

Thus

¢ 2axdx

_ a T a
wen @) = [ as = [as [ = [ R
F

a2

= 242
0

2
a4 dt
= a/ = —2ava® —t?
0

t=x2,dt=2zdz a2 —t

The area of the surface is 16a2.

Guldin’s Rule—the Area of a Surfaces

(Paul Guldin, 1577-1643, Swiss Mathematician) Let f be a continuously differentiable
function on [a,b] with f(z) > 0 for all x € [a,b]. Let the graph of f revolve around the
z-axis and let F be the corresponding surface. We have

b
o(F) = QW/ F@)V/I+ f(@) da.
Proof. Using polar coordinates in the y-z-plane, we obtain a parametrization of F

F = {(z, f(x) cos g, f(x)siny) | z € [a,b], p € [0,27]}.

We have

D\F = (1, f'(z) cos g, f'(z)sinp), DiF = (0,—fsiny, fcosyp),
D\F x DoF = (ff',—f cosp, — f sin @);

so that dS = f(z)+/1 + f'(z)? dzdy. Hence
u(?):/ /wa(:r)\/lntf'(x)?dgodx:?w/ F@)VA T F@) da.

We have recovered the formula from Subsection 5.6.2.

9.4.4 Surface Integrals
Orientation

We want to define the notion of orientation for a regular surface. Let F be a regular
(injective) surface with or without boundary. Then for every point zy € F there exists
the tangent plane E, ; the normal line to F at x; is uniquely defined.

However, a unit vector on the normal line can have two different directions.
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Definition 9.9 (a) Let F be a surface as above. A unit normal field to JF is a continuous
function 77: F — R" with the following two properties for every zo € F

(i) 7i(zo) is orthogonal to the tangent plane to F at x.
(1) [[7i(zo)| = 1.

(b) A regular surface F is called orientable, if there exists a unit normal field on F.

It turns out that for a regular surface F there either exists exactly two unit normal fields
or there is no normal field. Examples of non-orientable surfaces are the Mdobius band and
the real projective plane. Analytically the Mdbius band is given by

(1 + tcos %) sin s )
F(s,t) = (1 + tcos %) coss |, (s,t)€]0,2n] x <_§, 5) )
tﬁn%

Suppose F is an oriented, open, regular surface with piecewise smooth boundary 0F. Let
F(s,t) be a parametrization of F. We assume that the vector functions F', DF;, and DF;
can be extended to continuous functions on F. The unit normal vector is given by

o DlF X DQF
n==& ,
||D1F X D2F||
where € = +1 or ¢ = —1 fixes the orientation of F.

Definition 9.10 Let f : F — R3 be a continuous vector field on F. The number
/ / f(&@) - idS (9.5)
F

is called the surface integral of the vector field f on F. We call

—

dS =ndS =¢e D1 F x DyF dsdt
the surface element of F.

Remark 9.5 (a) The surface integral is independently of the parametrization of F but
depends on the orientation. For, let (s,t) = (s(&,7n),t(£,n7)) be a new parametrization
with F(s(&,n),t(&,n)) = G(§,n). Then the Jacobian is

d(s,t
dsdt = % = (8¢t — spte) d&dn.

Further

DlG = DlF S¢ + DQth, DQG = DlF Sp + DQFt,,I,
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sothat using T X =0, ¥ x = -y x T

DlG X DQGdfd?] = (DlF S¢ + DQFté‘) X (DlF Sp + DQFtn)dfdn,
= (s¢ty — spte) D1 F x DyFdédn
= DlF X DQF dsdt.

(b) The scalar surface integral [[ fdS is a special case of the surface integral, namely
[f fii-7dS.
(c) Special cases. Let F be the graph of a function f, F = {(x,y, f(z,y)) | (x,y) € C},
then

dS = +(fa, f,, 1) dady.

If the surface is given implicitly by F(z,y, z) = 0 and it is locally solvable for z, then

- grad F’
dS ==+ .
F,

(d) Still another form of dS.

//fd@zg//f(F(s’t))'(DlFXDgF)dsdt

o fl(F(sat)) fZ(F(S’t)) fS(F(S’t))
f(F(s,t)) - (D1F x DoF) = | x,(s,t) ys(s,t) z5(s,t) |- (9.6)
x4(s, 1) yi(s,t) 2(s, 1)

(e) Again another notation. Computing the previous determinant or the determinant
(9.2) explicitely we have

d(y, 2)

-

Ys Zs

(z,9)

v d(z,x)

[+ (DiF x DyF) = fi 8(57, D

=f1

‘/'ES yS
Tt t

f, 2
3(s,1) HEAFTP R

Yt 2t

Hence,

T 8(y,z) 8(Z7x) 8($7y)
dS = D F x DyFdsdt = dsdt dsdt dsdt
5= Dl LI ds ( 0 N sty N (s t)

—

dS = (dydz, dzdz, dzdy).

Therefore we can write
//f ds = // (f1dydz + fodzdz + f3dzdy).
F F

In this setting

[[ #ravaz= [[ 500 a5 =2 [[ fipe. Gl as

F F
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Sometimes one uses
ds = (cos(7i, e1), cos(7i, e), cos(7i, e3)) dS,

since cos(7, e;) = (7, e;) = n; and dS = 7 dS.

Note that we have surface integrals in the last two lines, not ordinary double integrals
since F is a surface in R® and f1 fi(z,y, z) can also depend on z.

The physical meaning of [[= F f dS is the flow of the vector field f through the surface
F. The flow is (locally) positive if 77 and f are on the same side of the tangent plane to
F and negative in the other case.

Example 9.7 (a) Compute the surface integral

/g/fdzdx

of f(x,y,z) = z?yz where F is the graph of F(z,y) = 2? + y over the square Q =
[0,1] x [0, 1] with the downward directed unit normal field.
By Remark 9.5 (c)

ds = (Fy, Fy,—1)dady = (22,1, —1) dady.

/fdzdx—//mfo)-d“s
//xyac —f—ydxdy—/ dx/acy—l—xy dy = ;3

z (b) Let G denote the upper half ball of radius R in
R3:

Hence

G={(z,y,2) |2 +y°+ 7" <R’ 2>0},

y and let F be the boundary of G with the orientation
R of the outer normal. Then F consists of the upper half
sphere JF,

Fi={(z,y, VR* —2? = 2%) | 2" +y* < R’}
with the upper orientation of the unit normal field and of the disc F5 in the z-y-plane
Fo={(2,y,0) | 2 +y* < R*}

with the downward directed normal. Let f (z,y,2) = (az, by, cz). We want to compute

4 7. ds.
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By Remark 9.5 (c), the surface element of the half-sphere JF is ds = %(ac,y, z) dzdy.
Hence

5 o 1 1
Il = //f -dS = //(cws,by,cz) : ;($,y,2’) d.’L‘dy = // ;(axQ +by2 +CZQ) dxdy
3:1 BR

Bpg

Using polar coordinates = rcosp, y = rsing, r € [0,R], and z = \/R? — 2% — 3% =
VR? — 1% we get

2m B ar? cos? ¢ 4 br? sin? ¢ + c¢(R? — r?)
Il = ng > >
0 0 R? —r

rdr.

Noting fO% sin? pdp = f027r cos? pdyp = 7 we continue

I _W/r( ar’ + br? + 2crv R? —7“2) dr
1= o \WRZ—12 +/RZ—r2 )

Using r = Rsint, dr = Rcostdt we have

R3sin®tR cost dt _ 3

R r3 3 2 2
7017-:/ _R3/ sin®tdt = = R3.
/0 VR? —1r? 0 Ry1-—sin’t 0 3

Hence,

2 R .

I = §R3(a +0b)+ 7TC/ (R? —r?)2d(r?)
0

R

[N

2
= 2?ﬁR?’(a +b) + mc —g(R2 —r?)

0
2
= §R3(a+b+c).

In case of the disc F5 we have z = f(z,y) = 0, such that f, = f, = 0 and
ds = (0,0, —1) dzdy

by Remark 9.5 (c). Hence
//f ds = //(ax,by,cz) (0,0, —1) dady = —c//zdxdy = 0.
Fa BR BR

Hence,

- 2
//(aa:,by,cz) - dS = §R3(a+b+c).
F
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9.4.5 Gaufy’ Divergence Theorem

The aim is to generalize the fundamental theorem of calculus to higher dimensions:

/ J(2)dz = g(b) — g(a).

Note that a and b form the boundary of the segment [a,b]. There are three possibilities
to do this

[f[ fdzdydz = [[g- Gauf’ theorem in R?,
G oG

[ fdzdy = [ §-dZ GauB theorem in R?
G oG

[J f-ds = [ g-dZ Stokes’ theorem .

F oG

Let G C R?® be a bounded domain (open, connected) such that its boundary ¥ = 0G
satisfies the following assumptions:

1. F is a union of regular, orientable surfaces F;. The parametrization F;(s,t), (s,t) €
C;, of F; as well as D, F; and D,F; are continuous vector functions on C;; G is a
domain in R2.

2. Let F; be oriented by the outer normal (with respect to G).

3. There is given a continuously differentiable vector field f : G — R3 on G (More
precisely, there exist an open set U D G and a continuously differentiable function
f: U — R3? such that f]G = f.)

Theorem 9.9 (Gaufl’ Divergence Theorem) Under the above assumptions we have

/ / / div fdzdydz = / / fds (9.7)
G File:

Sometimes the theorem is called Gaufi-Ostrogadski theorem or simply Ostrogadski theo-
rem in the russian literature.
Other writings:

/// <8f1 8f2 66];3) drdydz = //(ﬁ dydz + fodzdz + f3dzdy) (9.8)

oG

The theorem holds for more general regions G C R3.
Proof. We give a proof for

G ={(z,9,2) | (z,9) € C, a(z,y) < z < B(z,y)},

where C' C R? is a domain and «, 3 € C'(C) define regular top and bottom surfaces F;
and JF, of F, respectively. We prove only one part of (9.8)

/// %dxdydz = // fadaxdy. (9.9)
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By Fubini’s theorem, the left side reads

/ / / O3 qrdyds = / / ( / ﬂ(x’y)%dz) dzdy

- / ales 9, B )) — fole,ys alz, ) dedy, (9.10)

where the last equality is by the fundamental theorem of calculus.
Now we are going to compute the surface integral. The outer normal for the top surface

is (—Bz(z,y), —By(z,y),1) such that

L= [[ frdady = [[ 00,1 (=5a(0.0). =8, (z.). 1 dody

- / fa,y, B(z, y) dady.
C

Since the bottom surface JF, is oriented downward, the outer normal is
(am(x, y)a O!y(l', y), _1) such that

I = / / fydady = — / / Fo(@. v, alz, y)) dzdy.
Fq C

Finally, the shell F3 is parametrized by an angle ¢ and z:

Fz = {(r(p)cosp,r(p)sing, z) | a(z,y) < 2 < B(z,9)}-

Since DoF = (0,0,1), the normal vector is orthogonal to the z-axis, @ = (ny,ns,0).

Therefore,
I; = //fgdxdy = //(0,0, f3) - (n1,m2,0)dS = 0.
Fs3 I3
Comparing I1 + I, + I3 with (9.10) proves the theorem in this special case. n

Remarks 9.6 (a) Gaufy’ divergence theorem can be used to compute the volume of the
domain G C R3. Suppose the boundary 0G of G has the orientation of the outer normal.

Then
://xdydz://ydzdx://zdxdy.
Fle; Fle] G

(b) Applying the mean value theorem to the left-hand side of Gauf’ formula we have for
any bounded region GG containing xg

iv f(zo + h) // dzdydz = divf(mo—i—h)v(G):/ fds,
G oG
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where h is a small vector. The integral on the left is the volume v(G). Hence

P . 1 - -
dlvf(mO):Gll—I)I;o’U(G) !G/fd )

where the region G tends to xy. The right hand side can be thought as to be the source
density of the field f. In particular, the right side gives a basis independent description
of div f.

9.5 Line Integrals

A lot of physical applications are to be found in [9, Chapter 18]. Integration of vector
fields along curves is of fundamental importance in both mathematics and physics. We
use the concept of work to motivate the material in this section.

The motion of an object is described by a parametric curve & = Z(t) = (z(t),y(t), 2(t))-
By differentiating this function, we obtain the velocity ¥(t) = #'(¢) and the acceleration
@(t) = #'(t). We use the physicist notation Z(t) and Z(t) to denote derivatives with
respect to the time t.

According to Newton’s law, the total force F acting on an object of mass m is
F =mad.

P =

m %mﬁ - U we have

Since the kinetic energy K is defined by K = %

. 1 . . .
K(t) = 5m(17-17+17-17) =ma-v=F-7.
The total change of the kinetic energy from time t; to ¢5, denoted W, is called the work

done by the force F' along the path Z(t):

to

W:/ttzk(t)dt:/ttzﬁ-ﬁdt:/t F(t) - Z(t) dt.

1 1

Let us now suppose that the force F' at time ¢ depends only on the position Z(t). That

=

is, we assume that there is a vector field F(Z) such that F(t) = F(&(t)) (gravitational
and electrostatic attraction are position-dependent while magnetic forces are velocity-
dependent). Then we may rewrite the above integral as

WZKEvmymmt

1

In the one-dimensional case, by a change of variables, this can be simplified to

W:l%@NL

where a and b are the starting and ending positions.
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Definition 9.11 Let I' = {Z(¢) | t € [r, 5]}, be a continuously differentiable curve Z(t) €
CY([r,s]) in R*® and f: I' — R™ a continuous vector field on I". The integral

[ fay-az= [ faw) s a
r r
is called the line integral of the vector field f along the curve I'.

Remark 9.7 (a) The definition of the line integral does not depend on the parametriza-
tion of I'.

(b) If we take different curves between the same endpoints, the line integral may be dif-
ferent.

(c) If the vector field fis orthogonal to the tangent vector, then fr f d¥ = 0.

(d) Other notations. If f = (P,Q) is a vector field in R2,

/f- df:/Pda:—i-Qdy,
r r
where the right side is either a symbol or [, Pdz = [,.(P,0) - dZ.

Example 9.8 (a) Find the line integral fr,- ydz + (z — y) dy,
1 =1,2, where

Flz{a_:'(t):(t,t2)\t€[0,1]} and F2:F3UF4, rl

with I3 = {(¢,0) | ¢ € [0, 1]}, Iu = {(1,1) | ¢ € [0,1]}.

0,0 r 1,0
In the first case Z(t) = (1, 2t); hence 00 s 49

/Fydx+(a:—y)dy:/01(t2-1+(t—t2)2t)dt=/01(3t2—2t3)dt:%.
(

In the second case [, fdZ = [, fdZ+ [, fdZ. For the first part (dz, dy) = (dt,0), for
the second part (dz, dy) = (0, dt) such that
1

1 1
1

/fda_:':/ydx—i-(x—y)dy:/ 0dt+(t—0)-0~|—/ t-0+(1—t)dt =t — —t*| =~.

r r 0 0 2 2

0

(b) Find the work done by the force field ﬁ(x, y,2) = (y,—x, 1) as a particle moves from
(1,0,0) to (1,0,1) along the following paths ¢ = +1:

Z(t). = (cost,esint, 5), t € [0, 27],

We find
. 2m
/ F.dz = / (esint, —cost,1) - (—sint,ecost,1/(2m))dt
. 0
2 1
:/ (—ssith—scos2t+—> dt
0 2m
= —2me + 1.
In case € = 1, the motion is “with the force”, so the work is positive; for the path ¢ = —1,

the motion is against the force and the work is negative.
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Properties of Line Integrals

Remark 9.8 (a) Linearity.

/(f+§)d5c’=/fd§:’+/§d§:‘, /)\fda‘c’:/\/fda‘:‘.
r r r r r

(b) Change of direction. If Z(t), t € [r, s| defines a curve I" which goes from a = Z(r)
to b = Z(s), then §(t) = Z(r + s —t), t € [r, s], defines the curve —I" which goes in the
opposite direction from b to a. It is easy to see that

/_Ffdf:—/Ffd:E’.
/fdx

(d) Splitting. If I and I3 are two curves such that the ending point of I equals the
starting point of I3 then

(c) Triangle inequality.

< sy o]

zel

/ fdz= [ fdz+ | fdz.
Ul I I

9.5.1 Path Independence

Problem: For which vector fields f the line integral from a to b does not depend upon the
path (see Example 9.8 (a) Example 8.2)7

Definition 9.12 A vector field f: G — R", G C R", is called conservative if for any
points a and b in G and any curves I} and I3 from a to b we have

/fdf:/fdf.
In I>

In this case we say that the line integral fr f dZ is path independent and we use the
notation fab fdz.

Definition 9.13 A vector field f: G — R™ is called potential field or gradient vector
field if there exists a continuously differentiable function U: G — R such that f(z) =
gradU(z) for z € G. We call U the potential or antiderivative of f

Example 9.9 The gravitational force

x
F(.%) = —7m 3
]|
is a potential field with potential
1
U(zx) = ymM —
]

This follows from Example8.2 (a), grad f(||z||) = f'(/lz[]) 55 with f(y) = 1/y and f'(y) =
—1/y>
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-

Remark 9.9 (a) f is conservative if and only if the line integral over any closed curve in
G is 0.

(b) Let G be connected. If it exists, U(x) is uniquely determined up to a constant. Indeed,
if grad Uy (z) = grad Uy(z) = f we have grad (U, —U,) = 0. Since G is connected, U; —U,
is constant on G (all partial derivatives of U; — U, are identically 0).

Theorem 9.10 Let G C R" be a domain.
(i) IfU: G — R is continuously differentiable and f = gradU. Then for every (piecewise
continuously differentiable) curve I' from a to b, a,b € G, we have

/ Fdz=U(®b) — U(a).

r

(ii) Let f: G = R™ be a continuous conservative vector field and a € G. Put
U(z) = / fdg, zeq.

Then U(z) is an antiderivative for f, that is gradU = f.
(iii) A continuous vector field f is conservative in G if and only if it is a potential field.

Proof. (i) Let I' = {Z(t) | t € [r, s]}, be a continuously differentiable curve from a = Z(r)
to b = Z(s). We define ¢(t) = U(Z(t)) and compute the derivative using the chain rule

—

() = grad U(&(t)) - 2(¢) = f(Z(1)) - Z(2).
By definition of the line integral we have
/ fdz = / S (@) Z(t) dt.
r r
Inserting the above expression and applying the fundamental theorem of calculus, we find

/Ffdf:/rsgb(t)dt

(ii) Choose h € R™ small such that x +th € G for all t € [0,1]. By the path independence
of the line integral

U(x+h)—U(x)=/:f- dy*—/:+hf- dy*=/:+hf'- &y

Consider the curve Z(t) = z 4 th, t € [0,1] from z to  + h. Then Z(t) = h. By the mean
value theorem of integration (Theorem 5.16 with ¢ =1, ¢ = 0 and b = 1) we have

I
5
(V)
N—
|

S
—~~
=
SN—r
I
d
~—~
81
—~
(V)
=
|
d
—
8
—
=
N—
N—
I
d
—~
[y
N—
|
=
G

z+h L -
/ f.dg:/o FlE@®) - hdt = fla +0h) - b,
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where 6 € [0,1]. We check gradU(z) = f(x) using the definition of the derivative:

— —

Uz + ) — U(z) - (x)-h‘ ) \( (@ +0n) — f(2)) - h ‘ ) fo+9h H||h||
1Al h [|A]] I [|A]]
= | Fla+om) - fla)| — 0

since f(z) is continuous.
(iii) follows immediately from (i) and (ii). ]

Remark 9.10 (a) In case n = 2, a simple path to compute the line integral (and so the
potential U) in (ii) consists of 2 segments: from (0, 0) via (x,0) to (x,y). The line integral
of Pdz + () dy then reads as ordinary Riemann integrals

Uz,y) :/OxP(t,O)dt—i-/OyQ(x,t)dt

(b) Case n = 3. You can also use just one single segment from the origin to the endpoint
(z,y, z). This path is parametrized by the curve

Z(t) = (tx, ty, tz), tel0,1], Z(t) = (z,v,2).

We obtain

(2,y,2)
U(z,y,2) :/ fidz + fody + f3dz (9.11)
(0,0,0)

1 1 1
=z / fi(tx, ty, tz) dt + y/ fo(tx, ty, tz) dt + z/ fa(tz, ty, tz)dt. (9.12)
0 0 0

(c) Although Theorem 9.10 gives a necessary and sufficient condition for a vector field to
be conservative, we are missing an easy criterion. The next proposition fills this gap.

Definition 9.14 A connected open subset G (a region) of R™ is called simply connected
if every closed polygonal path inside G can be shrunk inside G to a single point.

Roughly speaking, simply connected sets do not have holes. Every convex subset of R"”
is simply connected while the torus S' = {z € C | |z| = 1} and any ring R = {(z,y) €
R?|r? <z?>+y? < R?’},0<r < R < oo, are not.

The precise mathematical term for a curve v to be “shrinkable to a point” is to be
null-homotopic: for the closed curve ~: [1,0] — X there exists a continuous mapping
h:[0,1] x [0,1] — X such that h(t,0) = y(¢) for all ¢ and h(¢,1) = {pt}.

Proposition 9.11 Let f (f1, fo, fg) a continuously differentiable vector ﬁeld on a sim-
ply connected region G C R3. Then f is conservative if and only if curlf =0, e
Ofs  0f ofi  0fs of 0fi

By 023 " Bws  9m B B
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In casen = 2, f: (P,Q), G C R? is simply connected, the condition is

curlf:a—P—a—Q—O

oy Or

Proof. (a) Let f be conservative; by Theorem 9.10 there exists a potential U, grad U = f
However, curl grad U = 0 since

0fs  0fs 0?U 0*U

6$2 B (9$3 - 8$26Z‘3 B 61'38%2 =0

by Schwarz’s Lemma.
(b) This will be an application of Stokes’ theorem, see below. n

Remark 9.11 (a) curl f = 0 is called the integrability condition for the vector field f
(b) The statement is false if the condition “ G is simply connected” is dropped. For
example, let G = R?\{(0,0)} and

f=(P,Q)=( e )

x2+y2’x2+y2

The vector field is not conservative (Prove!), however, the condition P, = @, is neverthe-
less satisfied, see homework 30.1

Example 9.10 Let on R3, f = (P,Q, R) = (6zy> + ¢7, 622y, 1). Then
curlf: (Ry - Qza Pz - R:ca Qw - Py) - (0: 0, 12$y - 12xy) = 0;

hence, f is conservative with the potential (see Remark 9.10 (b))

1 1 1
Ulz,y,z) = x/ fi(tz, ty, tz) dt + y/ fa(tz, ty, tz) dt + z/ fa(tx, ty, tz) dt
0 0 0

1 1 1
=z / (6t3zy* + ™) dt +y / 6t322ydt + 2 / dt
0 0 0

=32%y* +e” + 2.

9.6 Stokes’ Theorem

Roughly speaking, Stokes’ theorem relates a surface integral over a surface F with a line
integral over the boundary 0F. In case of a plane surface in R?, it is called Green’s
theorem.
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9.6.1 Green’s Theorem

Let G be a domain in R? with picewise smooth (dif-
ferentiable) boundaries I, I, ..., [,. We give an ori-
entation to the boundary: the outer curve is oriented
counter clockwise (mathematical positive), the inner
boundaries are oriented in the opposite direction.

Theorem 9.12 (Green’s Theorem) Let (P,Q) be a continuously differentiable vector
field on G and let the boundary I’ = OG be oriented as above. Then

// (@_a_zya) dxdyz/Fde—i-Qdy. (9.13)

Proof. (a) First, we consider a region G of type 1 in the plane, as shown in the figure and
we will prove that
/ —dxdy = / Pdz. (9.14)

The double integral on the left may be evaluated as
an iterated integral (Fubini’s theorem), we have

//_dxdy -/ ( /:j Py (o.0) dy) s

: . - [ (Pl vlo) - Pl g

The latter equality is due to the fundamental theorem of calculus. To compute the line
integral, we parametrize the four parts of I" in a natural way:

-fl(t) = (CL, _t)a le [—’l/)(a), —QO(G)], dz =0, dy = —dt,

To(t) = (¢, ¢(1)), t € [a,b], dz = dt, dy=¢'(t)dt,
73(t) = (b, 1), t € [p(d),v0)], dz =0, dy= dt,

£4(t) = (—t, ¥ (—1)), t € [-b,—al, dz = —dt, dy=—v¢'(t)dt.

Since dx = 0 on I} and I5 we are left with the line integrals over I and [:

/dex:/ P(t,go(t))dt—l—/;aP(—t,w(—t))(—dt)
:/ P(t,w(t))dt—/ Pt () dt

This completes the proof for type 1 regions.
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r1
y r Exactly in the same way, we can prove that if G is a
type 2 region then for @ = Q(z,y) with continuous
partial derivatives,
() PY(x)

//g—fdxdy=/FQdy- (9.15)
G

If G is both a region of type 1 and 2, then (9.14) and (9.15) are both valid and we can
add them and obtain (9.13).

(b) Breaking a region G up into smaller regions, each
of which is both of type 1 and 2, Green’s theorem is
valid for G. The line integrals along the inner bound-
1 ary cancel leaving the line integral around the bound-

ary of GG.

G, :

(c) If the region has a hole, one can split it into two simply connected regions, for which
Green’s theorem is valid by the arguments of (b). [

Application

If I' is a curve which bounds a region (G, then the area of G is

1
A:—/xdy—ydx:/xdy:—/ydx. (9.16)
2J/r r r

Proof. Choosing P = —ay, @ = (1 — a)x one has

A:// dxdyz//((l—a)—(—a))dxdyZ//(Qx—Py)dacdyz/FPd:c—i-Qdy
:—aAydx+(1—a)/dey.

Inserting & = 0, & = 1, and o = 5 yields the assertion. m

2 2
Example 9.11 Find the area bounded by the ellipse I x_2 + ?2—2 = 1. We parametrize
a

I' by Z(t) = (acost,bsint), t € [0,2n], Z(t) = (—asint,bcost). Then (9.16) gives

1 2w 1 2m
Azé/ acostbsintdt—bsint(—asint)dt:5/ abdt = mab.
0 0
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9.6.2 Stokes’ Theorem

Conventions: Let F be a regular, oriented surface. Let I' = 0F be the boundary of F
with the induced orientation: the orientation of the surface together with the orientation
of the boundary form a right-oriented screw.

Theorem 9.13 (Stokes’ theorem) Let F be a smooth regular oriented surface with a
parametrization F € C*(G) and G is a plane region to which Green’s theorem applies.
Let I' = 0F be the boundary with the above orientation. Further, let f be a continuously
differentiable vector field on F.

Then we have

// curlfd“S:/Ffdf. (9.17)
F

This can also be written as
// %—% dydz + %—% dzdx + %—% dzdy.
0z 0z ox or 0Oy

Remark 9.12 (a) Green’s theorem is a special case with F = G x {0} and f = (P, Q, 0).

(b) We complete the proof of Proposition 9.11 and show that for a simply connected region
G C R? curl f = 0 implies f to be conservative. Indeed, any closed, regular, piecewise
differentiable curve v C G is the boundary of a suitable smooth regular oriented surface
F, v = 0F. Inserting curl f = 0 into Stokes’ theorem gives [}, f dZ = 0; the line integral
is path independent and hence, f is conservative. The region must be simply connected;
otherwise its boundary has more than one component and the line integral is not path
independent, in general.

Proof. Main idea: Reduction to Green’s theorem. Since both sides of the equation are
additive with respect to the vector field f, it suffices to proof the statement for the vector
fields (f1,0,0), (0, f2,0), and (0,0, f3). We show the theorem for f: (f,0,0), the other
cases are quite analogous:

// <—d dx—g—fdxd ) | Jde

Let F(u,v), u,v € G be the parametrization of the surface F. Then

ox 0x
dzr = %du—i- %dv,
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such that the line integral on the right reads

P
fdr = fxudu—i—fxvdv—/ Pdu+ Qdv //( 0 +@) dudv
oF G Green’sth a

:/ —(foy + [ Tou) + (fuZo + f Typ) dudv :/ — foZy + fuxy, dudv
G G

= / _(fac Ty + fy Yo + fz Zv)xu + (fz Ty + fy Yu + fz Zu)xv dudv

= // _fy Tulv — xvyu) + fz(zuxv - zvxu)) dudv

//( fya +fz E " ;) dudv://—fydxdy—i-fzdzdx_

This completes the proof. [

Remark 9.13 (a) The right side of (9.17) is called the circulation of the wvector field
f owver the closed curve I'. Now let Zy € F be fixed and consider smaller and smaller
neighborhoods JF; of ¥y with boundaries I'y. By Stokes’ theorem

fdz = // curl f-7i(y) dS(y) = curl f(Z)7 (7o) area (F).
I J
Hence,

Y o, F
curl f(@) - () = 3’})-)10 aii; T

We call curl f (xo) n(Zo) the infinitesimal circulation of the vector field f at @ correspond-
ing to the unit normal vector 7.

(b) Stokes’ theorem then says that the integral over the infinitesimal circulation of a
vector field ]? corresponding to the unit normal vector 77 over F equals the circulation of
the vector field along the boundary of F.

Green’s Identities in R?

We formulate consequences from Gaufl’ divergence theorem which play an important role
in partial differential equations.

Recall (Proposition 8.9 (Prop. 8.9)) that the directional derivative of a functionv: U — R,
U C R", at xq in the direction of the unit vector 7 is given by Dy f(x¢) = (grad f(zo), 7).



9.6 Stokes’ Theorem 263

Definition 9.15 Let ¥ C U C R3? be an oriented, regular surface with the unit normal
vector 7i(xg) at zg € F. Let g: U — R be differentiable.
Then

a —

a—g(fﬁo) = (grad g(zo), 1) (9.18)
n

is called the normal derivative of g on F at xy.

Proposition 9.14 Let G be a region as in Gaufl’ theorem, the boundary 0G is oriented
with the outer normal, u,v are twice continuously differentiable on an open set U with
G C U. Then we have Green’s identities:

/// v) dzdydz = // u— ds — /// uA(v) dzdydz, (9.19)
/// (ufde) =~ vA(u)) dodydz = // (“g_n - %) s, (9.20)
/// u) dzdydz —/ —dS (9.21)

Proof. Put f = uV(v). Then

div f = V(uVv) = V(u) - V(v) + uV(Vv)
= gradu - grad v + uA(v).

Applying Gaufl’ theorem, we obtain

/// div fdzdydz = ///(gradu- grad v) dedydz + /// uA(v) dedydzp
G G G
- ov
://ugradv-ndSz/ u?dS
oG oG

This proves Green’s first identity. Changing the role of v and v and taking the difference,
we obtain the second formula.
Inserting v = —1 into (9.20) we get (9.21). ]

Application: Let u;, # = 1,2, be harmonic functions on G, i.e. Au; = Aus = 0 and
uy(z) = ug(z) for all x € 0G. Then u; = uy in G (cf. Homework 30.2).

9.6.3 Vector Potential and the Inverse Problem of Vector Anal-
ysis

Let f be a continuously differentiable vector field on the simply connected region G C R3.
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Definition 9.16 The vector field f on G is called a source-free field (solenoidal field,
divergence-zero field) if there exists a vector field g on G with f = curl §. Then g is called
the vector potential to f.

Theorem 9.15 fis source-free if and only if div f: 0.

Proof. (a) If f = curl § then div f = div (curl §) = 0.
(b) To simplify notations, we skip the arrows. We explicitly construct a vector potential
g to f with g = (g1, 92,0) and curlg = f. This means

_ 0go
fl_ aZ’
_891
fQ_aZa
f _ 9% _Oq
T 9r oy’

The first two equations are satisfied setting

92:_/ fl(:v,y,t)dt-i-h(x,y),
20
91:/ fa(z,y,1) dt.

20

Inserting this into the third equation, we obtain

dg2  Og1 _ “oh “0f>
e " oy " /ZO (@0, 1) dt + ha(a, ) /ZO 9 (z,y,t)dt
“(0fi | 0f
=— —— 4+ == ) dt+ h,
/ZO (83: * ay) *
= / i %(x t)dt +h
divi=0 [, 0z Y @
= f3(xa Y, Z) - f3($a Y, ZO) + hw(xa y)
Choosing h,(x,y) = f3(x,y, 20), the third equation is satisfied and curlg = f. m

Remarks 9.14 (a) The proof of second direction is a constructive one; you can use this
method to calculate a vector potential explicitly, see homework 30.3. You can also try
another ansatz, say g = (0, g2, g3) or g = (91,0, g3).

(b) If g is a vector potential for f and U € C?(G), then § = g + grad U is also a vector
potential for f. Indeed

curl g = curlg + curl gradU = f.
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The Inverse Problem of Vector Analysis

Let A be a function and a@ be a vector field on G; both continuously differentiable.
Problem: Does there exist a vector field f such that

divf: h and Curlf: a.

Proposition 9.16 The above problem has a solution if and only if divd = 0.

Proof. The condition is necessary since diva = div curl f = 0. We skip the vector arrows.
For the other direction we use the ansatz f = r 4+ s with

curlr = 0, divr = h, (9.22)
curl s = a, divs = 0. (9.23)

Since curlr = 0, by Proposition 9.11 there exists a potential U with » = grad U. Then
curl? = 0 and divr = divgradU = A(U). Hence (9.22) is satisfied if and only if
r = gradU and A(U) = h.

Since diva = div curls = 0, there exists a vector potential g such that curla = s.
Let ¢ be twice continuously differentiable on G and set s = g + grady. Then
curls = curlg = a and divs = divg + div grad ¢ = divg + A(p). Hence, divs = 0 if
and only if A(p) = —divg.

Both equations A(U) = h and A(p) = —div g are so called Poisson equations which can
be solved within the theory of partial differential equations (PDE). ]

The inverse problem has not a unique solution. Choose a harmonic function ¢, A(y)) = 0
and put f; = f + grady. Then

div fi = div f + div grad ¢ = div f + A(¢) = div f = h,
curl f{ = curl f 4+ curl grad¢y = curl f = a.

9.7 Differential Forms on IR"

We show that Gauf}’, Green’s and Stokes’ theorems are three cases of a “general” theorem
which is also named after Stokes. The appearance of the Jacobian in the change of variable
theorem will become clear. We formulate the Poincaré lemma.

9.7.1 The Exterior Algebra A(IR")

Let {ei,...,e,} be the standard basis of R"; for h € R™ we write h = (hy,..., h,) with
respect to the standard basis, h = ), h;e;.
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The Dual Vector Space V*

The interplay between a normed space E and its dual space E’ forms the basis of functional
analysis. We start with the definition of the algebraic dual.

Definition 9.17 Let V' be a K-linear space (K = R or K = C). The (algebraic) dual
vector space to V' is the set of all K-linear functionals f: V — K,

V*={f:V = K| fislinear}.
We denote it by V*.

The evaluation of f € V* on v € V is denoted by
f)={fv) eK

In this case, the brackets denote the dual pairing between V* and V. Obviously, V* is
again a K-linear space if we define the linear structure as follows

(M +pg,v) = X{f,v)y+plgv), \peK, fgeV', veV

Example 9.12 (a) If V = R" with the above standard basis {ey,...,e,}, V* has also
dimension n and we can define the dual basis {dx1,..., dz,} of V* to {e1,...,e,} by

d:ri(ej) = 5@', Z,] = 1, NI

The functional dx; associates to each vector h € V its ith coordinate h;: dz;(h) = h;.
We call dz; the ith coordinate functional.

(b) If V= C([0,1]), the continuous functions on [0,1] and « is an increasing on [0, 1]
function, then

1
soa(f)=/0 fda, fev

defines a linear functional ¢, on V. If a € [0, 1],

Ya(f) = f(a), [feV

defines another linear functional on V.
(c) Let @« € R™. Then (a,z) = Y ., a;z;, © € R" defines a linear functional on R™. In
Functional Analysis we will learn that this is already the most general form of a continuous
linear functional, cf. Theorem of Riesz.

Definition 9.18 Let £ € N. An alternating multilinear form of degree k on R"™, a k-form
for short, is a mapping w: R™ x --- X R®™ — R, k factors R", which is multilinear and
antisymmetric, 1. e.

MULT w(...’axi_i_ﬁyi’...):aw(...’xi’...)_i_ﬁw(...’yi’...)’ (9'24)
ANT  w(eee &g, ee @) = —w(-ee @y e Tayees), 65 =1, kis#j (9.25)

We denote the linear space of all k-forms on R"™ by A¥(R") with the convention
A°(R™) = R and A'(R") = (R")*.
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Let fi,...,fr € (R™)* be linear functionals on R™. Then we define the k-form
fiN---A fr € AF(R™) (read: “f; wedge fy ... wedge fi.”) as follows
fi(hi) Ji(hi)
Fin- A felhe, ... hg) =] : (9.26)
fi(h1) fe(h)
In particular, let i1,...,4; € {1,...,n} be fixed and choose f; = dz;;, j =1,...,k. Then
h1i1 hkil
d.’Eil/\"'/\ d.Tzk(h,l,,h,k):
h, Pgi,

Remark 9.15 (a) fi A--- A fi is indeed a k-form since the f; are linear, the determinant
is multilinear

Aa + pa c a b c a c
M+upd e fl=Ad e fl+p|d e f],
Ag+ug h i g h i g h 1
and antisymmetric
a b c b a c
d e fl=—e d f].
h 1 h g 1
(b) For example, let y = (y1,---,Yn), 2 = (21,---,2,) € R,
dzs A dzi(y, 2) = s % = Y321 — Y1%3-
N oz

If f. = f, for some r # s, we have f; A---A fr = 0 since determinants with identical rows
vanish.

Proposition 9.17 For k <n the k-forms {dz;; A+ -Adz;, |1 <43 <ip <+ < i <n}
form a basis of the vector space A¥(R™). A k-form with k > n is identically zero. We

have
n
(i)

Proof. Any k-form w is uniquely determined by its values on the k-tuple of vectors
(€iyy---r€i) With 1 < 4y < iy < -++ < i < n. Indeed, using antisymmetry of w, we
know w on all k-tuples of basis vectors; using linearity in each component, we get w on all
k-tuples of vectors. This shows that the dz;, A---A da;, with 1 <4; <idp <--- <4 <n
generate the linear space A¥(R™). We make this precise in case k = 2. With y =, yse;,
2= j Zi€j we have by linearity and antisymmetry of w

dim A*(R™) =

n
w(y, z) = Z yizjw(ei, ;) ANT Z (yizj — yjzi)w(es, e;)

ij=1 1<i<j<n

. Yi Zi|

= Zw(ei,ej) = Zw(ei, e;)dz; A dz(y, 2).
i<j Yi % i<j
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Hence,
W = ZU)(GZ‘,GJ‘) dﬂ?z A d.??j.
i<j
This shows that {dz; A dz; | i < j} generates A*(R"). These are () elements. We show

its linear independence. Suppose that > . . «;;dz; A dz; = 0 for some ;. Evaluating

i<j
this on (e, es), 7 < s, gives

0= ZO‘” dz; A dzj(e,, e5) Zam

’FZ

3]'

1<J i<y
= E @i (07i0sj — Orj0si) = CQurs;
i<j

hence, the above 2-forms are linearly independent. The arguments for general k£ are
similar. [

For w € A¥(R") there exist unique numbers a;,..;, € R such that

W = z Ay -y, dxil VASRERWAN d.??lk

1<y << <n

Example 9.13 Let n = 3.
k=1 {dzi, dzy, dzs} is a basis of A}(R?).
k=2 {dx; A dwzy, dz; A dxs, dzs A dzs} is a basis of A%(R?).
k=3 {dx; A dzy A dzs} is a basis of A3(IR3).

AR(R?) = {0} for k > 4.

Definition 9.19 An algebra A over the field K (K = R or K = C) is a K-linear space
together with a product map (a,b) — ab, A x A — A, such that the following holds for
all a,b,ce Aand a € K

(i) a(bc) = (ab)c (associative),
(i) (a+b)c=ac+bc, a(b+c)=ab+ ac,
(iii) «a(ab) = (aa)b = a(ab).

Standard examples are C(X), the continuous functions on a metric space X or Mat(n x
n, K), the full n X m-matrix algebra over KK or the polynomial algebra.

Let A(R") @ AF(R™) be the direct sum of linear spaces.
k=0

Proposition 9.18 (i) A(R"™) is an R-algebra with unity 1 and product A defined by
(dayy Ao Adz) A (dzj, A--- A dej) = dag, A--- A dz, A dzjy A--- A day,
(i) If wy, € A¥(R™) and w; € AY(R™) then wy A wy € AFTHR™) and

W AN wy = (—1)klwl N Wg-
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Proof. We show (ii) for wy = dz;, A--- A dz;, and w; = dzj, A--- A dzj,. We already
know dz; A dz; = —dx; A dx;. There are kl transpositions dz;, <+ dz;,; hence the

sign is (—1)*. n

In particular, dz; A dz; = 0. The formula dz; A dz; = —dz; A dz; determines the product
in A(R™) uniquely.

Definition 9.20 A(RR") is called the ezterior algebra of the vector space R™.

The Pull-Back of k-forms
Definition 9.21 Let A € L(R",R™) a linear mapping and k£ € N. For w € A*(R™) we
define a k-form A*(w) € A¥(R") by

(A*w)(hl, ceay h'k) = W(Ahl,Ah,Q, ceey Ahk), hl, ceey hk e R"

We call A*(w) the pull-back of w under A.

Note that A* € L(A*(R™),A*(R")) is a linear mapping. In case k¥ = 1 we call A*
the dual mapping to A. In case £k = 0, w € R we simply set A*w = w. We have
A*(w A n) = A*w A A*.

Orientation of R"™

If {e1,...,e,} and {f1,..., fn} are two bases of R" there exists a unique regular matrix
A = (ai;) (det A # 0) such that e; = >, a;;f;. We say that {ei,...,e,} and {fi,..., fu}
are equivalent if and only if det A > 0. Since det A # 0, there are exactly two equivalence
classes.

Definition 9.22 An orientation of R™ is given by fixing one of the two equivalence
classes.

Example 9.14 (a) In R? the bases {e1, e} and {ey, e;} have different orientations since
01

A= (1 0) and det A = —1.

(b) In R3 the bases {ei,es,e3}, {es,e1,e} and {es,e3,e;} have the same orientation

whereas {er, e3, €2}, {es,e1,e3}, and {es, 5, e;} have opposite orientation.

9.7.2 Differential Forms

Let U C R™ be an open set.

Definition 9.23 A k-form on U is a mapping w: U — A¥(R"), i.e. to every point x € U
we associate a k-form w(z) € AF(R™).
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Let w be a k-form on U. Since {dz;, A---Adz;, |1 <3 <y <--- < i < n} forms a
basis of A*¥(R") there exist uniquely determined functions a;,..;, on U such that

w(z) = Z Qi () dzgy Ao - A da, (9.27)

1<iy < <ip<n

If all functions a;,..;, are in C®(U) we say w is a differential k-form on U. The linear
space of differential k-forms on U is denoted by 2%(U). We define 2°(U) = C~(U) and

U) = @ Q2%(U). The product in A(R™) defines a product in £2(U):

(wAn)(z) =w(@)An(z), =el,

hence 2(U) is an algebra.

(a) Differentiation of Differential Forms

Let U C R™ be open.

Definition 9.24 Let f € 2°(U) = C®(U) and = € U. We define

df(z) = Df();

then df is a differential 1-form on U.
If w(z) = Z Qi i (@) dziy A -+ A day, is a differential k-form, we define

1<y <-<ip<n
dw(z) = Z daj,..i, (£) A dxiy Ao A da, (9.28)
1<i1 << <n

Then dw is a differential (k + 1)-form. The linear operator d: £28(U) — 2%+1(U) is called
the exterior differential.

Remarks 9.16 (a) Note, that for a function f: U — R, Df € L(R™,R) = A'(R"). By
Example 8.7 (a)

Df(x)(h) = grad f(«

Z (%, z)dxz;(h

hence

af0)=3" O (&) da. (9.29)

Viewing z;: U — R as a C*°-function, by the above formula
dz;(z) = dz;.

This justifies the notation dz;. If f € C®(R) we have df(z) = f'(x) dz.
(b) One can show that the definition of dw does not depend on the choice of the basis
{d=y,..., dz,} of AY(R").
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Example 9.15 (a) G = R?, w = e® dx + 23> dy. Then
dw = d(e™) A dz + d(zy®) A dy
= (ye"¥dz + ze™ dy) A dz + (y* dz + 32y*dy) A dy
= (—ze™ +y*)dz A dy.
(b) Let f be continuously differentiable. Then
df = fadz + fydy + f.dz = grad f - (dz, dy, dz).

(c) Let v = (vy,v9,v3) be a Cl-vector field. Put w = v; dz + vody + v3 dz. Then we have

_ (9vs _ 0w Ou_ Ov vy _ du
dw-(ay 82) dy A dz—i—(az 33:) dz A dx—i—(ax 8y) dz A dy

= curl (v) - (dy A dz, dz A dz, dz A dy).

(d) Let v be as above. Put w = v;dy A dz + vodz A dz + v3dz A dy. Then we have
dw = div (v) dz A dy A dz.

Proposition 9.19 The exterior differential d is a linear mapping which satisfies

(i) dwAn) =dwAn+ (-DfwAdy, weNkU),ne R().

(ii) d(dw) =0, we 2(V).
Proof. (i) For I = (i1,...,i) and J = (ji,...,J,) we abbreviate dz; = dz;; A--- A dz;,
and dz; = dzj, A--- A dzj,. Let w = Za; dxy and n = ZbJ dx ;. By definition

I J

dlwAn)=d (ZaIdexI/\ de)

I,J
= Z(daIbJ + a,[dbj) A d-/I;I A dCUJ

1,J
= "dar A dag A bydas + Y apdey Adby A dag(=1)F
I,J 1,J

=dwAn+(=1)kwAdny,

where in the third line we used db; A dz; = (=1)*dz; A db;.
(ii) Again by the definition of d:

d(dw) => " d(dar A day)
I
aaI

82a1
Schwarz_’lemma — W (_ dxj A de A dml) - —d(dw)
’17]
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It follows that d(dw) = d?>w = 0. »

(b) The Pull-Back of Differential Forms

Definition 9.25 Let f: U — V be a differentiable function with open sets U C R"
and V C R™. Let w € 2¥(V) be a differential k-form. We define a differential k-form
f*(w) € 2¥(U) by

(frw)(@) = (Df(z)")w(f(z)),
(f*w) (@i b, . he) = w(F(@); D) (h), - .., Df () (), @ €U, hu,... hy € R

In case k =0 and w € 2°(V) = C*®(V) we simply set
(ffw)(z) =w(f(z), [fw=wef.
We call f*(w) the pull-back of the differential k-form w with respect to f.

Note that by definition the pull-back f* is a linear mapping from the space of differential
k-forms on V to the space of differential k-forms on U, f*: Q2F(V) — 0QF(U).

Proposition 9.20 Let f be as above and w,n € 2(V). Let {dyi,..., dy,} be the dual
basis to the standard basis in R™. Then we have the following properties

F*(dy;) _Zgwff dz;, i=1,...,m. (9.30)
F(dw) = d(f*w), (9.31)
fHlaw) = (af) f*(w), a€C*(V), (9-32)
frlwnn) = fw)Afn). (9-33)

Ifn=m and {y1,...,yn} is the standard basis in the image space R™, then

O(fiy- -y fn)

dzy A--- A dz,,. 34
a(xl,“.’xn) Ty A A dz (93)

Ay A=A dy,) =

Proof. We show (9.30). Let h € R™; by Definition 9.24 and the definition of the derivative

we have
kl,...,m>

F(dy) () = dy(Df () (k) = <dyz-, (Z (%) hj)

j=1

S ()-8
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This shows (9.30). Equation (9.32) is a special case of (9.33). We skip the proof.
To show (9.31) in view of (9.28) and (9.33), it suffices to show f*(dg) = d(f*g) for
functions g: U — R. By (9.29) and (9.32) we have

f*(dg)(w)=f*( 2’9 dy )( )=Z%jf”f*<dy»

™ 9g(f 6fz
Z 8 ]Zaxj

i—1 Yi

 dg(f(x)) Bfi(x)
(Z oy Oz, ) dz;

i=1

M-

j=1

L Z (o)) d,
— 4N @) = d(9) @)
We finally prove (9.34). By (9.33) and (9.31) we have
fr(dyr Ao A dyn) = fr(dy) A A f*(dyn)

" of o ,
=2 oy, o AZ

t1=1 zn*I

= Z Oh .- af" dz;, N A day,.
8,1:Zl in

Zla ,Zn—l

Since the square of a 1-form vanishes, the only non-vanishing terms in the above sum are

the permutations (i1, ...,14,) of (1,...,n). Using antisymmetry to write dz; A---A dz;,
as a multiple of dzy A--- A dx,, we obtain the sign of the permutation (i1, ...,1%,):
*(dys A---AN d = I de: A---AN d
f*(dy Yn) | Z sign (1) o om0 Tn
I=(i1,...,in)€ESn
o(fi,...
= O Jn) dzi A -+ A day,.

O(x1,...,Zn)

Example 9.16 (a) Let f(r,) = (rcosy,rsing) be given on R*\(0 x R) and let
{dr,d¢} and {dz, dy} be the dual bases to {e,,e,} and {e1,e2}. We have

fr(x) =rcose, f*(y) =rsing,
f*(dz) = cospdr —rsinpdy, f*(dy) = sinpdr + rcos pdyp,
(dx/\ dy) = rdr Ady,

x -y
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(b) Let k¥ € N, r € {1,...,k}, and o € R. Define a mapping a mapping from
I: RF — RF! and w € 2F(RF!) by

Hxy,...,x8) = (1, - o, Tpo1, QG Ty - . - Tg),
k+1 .
WYL, Yky1) = Zfz(y) dyr A== dy; - A dygqa,
i=1

where f; € C®°(RF*) for all 4; the hat means omission of the factor dy;. Then
I'(w)(z) = fo(z1, . s Tro1, @ Ty ooy 2 ) A A - A dy.
This easily follows from

I*(dyz): d:vi, izl,...,T—l,
I*(dyr):()v
I*(dyi+1): diL'i, i:T,...,k.

Roughly speaking: f*w is obtained by substituting the new variables at all places.

(c) Closed and Exact Differential Forms

Motivation: Let f(z) be a continuous function on R. Then w = f(x)dz is a 1-form.
By the fundamental theorem of calculus, there exists an antiderivative F'(z) to f(z) such
that d F(z) = f(z) dz = w.

Problem: Given w € £2%(U). Does there exist n € 2% 1(U) with dn = w?

Definition 9.26 w € 2%(U) is called closed if dw = 0.
w € Q%(U) is called ezact if there exists n € 2 1(U) such that dn = w.

Remarks 9.17 (a) An exact form w is closed; indeed, dw = d(dn) = 0.

(b) A 1-form w =) . f; dz; is closed if and only if curl f =0 for the corresponding vector
field f: (f1,--., fn). Here the general curl can be defined as a vector with n(n — 1)/2
components

(curl f)ij _ 9 ok

N 6£L'Z axj )

The form w is exact if and only if f is conservative, that is, f is a gradient vector field
with f = grad (U). Then w=dU.
(c) There are closed forms that are not exact; for example, the winding form

w = dxr + d
$2+y2 x2+y2 Y

on R?\ {(0,0)} is not exact, cf. homework 30.1.
(d) If dp = w then d(n + d€) = w, too, for all £ € 2F-2(U).
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Definition 9.27 An open set U is called star-shaped if there
exists an zy € U such that for all z € U the segment from z,
tozisin U, i.e. (1 —t)xo+tx € U forall t € [0,1].

Convex sets U are star-shaped (take any zo € U); any star-shaped set is connected and
simply connected.

Lemma 9.21 Let U <C R"™ be star-shaped with respect to the origin. Let
w= Z iyoi, Ay A -+ A dx;, € QF(U). Define

11 <<l

k 1
IHw)(z) = Z Z(—l)"_1 (/0 t*la;, . (tz) dt) @i, dxgy Ao A dxg, A A da,,

1< <ip, T=1

(9.35)

where the hat means omission of the factor dx; . Then we have
Idw)+d({w) =w. (9.36)
(Without proof.)

Example 9.17 (a) Let k =1 and w = a; dz; + aydzy + a3 dzs. Then

1 1 1
I(w) =z / a1 (tz) dt + z, / as(tx) dt + x5 / az(tx) dt.
0 0 0

Note that this is exactly the formula for the potential U(x1, 29, z3) from Remark 9.10 (b).
Let (a1, a9,a3) be a vector field on U with dw = 0. This is equivalent to curla = 0 by
Example9.15 (¢). The above lemma shows dU = w for U = I(w); this means gradU =
(a1, a9,a3), U is the potential to the vector field (a1, as, as).

(b) Let k = 2 and w = a; dzy A dzs + apdzsz A dzy + a3 dxy A dze where a is a Cl-vector
field on U. Then

I(w) = (:(,-3 /0 ta(te) dt — 2, /0 tas(t2) dt) da, +

1 1
+ (ml/ tag(tx) dt—xg,/ tay(tx) dt) dzy +
0 o 1
+ (.7)2/ tay (tx) dt—xl/ tas(tx) dt) dzs.
0 0

By Example9.15 (d), w is closed if and only if div (a) =0 on U. Let n = b; dz1 + by dzy +
b3 dxs such that dp = w. This means curlb = a. The Poincaré lemma shows that b with
curl b = a exists if and only if div (a) = 0. Then b is the vector potential to a. In case
dw = 0 we can choose b dZ = I(w).
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Theorem 9.22 (Poincaré Lemma) Let U be star-shaped. Then every closed differen-
tial form 1is exact.

Proof. This is an easy consequence of Lemma9.36. Without loss of generality let U be
star-shaped with respect to the origin and dw = 0. By Lemma9.21, d(/w) = w. [

Remarks 9.18 (a) Let U be star-shaped, w € £2%(U). Suppose dny = w for some
n € 2% 1(U). Then the general solution of dn = w is given by 1y +d¢ with £ € 2¥2(U).
Indeed, let n be a second solution of dn = w. Then d(n — n9) = 0. By the Poincaré
lemma, there exists £ € 2¥2(U) with n — ny = d&, hence n = ny + d&.

(b) Let V' be a linear space and W a linear subspace of V. We define an equivalence
relation on V' by vy ~ vy if v; — v9 € W. The equivalence class of v is denoted by v + W.
One easily sees that the set of equivalence classes, denoted by V/W, is again a linear
space: a(v+ W)+ B(u+W) :=av+ fu+W.

Let U be an arbitrary open subset of R". We define

CHU) = {w € 2%(U) | dw = 0}, the cocycles on U,
BF(U) ={w € 2%(U) |w is exact}, the coboundaries on U.

Since exact forms are closed, B¥(U) is a linear subspace of C*(U). The factor space
Hjer (U) = C*(U)/B*(U)

is called the de Rham cohomology of U. If U is star-shaped, HY 1 (U) = 0 for k > 1, by
Poincaré’s lemma. The first de Rham cohomology Hj . of R?\{(0,0)} is non-zero. The
winding form is a non-zero element. We have

H((l)eR(U) = ]Rp’

if and only if U has exactly p components which are not connected U = U; U ---U U,

(disjoint union). Then, the characteristic functions xy,, i = 1,...,p, form a basis of the
0-cycles C°(U) (B*(U) = 0).

9.7.3 Stokes’ Theorem

(a) Singular Cubes, Singular Chains, and the Boundary Operator

A very nice treatment of the topics to this Subsection is [13, Chapter 4]. The set [0, 1]* =
[0,1] x -+ x [0,1]] ={x € R" |0 <x; < 1,i=1,...,n} is called the n-dimensional unit
cube. Let U C R™ be open.

Definition 9.28 (a) A singular k-cube in U C R" is a continuously differentiable map-
ping ¢: [0,1]F — U.
(b) A singular k-chain in U is a formal sum

Sk = M1Ck1 + *+ + NpCr

with singular k-cubes ¢ ; and integers n; € Z.
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A singular O-cube is a point, a singular 1-cube is a
curve, in general, a singular 2-cube (in R?) is a surface
P @ with a boundary of 4 pieces which are differentiable
— curves. Note that a singular 2-cube can also be a

2

single point—that is where the name “singular” comes
from.

Let I: [0,1]¥ — R* be the identity map, i.e. Iy(z) = z, x € [0,1]*. Tt is called the
standard k-cube in R*. We are going to define the boundary 0s;, of a singular k-chain sy.
Forv=1,...,k define

I(k':i,O)(xl’ tet ,.Tk_l) = (l’l, . '7$i—1a0axia HE axk—l)a

I(ki,l)(xl, cesTp1) = (T1, e i1, LTy T 1)

Insert a 0 and a 1 at the ith component, respectively.
The boundary of the standard k-cube I is now defined by 81y : [0, 1]*~! — [0, 1]

k
O =Yy (=1)" (Ifio) — 1) - (9.37)

=1

It is the formal sum of 2k singular (k — 1)-cubes, the faces of the k-cube.
The boundary of an arbitrary singular k-cube c: [0,1]* — U C R" is defined by the
composition of the above mapping 0 I;.: [0,1]*"! — [0, 1]¥ and the k-cube c;:

k
8ck = Ck°a[k = Z(—l)i (Ck°l(k;-,0) — Ck°[(ki,1)) s (938)

i=1

and for a singular k-chain sy = nicg1 + -+ + npci, We set
0sk = n10cka + « -+ + NpOCk .

The boundary operator dc;, associates to each singular k-chain a singular (k — 1)-chain
(since both If; ;) and If} |, depend on k — 1 variables, all from the segment [0, 1]).
One can show that

a(ask) =0

for any singular k-chain s.

Example 9.18 (a) In case n = k = 3 have
*

o0l; = _[(31,0) + 1(31,1) + 1(32,0) - 1(32,1) - 13370) + 1(33’1)’

- |(1,u) WheI‘e

*lag

%o _1(31,0) (@1, z2)

—(0, 21, z2), +I(31,1) (1, 2) = +(1, 21, T2),

3

1 +I(32’0)(.T1,$2) = +($1,0,$2), —1(2,1)(.%1,.%2) = —(SEl, 1,$2),

3.0) (@1, T2) = =(21,72,0), +I5 1) (21, 72) = + (71,72, 1).
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Note, if we take care of the signs in (9.37) all 6 unit normal vectors le(’“i,j) X DQI(’“Z.J.) to
the faces have the orientation of the outer normal with respect to the unit 3-cube [0, 1]3.
The above sum 0I3 is a formal sum of singular 2-cubes. You are not allowed to add

componentwise: —(0,z1,z2) + (1,21, 22) # (1,0,0).
(b) In case k = 2 we have

2 2
e e o E 0Iy(z) = f( o I(w) + f(z 0 ~ i)
10 I 2
+ [¢5) aa IQ (E3 EQ) (E4 El) +
El I(z.o) Ez + (E2 - El) - (E3 - E4) = 0.

Here we have Ocy = Iy + 5 — I3 — 1.
(c) Let ¢y: [0,27] X [0,7] = R*\0 be the singular 2-cube

c(s,t) = (cos ssint,sin ssint, cost).

By (b)
0ca(x) = 9001, =
= co(2m,x) — ¢2(0, 2) + c2(x,0) — co(z, 7)
= (cos 27 sin z, sin 27 sin x, cos 27) — (cos 0 sin z, sin 0 sin x, cos ) +
+ (cos zsin 0, sin  sin 0, cos 0) — (cos z sin 27, sin z sin 27, cos )
= (sinz,0,cosx) — (sinz, 0, cosz) + (0,0,1) — (0,0, —1)
= (0,0,1) — (0,0, —1).

Hence, the boundary Ocs of the singular 2-cube ¢, is a degenerate singular 1-chain. We
come back to this example.

(b) Integration of Differential Forms

Definition 9.29 Let ¢;: [0,1]* — U C R™, & = c(t1,-...,1), be a singular k-cube and
w a k-form on U. Then (c;)*(w) is a k-form on the unit cube [0, 1]*. Thus there exists a
unique function f(t), ¢ € [0, 1]*, such that

(o) (W) = F(£)dtr A--- A dty.

/w:/@@w= F(t)dty --- dt
ck I [0,1]%

is called the integral of w over the singular cube ci; on the right there is the k-dimensional

Then

Riemann integral.
T

If s, = E nick, is a k-chain, set
i=1



9.7 Differential Forms on R"® 279

If £ =0, a 0-cube is a single point ¢y(0) = o and a 0-form is a function w € C*(G). We
set [, w = c3(w)],_g = w(co(0)) = w(wp). We discuss two special cases k = 1 and k = n.

Example 9.19 (a) £ = 1. Let ¢: [0,1] — R" be an oriented, smooth curve I'. Let
w= fi(z)dz; + -+ fu(z) dz, be a 1-form on R", then

c*(w) = (file(®)er(t) + - fale(t))c, (1)) di

is a 1-form on [0, 1] such that

/w—/mcw—/fl 4 falc(t)) e, (t) dt = /f dz.

Obviously, fcw is the line integral of f over I'.
(b) k = n. Let c: [0,1]F — RF be continuously differentiable and let x = c(t). Let
w= f(z)dz; A--- A dzy be a differential k-form on R*. Then

¢t (w) = F(ct)) g((ii’:i:tk))dtl A dty.

61, .. C )
= dty...dt, .
/w /f Oty oth) (9:39)
Let ¢ = I be the standard k-cube in [0, 1]*. Then

/w = / f(z)dzq- - - daxy,
I, [0,1]%

is the k-dimensional Riemann integral of f over [0, 1]*.
Let I (z1,...,2%) = (22, 1, T3, . . ., 2). Then I, ([0,1]%) = I([0, 1]¥) = [0, 1]*, however

/w— /f $2,x1,$3,...,$k)(—1) dxld.’L’k

/f$1;$2,$3,...,l‘k)dx1...dwk:_/w'

Iy,

Therefore,

We see that [w is an oriented Riemann integral. Note that in the above formula (9.39)
Iy,
we do not have the absolute value of the Jacobian.

(c) Stokes’ Theorem

Theorem 9.23 Let U be an open subset of R™, k > 0 a mon-negative integer and
Spe1: [0, — U a singular (k + 1)-chain. Let w be a differential k-form on U. Then

we have
/wz /dw.

35k+1 Sk+1
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Proof. (a) Let sg11 = Iy be the standard (k + 1)-cube, in particular n = k + 1.
k+1

Letw:Zfi(x)dacl/\---/\aza/\---/\dxkﬂ.Then
i=1
k+1
11 0fi(z)
dw= —1)H =2 de Ao A d
b i Pl Tt

hence by Example9.16 (b), Fubini’s theorem and the fundamental theorem of calculus

k+1

dw=S (1) tdz,---d
/ w Z( ) 8.’])1 X1 Tk+1
Tt =t [0,1]k+1
k+1 . 1 8f
= Z(—l)Z_H / ( P 1($1,...,£,. . ..T]H_l)dt) dIL'l" 'dmi,1 dxH—l" 'dxk—kl
= o
k+1
:Z(_l)Z_H / (fi(x17""1)""$k+1)_fi($1i'"’Q?""xk+1))dx1 S d$k+1
= 0,1]¢ Z Z
k+1

- _1)i*t (1E3) w- / ()
Example9.16(b)z( ) / an) @0))
' o1

= 0,1
- [

Ot

by definition of 0I.,. The assertion is shown in case of identity map.
(b) The general case. Let I be the standard (k + 1)-cube. Since the pull-back and the
differential commute (Proposition 9.20) we have

[av= [ @@= [d@w= [ e

Ck+1 I 41 T4 Olg 41
k+1
% * *
> 0| [ @are- [ o)
i=1 k41 rk+1
(i,0) (4,0)
k+1
=1
ck_,_loléci:%l)—ck_{_lolz:"ll) Ock41

Remark 9.19 Stokes’ theorem is valid for arbitrary oriented compact differentiable k-
dimensional manifolds F and continuously differentiable (k — 1)-forms w on F.



9.7 Differential Forms on R"® 281

Example 9.20 We come back to Example9.18 (¢). Let w = (zdy A dz + ydz A dz +
zdx A dy)/r® be a 2-form on R3*\0. It is easy to show that w is closed, dw = 0. We

/ v
(&)

cy(w) = cy(xdyndz+ydzA de+zdzA dy) = (z,y,2)- dS = (2,y, 2)-D1cy X Dacy dsA dt.

We have c¢5(r®) = 1 and

This gives
cy(w) = —sintds A dt,

27 T
/ w= / cy(w) = / / (—sint) dsdt = —4m.
c2 [0,27] x[0,7] 0 0

Stokes’ theorem shows that w is not exact on R*\ 0. Suppose to the contrary that w = dn

such that

for some n € 2'(R?\0). Since by Example 9.18 (c), Oc, is a degenerate 1-chain (it consists
of two points), the pull-back (dcp)*(n) is 0 and so is the integral

0=/Il(502)*(77)=/ac2n=/02d77=/02w=—47r,

a contradiction; hence, w is not exact.

Q 27. Let G C R"™ be an open set, U: G — R in C®(G), and let
w(z) = Uy, (z)dzy + -+ - + Uy, (z) dz, be a 1-form on G.

(a) Is w closed?

(b) Is w exact? If so, find n with w = dn.

(c) Let ¢: [0,1] — G be a singular 1-cube in G. Compute

[

Compare this result with the assertion of Stokes’ theorem in case k = 0.
We come back to the two special cases k =1, n=2and k=1, n = 3.

(d) Special Cases

k=1,n=3. Let ¢: [0,1]> = U C R? be a singular 2-cube, F = ¢(]0,1]?) is a regular
smooth surface in R®. Then 0F is a closed path consisting of 4 parts with the counter-

clockwise orientation. Let w = f;dzy + fo dxe + f3dxs be a differential 1-form on U. By
Example 9.19 (a)

/ w = f1d$1+f2d$2+f3d$3
dca oF

On the other hand by Example 9.15 (c)

dw = curl f - (dzy A dzg, dzg A dzo, dzy A dzy).
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In this case Stokes’ theorem gives

/w:/dw
dca c2

/f1 dzy + fodze + fzdxsz = / curl f - (dzo A dxs, dzs A dxy, dzy A das)
oF F

If F is in the x1—x, plane, we get Green’s theorem.
k =2, n=3. Let c3 be a singular 3-cube in R?® and G = ¢3([0, 1]). Further let

w =wv1dxry A dxs +vodas A doy + v3dx; A dxg,

with a continuously differentiable vector field v € C!}(G). By Example9.15(d),
dw = div (v) dx; A dza A dzz. The boundary of G consists of the 6 faces dcs([0,1]?).
They are oriented with the outer unit normal vector. Stokes’ theorem then gives

/ dw = / vy dzg A dog +vodas A doy +v3dxy A dao,
c3 Oc3

/ divv dzxdydz =/ 7 ds.
G oG

This is Gauf}’ divergence theorem.

Application—The Fundamental Theorem of Algebra
We give a first proof of the fundamental theorem of algebra, Theorem 5.19:

Every polynomial f(z) = 2™ + a;2"™' + --- + a,, with complex coefficients
a; € C has a root in C.

We use two facts, the winding form w on R?\0 is closed but not exact and 2" and f(z)

are “close together” for sufficiently large |z |.
We view C as R? with (a,b) = a + bi. Define the

following singular 1-cubes on R?

crn(s) = (R" cos(2mns), R" sin(2mns)) = 2", (9.40)

l\ cr,f(s) = focri(s) = f(Rcos(27s), Rsin(2ws)) = f(2),
(9.41)
where z = z(s) = R(cos2ms + isin27s), s € [0,1].
@ Note that | z| = R. Further, let

X c(s,t) = (1 —t)ers(s) +tern = (1 — 1) f(2) + 2", (s,t) € 10,17,
(9.42)

b(s,t) = f((1 —t) R(cos 2ms,sin27s)) = f((1 —1)z), (s,t) €[0,1]?
(9.43)

1) f@+tz "

be singular 2-cubes in R?.
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Lemma 9.24 If |z| = R is sufficiently large, then

n

e(s,t)| > %, (5.4) € [0, 1]

Proof. Since f(z) — 2" is a polynomial of degree less than n,

FCEEI
2" ’

Z—r 0

in particular | f(z) — 2™ | < R"/2 if R is sufficiently large. Then we have

[e(s,0) [ = [(1 =) f(2) + 22" | = [ 2" + (L = 1)(f(2) — 2") |

R R
> = (=) | f() =" | 2 B = =

The only fact we need is c(s,t) # 0 for sufficiently large R; hence, ¢ maps the unit square
into R%\ 0.

Lemma 9.25 Let w = w(z,y) = (—ydz +xdy)/ (x> +y?) be the winding form on R?\0.
Then we have

(a)
dc = Cp,f — Crm,
db = f(z) = f(0).
(b) For sufficiently large R, ¢, cgy, and cg,y are chains in R*\0 and

/ w—/ w = 27n.
CR,n CR,f

Proof. (a) Note that z(0) = 2(1) = R. Since 0x(z) = (z,0) — (x,1) + (1,z) — (0,z) we
have
dc(s) = c(s,0) —e(s, 1) + ¢(1,5) — ¢(0, s)
= f(2) = 2" = (1 = s)f(R) + sR") + ((1 — s) f(R) + sR") = f(2) — 2"
This proves (a). Similarly, we have
0b(s) = b(s,0) —b(s,1) +b(1,s) — b(0,s)
= f(2) = f(0) + f((1 = s)R) = F((1 = s)R) = f(z) = f(0).
(b) By the Lemma9.24, ¢ is a singular 2-chain in R*\0 for sufficiently large R. Hence
Jc is a 1-chain in R2\0. In particular, both Crn and cp s are defined on R2\0. Hence
(0c)*(w) is well-defined. We compute cp, (w) using the pull-backs of dz and dy
cra’ (@2 +12) = R,
cry’(dz) = —27nR" sin(27ns) ds,
cry”(dy) = 2mnR" cos(2mns) ds,
) =

Crp' (W) = 2mnds.
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1
/ w = / 2rnds = 27n.
CR,n 0

By Stokes’ theorem and since w is closed,

/w:/dwzo,
dc c

such that by (a), and the above calculation

Oz/ wz/ w—/ w, hence / wz/ w = 27n.
oc CR,n CR,f CR,n CR,f

We complete the proof of the fundamental theorem of

Hence

b(S,ft):fE}'t) z" algebra. Suppose to the contrary that the polynomial
' f(2) is non-zero in C, then b as well as 0b are singular

chains in R?\0.

/ w=/ wz/w:/dw:O.
CR,f CR,f—f(O) ob b

But this is a contradiction to Lemma9.25 (b). Hence, b is not a 2-chain in R?\0, that
is there exist s,t € [0,1] such that b(s,t) = f((1 —¢)z) = 0. We have found that
(1 — t)R(cos(2ms) + isin(27s)) is a zero of f. Actually, we have shown a little more.
There is a zero of f in the disc {z € C | |z | < R} where R > max{1,2) .| a;|}. Indeed,
in this case

n—

a | R < >

gD
=y
S

n—1
[f(2) =2 [ <) | |2 <
k=1

|
1

>
Il

and this condition ensures | c(s,t) | # 0 as in the proof of Lemma 9.24.



