Chapter 9

Integration of Functions of Several Variables

References to this chapter are [10, Section 4] which is quite elemantary and good accessible. Another elementary approach is [9, Chapter 17] (part III). A more advanced but still good accessible treatment is [13, Chapter 3]. This will be our main reference here. In particular the main difference between content zero and measure zero is explained in full detail. Rudin's book [12] is not recommendable for an introduction to integration.

9.1 Basic Definition

The definition of the Riemann integral of a function $f: A \to \mathbb{R}$, where $A \subset \mathbb{R}^n$ is a closed rectangle, is so similar to that of the ordinary integral that a rapid treatment will be given, see Section 5.1.

If nothing is specified otherwise, A denotes a rectangle. A rectangle A is the cartesian product of n intervals,

$$A = [a_1, b_1] \times \dots \times [a_n, b_n] = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid a_k \le x_k \le b_k, \ k = 1, \dots, n\}.$$

Recall that a partition of a closed interval [a, b] is a sequence t_0, \ldots, t_k where $a = t_0 \le t_1 \le \cdots \le t_k = b$. The partition divides the interval [a, b] in to k subintervals $[t_{i-1}, t_i]$. A partition of a rectangle $[a_1, b_1] \times \cdots \times [a_n, b_n]$ is a collection $P = (P_1, \ldots, P_n)$ where each P_i is a partition of the interval $[a_i, b_i]$. Suppose for example that $P_1 = (t_0, \ldots, t_k)$ is a partition of $[a_1, b_1]$ and $P_2 = (s_0, \ldots, s_l)$ is a partition of $[a_2, b_2]$. Then the partition $P = (P_1, P_2)$ of $[a_1, b_1] \times [a_2, b_2]$ divides the closed rectangle $[a_1, b_1] \times [a_2, b_2]$ into kl subrectangles, a typical one being $[t_{i-1}, t_i] \times [s_{j-1}, s_j]$. In general, if P_i divides $[a_i, b_i]$ into N_i subintervals, then $P = (P_1, \ldots, P_n)$ divides $[a_1, b_1] \times \cdots \times [a_n, b_n]$ into $N_1 \cdots N_n$ subrectangles. These subrectangles will be called subrectangles of the partition P.

Suppose now A is a rectangle, $f: A \to \mathbb{R}$ is a bounded function, and P is a partition of A. For each subrectangle S of the partition let

$$m_S = \inf\{f(x) \mid x \in S\}, \quad M_S = \sup\{f(x) \mid x \in S\},$$

and let v(S) be the volume of the rectangle S. Note that *volume* of the rectangle $A = [a_1, b_1] \times \cdots \times [a_n, b_n]$ is

$$v(A) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n).$$

The lower and the upper sums of f for P are defined by

$$L(P, f) = \sum_{S} m_S v(S)$$
 and $U(P, f) = \sum_{S} M_S v(S)$,

where the sum is taken over all subrectangles S of the partition P. Clearly, if f is bounded with $m \leq f(x) \leq M$ on the rectangle $x \in R$,

$$m v(R) \le L(P, f) \le U(P, f) \le M v(R),$$

so that the numbers L(P, f) and U(P, f) form bounded sets. Lemma 5.1 remains true; the proof is completely the same.

Lemma 9.1 Suppose the partition P^* is a refinement of P (that is, each subrectangle of P^* is contained in a subrectangle of P). Then

$$L(P, f) \le L(P^*, f)$$
 and $U(P^*, f) \le U(P, f)$.

Corollary 9.2 If P and P' are any two partitions, then $L(P, f) \leq U(P', f)$.

It follows from the above corollary that all lower sums are bounded above by any upper sum and vice versa.

Definition 9.1 Let $f: A \to \mathbb{R}$ be a bounded function. The function f is called *Riemann integrable* on the rectangle A if

$$\int_{A} f \, \mathrm{d}x := \sup_{P} \{ L(P, f) \} = \inf_{P} \{ U(P, f) \} =: \overline{\int_{A} f \, \mathrm{d}x},$$

where the supremum and the infimum are taken over all partitions P of A. This common number is the $Riemann\ integral$ of f on A and is denoted by

$$\int_A f dx$$
 or $\int_A f(x_1, \dots, x_n) dx_1 \cdots dx_n$.

 $\underline{\int}_A f \, dx$ and $\overline{\int}_A f \, dx$ are called the *lower* and the *upper* integral of f on A, respectively. They always exist. The set of integrable function on A is denoted by $\mathcal{R}(A)$.

As in the one dimensional case we have the following criterion.

Proposition 9.3 (Riemann Criterion) A bounded function $f: A \to \mathbb{R}$ is integrable if and only if for every $\varepsilon > 0$ there exists a partition P of A such that $U(P, f) - L(P, f) < \varepsilon$.

9.1 Basic Definition 233

Example 9.1 (a) Let $f: A \to \mathbb{R}$ be a constant function f(x) = c. Then for any Partition P and any subrectangle S we have $m_S = M_S = c$, so that

$$L(P, f) = U(P, f) = \sum_{S} c v(S) = c \sum_{S} v(S)c = v(A).$$

Hence, $\int_A c \, \mathrm{d}x = cv(A)$.

(b) Let $f: [0,1] \times [0,1] \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} 0, & \text{if } x \text{ is rational,} \\ 1, & \text{if } x \text{ is irrational.} \end{cases}$$

If P is a partition, then every subrectangle S will contain points (x, y) with x rational, and also points (x, y) with x irrational. Hence $m_S = 0$ and $M_S = 1$, so

$$L(P, f) = \sum_{S} 0v(S) = 0,$$

and

$$U(P, f) = \sum_{S} 1v(S) = v(A) = v([0, 1] \times [0, 1]) = 1.$$

Therefore, $\overline{\int}_A f \, \mathrm{d}x = 1 \neq 0 = \underline{\int}_A f \, \mathrm{d}x$ and f is not integrable.

9.1.1 Properties of the Riemann Integral

We briefly write \mathcal{R} for $\mathcal{R}(A)$.

Remark 9.1 (a) \mathcal{R} is a linear space and $\int_A (\cdot) dx$ is a linear functional, i. e. $f, g \in \mathcal{R}$ imply $\lambda f + \mu g \in \mathcal{R}$ for all $\lambda, \mu \in \mathbb{R}$ and

$$\int_{A} (\lambda f + \mu g) \, \mathrm{d}x = \lambda \int_{A} f \, \mathrm{d}x + \mu \int_{A} g \, \mathrm{d}x.$$

- (b) \mathcal{R} is a lattice, i.e., $f \in \mathcal{R}$ implies $|f| \in \mathcal{R}$. If $f, g \in \mathcal{R}$, then $\max\{f, g\} \in \mathcal{R}$ and $\min\{f, g\} \in \mathcal{R}$.
- (c) \mathcal{R} is an algebra, i. e., $f, g \in \mathcal{R}$ imply $fg \in \mathcal{R}$.
- (d) The triangle inequality holds:

$$\left| \int_A f \, \mathrm{d}x \right| \le \int_A |f| \, \mathrm{d}x.$$

- (e) $C(A) \subset \mathcal{R}(A)$.
- (f) $f \in \mathcal{R}(A)$ and $f(A) \subset [a, b], g \in \mathcal{C}[a, b]$. Then $g \circ f \in \mathcal{R}(A)$.
- (g) If $f \in \mathbb{R}$ and f = g except at finitely many points, then $g \in \mathbb{R}$ and $\int_A f \, \mathrm{d}x = \int_A g \, \mathrm{d}x$.
- (h) Let $f: A \to \mathbb{R}$ and let P be a partition of A. Then $f \in \mathcal{R}(A)$ if and only if $f \upharpoonright S$ is integrable for each subrectangle S. In this case

$$\int_A f \, \mathrm{d}x = \sum_S \int_S f \! \upharpoonright \! S \, \mathrm{d}x.$$

9.2 Integrable Functions

We are going to characterize integrable functions. For, we need the notion of a set of content zero and of measure zero.

Definition 9.2 Let A be a subset of \mathbb{R}^n .

- (a) A has (n-dimensional) measure zero if for every $\varepsilon > 0$ there exists a sequence $(U_i)_{i \in \mathbb{N}}$ of closed rectangles U_i which cover A such that $\sum_{i=1}^{\infty} v(U_i) < \varepsilon$.
- (b) A has (n-dimensional) content zero if for every $\varepsilon > 0$ there exists a finite cover $\{U_1, \ldots, U_k\}$ of A by closed rectangles such that $\sum_{i=1}^k v(U_i) < \varepsilon$.

Open rectangles can also be used in the definition.

Remark 9.2 (a) Any countable set has measure 0. If each $(A_i)_{i\in\mathbb{N}}$ has measure 0 then $A = A_1 \cup A_2 \cup \cdots$ has measure 0.

- (b) If A has content 0, then A clearly has measure 0.
- (c) If A is compact and has measure 0, then A has content 0. For, let $\varepsilon > 0$. Since A has measure 0 there is a countable open covering (U_1, U_2, \dots) of A such that $\sum_i v(U_i) < \varepsilon$. Since A is compact, there is a finite subcover, say U_1, \dots, U_n of A. Clearly $\sum_{i=1}^n v(U_i) < \varepsilon$.
- (d) If a < b all intervals from a to b (open, closed, half-open, . . .) don't have measure 0 (in fact, their measure and content are b a).
- (e) The conclusion (c) is wrong if A is not compact. For example, let $A = \mathbb{Q} \cup [0, 1]$. Then A has measure 0 since A is countable. Suppose, however $A \subset [a_1, b_1] \cup \cdots \cup [a_n, b_n] =: A_n$, then A_n is a *closed* set. Hence, $\overline{A} = [0, 1] \subset A_n$. Since [0, 1] has nonzero content, so has A.

Theorem 9.4 Let A be a closed rectangle and $f: A \to \mathbb{R}$ a bounded function. Let $B = \{x \in A \mid f \text{ is discontinuous at } x\}.$

Then f is integrable if and only if B is a set of measure 0.

For the proof see [13, 3-8 Theorem] or [12, Theorem 11.33].

We have so far dealt only with integrals of functions over rectangles. Integrals over other sets are easily reduced to this type.

If $C \subset \mathbb{R}^n$, the characteristic function χ_C of C is defined by

$$\chi_C(x) = \begin{cases} 1, & x \in C, \\ 0, & x \notin C. \end{cases}$$

Definition 9.3 Let $f: C \to \mathbb{R}$ be bounded and A a rectangle, $C \subset A$. We call f Riemann integrable on C if the product function $f \cdot \chi_C : A \to \mathbb{R}$ is Riemann integrable on A. In this case we define

$$\int_C f \, \mathrm{d}x = \int_A f \chi_C \, \mathrm{d}x.$$

This certainly occurs if both f and χ_C are integrable on A.

For every $x \in A$ exactly one of the following three cases occurs:

- (a) x has a neighborhood which is completely contained in C (x is an inner point of C),
- (b) x has a neighborhood which is completely contained in C^{c} (x is an inner point of C^{c}),
- (c) every neighborhood of x intersects both C and $C^{\mathfrak{c}}$. In this case we say, x is the boundary ∂C of C. By definition $\partial C = \overline{C} \cap \overline{C^{\mathfrak{c}}}$.

By the above discussion, A is the disjoint union of two open and a closed set:

$$A = C^{\circ} \cup \partial C \cup (C^{\circ})^{\circ}.$$

Theorem 9.5 The characteristic function $\chi_C \colon A \to \mathbb{R}$ is integrable if and only if the boundary of C has measure 0.

Proof. Since the boundary ∂C is closed and inside the bounded set, ∂C is compact. Suppose first x is an inner point of C. Then there is an open set $U \subset C$ containing x. Thus $\chi_C(x) = 1$ on $x \in U$; clearly χ_C is continuous at x (since it is locally constant). Similarly, if x is an inner point of $C^{\mathfrak{c}}$, $\chi_C(x)$ is locally constant, namely $\chi_C = 0$ in a neighborhood of x. Hence χ_C is continuous at x. Finally, if x is in the boundary of C for every open neighborhood U of x there is $y_1 \in U \cap C$ and $y_2 \in U \cap C^{\mathfrak{c}}$, so that $\chi_C(y_1) = 1$ whereas $\chi_C(y_2) = 0$. Hence, χ_C is not continuous at x. Thus, the set of discontinuity of χ_C is exactly the boundary ∂C . The rest follows from Theorem 9.4.

Definition 9.4 A bounded set C whose boundary has measure 0 is called *Jordan measuralbe* or simply a *Jordan set*. The integral $\int_C 1 \, dx$ is called the n-dimensional content of C or the n-dimensional volume of C. Naturally, the one-dimensional volume in the length, and the two-dimensional volume is the area.

A typical example of a Jordan measurable subset D of \mathbb{R}^{n+1} is

$$D = \{(x,y) \mid x \in K, \ 0 \le y \le f(x)\},\$$

where $K \subset \mathbb{R}^n$ is a compact set and $f: K \to \mathbb{R}$ is continuous. In particular, the graph of f has measure 0 in \mathbb{R}^{n+1} .

9.2.1 Fubini's Theorem and Iterated Integrals

So far there was no method to compute multiple integrals.

Theorem 9.6 (Fubini's Theorem) Let $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^m$ be closed rectangles, and let $f: A \times B \to \mathbb{R}$ be integrable. For $x \in A$ let $g_x: B \to \mathbb{R}$ be defined by $g_x(y) = f(x, y)$ and let

$$\mathcal{L}(x) = \underbrace{\int}_{B} g_x \, dy = \underbrace{\int}_{B} f(x, y) \, dy,$$

$$\mathcal{U}(x) = \underbrace{\int}_{B} g_x \, dy = \underbrace{\int}_{B} f(x, y) \, dy.$$

Then $\mathcal{L}(x)$ and $\mathcal{U}(x)$ are integrable on A and

$$\int_{A \times B} f \, dx dy = \int_{A} \mathcal{L}(x) \, dx = \int_{A} \left(\underbrace{\int}_{B} f(x, y) \, dy \right) \, dx,$$
$$\int_{A \times B} f \, dx dy = \int_{A} \mathcal{U}(x) \, dx = \int_{A} \left(\underbrace{\int}_{B} f(x, y) \, dy \right) \, dx.$$

The integrals on the right are called iterated integrals.

Proof. Let P_A be a partition of A and P_B a partition of B. Together they give a partition P of $A \times B$ for which any subrectangle S is of the form $S_A \times S_B$, where S_A is a subrectangle of the partition P_A , and S_B is a subrectangle of the partition P_B . Thus

$$L(P, f) = \sum_{S} m_S v(S) = \sum_{S_A, S_B} m_{S_A \times S_B} v(S_A \times S_B)$$
$$= \sum_{S_A} \left(\sum_{S_B} m_{S_A \times S_B} v(S_B) \right) v(S_A).$$

Now, if $x \in S_A$, then clearly $m_{S_A \times S_B}(f) \leq m_{S_B}(g_x)$ since the reference set $S_A \times S_B$ on the left is bigger than the reference set $\{x\} \times S_B$ on the right. Consequently, for $x \in S_A$ we have

$$\sum_{S_B} m_{S_A \times S_B} v(S_B) \le \sum_{S_B} m_{S_B}(g_x) v(S_B) \le \underline{\int}_B g_x \, dy = \mathcal{L}(x)$$

$$\sum_{S_B} m_{S_A \times S_B} v(S_B) \le m_{S_A}(\mathcal{L}(x)).$$

Therefore,

$$\sum_{S_A} \left(\sum_{S_B} m_{S_A \times S_B} v(S_B) \right) v(S_A) \le \sum_{S_A} m_{S_A} (\mathcal{L}(x)) v(S_A) = L(P_A, \mathcal{L}).$$

We thus obtain

$$L(P, f) \le L(P_A, \mathcal{L}) \le U(P_A, \mathcal{L}) \le U(P_A, \mathcal{U}) \le U(P, f),$$

where the proof of the last inequality is entirely analogous to the proof of the first. Since f is integrable, $\sup\{L(P,f)\}=\inf\{U(P,f)\}=\int_{A\times B}f\,\mathrm{d}x\mathrm{d}y$. Hence,

$$\sup\{L(P_A,\mathcal{L})\} = \inf\{U(P_A,\mathcal{L})\} = \int_{A\times B} f \,\mathrm{d}x \,\mathrm{d}y.$$

In other words, $\mathcal{L}(x)$ is integrable on A and $\int_{A\times B} f \, \mathrm{d}x \mathrm{d}y = \int_A \mathcal{L}(x) \, \mathrm{d}x$. The assertion for $\mathcal{U}(x)$ follows similarly from the inequalities

$$L(P, f) \le L(P_A, \mathcal{L}) \le L(P_A, \mathcal{U}) \le U(P_A, \mathcal{U}) \le U(P, f).$$

Remarks 9.3 (a) A similar proof shows that

$$\int_{A\times B} f \, dx dy = \int_{B} \left(\underline{\int}_{A} f(x, y) \, dx \right) \, dy = \int_{B} \left(\overline{\int}_{A} f(x, y) \, dx \right) \, dy.$$

These integrals are called *iterated integrals* for f in the reverse order from those of the theorem. The possibility of interchanging the orders of iterated integrals has many consequences.

- (b) In practice it is often the case that each g_x is integrable so that $\int_{A\times B} f \, dx dy = \int_A \left(\int_B f(x,y) \, dy \right) \, dx$. This certainly occurs if f is continuous.
- (c) If $A = [a_1, b_1] \times \cdots \times [a_n, b_n]$ and $f \colon A \to \mathbb{R}$ is sufficiently nice, we can apply Fubini's theorem repeatedly to obtain

$$\int_A f \, \mathrm{d}x = \int_{a_n}^{b_n} \left(\cdots \left(\int_{a_1}^{b_1} f(x_1, \dots, x_n) \, \mathrm{d}x_1 \right) \cdots \right) \, \mathrm{d}x_n.$$

(d) If $C \subset A \times B$, Fubini's theorem can be used to compute $\int_C f \, \mathrm{d}x$ since this is by definition $\int_{A \times B} f \chi_C \, \mathrm{d}x$. Here are two examples in case n=2 and n=3. Let a < b and $\varphi(x)$ and $\psi(x)$ continuous real valued functions on [a,b] with $\varphi(x) < \psi(x)$ on [a,b]. Put

$$C = \{(x,y) \in \mathbb{R}^2 \mid a \le x \le b, \quad \varphi(x) \le y \le \psi(x)\}.$$

Let f(x, y) be continuous on C. Then f is integrable on C and

$$\iint\limits_C f \, \mathrm{d}x \, \mathrm{d}y = \int_a^b \left(\int_{\varphi(x)}^{\psi(x)} f(x, y) \, \mathrm{d}y \right) \, \mathrm{d}x.$$

Let

$$G = \{(x, y, z) \in \mathbb{R}^3 \mid a \le x \le b, \, \varphi(x) \le y \le \psi(x), \, \alpha(x, y) \le z \le \beta(x, y)\},\$$

where all functions are sufficiently nice. Then

$$\iiint_{C} f(x, y, z) \, dx dy dz = \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(y)} \left(\int_{\alpha(x, y)}^{\beta(x, y)} f(x, y, z) \, dz \right) \, dy \right) dx.$$

(e) Cavalieri's Principle. Let A and B be Jordan sets in \mathbb{R}^3 and let $A_c = \{(x,y) \mid (x,y,c) \in A\}$; B_c is defined similar. Suppose each A_c and B_c is Jordan measurable (in \mathbb{R}^2) and they have the same area.

Then A and B have the same volume.

Example 9.2 (a) Let
$$f(x, y) = xy$$
 and

$$C = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \ x^2 \le y \le x\}$$
$$= \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le 1, \ y \le x \le \sqrt{y}\}$$

Then

$$\iint_C xy \, dx \, dy = \int_0^1 \int_{x^2}^x xy \, dy \, dx = \int_0^1 \frac{xy^2}{2} \Big|_{y=x^2}^x \, dx = \frac{1}{2} \int_0^1 (x^3 - x^5) \, dx$$
$$= \frac{x^4}{8} - \frac{x^6}{12} \Big|_0^1 = \frac{1}{8} - \frac{1}{12} = \frac{1}{24}.$$

Interchanging the order of integration we obtain

$$\iint_C xy \, dx \, dy = \int_0^1 \int_y^{\sqrt{y}} xy \, dx \, dy = \int_0^1 \frac{x^2 y}{2} \Big|_y^{\sqrt{y}} = \frac{1}{2} \int_0^1 (y^2 - y^3) \, dy$$
$$= \frac{y^3}{6} - \frac{y^4}{8} \Big|_0^1 = \frac{1}{6} - \frac{1}{8} = \frac{1}{24}.$$

(b) Let $G = \{(x, y, z) \in \mathbb{R}^3 \mid x, y, z \ge 0, x+y+z \le 1\}$ and $f(x, y, z) = 1/(x+y+z+1)^3$. The set G can be parametrized as follows

$$\iiint_G f \, dx dy dz = \int_0^1 \left(\int_0^{1-x} \left(\int_0^{1-x-y} \frac{dz}{(1+x+y+z)^3} \right) \, dy \right) \, dx$$

$$= \int_0^1 \left(\int_0^{1-x} \frac{1}{2} \frac{-1}{(1+x+y+z)^2} \Big|_0^{1-x-y} \, dy \right) \, dx$$

$$= \int_0^1 \left(\int_0^{1-x} \left(\frac{1}{2} \frac{1}{(1+x+y)^2} - \frac{1}{8} \right) \, dy \right) \, dx$$

$$= \frac{1}{2} \int_0^1 \left(\frac{1}{x+1} + \frac{x-3}{4} \right) \, dx = \frac{1}{2} \left(\log 2 - \frac{5}{8} \right) .$$

(c) Let $C = \{(x,y) \in \mathbb{R}^2 \mid -2 \le x \le 1, x^2 \le y \le 2 - x\}$. We want to express $\iint_{\mathbb{R}} f(x,y) \, \mathrm{d}x \, \mathrm{d}y$ as iterated integrals. Clearly,

$$\iint\limits_D f \, \mathrm{d}x \mathrm{d}y = \int_{-2}^1 \, \mathrm{d}x \int \, \mathrm{d}y f(x,y).$$

Interchanging the order of integration we have

$$\iint_{D} f \, dx dy = \int_{0}^{1} dy \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) \, dx + \int_{1}^{4} dy \int_{-\sqrt{y}}^{2-y} f(x, y) \, dx.$$

(d) Let $f(x,y) = e^{y/x}$ and D the above region. Compute the integral of f on D.

D can be parametrized as follows $D=\{(x,y)\mid 1\leq x\leq 2,\ x\leq y\leq 2x\}$ Hence,

$$\iint_{D} f \, dx dy = \int_{1}^{2} dx \int_{x}^{2x} e^{\frac{y}{x}} \, dy$$

$$= \int_{1}^{2} dx \, x e^{\frac{y}{x}} \Big|_{x}^{2x} = \int_{1}^{2} (e^{2}x - ex) \, dx = \frac{3}{2} (e^{2} - e).$$

But trying to reverse the order of integration we encounter two problems. First, we must break D in several regions:

$$\iint_D f \, dx dy = \int_1^2 \, dy \int_1^y e^{y/x} \, dx + \int_2^4 \, dy \int_{y/2}^2 e^{y/x} \, dx.$$

This is not a serious problem. A greater problem is that $e^{1/x}$ has no elementary antiderivative, so $\int_1^y e^{y/x} dx$ and $\int_{y/2}^2 e^{y/x} dx$ are very difficult to evaluate. In this example, there is a considerable advantage in one order of integration over the other.

9.3 Change of Variable

We want to generalize change of variables formula $\int_{g(a)}^{g(b)} f(x) dx = \int_a^b f(g(y))g'(y) dy$. If B_R is the ball in \mathbb{R}^3 with radius R around the origin we have in cartesian coordinates

$$\iiint_{B_R} f \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_{-R}^{R} \, \mathrm{d}x \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \, \mathrm{d}y \int_{-\sqrt{R^2 - x^2 - y^2}}^{\sqrt{R^2 - x^2 - y^2}} \, \mathrm{d}z f(x, y, z).$$

Usually, the complicated limits yield hard computations. Here spherical coordinates are appropriate.

To motivate the formula consider f = 1 and a linear transformation of variables $g : \mathbb{R}^2 \to \mathbb{R}^2$, det $g \neq 0$, $C = [0,1] \times [0,1]$, and D = g(C). We want to compare the area of C, $\iint_C dx = 1$ with the area of the transformed set D, $\iint_D dx$. Let $g(1,0) = (a_1, a_2)$ and $g(0,1) = (b_1, b_2)$ it is easy to see that D is the parallelogram spanned by the two vectors (a_1, a_2) and (b_1, b_2) . Its area is

$$v(D) = \left| \det egin{pmatrix} a_1 & b_1 \ a_2 & b_2 \end{pmatrix}
ight| = \left| \det g
ight|.$$

This is true for any \mathbb{R}^n and any regular map, $v(g(C)) = |\det g| v(C)$.

Theorem 9.7 (Change of variable) Let C and D be compact Jordan set in \mathbb{R}^n ; let $M \subset C$ a set of measure 0. Let $g \colon C \to D$ be continuously differentiable with the following properties

- (i) g is injective on $C \setminus M$.
- (ii) g'(x) is regular on $C \setminus M$.

Let $f: D \to \mathbb{R}$ be continuous. Then

$$\int_{D} f(y) \, \mathrm{d}y = \int_{C} f(g(x)) \left| \frac{\partial(g_1, \dots, g_n)}{\partial(x_1, \dots, x_n)} (x) \right| \, \mathrm{d}x. \tag{9.1}$$

Remark 9.4 Why the absolute value of the Jacobian? In \mathbb{R}^1 we don't have the absolute value. But in contrast to \mathbb{R}^n , $n \geq 1$, we have an orientation of the integration set $\int_a^b f \, dx = -\int_b^a f \, dx$.

For the proof see [12, 10.9 Theorem]. The main steps of the proof are: 1) In a small open set g can be written as the composition of n "flips" and n "primitive mappings". A flip changes two variables x_i and x_k , wheras a primitive mapping H is equal to the identity except for one variable, $H(x) = x + (h(x) - x)e_m$ where $h: U \to \mathbb{R}$.

- 2) If the statement is true for transformations S and T, then it is true for the composition $S \circ T$ which follows from $\det(AB) = \det A \det B$.
- 3) Use a partition of unity.

Example 9.3 (a) Polar coordinates. Let $A = \{(r, \varphi) \mid 0 \le r \le R, 0 \le \varphi < 2\pi\}$ be a rectangle in polar coordinates. The mapping $g(r, \varphi) = (x, y), x = r \cos \varphi, y = r \sin \varphi$ maps this rectangle continuously differentiable onto the disc D with radius R. Let $M = \{(r, \varphi) \mid r = 0\}$. Since $\frac{\partial(x,y)}{\partial(r,\varphi)} = r$, the map g is bijective and regular on $R \setminus M$. The assumptions of the theorem are satisfied and we have

$$\iint_{D} f(x, y) \, dx dy = \iint_{A} f(r \cos \varphi, r \sin \varphi) r dr d\varphi$$
$$= \int_{\text{Fubini}}^{R} \int_{0}^{2\pi} f(r \cos \varphi, r \sin \varphi) r \, dr d\varphi.$$

(b) Spherical coordinates. Recall from the exercise class the spherical coordinates $r \in [0, \infty), \varphi \in [0, 2\pi], \text{ and } \vartheta \in [0, \pi]$

$$x = r \sin \theta \cos \varphi,$$

$$y = r \sin \theta \sin \varphi,$$

$$z = r \cos \theta.$$

The Jacobian reads

$$\frac{\partial(x,y,z)}{\partial(r,\vartheta,\varphi)} = \begin{vmatrix} x_r & x_\vartheta & x_\varphi \\ y_r & y_\vartheta & y_\varphi \\ z_r & z_\vartheta & z_\varphi \end{vmatrix} = \begin{vmatrix} \sin\vartheta\cos\varphi & r\cos\vartheta\cos\varphi & -r\sin\vartheta\sin\varphi \\ \sin\vartheta\sin\varphi & r\cos\vartheta\sin\varphi & r\sin\vartheta\cos\varphi \\ \cos\vartheta & -r\sin\vartheta & 0 \end{vmatrix} = r^2\sin\vartheta$$

Sometimes one uses

$$\frac{\partial(x, y, z)}{\partial(r, \varphi, \vartheta)} = -r^2 \sin \vartheta.$$

Hence

$$\iiint_{B_1} f(x, y, z) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_0^1 \int_0^{2\pi} \int_0^{\pi} f(x, y, z) \sin^2 \vartheta \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}\vartheta.$$

Compute the volume of the ellipsoid E given by $u^2/a^2 + v^2/b^2 + w^2/c^2 = 1$. We use scaled spherical coordinates:

$$u = ar \sin \theta \cos \varphi,$$

$$v = br \sin \theta \sin \varphi,$$

$$w = cr \cos \theta.$$

where $r \in [0, 1]$, $\vartheta \in [0, \pi]$, $\varphi \in [0, 2\pi]$. Since the rows of the spherical Jacobian matrix $\frac{\partial(x,y,z)}{\partial(r,\vartheta,\varphi)}$ are simply multiplied by a, b, and c, respectively, we have

$$\frac{\partial(u, v, w)}{\partial(r, \theta, \varphi)} = abcr^2 \sin \theta.$$

Hence, if B_1 is the unit ball around 0 we have using iterated integrals

$$v(E) = \iiint_E du dv dw = abc \iiint_{B_1} r^2 \sin \vartheta dr d\vartheta d\varphi$$
$$= abc \int_0^1 dr r^2 \int_0^{2\pi} d\varphi \int_0^{\pi} \sin \vartheta d\vartheta$$
$$= \frac{1}{3} abc 2\pi \left[(-\cos \vartheta) \right]_0^{\pi} = \frac{4\pi}{3} abc.$$

(c) $\iint_C (x^2 + y^2) dxdy$ where C is bounded by the four hyper-

bolas xy = 1, xy = 2, $x^2 - y^2 = 1$, $x^2 - y^2 = 4$.

We change coordinates g(x, y) = (u, v)

$$u = xy, \quad v = x^2 - y^2.$$

The Jacobian is

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} y & x \\ 2x & -2y \end{vmatrix} = -2(x^2 + y^2).$$

The Jacobian of the inverse transform is

$$\frac{\partial(x,y)}{\partial(u,v)} = -\frac{1}{2(x^2+y^2)}.$$

In the (u, v)-plane, the region is a rectangle $D = \{(u, v) \in \mathbb{R}^2 \mid 1 \le u \le 2, 1 \le v \le 4\}$. Hence,

$$\iint_C (x^2 + y^2) \, dx dy = \iint_D (x^2 + y^2) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du dv = \iint_D \frac{x^2 + y^2}{2(x^2 + y^2)} \, du dv = \frac{1}{2} v(D) = \frac{3}{2}.$$

Physical Applications

If $\varrho(x) = \rho(x_1, x_2, x_3)$ is a mass density of a solid $C \subset \mathbb{R}^3$, then

$$m = \int_{C} \rho \, \mathrm{d}x$$
 is the mass of C and

$$\overline{x_i} = \frac{1}{m} \int_C x_i \, \rho(x) \, \mathrm{d}x, \ i = 1, \dots, 3$$
 are the coordinates of the mass center \overline{x} of C .

The moments of inertia of C are defined as follows

$$I_{xx} = \iiint_C (y^2 + z^2) \rho \, dx dy dz, I_{yy} = \iiint_C (x^2 + z^2) \rho \, dx dy dz, I_{zz} = \iiint_C (x^2 + y^2) \rho \, dx dy dz,$$
$$I_{xy} = \iiint_C xy \rho \, dx dy dz, \qquad I_{xz} = \iiint_C xz \rho \, dx dy dz, \qquad I_{yz} = \iiint_C yz \rho \, dx dy dz.$$

Here I_{xx} , I_{yy} , and I_{zz} are the moments of inertia of the solid with respect to the x-axis, y-axis, and z-axis, respectively.

Example 9.4 Compute the mass center of a homogeneous half-plate of radius R, $C = \{(x, y) \mid x^2 + y^2 \le R^2, y \ge 0\}$.

Solution. By the symmetry of C with respect to the y-axis, $\overline{x} = 0$. Using polar coordinates we find

$$\overline{y} = \frac{1}{m} \iint_C y \, \mathrm{d}x \, \mathrm{d}y = \frac{1}{m} \int_0^R \int_0^\pi r \sin \varphi r \, \mathrm{d}\varphi \, \mathrm{d}r = \frac{1}{m} \int_0^R r^2 \, \mathrm{d}r \, \left(-\cos \varphi \right) \Big|_0^\pi = \frac{1}{m} \frac{2R^3}{3}.$$

Since the mass is proportional to the area, $m = \pi \frac{R^2}{2}$ and we find $(0, \frac{4R}{3\pi})$ is the mass center of the half-plate.

Q 25. Compute the volume of the region bounded by the two surfaces $z = x^2 + y^2$ and $x^2 + y^2 + z^2 = 2$.

Q 26. Compute the volume of the region which is bounded by the 5 surfaces |x|+|y|=a and $x^2+z^2=a^2$, a>0.

9.4 Surface integrals

9.4.1 Surfaces in \mathbb{R}^3

A domain G is an open and connected subset in \mathbb{R}^n ; connected means that for any two points x and y in G, there exist points x_0, x_1, \ldots, x_k with $x_0 = x$ and $x_k = y$ such that every segment $\overline{x_{i-1}x_i}$, $i = 1, \ldots, k$, is completely contained in G.

Definition 9.5 Let $G \subset \mathbb{R}^2$ be a domain and $F: G \to \mathbb{R}^3$ continuously differentiable. The mapping F as well as the set $\mathcal{F} = F(G) = \{F(s,t) \mid (s,t) \in G\}$ is called an *open regular surface* if the Jacobian matrix F'(s,t) has rank 2 for all $(s,t) \in G$.

If

$$F(s,t) = \begin{pmatrix} x(s,t) \\ y(s,t) \\ z(s,t) \end{pmatrix},$$

the Jacobian matrix of F is

$$F'(s,t) = \begin{pmatrix} x_s & x_t \\ y_s & y_t \\ z_s & z_t \end{pmatrix}.$$

The two column vectors of F'(s,t) span the tangent plane to F at (s,t):

$$D_1F(s,t) = \left(\frac{\partial x}{\partial s}(s,t), \frac{\partial y}{\partial s}(s,t), \frac{\partial z}{\partial s}(s,t)\right),$$

$$D_2F(s,t) = \left(\frac{\partial x}{\partial t}(s,t), \frac{\partial y}{\partial t}(s,t), \frac{\partial z}{\partial t}(s,t)\right).$$

Justification: Suppose $(s, t_0) \in G$ where t_0 is fixed. Then $\gamma(s) = F(s, t_0)$ defines a curve in \mathcal{F} with tangent vector $\gamma'(s) = D_1 F(s, t_0)$. Similarly, for fixed s_0 we obtain another curve $\tilde{\gamma}(t) = F(s_0, t)$ with tangent vector $\tilde{\gamma}'(t) = D_2 F(s_0, t)$. Since F'(s, t) has rank 2 at every point of G, the vectors $D_1 F$ and $D_2 F$ are linearly independent; hence they span a plane.

Definition 9.6 Let $F: G \to \mathbb{R}^3$ be an open regular surface, and $(s_0, t_0) \in G$. Then

$$\vec{x} = F(s_0, t_0) + \alpha D_1 F(s_0, t_0) + \beta D_2 F(s_0, t_0), \quad \alpha, \beta \in \mathbb{R}$$

is called the tangent plane E to F at $F(s_0, t_0)$. The line through $F(s_0, t_0)$ which is orthogonal to E is called the normal line to F at $F(s_0, t_0)$.

Recall that the vector product $\vec{x} \times \vec{y}$ of vectors $\vec{x} = (x_1, x_2, x_3)$ and $\vec{y} = (y_1, y_2, y_3)$ from \mathbb{R}^3 is the vector

$$\vec{x} imes \vec{y} = \begin{vmatrix} e_1 & e_2 & e_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$

It is orthogonal to the plane spanned by the parallelogram P with edges \vec{x} and \vec{y} . Its length is the area of the parallelogram P.

A vector which points in the direction of the normal line is

$$D_1 F(s_0, t_0) \times D_2 F(s_0, t_0) = \begin{vmatrix} e_1 & e_2 & e_3 \\ x_s & y_s & z_s \\ x_t & y_t & z_t \end{vmatrix}$$
(9.2)

$$\vec{n} = \pm \frac{D_1 F \times D_2 F}{\|D_1 F \times D_2 F\|},$$
 (9.3)

where \vec{n} is a unit vector in the direction of the normal line.

Example 9.5 Let F be given by the graph of a function $f: G \to \mathbb{R}$, namely F(x,y) = (x,y,f(x,y)). By definition

$$D_1F = (1, 0, f_x), \quad D_2F = (0, 1, f_y),$$

hence

$$D_1 f \times D_2 f = \begin{vmatrix} e_1 & e_2 & e_3 \\ 1 & 0 & f_x \\ 0 & 1 & f_y \end{vmatrix} = (-f_x, -f_y, 1).$$

Therefore, the tangent plane has the equation

$$-f_x(x - x_0) - f_y(y - y_0) + 1(z - z_0) = 0.$$

Further, the unit normal vector to the tangent plane is

$$\vec{n} = \pm \frac{(f_x, f_y, -1)}{\sqrt{f_x^2 + f_y^2 + 1}}.$$

Recall that the tangent plane to the graph of f at $(x_0, y_0, f(x_0, y_0))$ is

$$(x - x_0)f_x(x_0, y_0) + (y - y_0)f_y(x_0, y_0) = z - z_0.$$

9.4.2 The Area of a Surface

Let F and \mathcal{F} be as above. We assume that the continuous vector fields D_1F and D_2F on G can be extended to continuous functions on the closure \overline{G} .

Definition 9.7 The number

$$|\mathfrak{F}| = |\overline{\mathfrak{F}}| := \iint_{G} ||D_1 F \times D_2 F|| \, \mathrm{d}s \mathrm{d}t$$
 (9.4)

is called the area of \mathcal{F} and of \mathcal{F} .

We call

$$dS = ||D_1 F \times D_2 F|| ds dt$$

the scalar surface element of F.

9.4.3 Scalar Surface Integrals

Let \mathcal{F} and $\overline{\mathcal{F}}$ be as above, and $f \colon \overline{\mathcal{F}} \to \mathbb{R}$ a continuous function on the compact subset $\overline{\mathcal{F}} \subset \mathbb{R}^3$.

Definition 9.8 The number

$$\iint_{\overline{x}} f(\vec{x}) dS := \iint_{\overline{C}} f(F(s,t)) \|D_1 F(s,t) \times D_2(s,t)\| ds dt$$

is called the scalar surface integral of f on $\overline{\mathfrak{F}}$.

Physical Application

- (a) If $\rho(x, y, z)$ is the mass density on a surface $\overline{\mathcal{F}}$, $\iint_{\overline{\mathcal{F}}} \rho \, dS$ is the total mass of \mathcal{F} .
- (b) If $\sigma(\vec{x})$ is a charge density on a surface \mathcal{F} . Then

$$U(\vec{y}) = \iint_{\mathcal{X}} \frac{\sigma(\vec{x})}{\|\vec{y} - \vec{x}\|} \, dS(\vec{x}), \quad \vec{y} \notin \mathcal{F}$$

is the potential generated by \mathfrak{F} .

Proposition 9.8 Let $M = \{(x, y, z) \in \mathbb{R}^3 \mid \rho \leq ||(x, y, z)|| \leq R\}$ where $R > \rho \geq 0$. Let $f: M \to \mathbb{R}$ be continuous. Put $S_r = \{(x, y, z) \in \mathbb{R}^3 \mid ||(x, y, z)|| = r\}$. Then

$$\iiint_{M} f \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_{\rho}^{R} \, \mathrm{d}r \left(\iint_{S_{r}} f(\vec{x}) \, \mathrm{d}S \right) = \int_{\rho}^{R} r^{2} \left(\iint_{S_{1}} f(r\vec{x}) \, \mathrm{d}S(\vec{x}) \right) \, \mathrm{d}r.$$

Other Forms for dS

If \mathcal{F} is given by F(s,t) we have

$$dS = \sqrt{EG - F^2} \, ds dt,$$

where

$$E = x_s^2 + y_s^2 + z_s^2$$
, $G = x_t^2 + y_t^2 + z_t^2$, $F = x_s x_t + y_s y_t + z_s z_t$.

Let the surface be given implicitly as F(x, y, z) = 0. Suppose F is locally solvable for z in a neighborhood of some point (x_0, y_0, z_0) . Then the surface element (up to the sign) is given by

$$dS = \frac{\sqrt{F_x^2 + F_y^2 + F_z^2}}{|F_z|} dx dy = \frac{\|\operatorname{grad} F\|}{|F_z|} dx dy.$$

One checks that $DF_1 \times DF_2 = (F_x, F_y, F_z)/F_z$.

Let the surface be given as the graph of a function (x, y, f(x, y)). Then

$$\mathrm{d}S = \sqrt{1 + f_x^2 + f_y^2} \,\mathrm{d}x\mathrm{d}y.$$

Example 9.6 (a) We give two different form for the scalar surface element of a sphere. By the previous example, the sphere $x^2 + y^2 + z^2 = R^2$ has surface element

$$dS = \frac{\|(2x, 2y, 2z)\|}{2z} dxdy = \frac{R}{z} dxdy.$$

If

$$x = R\cos\varphi\sin\vartheta$$
, $y = R\sin\varphi\sin\vartheta$, $z = R\cos\vartheta$,

we obtain

$$D_1 = F_{\vartheta} = R(\cos\varphi\cos\vartheta, \sin\varphi\cos\vartheta, -\sin\vartheta),$$

$$D_2 = F_{\varphi} = R(-\sin\varphi\sin\vartheta, \cos\varphi\sin\vartheta, 0),$$

$$D_1 \times D_2 = R^2(\cos\varphi\sin^2\vartheta, \sin\varphi\sin^2\vartheta, \sin\vartheta\cos\vartheta).$$

Hence,

$$dS = ||D_1 \times D_2|| d\theta d\varphi = R^2 \sin \theta d\theta d\varphi.$$

(b) Compute the area of the solid which is bounded by the two cylinders $x^2 + z^2 = a^2$ and $y^2 + z^2 = a^2$. The main problem is to get an idea of the geometry of the solid with this boundary. In the figure there is 1/8 of the surface with a = 1. This \mathcal{F} can be parametrized as follows

Part of $x^2 + z^2 = a^2$.

$$\overline{\mathcal{F}} = \{(x, y, f(x, y)) \mid 0 \le x \le a, -x \le y \le x, z = f(x, y) = \sqrt{a^2 - x^2}\}.$$

Since \mathcal{F} is the graph of the function $f(x,y) = \sqrt{a^2 - x^2}$,

$$dS = \sqrt{1 + f_x^2 + f_y^2} \, dx dy = \sqrt{1 + \frac{x^2}{a^2 - x^2} + 0} \, dx dy = \frac{a}{\sqrt{a^2 - x^2}} \, dx dy.$$

Thus

$$\operatorname{area}(\overline{\mathcal{F}}) = \iint_{\overline{\mathcal{F}}} dS = \int_0^a dx \int_{-x}^x \frac{a}{\sqrt{a^2 - x^2}} dy = \int_0^a \frac{2ax \, dx}{\sqrt{a^2 - x^2}}$$
$$= \lim_{t = x^2, \, dt = 2x \, dx} a \int_0^{a^2} \frac{dt}{\sqrt{a^2 - t}} = -2a\sqrt{a^2 - t^2} \Big|_0^{a^2} = 2a^2.$$

The area of the surface is $16a^2$.

Guldin's Rule—the Area of a Surfaces

(Paul Guldin, 1577–1643, Swiss Mathematician) Let f be a continuously differentiable function on [a, b] with $f(x) \geq 0$ for all $x \in [a, b]$. Let the graph of f revolve around the x-axis and let $\overline{\mathcal{F}}$ be the corresponding surface. We have

$$v(\overline{\mathcal{F}}) = 2\pi \int_a^b f(x) \sqrt{1 + f'(x)^2} \, \mathrm{d}x.$$

Proof. Using polar coordinates in the y-z-plane, we obtain a parametrization of \mathcal{F}

$$\overline{\mathcal{F}} = \{ (x, f(x)\cos\varphi, f(x)\sin\varphi) \mid x \in [a, b], \varphi \in [0, 2\pi] \}.$$

We have

$$D_1 F = (1, f'(x)\cos\varphi, f'(x)\sin\varphi), \quad D_1 F = (0, -f\sin\varphi, f\cos\varphi),$$

$$D_1 F \times D_2 F = (ff', -f\cos\varphi, -f\sin\varphi);$$

so that $dS = f(x)\sqrt{1 + f'(x)^2} dx d\varphi$. Hence

$$v(\overline{\mathcal{F}}) = \int_{a}^{b} \int_{0}^{2\pi} f(x) \sqrt{1 + f'(x)^{2}} d\varphi dx = 2\pi \int_{a}^{b} f(x) \sqrt{1 + f'(x)^{2}} dx.$$

We have recovered the formula from Subsection 5.6.2.

9.4.4 Surface Integrals

Orientation

We want to define the notion of orientation for a regular surface. Let \mathcal{F} be a regular (injective) surface with or without boundary. Then for every point $x_0 \in \mathcal{F}$ there exists the tangent plane E_{x_0} ; the normal line to \mathcal{F} at x_0 is uniquely defined.

However, a unit vector on the normal line can have two different directions.

Definition 9.9 (a) Let \mathcal{F} be a surface as above. A *unit normal field* to \mathcal{F} is a continuous function $\vec{n} \colon \mathcal{F} \to \mathbb{R}^n$ with the following two properties for every $x_0 \in \mathcal{F}$

- (i) $\vec{n}(x_0)$ is orthogonal to the tangent plane to \mathcal{F} at x_0 .
- (ii) $\|\vec{n}(x_0)\| = 1$.
- (b) A regular surface \mathcal{F} is called *orientable*, if there exists a unit normal field on \mathcal{F} .

It turns out that for a regular surface \mathcal{F} there either exists exactly two unit normal fields or there is no normal field. Examples of non-orientable surfaces are the $M\ddot{o}bius\ band$ and the real projective plane. Analytically the Möbius band is given by

$$F(s,t) = \begin{pmatrix} \left(1 + t\cos\frac{s}{2}\right)\sin s\\ \left(1 + t\cos\frac{s}{2}\right)\cos s\\ t\sin\frac{s}{2} \end{pmatrix}, \quad (s,t) \in [0, 2\pi] \times \left(-\frac{1}{2}, \frac{1}{2}\right).$$

Suppose \mathcal{F} is an oriented, open, regular surface with piecewise smooth boundary $\partial \mathcal{F}$. Let F(s,t) be a parametrization of \mathcal{F} . We assume that the vector functions F, DF_1 , and DF_2 can be extended to continuous functions on $\overline{\mathcal{F}}$. The unit normal vector is given by

$$\vec{n} = \varepsilon \frac{D_1 F \times D_2 F}{\|D_1 F \times D_2 F\|},$$

where $\varepsilon = +1$ or $\varepsilon = -1$ fixes the orientation of \mathfrak{F} .

Definition 9.10 Let $\vec{f} : \overline{\mathcal{F}} \to \mathbb{R}^3$ be a continuous vector field on $\overline{\mathcal{F}}$. The number

$$\iint_{\overline{x}} \vec{f}(\vec{x}) \cdot \vec{n} \, \mathrm{d}S \tag{9.5}$$

is called the surface integral of the vector field \vec{f} on $\overline{\mathfrak{F}}$. We call

$$\vec{\mathrm{d}S} = \vec{n}\,\mathrm{d}S = \varepsilon\,D_1 F \times D_2 F\,\mathrm{d}s\mathrm{d}t$$

the surface element of \mathfrak{F} .

Remark 9.5 (a) The surface integral is independently of the parametrization of \mathcal{F} but depends on the orientation. For, let $(s,t) = (s(\xi,\eta),t(\xi,\eta))$ be a new parametrization with $F(s(\xi,\eta),t(\xi,\eta)) = G(\xi,\eta)$. Then the Jacobian is

$$dsdt = \frac{\partial(s,t)}{\partial(\xi,\eta)} = (s_{\xi}t_{\eta} - s_{\eta}t_{\xi}) d\xi d\eta.$$

Further

$$D_1G = D_1F s_{\xi} + D_2F t_{\xi}, \quad D_2G = D_1F s_{\eta} + D_2F t_{\eta},$$

so that using $\vec{x} \times \vec{x} = 0$, $\vec{x} \times \vec{y} = -\vec{y} \times \vec{x}$

$$D_1G \times D_2G d\xi d\eta = (D_1F s_{\xi} + D_2F t_{\xi}) \times (D_1F s_{\eta} + D_2F t_{\eta}) d\xi d\eta,$$

$$= (s_{\xi}t_{\eta} - s_{\eta}t_{\xi}) D_1F \times D_2F d\xi d\eta$$

$$= D_1F \times D_2F ds dt.$$

- (b) The scalar surface integral $\iint f \, dS$ is a special case of the surface integral, namely $\iint f \vec{n} \cdot \vec{n} \, dS$.
- (c) Special cases. Let \mathcal{F} be the graph of a function f, $\mathcal{F} = \{(x, y, f(x, y)) \mid (x, y) \in C\}$, then

$$\vec{\mathrm{d}S} = \pm (f_x, f_y, 1) \, \mathrm{d}x \mathrm{d}y.$$

If the surface is given implicitly by F(x, y, z) = 0 and it is locally solvable for z, then

$$\vec{\mathrm{d}S} = \pm \frac{\mathrm{grad}\,F}{F_z}.$$

(d) Still another form of \vec{dS} .

$$\iint_{\overline{g}} \vec{f} \, d\vec{S} = \varepsilon \iint_{\overline{G}} f(F(s,t)) \cdot (D_1 F \times D_2 F) \, ds dt$$

$$\vec{f}(F(s,t)) \cdot (D_1 F \times D_2 F) = \begin{vmatrix} f_1(F(s,t)) & f_2(F(s,t)) & f_3(F(s,t)) \\ x_s(s,t) & y_s(s,t) & z_s(s,t) \\ x_t(s,t) & y_t(s,t) & z_t(s,t) \end{vmatrix}.$$
(9.6)

(e) Again another notation. Computing the previous determinant or the determinant (9.2) explicitely we have

$$\vec{f} \cdot (D_1 F \times D_2 F) = f_1 \begin{vmatrix} y_s & z_s \\ y_t & z_t \end{vmatrix} + f_2 \begin{vmatrix} z_s & x_s \\ z_t & x_t \end{vmatrix} + f_3 \begin{vmatrix} x_s & y_s \\ x_t & y_t \end{vmatrix} = f_1 \frac{\partial(y, z)}{\partial(s, t)} + f_2 \frac{\partial(z, x)}{\partial(s, t)} + f_3 \frac{\partial(x, y)}{\partial(s, t)}.$$

Hence,

$$\vec{dS} = D_1 F \times D_2 F \, ds dt = \left(\frac{\partial(y, z)}{\partial(s, t)} \, ds dt, \, \frac{\partial(z, x)}{\partial(s, t)} \, ds dt, \, \frac{\partial(x, y)}{\partial(s, t)} \, ds dt \right)$$

$$\vec{dS} = (dy dz, \, dz dx, \, dx dy).$$

Therefore we can write

$$\iint_{\overline{\mathcal{F}}} \vec{f} \cdot \vec{dS} = \iint_{\overline{\mathcal{F}}} (f_1 dy dz + f_2 dz dx + f_3 dx dy).$$

In this setting

$$\iint_{\overline{\mathfrak{T}}} f_1 \, \mathrm{d}y \, \mathrm{d}z = \iint_{\overline{\mathfrak{T}}} (f_1, 0, 0) \cdot \, \vec{\mathrm{d}S} = \pm \iint_{\overline{G}} f_1(F(s, t)) \frac{\partial (y, z)}{\partial (s, t)} \, \mathrm{d}s \, \mathrm{d}t.$$

Sometimes one uses

$$\vec{dS} = (\cos(\vec{n}, e_1), \cos(\vec{n}, e_2), \cos(\vec{n}, e_3)) dS,$$

since $\cos(\vec{n}, e_i) = \langle \vec{n}, e_i \rangle = n_i$ and $d\vec{S} = \vec{n} dS$.

Note that we have surface integrals in the last two lines, not ordinary double integrals since $\overline{\mathcal{F}}$ is a surface in \mathbb{R}^3 and $f_1 = f_1(x, y, z)$ can also depend on x.

The physical meaning of $\iint_{\mathfrak{F}} \vec{f} \cdot d\vec{S}$ is the flow of the vector field \vec{f} through the surface \mathfrak{F} . The flow is (locally) positive if \vec{n} and \vec{f} are on the same side of the tangent plane to \mathfrak{F} and negative in the other case.

Example 9.7 (a) Compute the surface integral

$$\iint_{\mathfrak{T}} f \, \mathrm{d}z \mathrm{d}x$$

of $f(x, y, z) = x^2yz$ where \mathcal{F} is the graph of $F(x, y) = x^2 + y$ over the square $Q = [0, 1] \times [0, 1]$ with the downward directed unit normal field.

By Remark 9.5 (c)

$$\vec{dS} = (F_x, F_y, -1) dxdy = (2x, 1, -1) dxdy.$$

Hence

$$\iint_{\mathcal{F}} f \, dz dx = \iint_{\mathcal{F}} (0, f, 0) \cdot d\vec{S}$$

$$= (R) \iint_{Q} x^{2} y(x^{2} + y) \, dx dy = \int_{0}^{1} dx \int_{0}^{1} (x^{4} y + x^{2} y^{2}) \, dy = \frac{19}{90}$$

(b) Let G denote the upper half ball of radius R in \mathbb{R}^3 :

$$G = \{(x, y, z) \mid x^2 + y^2 + z^2 \le R^2, \quad z \ge 0\},\$$

and let \mathcal{F} be the boundary of G with the orientation of the outer normal. Then \mathcal{F} consists of the upper half sphere \mathcal{F}_1

$$\mathcal{F}_1 = \{(x, y, \sqrt{R^2 - x^2 - z^2}) \mid x^2 + y^2 \le R^2\}$$

with the upper orientation of the unit normal field and of the disc \mathcal{F}_2 in the x-y-plane

$$\mathfrak{F}_2 = \{ (x, y, 0) \mid x^2 + y^2 \le R^2 \}$$

with the downward directed normal. Let $\vec{f}(x, y, z) = (ax, by, cz)$. We want to compute

$$\iint_{\mathfrak{F}} \vec{f} \cdot d\vec{S}.$$

By Remark 9.5 (c), the surface element of the half-sphere \mathcal{F}_1 is $\vec{dS} = \frac{1}{z}(x, y, z) dxdy$. Hence

$$I_1 = \iint\limits_{\mathcal{F}_1} \vec{f} \cdot \vec{dS} = \iint\limits_{B_R} (ax, by, cz) \cdot \frac{1}{z} (x, y, z) \, \mathrm{d}x \mathrm{d}y = \iint\limits_{B_R} \frac{1}{z} (ax^2 + by^2 + cz^2) \, \mathrm{d}x \mathrm{d}y.$$

Using polar coordinates $x = r \cos \varphi$, $y = r \sin \varphi$, $r \in [0, R]$, and $z = \sqrt{R^2 - x^2 - y^2} = \sqrt{R^2 - r^2}$ we get

$$I_1 = \int_0^{2\pi} d\varphi \int_0^R \frac{ar^2 \cos^2 \varphi + br^2 \sin^2 \varphi + c(R^2 - r^2)}{\sqrt{R^2 - r^2}} r dr.$$

Noting $\int_0^{2\pi} \sin^2 \varphi d\varphi = \int_0^{2\pi} \cos^2 \varphi d\varphi = \pi$ we continue

$$I_1 = \pi \int_0^r \left(\frac{ar^3}{\sqrt{R^2 - r^2}} + \frac{br^3}{\sqrt{R^2 - r^2}} + 2cr\sqrt{R^2 - r^2} \right) dr.$$

Using $r = R \sin t$, $dr = R \cos t dt$ we have

$$\int_0^R \frac{r^3}{\sqrt{R^2 - r^2}} \, \mathrm{d}r = \int_0^{\frac{\pi}{2}} \frac{R^3 \sin^3 t R \cos t \, \mathrm{d}t}{R \sqrt{1 - \sin^2 t}} = R^3 \int_0^{\frac{\pi}{2}} \sin^3 t \, \mathrm{d}t = \frac{2}{3} R^3.$$

Hence,

$$I_{1} = \frac{2\pi}{3}R^{3}(a+b) + \pi c \int_{0}^{R} (R^{2} - r^{2})^{\frac{1}{2}} d(r^{2})$$

$$= \frac{2\pi}{3}R^{3}(a+b) + \pi c - \frac{2}{3}(R^{2} - r^{2})^{\frac{3}{2}} \Big|_{0}^{R}$$

$$= \frac{2\pi}{3}R^{3}(a+b+c).$$

In case of the disc \mathcal{F}_2 we have z = f(x, y) = 0, such that $f_x = f_y = 0$ and

$$\vec{\mathrm{d}S} = (0, 0, -1) \, \mathrm{d}x \mathrm{d}y$$

by Remark 9.5 (c). Hence

$$\iint\limits_{\mathcal{F}_2} \vec{f} \cdot \vec{\mathrm{d}S} = \iint\limits_{B_R} (ax, by, cz) \cdot (0, 0, -1) \, \mathrm{d}x \mathrm{d}y = -c \iint\limits_{B_R} z \, \mathrm{d}x \mathrm{d}y \underset{z=0}{=} 0.$$

Hence,

$$\iint_{\mathcal{T}} (ax, by, cz) \cdot \vec{dS} = \frac{2\pi}{3} R^3 (a+b+c).$$

9.4.5 Gauß' Divergence Theorem

The aim is to generalize the fundamental theorem of calculus to higher dimensions:

$$\int_a^b g'(x) \, \mathrm{d}x = g(b) - g(a).$$

Note that a and b form the boundary of the segment [a,b]. There are three possibilities to do this

Let $G \subset \mathbb{R}^3$ be a bounded domain (open, connected) such that its boundary $\mathfrak{F} = \partial G$ satisfies the following assumptions:

- 1. \mathcal{F} is a union of regular, orientable surfaces \mathcal{F}_i . The parametrization $F_i(s,t)$, $(s,t) \in \overline{C_i}$, of \mathcal{F}_i as well as D_1F_i and D_2F_i are continuous vector functions on $\overline{C_i}$; G is a domain in \mathbb{R}^2 .
- 2. Let \mathcal{F}_i be oriented by the **outer normal** (with respect to G).
- 3. There is given a continuously differentiable vector field $\vec{f} : \overline{G} \to \mathbb{R}^3$ on G (More precisely, there exist an open set $U \supset G$ and a continuously differentiable function $\tilde{f} : U \to \mathbb{R}^3$ such that $\tilde{f} \upharpoonright \overline{G} = \vec{f}$.)

Theorem 9.9 (Gauß' Divergence Theorem) Under the above assumptions we have

$$\iiint_{\overline{G}} \operatorname{div} \vec{f} \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iint_{\partial G} \vec{f} \, \mathrm{d}S$$
 (9.7)

Sometimes the theorem is called Gauß-Ostrogadski theorem or simply Ostrogadski theorem in the russian literature.

Other writings:

$$\iiint_{\overline{G}} \left(\frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z} \right) dx dy dz = \iint_{\partial G} (f_1 dy dz + f_2 dz dx + f_3 dx dy)$$
(9.8)

The theorem holds for more general regions $G \subset \mathbb{R}^3$.

Proof. We give a proof for

$$G = \{(x, y, z) \mid (x, y) \in C, \ \alpha(x, y) \le z \le \beta(x, y)\},\$$

where $C \subset \mathbb{R}^2$ is a domain and $\alpha, \beta \in C^1(C)$ define regular top and bottom surfaces \mathcal{F}_1 and \mathcal{F}_2 of \mathcal{F} , respectively. We prove only one part of (9.8)

$$\iiint_{\overline{G}} \frac{\partial f_3}{\partial z} \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iint_{\partial G} f_3 \, \mathrm{d}x \mathrm{d}y. \tag{9.9}$$

By Fubini's theorem, the left side reads

$$\iiint_{\overline{G}} \frac{\partial f_3}{\partial x} dx dy dz = \iint_{C} \left(\int_{\alpha(x,y)}^{\beta(x,y)} \frac{\partial f_3}{\partial z} dz \right) dx dy$$

$$= \iint_{C} \left(f_3(x, y, \beta(x, y)) - f_3(x, y, \alpha(x, y)) \right) dx dy, \tag{9.10}$$

where the last equality is by the fundamental theorem of calculus.

Now we are going to compute the surface integral. The outer normal for the top surface is $(-\beta_x(x,y), -\beta_y(x,y), 1)$ such that

$$I_1 = \iint_{\mathcal{F}_1} f_3 \, \mathrm{d}x \, \mathrm{d}y = \iint_C (0, 0, f_3) \cdot (-\beta_x(x, y), -\beta_y(x, y), 1) \, \mathrm{d}x \, \mathrm{d}y$$
$$= \iint_C f_3(x, y, \beta(x, y)) \, \mathrm{d}x \, \mathrm{d}y.$$

Since the bottom surface \mathcal{F}_2 is oriented downward, the outer normal is $(\alpha_x(x,y),\alpha_y(x,y),-1)$ such that

$$I_2 = \iint_{\mathcal{F}_2} f_3 \, \mathrm{d}x \mathrm{d}y = -\iint_C f_3(x, y, \alpha(x, y)) \, \mathrm{d}x \mathrm{d}y.$$

Finally, the shell \mathcal{F}_3 is parametrized by an angle φ and z:

$$\mathfrak{F}_3 = \{ (r(\varphi)\cos\varphi, r(\varphi)\sin\varphi, z) \mid \alpha(x, y) \le z \le \beta(x, y) \}.$$

Since $D_2F = (0, 0, 1)$, the normal vector is orthogonal to the z-axis, $\vec{n} = (n_1, n_2, 0)$. Therefore,

$$I_3 = \iint_{\mathcal{F}_3} f_3 \, dx dy = \iint_{\mathcal{F}_3} (0, 0, f_3) \cdot (n_1, n_2, 0) \, dS = 0.$$

Comparing $I_1 + I_2 + I_3$ with (9.10) proves the theorem in this special case.

Remarks 9.6 (a) Gauß' divergence theorem can be used to compute the volume of the domain $G \subset \mathbb{R}^3$. Suppose the boundary ∂G of G has the orientation of the outer normal. Then

$$v(G) = \iint_{\partial G} x \, dy dz = \iint_{\partial G} y \, dz dx = \iint_{\partial G} z \, dx dy.$$

(b) Applying the mean value theorem to the left-hand side of Gauß' formula we have for any bounded region G containing x_0

$$\operatorname{div} \vec{f}(x_0 + h) \iiint_G \operatorname{d}x \operatorname{d}y \operatorname{d}z = \operatorname{div} \vec{f}(x_0 + h) v(G) = \iint_{\partial G} \vec{f} \, dS,$$

where h is a small vector. The integral on the left is the volume v(G). Hence

$$\operatorname{div} \vec{f}(x_0) = \lim_{G \to x_0} \frac{1}{v(G)} \iint_{\partial G} \vec{f} \, d\vec{S},$$

where the region G tends to x_0 . The right hand side can be thought as to be the *source* density of the field \vec{f} . In particular, the right side gives a basis independent description of div \vec{f} .

9.5 Line Integrals

A lot of physical applications are to be found in [9, Chapter 18]. Integration of vector fields along curves is of fundamental importance in both mathematics and physics. We use the concept of *work* to motivate the material in this section.

The motion of an object is described by a parametric curve $\vec{x} = \vec{x}(t) = (x(t), y(t), z(t))$. By differentiating this function, we obtain the velocity $\vec{v}(t) = \vec{x}'(t)$ and the acceleration $\vec{a}(t) = \vec{x}''(t)$. We use the physicist notation $\dot{\vec{x}}(t)$ and $\dot{\vec{x}}(t)$ to denote derivatives with respect to the time t.

According to Newton's law, the total force \tilde{F} acting on an object of mass m is

$$\tilde{F} = m\vec{a}$$
.

Since the kinetic energy K is defined by $K = \frac{1}{2}m\vec{v}^2 = \frac{1}{2}m\vec{v} \cdot \vec{v}$ we have

$$\dot{K}(t) = \frac{1}{2}m(\dot{\vec{v}}\cdot\vec{v} + \vec{v}\cdot\dot{\vec{v}}) = m\vec{a}\cdot\vec{v} = \tilde{F}\cdot\vec{v}.$$

The total change of the kinetic energy from time t_1 to t_2 , denoted W, is called the work done by the force \tilde{F} along the path $\vec{x}(t)$:

$$W = \int_{t_1}^{t_2} \dot{K}(t) dt = \int_{t_1}^{t_2} \tilde{F} \cdot \vec{v} dt = \int_{t_1}^{t_2} \tilde{F}(t) \cdot \dot{\vec{x}}(t) dt.$$

Let us now suppose that the force \tilde{F} at time t depends only on the position $\vec{x}(t)$. That is, we assume that there is a vector field $\vec{F}(\vec{x})$ such that $\tilde{F}(t) = \vec{F}(\vec{x}(t))$ (gravitational and electrostatic attraction are position-dependent while magnetic forces are velocity-dependent). Then we may rewrite the above integral as

$$W = \int_{t_1}^{t_2} \vec{F}(\vec{x}(t)) \cdot \dot{\vec{x}}(t) dt.$$

In the one-dimensional case, by a change of variables, this can be simplified to

$$W = \int_{a}^{b} F(x) \, \mathrm{d}x,$$

where a and b are the starting and ending positions.

Definition 9.11 Let $\Gamma = \{\vec{x}(t) \mid t \in [r, s]\}$, be a continuously differentiable curve $\vec{x}(t) \in C^1([r, s])$ in \mathbb{R}^n and $\vec{f} : \Gamma \to \mathbb{R}^n$ a continuous vector field on Γ . The integral

$$\int_{\Gamma} \vec{f}(\vec{x}) \cdot d\vec{x} = \int_{r}^{s} \vec{f}(\vec{x}(t)) \cdot \dot{\vec{x}}(t) dt$$

is called the *line integral* of the vector field \vec{f} along the curve Γ .

Remark 9.7 (a) The definition of the line integral does not depend on the parametrization of Γ .

- (b) If we take different curves between the same endpoints, the line integral may be different.
- (c) If the vector field \vec{f} is orthogonal to the tangent vector, then $\int_{\Gamma} \vec{f} \cdot d\vec{x} = 0$.
- (d) Other notations. If $\vec{f} = (P, Q)$ is a vector field in \mathbb{R}^2 ,

$$\int_{\Gamma} \vec{f} \cdot d\vec{x} = \int_{\Gamma} P \, dx + Q \, dy,$$

where the right side is either a symbol or $\int_{\Gamma} P \, dx = \int_{\Gamma} (P, 0) \cdot d\vec{x}$.

Example 9.8 (a) Find the line integral $\int_{\Gamma_i} y \, dx + (x - y) \, dy$, i = 1, 2, where

$$\Gamma_{1} = \{\vec{x}(t) = (t, t^{2}) \mid t \in [0, 1]\} \quad \text{and} \quad \Gamma_{2} = \Gamma_{3} \cup \Gamma_{4},$$
with $\Gamma_{3} = \{(t, 0) \mid t \in [0, 1]\}, \ \Gamma_{4} = \{(1, t) \mid t \in [0, 1]\}.$
In the first case $\dot{\vec{x}}(t) = (1, 2t)$; hence

$$\int_{\Gamma} y \, dx + (x - y) \, dy = \int_{0}^{1} (t^{2} \cdot 1 + (t - t^{2})2t) \, dt = \int_{0}^{1} (3t^{2} - 2t^{3}) \, dt = \frac{1}{2}.$$

In the second case $\int_{\Gamma} f \, d\vec{x} = \int_{\Gamma_1} f \, d\vec{x} + \int_{\Gamma_2} f \, d\vec{x}$. For the first part (dx, dy) = (dt, 0), for the second part (dx, dy) = (0, dt) such that

$$\int_{\Gamma} f \, d\vec{x} = \int_{\Gamma} y \, dx + (x - y) \, dy = \int_{0}^{1} 0 \, dt + (t - 0) \cdot 0 + \int_{0}^{1} t \cdot 0 + (1 - t) \, dt = t - \frac{1}{2} t^{2} \Big|_{0}^{1} = \frac{1}{2}.$$

(b) Find the work done by the force field $\vec{F}(x, y, z) = (y, -x, 1)$ as a particle moves from (1, 0, 0) to (1, 0, 1) along the following paths $\varepsilon = \pm 1$:

$$\vec{x}(t)_{\varepsilon} = (\cos t, \varepsilon \sin t, \frac{t}{2\pi}), t \in [0, 2\pi],$$

We find

$$\int_{\Gamma_{\varepsilon}} \vec{F} \cdot d\vec{x} = \int_{0}^{2\pi} (\varepsilon \sin t, -\cos t, 1) \cdot (-\sin t, \varepsilon \cos t, 1/(2\pi)) dt$$
$$= \int_{0}^{2\pi} \left(-\varepsilon \sin^{2} t - \varepsilon \cos^{2} t + \frac{1}{2\pi} \right) dt$$
$$= -2\pi\varepsilon + 1.$$

In case $\varepsilon = 1$, the motion is "with the force", so the work is positive; for the path $\varepsilon = -1$, the motion is against the force and the work is negative.

Properties of Line Integrals

Remark 9.8 (a) Linearity.

$$\int_{\Gamma} (\vec{f} + \vec{g}) \, d\vec{x} = \int_{\Gamma} \vec{f} \, d\vec{x} + \int_{\Gamma} \vec{g} \, d\vec{x}, \quad \int_{\Gamma} \lambda \vec{f} \, d\vec{x} = \lambda \int_{\Gamma} \vec{f} \, d\vec{x}.$$

(b) Change of direction. If $\vec{x}(t)$, $t \in [r, s]$ defines a curve Γ which goes from $a = \vec{x}(r)$ to $b = \vec{x}(s)$, then $\vec{y}(t) = \vec{x}(r+s-t)$, $t \in [r, s]$, defines the curve $-\Gamma$ which goes in the opposite direction from b to a. It is easy to see that

$$\int_{-\Gamma} \vec{f} \, \mathrm{d}\vec{x} = -\int_{\Gamma} \vec{f} \, \mathrm{d}\vec{x}.$$

(c) Triangle inequality.

$$\left| \int_{\Gamma} \vec{f} \, \mathrm{d}\vec{x} \, \right| \leq \ell(\Gamma) \sup_{x \in \Gamma} \left\| \vec{f}(x) \right\|.$$

(d) Splitting. If Γ_1 and Γ_2 are two curves such that the ending point of Γ_1 equals the starting point of Γ_2 then

$$\int_{\Gamma_1 \cup \Gamma_2} \vec{f} \, \mathrm{d}\vec{x} = \int_{\Gamma_1} \vec{f} \, \mathrm{d}\vec{x} + \int_{\Gamma_2} \vec{f} \, \mathrm{d}\vec{x}.$$

9.5.1 Path Independence

Problem: For which vector fields \vec{f} the line integral from a to b does not depend upon the path (see Example 9.8 (a) Example 8.2)?

Definition 9.12 A vector field $\vec{f}: G \to \mathbb{R}^n$, $G \subset \mathbb{R}^n$, is called *conservative* if for any points a and b in G and any curves Γ_1 and Γ_2 from a to b we have

$$\int_{\Gamma_1} \vec{f} \, \mathrm{d}\vec{x} = \int_{\Gamma_2} \vec{f} \, \mathrm{d}\vec{x}.$$

In this case we say that the line integral $\int_{\Gamma} \vec{f} \, d\vec{x}$ is path independent and we use the notation $\int_{a}^{b} \vec{f} \, d\vec{x}$.

Definition 9.13 A vector field $\vec{f}: G \to \mathbb{R}^n$ is called *potential field* or *gradient vector* field if there exists a continuously differentiable function $U: G \to \mathbb{R}$ such that $\vec{f}(x) = \operatorname{grad} U(x)$ for $x \in G$. We call U the *potential* or *antiderivative* of \vec{f} .

Example 9.9 The gravitational force

$$\vec{F}(x) = -\gamma m M \frac{x}{\|x\|^3}$$

is a potential field with potential

$$U(x) = \gamma m M \frac{1}{\|x\|}$$

This follows from Example 8.2 (a), grad $f(||x||) = f'(||x||) \frac{x}{||x||}$ with f(y) = 1/y and $f'(y) = -1/y^2$.

Remark 9.9 (a) \vec{f} is conservative if and only if the line integral over any *closed* curve in G is 0.

(b) Let G be connected. If it exists, U(x) is uniquely determined up to a constant. Indeed, if grad $U_1(x) = \operatorname{grad} U_2(x) = \vec{f}$ we have $\operatorname{grad} (U_1 - U_2) = 0$. Since G is connected, $U_1 - U_2$ is constant on G (all partial derivatives of $U_1 - U_2$ are identically 0).

Theorem 9.10 Let $G \subset \mathbb{R}^n$ be a domain.

(i) If $U: G \to \mathbb{R}$ is continuously differentiable and $\vec{f} = \operatorname{grad} U$. Then for every (piecewise continuously differentiable) curve Γ from a to b, $a, b \in G$, we have

$$\int_{\Gamma} \vec{f} \, \mathrm{d}\vec{x} = U(b) - U(a).$$

(ii) Let $\vec{f}: G \to \mathbb{R}^n$ be a continuous conservative vector field and $a \in G$. Put

$$U(x) = \int_{a}^{x} \vec{f} \, \mathrm{d}\vec{y}, \quad x \in G.$$

Then U(x) is an antiderivative for \vec{f} , that is grad $U = \vec{f}$.

(iii) A continuous vector field \vec{f} is conservative in G if and only if it is a potential field.

Proof. (i) Let $\Gamma = \{\vec{x}(t) \mid t \in [r, s]\}$, be a continuously differentiable curve from $a = \vec{x}(r)$ to $b = \vec{x}(s)$. We define $\varphi(t) = U(\vec{x}(t))$ and compute the derivative using the chain rule

$$\dot{\varphi}(t) = \operatorname{grad} U(\vec{x}(t)) \cdot \dot{\vec{x}}(t) = \vec{f}(\vec{x}(t)) \cdot \dot{\vec{x}}(t).$$

By definition of the line integral we have

$$\int_{\Gamma} \vec{f} \, \mathrm{d}\vec{x} = \int_{r}^{s} \vec{f}(\vec{x}(t)) \, \dot{\vec{x}}(t) \, \mathrm{d}t.$$

Inserting the above expression and applying the fundamental theorem of calculus, we find

$$\int_{\Gamma} \vec{f} \, d\vec{x} = \int_{r}^{s} \dot{\varphi}(t) \, dt = \varphi(s) - \varphi(r) = U(\vec{x}(s)) - U(\vec{x}(r)) = U(b) - U(a).$$

(ii) Choose $h \in \mathbb{R}^n$ small such that $x + th \in G$ for all $t \in [0, 1]$. By the path independence of the line integral

$$U(x+h) - U(x) = \int_a^x \vec{f} \cdot d\vec{y} - \int_a^{x+h} \vec{f} \cdot d\vec{y} = \int_x^{x+h} \vec{f} \cdot d\vec{y}$$

Consider the curve $\vec{x}(t) = x + th$, $t \in [0, 1]$ from x to x + h. Then $\dot{\vec{x}}(t) = h$. By the mean value theorem of integration (Theorem 5.16 with $\varphi = 1$, a = 0 and b = 1) we have

$$\int_{x}^{x+h} \vec{f} \cdot d\vec{y} = \int_{0}^{1} \vec{f}(\vec{x}(t)) \cdot h \, dt = \vec{f}(x+\theta h) \cdot h,$$

where $\theta \in [0,1]$. We check grad $U(x) = \vec{f}(x)$ using the definition of the derivative:

$$\frac{\left| U(x+h) - U(x) - \vec{f}(x) \cdot h \right|}{\|h\|} = \frac{\left| (\vec{f}(x+\theta h) - \vec{f}(x)) \cdot h \right|}{\|h\|} \underset{h \to 0}{\leq} \frac{\left\| \vec{f}(x+\theta h) - \vec{f}(x) \right\| \|h\|}{\|h\|}$$

$$= \left\| \vec{f}(x+\theta h) - \vec{f}(x) \right\| \xrightarrow{h \to 0} 0,$$

since $\vec{f}(x)$ is continuous.

(iii) follows immediately from (i) and (ii).

Remark 9.10 (a) In case n = 2, a simple path to compute the line integral (and so the potential U) in (ii) consists of 2 segments: from (0,0) via (x,0) to (x,y). The line integral of P dx + Q dy then reads as ordinary Riemann integrals

$$U(x,y) = \int_0^x P(t,0) dt + \int_0^y Q(x,t) dt.$$

(b) Case n = 3. You can also use just one single segment from the origin to the endpoint (x, y, z). This path is parametrized by the curve

$$\vec{x}(t) = (tx, ty, tz), \quad t \in [0, 1], \quad \dot{\vec{x}}(t) = (x, y, z).$$

We obtain

$$U(x, y, z) = \int_{(0,0,0)}^{(x,y,z)} f_1 dx + f_2 dy + f_3 dz$$

$$= x \int_0^1 f_1(tx, ty, tz) dt + y \int_0^1 f_2(tx, ty, tz) dt + z \int_0^1 f_3(tx, ty, tz) dt.$$
 (9.11)

(c) Although Theorem 9.10 gives a necessary and sufficient condition for a vector field to be conservative, we are missing an easy criterion. The next proposition fills this gap.

Definition 9.14 A connected open subset G (a region) of \mathbb{R}^n is called *simply connected* if every closed polygonal path inside G can be shrunk inside G to a single point.

Roughly speaking, simply connected sets do not have holes. Every convex subset of \mathbb{R}^n is simply connected while the torus $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ and any ring $R = \{(x,y) \in \mathbb{R}^2 \mid r^2 < x^2 + y^2 \le R^2\}, \ 0 \le r < R \le \infty$, are not.

The precise mathematical term for a curve γ to be "shrinkable to a point" is to be null-homotopic: for the closed curve $\gamma:[1,0]\to X$ there exists a continuous mapping $h:[0,1]\times[0,1]\to X$ such that $h(t,0)=\gamma(t)$ for all t and $h(t,1)=\{\mathrm{pt}\}$.

Proposition 9.11 Let $\vec{f} = (f_1, f_2, f_3)$ a continuously differentiable vector field on a simply connected region $G \subset \mathbb{R}^3$. Then \vec{f} is conservative if and only if $\text{curl } \vec{f} = 0$, i. e.

$$\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3} = 0, \quad \frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1} = 0, \quad \frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2} = 0.$$

In case $n=2,\ \vec{f}=(P,Q),\ G\subset\mathbb{R}^2$ is simply connected, the condition is

$$\operatorname{curl} \vec{f} = \frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} = 0.$$

Proof. (a) Let \vec{f} be conservative; by Theorem 9.10 there exists a potential U, grad $U = \vec{f}$. However, curl grad U = 0 since

$$\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3} = \frac{\partial^2 U}{\partial x_2 \partial x_3} - \frac{\partial^2 U}{\partial x_3 \partial x_2} = 0$$

by Schwarz's Lemma.

(b) This will be an application of Stokes' theorem, see below.

Remark 9.11 (a) curl $\vec{f} = 0$ is called the *integrability condition* for the vector field \vec{f} . (b) The statement is false if the condition "G is simply connected" is dropped. For example, let $G = \mathbb{R}^2 \setminus \{(0,0)\}$ and

$$\vec{f} = (P, Q) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

The vector field is not conservative (Prove!), however, the condition $P_y = Q_x$ is nevertheless satisfied, see homework 30.1

Example 9.10 Let on \mathbb{R}^3 , $\vec{f} = (P, Q, R) = (6xy^2 + e^x, 6x^2y, 1)$. Then

$$\operatorname{curl} \vec{f} = (R_y - Q_z, P_z - R_x, Q_x - P_y) = (0, 0, 12xy - 12xy) = 0;$$

hence, \vec{f} is conservative with the potential (see Remark 9.10 (b))

$$U(x,y,z) = x \int_0^1 f_1(tx,ty,tz) dt + y \int_0^1 f_2(tx,ty,tz) dt + z \int_0^1 f_3(tx,ty,tz) dt$$

= $x \int_0^1 (6t^3xy^2 + e^{tx}) dt + y \int_0^1 6t^3x^2y dt + z \int_0^1 dt$
= $3x^2y^2 + e^x + z$.

9.6 Stokes' Theorem

Roughly speaking, Stokes' theorem relates a surface integral over a surface \mathcal{F} with a line integral over the boundary $\partial \mathcal{F}$. In case of a plane surface in \mathbb{R}^2 , it is called Green's theorem.

9.6 Stokes' Theorem 259

9.6.1 Green's Theorem

Let G be a domain in \mathbb{R}^2 with picewise smooth (differentiable) boundaries $\Gamma_1, \Gamma_2, \ldots, \Gamma_k$. We give an orientation to the boundary: the outer curve is oriented counter clockwise (mathematical positive), the inner boundaries are oriented in the opposite direction.

Theorem 9.12 (Green's Theorem) Let (P,Q) be a continuously differentiable vector field on \overline{G} and let the boundary $\Gamma = \partial G$ be oriented as above. Then

$$\iint_{C} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\Gamma} P dx + Q dy.$$
 (9.13)

Proof. (a) First, we consider a region G of type 1 in the plane, as shown in the figure and we will prove that

$$-\iint_{G} \frac{\partial P}{\partial y} \, \mathrm{d}x \mathrm{d}y = \int_{\Gamma} P \, \mathrm{d}x. \tag{9.14}$$

The double integral on the left may be evaluated as an iterated integral (Fubini's theorem), we have

$$\iint_{G} \frac{\partial P}{\partial y} dxdy = \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} P_{y}(x, y) dy \right) dx$$
$$= \int_{a}^{b} \left(P(x, \psi(x)) - P(x, \varphi(x)) \right) dx.$$

The latter equality is due to the fundamental theorem of calculus. To compute the line integral, we parametrize the four parts of Γ in a natural way:

$$\vec{x}_{1}(t) = (a, -t), & t \in [-\psi(a), -\varphi(a)], & dx = 0, dy = -dt, \\
\vec{x}_{2}(t) = (t, \varphi(t)), & t \in [a, b], & dx = dt, dy = \varphi'(t) dt, \\
\vec{x}_{3}(t) = (b, t), & t \in [\varphi(b), \psi(b)], & dx = 0, dy = dt, \\
\vec{x}_{4}(t) = (-t, \psi(-t)), & t \in [-b, -a], & dx = -dt, dy = -\psi'(t) dt.$$

Since dx = 0 on Γ_1 and Γ_3 we are left with the line integrals over Γ_2 and Γ_4 :

$$\int_{\Gamma} P \, \mathrm{d}x = \int_{a}^{b} P(t, \varphi(t)) \, \mathrm{d}t + \int_{-b}^{-a} P(-t, \psi(-t))(-\,\mathrm{d}t)$$
$$= \int_{a}^{b} P(t, \varphi(t)) \, \mathrm{d}t - \int_{a}^{b} P(t, \psi(t)) \, \mathrm{d}t.$$

This completes the proof for type 1 regions.

Exactly in the same way, we can prove that if G is a type 2 region then for Q = Q(x, y) with continuous partial derivatives,

$$\iint_{G} \frac{\partial Q}{\partial x} \, \mathrm{d}x \, \mathrm{d}y = \int_{\Gamma} Q \, \mathrm{d}y. \tag{9.15}$$

If G is both a region of type 1 and 2, then (9.14) and (9.15) are both valid and we can add them and obtain (9.13).

(b) Breaking a region G up into smaller regions, each of which is both of type 1 and 2, Green's theorem is valid for G. The line integrals along the inner boundary cancel leaving the line integral around the boundary of G.

(c) If the region has a hole, one can split it into two simply connected regions, for which Green's theorem is valid by the arguments of (b).

Application

If Γ is a curve which bounds a region G, then the area of G is

$$A = \frac{1}{2} \int_{\Gamma} x \, \mathrm{d}y - y \, \mathrm{d}x = \int_{\Gamma} x \, \mathrm{d}y = -\int_{\Gamma} y \, \mathrm{d}x. \tag{9.16}$$

Proof. Choosing $P = -\alpha y$, $Q = (1 - \alpha)x$ one has

$$A = \iint_{G} dxdy = \iint_{G} ((1 - \alpha) - (-\alpha)) dxdy = \iint_{G} (Q_{x} - P_{y}) dxdy = \int_{\Gamma} P dx + Q dy$$
$$= -\alpha \int_{\Gamma} y dx + (1 - \alpha) \int_{\Gamma} x dy.$$

Inserting $\alpha = 0$, $\alpha = 1$, and $\alpha = \frac{1}{2}$ yields the assertion.

Example 9.11 Find the area bounded by the ellipse Γ : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. We parametrize Γ by $\vec{x}(t) = (a\cos t, b\sin t), \ t \in [0, 2\pi], \ \dot{\vec{x}}(t) = (-a\sin t, b\cos t)$. Then (9.16) gives

$$A = \frac{1}{2} \int_0^{2\pi} a \cos t \, b \sin t \, dt - b \sin t (-a \sin t) \, dt = \frac{1}{2} \int_0^{2\pi} ab \, dt = \pi ab.$$

9.6 Stokes' Theorem 261

9.6.2 Stokes' Theorem

Conventions: Let \mathcal{F} be a regular, oriented surface. Let $\Gamma = \partial \mathcal{F}$ be the boundary of \mathcal{F} with the induced orientation: the orientation of the surface together with the orientation of the boundary form a right-oriented screw.

Theorem 9.13 (Stokes' theorem) Let \mathfrak{F} be a smooth regular oriented surface with a parametrization $F \in C^2(G)$ and G is a plane region to which Green's theorem applies. Let $\Gamma = \partial \mathfrak{F}$ be the boundary with the above orientation. Further, let \vec{f} be a continuously differentiable vector field on $\overline{\mathfrak{F}}$.

Then we have

$$\iint_{\mathcal{F}} \operatorname{curl} \vec{f} \, d\vec{S} = \int_{\Gamma} \vec{f} \, d\vec{x}. \tag{9.17}$$

This can also be written as

$$\iint_{\mathbb{T}} \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z} \right) dy dz + \left(\frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x} \right) dz dx + \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx dy.$$

Remark 9.12 (a) Green's theorem is a special case with $\mathcal{F} = G \times \{0\}$ and $\vec{f} = (P,Q,0)$. (b) We complete the proof of Proposition 9.11 and show that for a *simply* connected region $G \subset \mathbb{R}^3$ curl $\vec{f} = 0$ implies \vec{f} to be conservative. Indeed, any closed, regular, piecewise differentiable curve $\gamma \subset G$ is the boundary of a suitable smooth regular oriented surface \mathcal{F} , $\gamma = \partial \mathcal{F}$. Inserting curl $\vec{f} = 0$ into Stokes' theorem gives $\int_{\Gamma} \vec{f} \, d\vec{x} = 0$; the line integral is path independent and hence, \vec{f} is conservative. The region must be simply connected; otherwise its boundary has more than one component and the line integral is not path independent, in general.

Proof. Main idea: Reduction to Green's theorem. Since both sides of the equation are additive with respect to the vector field \vec{f} , it suffices to proof the statement for the vector fields $(f_1, 0, 0)$, $(0, f_2, 0)$, and $(0, 0, f_3)$. We show the theorem for $\vec{f} = (f, 0, 0)$, the other cases are quite analogous:

$$\iint_{\mathcal{F}} \left(\frac{\partial f}{\partial z} \, \mathrm{d}z \, \mathrm{d}x - \frac{\partial f}{\partial y} \, \mathrm{d}x \, \mathrm{d}y \right) = \int_{\partial \mathcal{F}} f \, \mathrm{d}x.$$

Let F(u, v), $u, v \in G$ be the parametrization of the surface \mathcal{F} . Then

$$\mathrm{d}x = \frac{\partial x}{\partial u} \, \mathrm{d}u + \frac{\partial x}{\partial v} \, \mathrm{d}v,$$

such that the line integral on the right reads

$$\begin{split} \int_{\partial \mathfrak{F}} f \, \mathrm{d}x &= \int_{\partial G} f \, x_u \, \mathrm{d}u + f \, x_v \, \mathrm{d}v = \int_{\partial G} P \, \mathrm{d}u + Q \, \mathrm{d}v \underset{\mathrm{Green's \, th.}}{=} \iint_G \left(-\frac{\partial P}{\partial v} + \frac{\partial Q}{\partial u} \right) \, \mathrm{d}u \, \mathrm{d}v \\ &= \iint_G - (f_v x_u + f \, x_{vu}) + (f_u x_v + f \, x_{uv}) \, \mathrm{d}u \, \mathrm{d}v = \iint_G - f_v x_u + f_u x_v \, \mathrm{d}u \, \mathrm{d}v \\ &= \iint_G - (f_x \, x_v + f_y \, y_v + f_z \, z_v) x_u + (f_x \, x_u + f_y \, y_u + f_z \, z_u) x_v \, \mathrm{d}u \, \mathrm{d}v \\ &= \iint_G \left(-f_y (x_u y_v - x_v y_u) + f_z (z_u x_v - z_v x_u) \right) \, \mathrm{d}u \, \mathrm{d}v \\ &= \iint_G \left(-f_y \frac{\partial (x,y)}{\partial (u,v)} + f_z \frac{\partial (z,x)}{\partial (u,v)} \right) \, \mathrm{d}u \, \mathrm{d}v = \iint_{\mathfrak{F}} -f_y \, \mathrm{d}x \mathrm{d}y + f_z \, \mathrm{d}z \mathrm{d}x. \end{split}$$

This completes the proof.

Remark 9.13 (a) The right side of (9.17) is called the circulation of the vector field \vec{f} over the closed curve Γ . Now let $\vec{x}_0 \in \mathcal{F}$ be fixed and consider smaller and smaller neighborhoods \mathcal{F}_0 of \vec{x}_0 with boundaries Γ_0 . By Stokes' theorem

$$\int_{\Gamma_0} \vec{f} \, d\vec{x} = \iint_{\mathcal{F}_0} \operatorname{curl} \vec{f} \cdot \vec{n}(y) \, d\vec{S}(y) = \operatorname{curl} \vec{f}(\vec{x}_0) \vec{n}(\vec{x}_0) \operatorname{area} (\mathcal{F}_0).$$

Hence,

$$\operatorname{curl} \vec{f}(\vec{x}_0) \cdot \vec{n}(\vec{x}_0) = \lim_{\mathfrak{F}_0 \to \vec{x}_0} \frac{\int_{\partial \mathfrak{F}_0} \vec{f} \, \mathrm{d}\vec{x}}{\operatorname{area} (\mathfrak{F}_0)}.$$

We call $\operatorname{curl} \vec{f}(\vec{x}_0) \cdot \vec{n}(\vec{x}_0)$ the infinitesimal circulation of the vector field \vec{f} at \vec{x} corresponding to the unit normal vector \vec{n} .

(b) Stokes' theorem then says that the integral over the infinitesimal circulation of a vector field \vec{f} corresponding to the unit normal vector \vec{n} over \mathcal{F} equals the circulation of the vector field along the boundary of \mathcal{F} .

Green's Identities in \mathbb{R}^3

We formulate consequences from Gauß' divergence theorem which play an important role in partial differential equations.

Recall (Proposition 8.9 (Prop. 8.9)) that the directional derivative of a function $v: U \to \mathbb{R}$, $U \subset \mathbb{R}^n$, at x_0 in the direction of the unit vector \vec{n} is given by $D_{\vec{n}}f(x_0) = \langle \operatorname{grad} f(x_0), \vec{n} \rangle$.

9.6 Stokes' Theorem 263

Definition 9.15 Let $\mathcal{F} \subset U \subset \mathbb{R}^3$ be an oriented, regular surface with the unit normal vector $\vec{n}(x_0)$ at $x_0 \in \mathcal{F}$. Let $g: U \to \mathbb{R}$ be differentiable.

$$\frac{\partial g}{\partial \vec{n}}(x_0) = \langle \operatorname{grad} g(x_0), \vec{n} \rangle \tag{9.18}$$

is called the normal derivative of g on \mathcal{F} at x_0 .

Proposition 9.14 Let G be a region as in $Gau\beta$ ' theorem, the boundary ∂G is oriented with the outer normal, u, v are twice continuously differentiable on an open set U with $\overline{G} \subset U$. Then we have Green's identities:

$$\iiint_C \nabla(u) \cdot \nabla(v) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iint_{\partial C} u \frac{\partial v}{\partial \vec{n}} \, \mathrm{d}S - \iiint_C u \Delta(v) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z, \tag{9.19}$$

$$\iiint_{C} (u\Delta(v) - v\Delta(u)) \, dx dy dz = \iint_{\partial C} \left(u \frac{\partial v}{\partial \vec{n}} - v \frac{\partial u}{\partial \vec{n}} \right) \, dS, \tag{9.20}$$

$$\iiint_{G} \Delta(u) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \iint_{\partial G} \frac{\partial u}{\partial \vec{n}} \, \mathrm{d}S. \tag{9.21}$$

Proof. Put $f = u\nabla(v)$. Then

$$\operatorname{div} f = \nabla(u\nabla v) = \nabla(u) \cdot \nabla(v) + u\nabla(\nabla v)$$
$$= \operatorname{grad} u \cdot \operatorname{grad} v + u\Delta(v).$$

Applying Gauß' theorem, we obtain

$$\begin{split} \iiint\limits_{G} \, \mathrm{div} \, f \, \mathrm{d}x \mathrm{d}y \mathrm{d}z &= \iiint\limits_{G} (\, \mathrm{grad} \, u \cdot \, \mathrm{grad} \, v) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z + \iiint\limits_{G} u \Delta(v) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z p \\ &= \iint\limits_{\partial G} u \, \mathrm{grad} \, v \cdot \vec{n} \, \mathrm{d}S = \iint\limits_{\partial G} u \frac{\partial v}{\partial \vec{n}} \, \mathrm{d}S. \end{split}$$

This proves Green's first identity. Changing the role of u and v and taking the difference, we obtain the second formula.

Inserting
$$v = -1$$
 into (9.20) we get (9.21).

Application: Let u_i , i = 1, 2, be harmonic functions on G, i.e. $\Delta u_1 = \Delta u_2 = 0$ and $u_1(x) = u_2(x)$ for all $x \in \partial G$. Then $u_1 \equiv u_2$ in G (cf. Homework 30.2).

9.6.3 Vector Potential and the Inverse Problem of Vector Analysis

Let \vec{f} be a continuously differentiable vector field on the simply connected region $G \subset \mathbb{R}^3$.

Definition 9.16 The vector field \vec{f} on G is called a *source-free* field (solenoidal field, divergence-zero field) if there exists a vector field \vec{g} on G with $\vec{f} = \text{curl } \vec{g}$. Then \vec{g} is called the *vector potential* to \vec{f} .

Theorem 9.15 \vec{f} is source-free if and only if $\operatorname{div} \vec{f} = 0$.

Proof. (a) If $\vec{f} = \text{curl } \vec{g} \text{ then } \text{div } \vec{f} = \text{div } (\text{curl } \vec{g}) = 0.$

(b) To simplify notations, we skip the arrows. We explicitly construct a vector potential g to f with $g = (g_1, g_2, 0)$ and $\operatorname{curl} g = f$. This means

$$f_{1} = -\frac{\partial g_{2}}{\partial z},$$

$$f_{2} = \frac{\partial g_{1}}{\partial z},$$

$$f_{3} = \frac{\partial g_{2}}{\partial x} - \frac{\partial g_{1}}{\partial y}.$$

The first two equations are satisfied setting

$$g_2 = -\int_{z_0}^{z} f_1(x, y, t) dt + h(x, y),$$

$$g_1 = \int_{z_0}^{z} f_2(x, y, t) dt.$$

Inserting this into the third equation, we obtain

$$\frac{\partial g_2}{\partial x} - \frac{\partial g_1}{\partial y} = -\int_{z_0}^z \frac{\partial f_1}{\partial x}(x, y, t) dt + h_x(x, y) - \int_{z_0}^z \frac{\partial f_2}{\partial y}(x, y, t) dt$$

$$= -\int_{z_0}^z \left(\frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y}\right) dt + h_x$$

$$= \int_{z_0}^z \frac{\partial f_3}{\partial z}(x, y, t) dt + h_x$$

$$= f_3(x, y, z) - f_3(x, y, z_0) + h_x(x, y).$$

Choosing $h_x(x,y) = f_3(x,y,z_0)$, the third equation is satisfied and curl g = f.

Remarks 9.14 (a) The proof of second direction is a constructive one; you can use this method to calculate a vector potential explicitly, see homework 30.3. You can also try another ansatz, say $g = (0, g_2, g_3)$ or $g = (g_1, 0, g_3)$.

(b) If g is a vector potential for f and $U \in C^2(G)$, then $\tilde{g} = g + \operatorname{grad} U$ is also a vector potential for f. Indeed

$$\operatorname{curl} \tilde{g} = \operatorname{curl} g + \operatorname{curl} \operatorname{grad} U = f.$$

The Inverse Problem of Vector Analysis

Let h be a function and \vec{a} be a vector field on G; both continuously differentiable. Problem: Does there exist a vector field \vec{f} such that

$$\operatorname{div} \vec{f} = h \quad \text{and} \quad \operatorname{curl} \vec{f} = \vec{a}.$$

Proposition 9.16 The above problem has a solution if and only if $\operatorname{div} \vec{a} = 0$.

Proof. The condition is necessary since div $\vec{a} = \text{div curl } \vec{f} = 0$. We skip the vector arrows. For the other direction we use the ansatz f = r + s with

$$\operatorname{curl} r = 0, \qquad \operatorname{div} r = h, \tag{9.22}$$

$$\operatorname{curl} s = a, \qquad \operatorname{div} s = 0. \tag{9.23}$$

Since $\operatorname{curl} r = 0$, by Proposition 9.11 there exists a potential U with $r = \operatorname{grad} U$. Then $\operatorname{curl} r = 0$ and $\operatorname{div} r = \operatorname{div} \operatorname{grad} U = \Delta(U)$. Hence (9.22) is satisfied if and only if $r = \operatorname{grad} U$ and $\Delta(U) = h$.

Since $\operatorname{div} a = \operatorname{div} \operatorname{curl} s = 0$, there exists a vector potential g such that $\operatorname{curl} a = s$. Let φ be twice continuously differentiable on G and set $s = g + \operatorname{grad} \varphi$. Then $\operatorname{curl} s = \operatorname{curl} g = a$ and $\operatorname{div} s = \operatorname{div} g + \operatorname{div} \operatorname{grad} \varphi = \operatorname{div} g + \Delta(\varphi)$. Hence, $\operatorname{div} s = 0$ if and only if $\Delta(\varphi) = -\operatorname{div} g$.

Both equations $\Delta(U) = h$ and $\Delta(\varphi) = -\operatorname{div} g$ are so called Poisson equations which can be solved within the theory of partial differential equations (PDE).

The inverse problem has not a unique solution. Choose a harmonic function ψ , $\Delta(\psi) = 0$ and put $f_1 = f + \operatorname{grad} \psi$. Then

$$\operatorname{div} f_1 = \operatorname{div} f + \operatorname{div} \operatorname{grad} \psi = \operatorname{div} f + \Delta(\psi) = \operatorname{div} f = h,$$

 $\operatorname{curl} f_1 = \operatorname{curl} f + \operatorname{curl} \operatorname{grad} \psi = \operatorname{curl} f = a.$

9.7 Differential Forms on \mathbb{R}^n

We show that Gauß', Green's and Stokes' theorems are three cases of a "general" theorem which is also named after Stokes. The appearance of the Jacobian in the change of variable theorem will become clear. We formulate the Poincaré lemma.

9.7.1 The Exterior Algebra $\Lambda(\mathbb{R}^n)$

Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{R}^n ; for $h \in \mathbb{R}^n$ we write $h = (h_1, \ldots, h_n)$ with respect to the standard basis, $h = \sum_i h_i e_i$.

The Dual Vector Space V^*

The interplay between a normed space E and its dual space E' forms the basis of functional analysis. We start with the definition of the algebraic dual.

Definition 9.17 Let V be a \mathbb{K} -linear space ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$). The (algebraic) dual vector space to V is the set of all \mathbb{K} -linear functionals $f: V \to \mathbb{K}$,

$$V^* = \{ f \colon V \to \mathbb{K} \mid f \text{ is linear} \}.$$

We denote it by V^* .

The evaluation of $f \in V^*$ on $v \in V$ is denoted by

$$f(v) = \langle f, v \rangle \in \mathbb{K}.$$

In this case, the brackets denote the dual pairing between V^* and V. Obviously, V^* is again a K-linear space if we define the linear structure as follows

$$\langle \lambda f + \mu g, v \rangle := \lambda \langle f, v \rangle + \mu \langle g, v \rangle, \quad \lambda, \mu \in \mathbb{K}, \quad f, g \in V^*, \quad v \in V.$$

Example 9.12 (a) If $V = \mathbb{R}^n$ with the above standard basis $\{e_1, \ldots, e_n\}$, V^* has also dimension n and we can define the *dual basis* $\{dx_1, \ldots, dx_n\}$ of V^* to $\{e_1, \ldots, e_n\}$ by

$$\mathrm{d}x_i(\mathrm{e}_j) = \delta_{ij}, \quad i, j = 1, \dots, n.$$

The functional dx_i associates to each vector $h \in V$ its *i*th coordinate h_i : $dx_i(h) = h_i$. We call dx_i the *i*th coordinate functional.

(b) If V = C([0,1]), the continuous functions on [0,1] and α is an increasing on [0,1] function, then

$$\varphi_{\alpha}(f) = \int_0^1 f \, d\alpha, \quad f \in V$$

defines a linear functional φ_{α} on V. If $a \in [0, 1]$,

$$\psi_a(f) = f(a), \quad f \in V$$

defines another linear functional on V.

(c) Let $a \in \mathbb{R}^n$. Then $\langle a, x \rangle = \sum_{i=1}^n a_i x_i$, $x \in \mathbb{R}^n$ defines a linear functional on \mathbb{R}^n . In Functional Analysis we will learn that this is already the most general form of a continuous linear functional, cf. Theorem of Riesz.

Definition 9.18 Let $k \in \mathbb{N}$. An alternating multilinear form of degree k on \mathbb{R}^n , a k-form for short, is a mapping $\omega \colon \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$, k factors \mathbb{R}^n , which is multilinear and antisymmetric, i. e.

MULT
$$\omega(\cdots, \alpha x_i + \beta y_i, \cdots) = \alpha \omega(\cdots, x_i, \cdots) + \beta \omega(\cdots, y_i, \cdots),$$
 (9.24)

ANT
$$\omega(\cdots, x_i, \cdots, x_j, \cdots) = -\omega(\cdots, x_j, \cdots, x_i, \cdots), \quad i, j = 1, \dots, k, i \neq j.$$
 (9.25)

We denote the linear space of all k-forms on \mathbb{R}^n by $\Lambda^k(\mathbb{R}^n)$ with the convention $\Lambda^0(\mathbb{R}^n) = \mathbb{R}$ and $\Lambda^1(\mathbb{R}^n) = (\mathbb{R}^n)^*$.

Let $f_1, \ldots, f_k \in (\mathbb{R}^n)^*$ be linear functionals on \mathbb{R}^n . Then we define the k-form $f_1 \wedge \cdots \wedge f_k \in \Lambda^k(\mathbb{R}^n)$ (read: " f_1 wedge f_2 ... wedge f_k ") as follows

$$f_1 \wedge \cdots \wedge f_k(h_1, \dots, h_k) = \begin{vmatrix} f_1(h_1) & \cdots & f_1(h_k) \\ \vdots & & \vdots \\ f_k(h_1) & \cdots & f_k(h_k) \end{vmatrix}$$
(9.26)

In particular, let $i_1, \ldots, i_k \in \{1, \ldots, n\}$ be fixed and choose $f_j = \mathrm{d} x_{i_j}, j = 1, \ldots, k$. Then

$$\mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k}(h_1, \ldots, h_k) = \begin{vmatrix} h_{1i_1} & \cdots & h_{ki_1} \\ \vdots & & \vdots \\ h_{1i_k} & \cdots & h_{ki_k} \end{vmatrix}$$

Remark 9.15 (a) $f_1 \wedge \cdots \wedge f_k$ is indeed a k-form since the f_i are linear, the determinant is multilinear

$$\begin{vmatrix} \lambda a + \mu a' & b & c \\ \lambda d + \mu d' & e & f \\ \lambda g + \mu g' & h & i \end{vmatrix} = \lambda \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} + \mu \begin{vmatrix} a' & b & c \\ d' & e & f \\ g' & h & i \end{vmatrix},$$

and antisymmetric

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = - \begin{vmatrix} b & a & c \\ e & d & f \\ h & g & i \end{vmatrix}.$$

(b) For example, let $y = (y_1, \ldots, y_n), z = (z_1, \ldots, z_n) \in \mathbb{R}^n$

$$\mathrm{d} x_3 \wedge \mathrm{d} x_1(y,z) = \begin{vmatrix} y_3 & z_3 \\ y_1 & z_1 \end{vmatrix} = y_3 z_1 - y_1 z_3.$$

If $f_r = f_s$ for some $r \neq s$, we have $f_1 \wedge \cdots \wedge f_k = 0$ since determinants with identical rows vanish.

Proposition 9.17 For $k \leq n$ the k-forms $\{ dx_{i_1} \wedge \cdots \wedge dx_{i_k} \mid 1 \leq i_1 < i_2 < \cdots < i_k \leq n \}$ form a basis of the vector space $\Lambda^k(\mathbb{R}^n)$. A k-form with k > n is identically zero. We have

$$\dim \Lambda^k(\mathbb{R}^n) = \binom{n}{k}.$$

Proof. Any k-form ω is uniquely determined by its values on the k-tuple of vectors $(\mathbf{e}_{i_1},\ldots,\mathbf{e}_{i_k})$ with $1 \leq i_1 < i_2 < \cdots < i_k \leq n$. Indeed, using antisymmetry of ω , we know ω on all k-tuples of basis vectors; using linearity in each component, we get ω on all k-tuples of vectors. This shows that the $\mathrm{d}x_{i_1} \wedge \cdots \wedge \mathrm{d}x_{i_k}$ with $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ generate the linear space $\Lambda^k(\mathbb{R}^n)$. We make this precise in case k=2. With $y=\sum_i y_i e_i$, $z=\sum_j z_j e_j$ we have by linearity and antisymmetry of ω

$$\omega(y, z) = \sum_{i,j=1}^{n} y_i z_j \omega(\mathbf{e}_i, \mathbf{e}_j) \underset{\text{ANT}}{=} \sum_{1 \le i < j \le n} (y_i z_j - y_j z_i) \omega(\mathbf{e}_i, \mathbf{e}_j)$$
$$= \sum_{i < j} \omega(\mathbf{e}_i, \mathbf{e}_j) \begin{vmatrix} y_i & z_i \\ y_j & z_j \end{vmatrix} = \sum_{i < j} \omega(\mathbf{e}_i, \mathbf{e}_j) \, \mathrm{d}x_i \wedge \, \mathrm{d}x_j(y, z).$$

Hence,

$$\omega = \sum_{i < j} \omega(\mathbf{e}_i, \mathbf{e}_j) \, \mathrm{d}x_i \wedge \, \mathrm{d}x_j.$$

This shows that $\{ dx_i \wedge dx_j \mid i < j \}$ generates $\Lambda^2(\mathbb{R}^n)$. These are $\binom{n}{2}$ elements. We show its linear independence. Suppose that $\sum_{i < j} \alpha_{ij} dx_i \wedge dx_j = 0$ for some α_{ij} . Evaluating this on (e_r, e_s) , r < s, gives

$$0 = \sum_{i < j} \alpha_{ij} \, dx_i \wedge dx_j(e_r, e_s) = \sum_{i < j} \alpha_{ij} \begin{vmatrix} \delta_{ri} & \delta_{si} \\ \delta_{rj} & \delta_{sj} \end{vmatrix}$$
$$= \sum_{i < j} \alpha_{ij} (\delta_{ri} \delta_{sj} - \delta_{rj} \delta_{si}) = \alpha_{rs};$$

hence, the above 2-forms are linearly independent. The arguments for general k are similar.

For $\omega \in \Lambda^k(\mathbb{R}^n)$ there exist unique numbers $a_{i_1 \cdots i_k} \in \mathbb{R}$ such that

$$\omega = \sum_{1 \le i_1 < \dots < i_k \le n} a_{i_1 \dots i_k} \, \mathrm{d} x_{i_1} \wedge \dots \wedge \, \mathrm{d} x_{i_k}.$$

Example 9.13 Let n = 3.

 $k=1 \quad \{ dx_1, dx_2, dx_3 \} \text{ is a basis of } \Lambda^1(\mathbb{R}^3).$

 $k=2 \quad \{ dx_1 \wedge dx_2, dx_1 \wedge dx_3, dx_2 \wedge dx_3 \} \text{ is a basis of } \Lambda^2(\mathbb{R}^3).$

 $k = 3 \quad \{ dx_1 \wedge dx_2 \wedge dx_3 \} \text{ is a basis of } \Lambda^3(\mathbb{R}^3).$

 $\Lambda^k(\mathbb{R}^3) = \{0\} \text{ for } k \ge 4.$

Definition 9.19 An algebra A over the field \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$) is a \mathbb{K} -linear space together with a product map $(a, b) \to ab$, $A \times A \to A$, such that the following holds for all $a, b, c \in A$ and $\alpha \in \mathbb{K}$

- (i) a(bc) = (ab)c (associative),
- (ii) (a+b)c = ac + bc, a(b+c) = ab + ac,
- (iii) $\alpha(ab) = (\alpha a)b = a(\alpha b).$

Standard examples are C(X), the continuous functions on a metric space X or $Mat(n \times n, \mathbb{K})$, the full $n \times n$ -matrix algebra over \mathbb{K} or the polynomial algebra.

Let $\Lambda(\mathbb{R}^n) = \bigoplus_{k=0}^n \Lambda^k(\mathbb{R}^n)$ be the direct sum of linear spaces.

Proposition 9.18 (i) $\Lambda(\mathbb{R}^n)$ is an \mathbb{R} -algebra with unity 1 and product \wedge defined by

$$(dx_{i_1} \wedge \cdots \wedge dx_{i_k}) \wedge (dx_{j_1} \wedge \cdots \wedge dx_{j_l}) = dx_{i_1} \wedge \cdots \wedge dx_{i_k} \wedge dx_{j_1} \wedge \cdots \wedge dx_{j_l}$$

(ii) If $\omega_k \in \Lambda^k(\mathbb{R}^n)$ and $\omega_l \in \Lambda^l(\mathbb{R}^n)$ then $\omega_k \wedge \omega_l \in \Lambda^{k+l}(\mathbb{R}^n)$ and

$$\omega_k \wedge \omega_l = (-1)^{kl} \omega_l \wedge \omega_k.$$

Proof. We show (ii) for $\omega_k = dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ and $\omega_l = dx_{j_1} \wedge \cdots \wedge dx_{j_l}$. We already know $dx_i \wedge dx_j = -dx_j \wedge dx_i$. There are kl transpositions $dx_{i_r} \leftrightarrow dx_{j_s}$; hence the sign is $(-1)^{kl}$.

In particular, $dx_i \wedge dx_i = 0$. The formula $dx_i \wedge dx_j = -dx_j \wedge dx_i$ determines the product in $\Lambda(\mathbb{R}^n)$ uniquely.

Definition 9.20 $\Lambda(\mathbb{R}^n)$ is called the *exterior algebra* of the vector space \mathbb{R}^n .

The Pull-Back of k-forms

Definition 9.21 Let $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ a linear mapping and $k \in \mathbb{N}$. For $\omega \in \Lambda^k(\mathbb{R}^m)$ we define a k-form $A^*(\omega) \in \Lambda^k(\mathbb{R}^n)$ by

$$(A^*\omega)(h_1,\ldots,h_k) = \omega(Ah_1,Ah_2,\ldots,Ah_k), \quad h_1,\ldots,h_k \in \mathbb{R}^n$$

We call $A^*(\omega)$ the pull-back of ω under A.

Note that $A^* \in L(\Lambda^k(\mathbb{R}^m), \Lambda^k(\mathbb{R}^n))$ is a linear mapping. In case k = 1 we call A^* the dual mapping to A. In case k = 0, $\omega \in \mathbb{R}$ we simply set $A^*\omega = \omega$. We have $A^*(\omega \wedge \eta) = A^*\omega \wedge A^*\eta$.

Orientation of \mathbb{R}^n

If $\{e_1, \ldots, e_n\}$ and $\{f_1, \ldots, f_n\}$ are two bases of \mathbb{R}^n there exists a unique regular matrix $A = (a_{ij})$ (det $A \neq 0$) such that $e_i = \sum_j a_{ij} f_j$. We say that $\{e_1, \ldots, e_n\}$ and $\{f_1, \ldots, f_n\}$ are equivalent if and only if det A > 0. Since det $A \neq 0$, there are exactly two equivalence classes.

Definition 9.22 An *orientation* of \mathbb{R}^n is given by fixing one of the two equivalence classes.

Example 9.14 (a) In \mathbb{R}^2 the bases $\{e_1, e_2\}$ and $\{e_2, e_1\}$ have different orientations since $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\det A = -1$.

(b) In \mathbb{R}^3 the bases $\{e_1,e_2,e_3\}$, $\{e_3,e_1,e_2\}$ and $\{e_2,e_3,e_1\}$ have the same orientation whereas $\{e_1,e_3,e_2\}$, $\{e_2,e_1,e_3\}$, and $\{e_3,e_2,e_1\}$ have opposite orientation.

9.7.2 Differential Forms

Let $U \subset \mathbb{R}^n$ be an open set.

Definition 9.23 A k-form on U is a mapping $\omega \colon U \to \Lambda^k(\mathbb{R}^n)$, i. e. to every point $x \in U$ we associate a k-form $\omega(x) \in \Lambda^k(\mathbb{R}^n)$.

Let ω be a k-form on U. Since $\{ dx_{i_1} \wedge \cdots \wedge dx_{i_k} \mid 1 \leq i_1 < i_2 < \cdots < i_k \leq n \}$ forms a basis of $\Lambda^k(\mathbb{R}^n)$ there exist uniquely determined functions $a_{i_1\cdots i_k}$ on U such that

$$\omega(x) = \sum_{1 \le i_1 < \dots < i_k \le n} a_{i_1 \dots i_k}(x) \, \mathrm{d}x_{i_1} \wedge \dots \wedge \, \mathrm{d}x_{i_k}. \tag{9.27}$$

If all functions $a_{i_1\cdots i_k}$ are in $C^{\infty}(U)$ we say ω is a differential k-form on U. The linear space of differential k-forms on U is denoted by $\Omega^k(U)$. We define $\Omega^0(U) = C^{\infty}(U)$ and $\Omega(U) = \bigoplus_{k=0}^{n} \Omega^k(U)$. The product in $\Lambda(\mathbb{R}^n)$ defines a product in $\Omega(U)$:

$$(\omega \wedge \eta)(x) = \omega(x) \wedge \eta(x), \quad x \in U,$$

hence $\Omega(U)$ is an algebra.

(a) Differentiation of Differential Forms

Let $U \subset \mathbb{R}^n$ be open.

Definition 9.24 Let $f \in \Omega^0(U) = C^\infty(U)$ and $x \in U$. We define

$$\mathrm{d}f(x) = Df(x);$$

then df is a differential 1-form on U.

If $\omega(x) = \sum_{1 \leq i_1 < \dots < i_k \leq n} a_{i_1 \dots i_k}(x) dx_{i_1} \wedge \dots \wedge dx_{i_k}$ is a differential k-form, we define

$$d\omega(x) = \sum_{1 \le i_1 < \dots < i_k \le n} da_{i_1 \dots i_k}(x) \wedge dx_{i_1} \wedge \dots \wedge dx_{i_k}.$$
 (9.28)

Then $d\omega$ is a differential (k+1)-form. The linear operator $d: \Omega^k(U) \to \Omega^{k+1}(U)$ is called the exterior differential.

Remarks 9.16 (a) Note, that for a function $f: U \to \mathbb{R}$, $Df \in L(\mathbb{R}^n, \mathbb{R}) = \Lambda^1(\mathbb{R}^n)$. By Example 8.7 (a)

$$Df(x)(h) = \operatorname{grad} f(x) \cdot h = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x) h_i = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x) dx_i(h),$$

hence

$$df(x) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x) dx_i.$$
 (9.29)

Viewing $x_i: U \to \mathbb{R}$ as a C^{∞} -function, by the above formula

$$\mathrm{d}x_i(x) = \mathrm{d}x_i$$

This justifies the notation dx_i . If $f \in C^{\infty}(\mathbb{R})$ we have df(x) = f'(x) dx.

(b) One can show that the definition of $d\omega$ does not depend on the choice of the basis $\{dx_1, \ldots, dx_n\}$ of $\Lambda^1(\mathbb{R}^n)$.

Example 9.15 (a) $G = \mathbb{R}^2$, $\omega = e^{xy} dx + xy^3 dy$. Then

$$d\omega = d(e^{xy}) \wedge dx + d(xy^3) \wedge dy$$

= $(ye^{xy} dx + xe^{xy} dy) \wedge dx + (y^3 dx + 3xy^2 dy) \wedge dy$
= $(-xe^{xy} + y^3) dx \wedge dy$.

(b) Let f be continuously differentiable. Then

$$df = f_x dx + f_y dy + f_z dz = \operatorname{grad} f \cdot (dx, dy, dz).$$

- (c) Let $v = (v_1, v_2, v_3)$ be a C¹-vector field. Put $\omega = v_1 dx + v_2 dy + v_3 dz$. Then we have $d\omega = \left(\frac{\partial v_3}{\partial y} \frac{\partial v_2}{\partial z}\right) dy \wedge dz + \left(\frac{\partial v_1}{\partial z} \frac{\partial v_3}{\partial x}\right) dz \wedge dx + \left(\frac{\partial v_2}{\partial x} \frac{\partial v_1}{\partial y}\right) dx \wedge dy$ $= \operatorname{curl}(v) \cdot (dy \wedge dz, dz \wedge dx, dx \wedge dy).$
- (d) Let v be as above. Put $\omega = v_1 \, dy \wedge dz + v_2 \, dz \wedge dx + v_3 \, dx \wedge dy$. Then we have $d\omega = \text{div } (v) \, dx \wedge dy \wedge dz$.

Proposition 9.19 The exterior differential d is a linear mapping which satisfies

- (i) $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta, \quad \omega \in \Omega^k(U), \, \eta \in \Omega(U).$
- (ii) $d(d\omega) = 0, \quad \omega \in \Omega(U).$

Proof. (i) For $I = (i_1, \ldots, i_k)$ and $J = (j_1, \ldots, j_r)$ we abbreviate $dx_I = dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ and $dx_J = dx_{j_1} \wedge \cdots \wedge dx_{j_r}$. Let $\omega = \sum_I a_I dx_I$ and $\eta = \sum_I b_J dx_J$. By definition

$$d(\omega \wedge \eta) = d\left(\sum_{I,J} a_I b_J dx_I \wedge dx_J\right)$$

$$= \sum_{I,J} (da_I b_J + a_I db_J) \wedge dx_I \wedge dx_J$$

$$= \sum_{I,J} da_I \wedge dx_I \wedge b_J dx_J + \sum_{I,J} a_I dx_I \wedge db_J \wedge dx_J(-1)^k$$

$$= d\omega \wedge \eta + (-1)^k \omega \wedge d\eta.$$

where in the third line we used $db_J \wedge dx_I = (-1)^k dx_I \wedge db_J$.

(ii) Again by the definition of d:

$$\begin{split} \mathrm{d}(\mathrm{d}\omega) &= \sum_{I} \mathrm{d} \left(\mathrm{d}a_{I} \wedge \, \mathrm{d}x_{I} \right) \\ &= \sum_{I,j} \mathrm{d} \left(\frac{\partial a_{I}}{\partial x_{j}} \, \mathrm{d}x_{j} \wedge \, \mathrm{d}x_{I} \right) \\ &= \sum_{I,i,j} \frac{\partial^{2} a_{I}}{\partial x_{i} \partial x_{j}} \, \mathrm{d}x_{i} \wedge \, \mathrm{d}x_{j} \wedge \, \mathrm{d}x_{I} \\ &= \sum_{\mathrm{Schwarz'} \, \mathrm{lemma}} \sum_{I,i,j} \frac{\partial^{2} a_{I}}{\partial x_{j} \partial x_{i}} \left(- \, \mathrm{d}x_{j} \wedge \, \mathrm{d}x_{i} \wedge \, \mathrm{d}x_{I} \right) = - \mathrm{d}(\mathrm{d}\omega). \end{split}$$

It follows that $d(d\omega) = d^2 \omega = 0$.

(b) The Pull-Back of Differential Forms

Definition 9.25 Let $f: U \to V$ be a differentiable function with open sets $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$. Let $\omega \in \Omega^k(V)$ be a differential k-form. We define a differential k-form $f^*(\omega) \in \Omega^k(U)$ by

$$(f^*\omega)(x) = (Df(x)^*)\omega(f(x)),$$

 $(f^*\omega)(x; h_1, \dots, h_k) = \omega(f(x); Df(x)(h_1), \dots, Df(x)(h_k)), \quad x \in U, h_1, \dots, h_k \in \mathbb{R}^n.$

In case k=0 and $\omega \in \Omega^0(V)=\mathrm{C}^\infty(V)$ we simply set

$$(f^*\omega)(x) = \omega(f(x)), \quad f^*\omega = \omega \circ f.$$

We call $f^*(\omega)$ the pull-back of the differential k-form ω with respect to f.

Note that by definition the pull-back f^* is a linear mapping from the space of differential k-forms on V to the space of differential k-forms on U, f^* : $\Omega^k(V) \to \Omega^k(U)$.

Proposition 9.20 Let f be as above and $\omega, \eta \in \Omega(V)$. Let $\{dy_1, \ldots, dy_m\}$ be the dual basis to the standard basis in \mathbb{R}^m . Then we have the following properties

$$f^*(dy_i) = \sum_{j=1}^n \frac{\partial f_i}{\partial x_j} dx_j, \quad i = 1, \dots, m.$$

$$(9.30)$$

$$f^*(d\omega) = d(f^*\omega), \tag{9.31}$$

$$f^*(a\omega) = (a \circ f) f^*(\omega), \quad a \in C^{\infty}(V),$$
 (9.32)

$$f^*(\omega \wedge \eta) = f^*(\omega) \wedge f^*(\eta). \tag{9.33}$$

If n = m and $\{y_1, \ldots, y_n\}$ is the standard basis in the image space \mathbb{R}^m , then

$$f^*(dy_1 \wedge \dots \wedge dy_n) = \frac{\partial (f_1, \dots, f_n)}{\partial (x_1, \dots, x_n)} dx_1 \wedge \dots \wedge dx_n.$$
 (9.34)

Proof. We show (9.30). Let $h \in \mathbb{R}^n$; by Definition 9.24 and the definition of the derivative we have

$$f^*(dy_i)(h) = dy_i(Df(x)(h)) = \left\langle dy_i, \left(\sum_{j=1}^n \left(\frac{\partial f_k(x)}{\partial x_j} \right) h_j \right)_{k=1,\dots,m} \right\rangle$$
$$= \sum_{j=1}^n \left(\frac{\partial f_i(x)}{\partial x_j} \right) h_j = \sum_{j=1}^n \left(\frac{\partial f_i(x)}{\partial x_j} \right) dx_j(h).$$

This shows (9.30). Equation (9.32) is a special case of (9.33). We skip the proof. To show (9.31) in view of (9.28) and (9.33), it suffices to show $f^*(dg) = d(f^*g)$ for functions $g: U \to \mathbb{R}$. By (9.29) and (9.32) we have

$$f^*(\mathrm{d}g)(x) = f^* \left(\sum_{i=1}^m \frac{\partial g}{\partial y_i} \, \mathrm{d}y_i \right) (x) = \sum_{i=1}^m \frac{\partial g(f(x))}{\partial y_i} f^*(\,\mathrm{d}y_i)$$

$$= \sum_{i=1}^m \frac{\partial g(f(x))}{\partial y_i} \sum_{j=1}^n \frac{\partial f_i}{\partial x_j} (x) \, \mathrm{d}x_j$$

$$= \sum_{j=1}^n \left(\sum_{i=1}^m \frac{\partial g(f(x))}{\partial y_i} \, \frac{\partial f_i(x)}{\partial x_j} \right) \, \mathrm{d}x_j$$

$$\stackrel{=}{\underset{\text{chain rule}}{=}} \sum_{j=1}^n \frac{\partial}{\partial x_j} (g \circ f)(x) \, \mathrm{d}x_j$$

$$= \mathrm{d}(g \circ f)(x) = \mathrm{d}(f^*g)(x).$$

We finally prove (9.34). By (9.33) and (9.31) we have

$$f^*(dy_1 \wedge \dots \wedge dy_n) = f^*(dy_1) \wedge \dots \wedge f^*(dy_n)$$

$$= \sum_{i_1=1}^n \frac{\partial f_1}{\partial x_{i_1}} dx_{i_1} \wedge \dots \wedge \sum_{i_n=1}^n \frac{\partial f_n}{\partial x_{i_n}} dx_{i_n}$$

$$= \sum_{i_1,\dots,i_n=1}^n \frac{\partial f_1}{\partial x_{i_1}} \dots \frac{\partial f_n}{\partial x_{i_n}} dx_{i_1} \wedge \dots \wedge dx_{i_n}.$$

Since the square of a 1-form vanishes, the only non-vanishing terms in the above sum are the permutations (i_1, \ldots, i_n) of $(1, \ldots, n)$. Using antisymmetry to write $dx_{i_1} \wedge \cdots \wedge dx_{i_n}$ as a multiple of $dx_1 \wedge \cdots \wedge dx_n$, we obtain the sign of the permutation (i_1, \ldots, i_n) :

$$f^*(dy_1 \wedge \dots \wedge dy_n) = \sum_{I=(i_1,\dots,i_n)\in S_n} \operatorname{sign}(I) \frac{\partial f_1}{\partial x_{i_1}} \dots \frac{\partial f_n}{\partial x_{i_n}} dx_1 \wedge \dots \wedge dx_n$$
$$= \frac{\partial (f_1,\dots,f_n)}{\partial (x_1,\dots,x_n)} dx_1 \wedge \dots \wedge dx_n.$$

Example 9.16 (a) Let $f(r,\varphi) = (r\cos\varphi, r\sin\varphi)$ be given on $\mathbb{R}^2 \setminus (0 \times \mathbb{R})$ and let $\{dr, d\varphi\}$ and $\{dx, dy\}$ be the dual bases to $\{e_r, e_{\varphi}\}$ and $\{e_1, e_2\}$. We have

$$f^*(x) = r \cos \varphi, \qquad f^*(y) = r \sin \varphi,$$

$$f^*(dx) = \cos \varphi \, dr - r \sin \varphi d\varphi, \quad f^*(dy) = \sin \varphi \, dr + r \cos \varphi d\varphi,$$

$$f^*(dx \wedge dy) = r \, dr \wedge d\varphi,$$

$$f^*\left(\frac{-y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy\right) = d\varphi.$$

(b) Let $k \in \mathbb{N}$, $r \in \{1, ..., k\}$, and $\alpha \in \mathbb{R}$. Define a mapping a mapping from $I: \mathbb{R}^k \to \mathbb{R}^{k+1}$ and $\omega \in \Omega^k(\mathbb{R}^{k+1})$ by

$$I(x_1, \dots, x_k) = (x_1, \dots, x_{r-1}, \alpha, x_r, \dots x_k),$$

$$\omega(y_1, \dots, y_{k+1}) = \sum_{i=1}^{k+1} f_i(y) \, \mathrm{d}y_1 \wedge \dots \widehat{\mathrm{d}y_i} \dots \wedge \, \mathrm{d}y_{k+1},$$

where $f_i \in C^{\infty}(\mathbb{R}^{k+1})$ for all i; the hat means omission of the factor dy_i . Then

$$I^*(\omega)(x) = f_r(x_1, \dots, x_{r-1}, \alpha, x_r, \dots, x_k) dx_1 \wedge \dots \wedge dx_k.$$

This easily follows from

$$I^*(dy_i) = dx_i, \quad i = 1, ..., r - 1,$$

 $I^*(dy_r) = 0,$
 $I^*(dy_{i+1}) = dx_i, \quad i = r, ..., k.$

Roughly speaking: $f^*\omega$ is obtained by substituting the new variables at all places.

(c) Closed and Exact Differential Forms

Motivation: Let f(x) be a continuous function on \mathbb{R} . Then $\omega = f(x) dx$ is a 1-form. By the fundamental theorem of calculus, there exists an antiderivative F(x) to f(x) such that $d F(x) = f(x) dx = \omega$.

Problem: Given $\omega \in \Omega^k(U)$. Does there exist $\eta \in \Omega^{k-1}(U)$ with $d\eta = \omega$?

Definition 9.26 $\omega \in \Omega^k(U)$ is called *closed* if $d\omega = 0$. $\omega \in \Omega^k(U)$ is called *exact* if there exists $\eta \in \Omega^{k-1}(U)$ such that $d\eta = \omega$.

Remarks 9.17 (a) An exact form ω is closed; indeed, $d\omega = d(d\eta) = 0$.

(b) A 1-form $\omega = \sum_i f_i \, \mathrm{d} x_i$ is closed if and only if $\mathrm{curl} \, \vec{f} = 0$ for the corresponding vector field $\vec{f} = (f_1, \ldots, f_n)$. Here the general curl can be defined as a vector with n(n-1)/2 components

$$(\operatorname{curl} \vec{f})_{ij} = \frac{\partial f_j}{\partial x_i} - \frac{\partial f_i}{\partial x_j}.$$

The form ω is exact if and only if \vec{f} is conservative, that is, \vec{f} is a gradient vector field with $\vec{f} = \operatorname{grad}(U)$. Then $\omega = \operatorname{d} U$.

(c) There are closed forms that are not exact; for example, the winding form

$$\omega = \frac{-y}{x^2 + y^2} \, \mathrm{d}x + \frac{x}{x^2 + y^2} \, \mathrm{d}y$$

on $\mathbb{R}^2 \setminus \{(0,0)\}$ is not exact, cf. homework 30.1.

(d) If $d \eta = \omega$ then $d(\eta + d\xi) = \omega$, too, for all $\xi \in \Omega^{k-2}(U)$.

Definition 9.27 An open set U is called *star-shaped* if there exists an $x_0 \in U$ such that for all $x \in U$ the segment from x_0 to x is in U, i. e. $(1-t)x_0 + tx \in U$ for all $t \in [0,1]$.

Convex sets U are star-shaped (take any $x_0 \in U$); any star-shaped set is connected and simply connected.

Lemma 9.21 Let $U \subset \mathbb{R}^n$ be star-shaped with respect to the origin. Let $\omega = \sum_{i_1 < \dots < i_k} a_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k} \in \Omega^k(U)$. Define

$$I(\omega)(x) = \sum_{i_1 < \dots < i_k} \sum_{r=1}^k (-1)^{r-1} \left(\int_0^1 t^{k-1} a_{i_1 \dots i_k}(tx) \, dt \right) x_{i_r} \, dx_{i_1} \wedge \dots \wedge \widehat{dx_{i_r}} \wedge \dots \wedge dx_{i_k},$$
(9.35)

where the hat means omission of the factor dx_{i_r} . Then we have

$$I(d\omega) + d(I\omega) = \omega. \tag{9.36}$$

(Without proof.)

Example 9.17 (a) Let k = 1 and $\omega = a_1 dx_1 + a_2 dx_2 + a_3 dx_3$. Then

$$I(\omega) = x_1 \int_0^1 a_1(tx) dt + x_2 \int_0^1 a_2(tx) dt + x_3 \int_0^1 a_3(tx) dt.$$

Note that this is exactly the formula for the potential $U(x_1, x_2, x_3)$ from Remark 9.10 (b). Let (a_1, a_2, a_3) be a vector field on U with $d\omega = 0$. This is equivalent to $\operatorname{curl} a = 0$ by Example 9.15 (c). The above lemma shows $dU = \omega$ for $U = I(\omega)$; this means $\operatorname{grad} U = (a_1, a_2, a_3)$, U is the potential to the vector field (a_1, a_2, a_3) .

(b) Let k = 2 and $\omega = a_1 dx_2 \wedge dx_3 + a_2 dx_3 \wedge dx_1 + a_3 dx_1 \wedge dx_2$ where a is a C¹-vector field on U. Then

$$I(\omega) = \left(x_3 \int_0^1 t a_2(tx) dt - x_2 \int_0^1 t a_3(tx) dt\right) dx_1 +$$

$$+ \left(x_1 \int_0^1 t a_3(tx) dt - x_3 \int_0^1 t a_1(tx) dt\right) dx_2 +$$

$$+ \left(x_2 \int_0^1 t a_1(tx) dt - x_1 \int_0^1 t a_2(tx) dt\right) dx_3.$$

By Example 9.15 (d), ω is closed if and only if div (a) = 0 on U. Let $\eta = b_1 dx_1 + b_2 dx_2 + b_3 dx_3$ such that $d\eta = \omega$. This means $\operatorname{curl} b = a$. The Poincaré lemma shows that b with $\operatorname{curl} b = a$ exists if and only if $\operatorname{div}(a) = 0$. Then b is the vector potential to a. In case $d\omega = 0$ we can choose \vec{b} $d\vec{x} = I(\omega)$.

Theorem 9.22 (Poincaré Lemma) Let U be star-shaped. Then every closed differential form is exact.

Proof. This is an easy consequence of Lemma 9.36. Without loss of generality let U be star-shaped with respect to the origin and $d\omega = 0$. By Lemma 9.21, $d(I\omega) = \omega$.

Remarks 9.18 (a) Let U be star-shaped, $\omega \in \Omega^k(U)$. Suppose $d \eta_0 = \omega$ for some $\eta \in \Omega^{k-1}(U)$. Then the general solution of $d \eta = \omega$ is given by $\eta_0 + d\xi$ with $\xi \in \Omega^{k-2}(U)$. Indeed, let η be a second solution of $d \eta = \omega$. Then $d(\eta - \eta_0) = 0$. By the Poincaré lemma, there exists $\xi \in \Omega^{k-2}(U)$ with $\eta - \eta_0 = d\xi$, hence $\eta = \eta_0 + d\xi$.

(b) Let V be a linear space and W a linear subspace of V. We define an equivalence relation on V by $v_1 \sim v_2$ if $v_1 - v_2 \in W$. The equivalence class of v is denoted by v + W. One easily sees that the set of equivalence classes, denoted by V/W, is again a linear space: $\alpha(v + W) + \beta(u + W) := \alpha v + \beta u + W$.

Let U be an arbitrary open subset of \mathbb{R}^n . We define

$$C^k(U) = \{ \omega \in \Omega^k(U) \mid d\omega = 0 \}, \text{ the } cocycles \text{ on } U,$$

 $B^k(U) = \{ \omega \in \Omega^k(U) \mid \omega \text{ is exact} \}, \text{ the } coboundaries \text{ on } U.$

Since exact forms are closed, $B^k(U)$ is a linear subspace of $C^k(U)$. The factor space

$$H_{\mathrm{deR}}^k(U) = C^k(U)/B^k(U)$$

is called the de Rham cohomology of U. If U is star-shaped, $H^k_{\text{deR}}(U) = 0$ for $k \geq 1$, by Poincaré's lemma. The first de Rham cohomology H^1_{deR} of $\mathbb{R}^2 \setminus \{(0,0)\}$ is non-zero. The winding form is a non-zero element. We have

$$H^0_{\operatorname{deR}}(U) \cong \mathbb{R}^p,$$

if and only if U has exactly p components which are not connected $U = U_1 \cup \cdots \cup U_p$ (disjoint union). Then, the characteristic functions χ_{U_i} , $i = 1, \ldots, p$, form a basis of the 0-cycles $C^0(U)$ ($B^0(U) = 0$).

9.7.3 Stokes' Theorem

(a) Singular Cubes, Singular Chains, and the Boundary Operator

A very nice treatment of the topics to this Subsection is [13, Chapter 4]. The set $[0,1]^k = [0,1] \times \cdots \times [0,1] = \{x \in \mathbb{R}^n \mid 0 \le x_i \le 1, i=1,\ldots,n\}$ is called the *n*-dimensional unit cube. Let $U \subset \mathbb{R}^n$ be open.

Definition 9.28 (a) A singular k-cube in $U \subset \mathbb{R}^n$ is a continuously differentiable mapping $c_k \colon [0,1]^k \to U$.

(b) A singular k-chain in U is a formal sum

$$s_k = n_1 c_{k,1} + \cdots + n_r c_{k,r}$$

with singular k-cubes $c_{k,i}$ and integers $n_i \in \mathbb{Z}$.

A singular 0-cube is a point, a singular 1-cube is a curve, in general, a singular 2-cube (in \mathbb{R}^3) is a surface with a boundary of 4 pieces which are differentiable curves. Note that a singular 2-cube can also be a single point—that is where the name "singular" comes from.

Let $I_k: [0,1]^k \to \mathbb{R}^k$ be the identity map, i.e. $I_k(x) = x$, $x \in [0,1]^k$. It is called the standard k-cube in \mathbb{R}^k . We are going to define the boundary ∂s_k of a singular k-chain s_k . For $i = 1, \ldots, k$ define

$$I_{(i,0)}^k(x_1,\ldots,x_{k-1}) = (x_1,\ldots,x_{i-1},0,x_i,\ldots,x_{k-1}),$$

$$I_{(i,1)}^k(x_1,\ldots,x_{k-1}) = (x_1,\ldots,x_{i-1},1,x_i,\ldots,x_{k-1}).$$

Insert a 0 and a 1 at the *i*th component, respectively.

The boundary of the standard k-cube I_k is now defined by $\partial I_k \colon [0,1]^{k-1} \to [0,1]^k$

$$\partial I_k = \sum_{i=1}^k (-1)^i \left(I_{(i,0)}^k - I_{(i,1)}^k \right). \tag{9.37}$$

It is the formal sum of 2k singular (k-1)-cubes, the faces of the k-cube.

The boundary of an arbitrary singular k-cube $c_k : [0,1]^k \to U \subset \mathbb{R}^n$ is defined by the composition of the above mapping $\partial I_k : [0,1]^{k-1} \to [0,1]^k$ and the k-cube c_k :

$$\partial c_k = c_k \circ \partial I_k = \sum_{i=1}^k (-1)^i \left(c_k \circ I_{(i,0)}^k - c_k \circ I_{(i,1)}^k \right), \tag{9.38}$$

and for a singular k-chain $s_k = n_1 c_{k,1} + \cdots + n_r c_{k,r}$ we set

$$\partial s_k = n_1 \partial c_{k,1} + \dots + n_r \partial c_{k,r}$$

The boundary operator ∂c_k associates to each singular k-chain a singular (k-1)-chain (since both $I_{(i,0)}^k$ and $I_{(i,1)}^k$ depend on k-1 variables, all from the segment [0,1]). One can show that

$$\partial(\partial s_k) = 0$$

for any singular k-chain s_k .

Example 9.18 (a) In case n = k = 3 have

$$\partial I_3 = -I_{(1,0)}^3 + I_{(1,1)}^3 + I_{(2,0)}^3 - I_{(2,1)}^3 - I_{(3,0)}^3 + I_{(3,1)}^3,$$

where

$$-I_{(1,0)}^{3}(x_{1}, x_{2}) = -(0, x_{1}, x_{2}), \quad +I_{(1,1)}^{3}(x_{1}, x_{2}) = +(1, x_{1}, x_{2}),$$

$$+I_{(2,0)}^{3}(x_{1}, x_{2}) = +(x_{1}, 0, x_{2}), \quad -I_{(2,1)}^{3}(x_{1}, x_{2}) = -(x_{1}, 1, x_{2}),$$

$$-I_{(3,0)}^{3}(x_{1}, x_{2}) = -(x_{1}, x_{2}, 0), \quad +I_{(3,1)}^{3}(x_{1}, x_{2}) = +(x_{1}, x_{2}, 1).$$

Note, if we take care of the signs in (9.37) all 6 unit normal vectors $D_1I_{(i,j)}^k \times D_2I_{(i,j)}^k$ to the faces have the orientation of the outer normal with respect to the unit 3-cube $[0,1]^3$. The above sum ∂I_3 is a formal sum of singular 2-cubes. You are not allowed to add componentwise: $-(0, x_1, x_2) + (1, x_1, x_2) \neq (1, 0, 0)$.

(b) In case k=2 we have

$$\partial I_{2}(x) = I_{(1,1)}^{2} - I_{(1,0)}^{2} + I_{(2,0)}^{2} - I_{(2,1)}^{2}$$

$$= (1, x) - (0, x) + (x, 0) - (x, 1).$$

$$\partial \partial I_{2} = (E_{3} - E_{2}) - (E_{4} - E_{1}) + (E_{2} - E_{1}) - (E_{3} - E_{4}) = 0.$$

$$\partial I_2(x) = I_{(1,1)}^2 - I_{(1,0)}^2 + I_{(2,0)}^2 - I_{(2,1)}^2$$

$$= (1,x) - (0,x) + (x,0) - (x,1)$$

$$\partial \partial I_2 = (E_3 - E_2) - (E_4 - E_1) +$$

$$+ (E_2 - E_1) - (E_3 - E_4) = 0.$$

Here we have
$$\partial c_2 = \Gamma_1 + \Gamma_2 - \Gamma_3 - \Gamma_4$$
.

(c) Let $c_2: [0, 2\pi] \times [0, \pi] \to \mathbb{R}^3 \setminus 0$ be the singular 2-cube

$$c(s,t) = (\cos s \sin t, \sin s \sin t, \cos t).$$

By (b)

$$\begin{aligned} \partial c_2(x) &= c_2 \circ \partial I_2 = \\ &= c_2(2\pi, x) - c_2(0, x) + c_2(x, 0) - c_2(x, \pi) \\ &= (\cos 2\pi \sin x, \sin 2\pi \sin x, \cos 2\pi) - (\cos 0 \sin x, \sin 0 \sin x, \cos x) + \\ &+ (\cos x \sin 0, \sin x \sin 0, \cos 0) - (\cos x \sin 2\pi, \sin x \sin 2\pi, \cos \pi) \\ &= (\sin x, 0, \cos x) - (\sin x, 0, \cos x) + (0, 0, 1) - (0, 0, -1) \\ &= (0, 0, 1) - (0, 0, -1). \end{aligned}$$

Hence, the boundary ∂c_2 of the singular 2-cube c_2 is a degenerate singular 1-chain. We come back to this example.

(b) Integration of Differential Forms

Definition 9.29 Let $c_k: [0,1]^k \to U \subset \mathbb{R}^n$, $\vec{x} = c_k(t_1,\ldots,t_k)$, be a singular k-cube and ω a k-form on U. Then $(c_k)^*(\omega)$ is a k-form on the unit cube $[0,1]^k$. Thus there exists a unique function $f(t), t \in [0,1]^k$, such that

$$(c_k)^*(\omega) = f(t) dt_1 \wedge \cdots \wedge dt_k.$$

Then

$$\int_{c_k} \omega = \int_{I_k} (c_k^*) \, \omega = \int_{[0,1]^k} f(t) \, \mathrm{d}t_1 \cdots \, \mathrm{d}t_k$$

is called the integral of ω over the singular cube c_k ; on the right there is the k-dimensional Riemann integral.

If
$$s_k = \sum_{i=1}^r n_i c_{k,i}$$
 is a k-chain, set

$$\int_{s_k} \omega = \sum_{i=1}^r n_i \int_{c_{k,i}} \omega.$$

If k = 0, a 0-cube is a single point $c_0(0) = x_0$ and a 0-form is a function $\omega \in C^{\infty}(G)$. We set $\int_{c_0} \omega = c_0^*(\omega)|_{t=0} = \omega(c_0(0)) = \omega(x_0)$. We discuss two special cases k = 1 and k = n.

Example 9.19 (a) k = 1. Let $c: [0,1] \to \mathbb{R}^n$ be an oriented, smooth curve Γ . Let $\omega = f_1(x) dx_1 + \cdots + f_n(x) dx_n$ be a 1-form on \mathbb{R}^n , then

$$c^*(\omega) = (f_1(c(t))c'_1(t) + \cdots + f_n(c(t))c'_n(t)) dt$$

is a 1-form on [0, 1] such that

$$\int_{c} \omega = \int_{[0,1]} c^* \omega = \int_{0}^{1} f_1(c(t))c'_1(t) + \dots + f_n(c(t))c'_n(t) dt = \int_{\Gamma} \vec{f} \cdot d\vec{x}.$$

Obviously, $\int_c \omega$ is the line integral of \vec{f} over Γ .

(b) k = n. Let $c: [0,1]^k \to \mathbb{R}^k$ be continuously differentiable and let x = c(t). Let $\omega = f(x) dx_1 \wedge \cdots \wedge dx_k$ be a differential k-form on \mathbb{R}^k . Then

$$c^*(\omega) = f(c(t)) \frac{\partial(c_1, \dots, c_k)}{\partial(t_1, \dots, t_k)} dt_1 \wedge \dots \wedge dt_k.$$

Therefore,

$$\int_{c} \omega = \int_{[0,1]^k} f(c(t)) \frac{\partial(c_1, \dots, c_k)}{\partial(t_1, \dots, t_k)} dt_1 \dots dt_k$$
(9.39)

Let $c = I_k$ be the standard k-cube in $[0, 1]^k$. Then

$$\int_{I_k} \omega = \int_{[0,1]^k} f(x) \, \mathrm{d}x_1 \cdots \, \mathrm{d}x_k$$

is the k-dimensional Riemann integral of f over $[0,1]^k$.

Let $\tilde{I}_k(x_1,...,x_k) = (x_2,x_1,x_3,...,x_k)$. Then $I_k([0,1]^k) = \tilde{I}_k([0,1]^k) = [0,1]^k$, however

$$\int_{\tilde{I}_k} \omega = \int_{[0,1]^k} f(x_2, x_1, x_3, \dots, x_k) (-1) \, dx_1 \cdots dx_k$$

$$= -\int_{[0,1]^k} f(x_1, x_2, x_3, \dots, x_k) \, dx_1 \cdots dx_k = -\int_{I_k} \omega.$$

We see that $\int_{I_k} \omega$ is an *oriented* Riemann integral. Note that in the above formula (9.39) we do *not* have the absolute value of the Jacobian.

(c) Stokes' Theorem

Theorem 9.23 Let U be an open subset of \mathbb{R}^n , $k \geq 0$ a non-negative integer and $s_{k+1} : [0,1]^{k+1} \to U$ a singular (k+1)-chain. Let ω be a differential k-form on U. Then we have

$$\int_{\partial s_{k+1}} \omega = \int_{s_{k+1}} \mathrm{d}\,\omega.$$

Proof. (a) Let $s_{k+1} = I_{k+1}$ be the standard (k+1)-cube, in particular n = k+1.

Let
$$\omega = \sum_{i=1}^{k+1} f_i(x) \, dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_{k+1}$$
. Then

$$d\omega = \sum_{i=1}^{k+1} (-1)^{i+1} \frac{\partial f_i(x)}{\partial x_i} dx_1 \wedge \dots \wedge dx_{k+1},$$

hence by Example 9.16 (b), Fubini's theorem and the fundamental theorem of calculus

$$\begin{split} \int\limits_{I_{k+1}} \mathrm{d}\,\omega &= \sum_{i=1}^{k+1} (-1)^{i+1} \int\limits_{[0,1]^{k+1}} \frac{\partial f_i}{\partial x_i} \, \mathrm{d}x_1 \cdots \mathrm{d}x_{k+1} \\ &= \sum_{i=1}^{k+1} (-1)^{i+1} \int\limits_{[0,1]^k} \left(\int_0^1 \frac{\partial f_i}{\partial x_i} (x_1, \dots, \underset{\widehat{i}}{t}, \dots x_{k+1}) \, \mathrm{d}t \right) \, \mathrm{d}x_1 \cdots \mathrm{d}x_{i-1} \, \mathrm{d}x_{i+1} \cdots \mathrm{d}x_{k+1} \\ &= \sum_{i=1}^{k+1} (-1)^{i+1} \int\limits_{[0,1]^k} \left(f_i(x_1, \dots, \underset{\widehat{i}}{1}, \dots, x_{k+1}) - f_i(x_1, \dots, \underset{\widehat{i}}{0}, \dots, x_{k+1}) \right) \mathrm{d}x_1 \, \widehat{\cdot} \cdot \cdot \, \mathrm{d}x_{k+1} \\ &= \sum_{\mathrm{Example} \, 9.16 \, (\mathrm{b})} \sum_{i=1}^{k+1} (-1)^{i+1} \left(\int\limits_{[0,1]^k} \left(I_{(i,1)}^{k+1} \right)^* \omega - \int\limits_{[0,1]^k} \left(I_{(i,0)}^{k+1} \right)^* \omega \right) \\ &= \int\limits_{\partial I_{k+1}} \omega, \end{split}$$

by definition of ∂I_{k+1} . The assertion is shown in case of identity map.

(b) The general case. Let I_{k+1} be the standard (k+1)-cube. Since the pull-back and the differential commute (Proposition 9.20) we have

$$\int_{c_{k+1}} d\omega = \int_{I_{k+1}} (c_{k+1})^* (d\omega) = \int_{I_{k+1}} d(c_{k+1})^* \omega = \int_{\partial I_{k+1}} (c_{k+1})^* \omega$$

$$= \sum_{i=1}^{k+1} (-1)^i \left(\int_{I_{(i,0)}^{k+1}} (c_{k+1})^* \omega - \int_{I_{(i,0)}^{k+1}} (c_{k+1})^* \omega \right)$$

$$= \sum_{i=1}^{k+1} (-1)^i \int_{c_{k+1} \circ I_{(i,0)}^{k+1} - c_{k+1} \circ I_{(i,1)}^{k+1}} \omega = \int_{\partial c_{k+1}} \omega.$$

Remark 9.19 Stokes' theorem is valid for arbitrary oriented compact differentiable k-dimensional manifolds \mathcal{F} and continuously differentiable (k-1)-forms ω on \mathcal{F} .

Example 9.20 We come back to Example 9.18 (c). Let $\omega = (x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy)/r^3$ be a 2-form on $\mathbb{R}^3 \setminus 0$. It is easy to show that ω is closed, $d\omega = 0$. We compute

$$\int_{c_2} \omega$$

We have $c_2^*(r^3) = 1$ and

$$c_2^*(\omega) = c_2^*(x \, \mathrm{d}y \wedge \, \mathrm{d}z + y \, \mathrm{d}z \wedge \, \mathrm{d}x + z \, \mathrm{d}x \wedge \, \mathrm{d}y) = (x, y, z) \cdot \vec{\mathrm{d}S} = (x, y, z) \cdot D_1 c_2 \times D_2 c_2 \, \mathrm{d}s \wedge \, \mathrm{d}t.$$

This gives

$$c_2^*(\omega) = -\sin t \, \mathrm{d}s \wedge \, \mathrm{d}t,$$

such that

$$\int_{c_2} \omega = \int_{[0,2\pi] \times [0,\pi]} c_2^*(\omega) = \int_0^{2\pi} \int_0^{\pi} (-\sin t) \, \mathrm{d}s \, \mathrm{d}t = -4\pi.$$

Stokes' theorem shows that ω is not exact on $\mathbb{R}^3 \setminus 0$. Suppose to the contrary that $\omega = d \eta$ for some $\eta \in \Omega^1(\mathbb{R}^3 \setminus 0)$. Since by Example 9.18 (c), ∂c_2 is a degenerate 1-chain (it consists of two points), the pull-back $(\partial c_2)^*(\eta)$ is 0 and so is the integral

$$0 = \int_{I_1} (\partial c_2)^*(\eta) = \int_{\partial c_2} \eta = \int_{c_2} d\eta = \int_{c_2} \omega = -4\pi,$$

a contradiction; hence, ω is not exact.

Q 27. Let $G \subseteq \mathbb{R}^n$ be an open set, $U: G \to \mathbb{R}$ in $C^{\infty}(G)$, and let $\omega(x) = U_{x_1}(x) dx_1 + \cdots + U_{x_n}(x) dx_n$ be a 1-form on G.

- (a) Is ω closed?
- (b) Is ω exact? If so, find η with $\omega = d\eta$.
- (c) Let $c: [0,1] \to G$ be a singular 1-cube in G. Compute

$$\int_{\mathcal{C}} \omega$$

Compare this result with the assertion of Stokes' theorem in case k = 0. We come back to the two special cases k = 1, n = 2 and k = 1, n = 3.

(d) Special Cases

k=1, n=3. Let $c: [0,1]^2 \to U \subseteq \mathbb{R}^3$ be a singular 2-cube, $\mathfrak{F}=c([0,1]^2)$ is a regular smooth surface in \mathbb{R}^3 . Then $\partial \mathfrak{F}$ is a closed path consisting of 4 parts with the counter-clockwise orientation. Let $\omega = f_1 \, \mathrm{d} x_1 + f_2 \, \mathrm{d} x_2 + f_3 \, \mathrm{d} x_3$ be a differential 1-form on U. By Example 9.19 (a)

$$\int_{\partial c_2} \omega = \int_{\partial \mathcal{F}} f_1 \, \mathrm{d}x_1 + f_2 \, \mathrm{d}x_2 + f_3 \, \mathrm{d}x_3$$

On the other hand by Example 9.15 (c)

$$d\omega = \operatorname{curl} f \cdot (dx_2 \wedge dx_2, dx_3 \wedge dx_2, dx_1 \wedge dx_2).$$

In this case Stokes' theorem gives

$$\int_{\partial c_2} \omega = \int_{c_2} d\omega$$

$$\int_{\partial \mathcal{F}} f_1 dx_1 + f_2 dx_2 + f_3 dx_3 = \int_{\mathcal{F}} \operatorname{curl} f \cdot (dx_2 \wedge dx_3, dx_3 \wedge dx_1, dx_1 \wedge dx_2)$$

If \mathcal{F} is in the x_1 - x_2 plane, we get Green's theorem.

k=2, n=3. Let c_3 be a singular 3-cube in \mathbb{R}^3 and $G=c_3([0,1])$. Further let

$$\omega = v_1 \, dx_2 \wedge \, dx_3 + v_2 \, dx_3 \wedge \, dx_1 + v_3 \, dx_1 \wedge \, dx_2,$$

with a continuously differentiable vector field $v \in C^1(G)$. By Example 9.15 (d), $d\omega = \operatorname{div}(v) dx_1 \wedge dx_2 \wedge dx_3$. The boundary of G consists of the 6 faces $\partial c_3([0,1]^3)$. They are oriented with the outer unit normal vector. Stokes' theorem then gives

$$\int_{c_3} d\omega = \int_{\partial c_3} v_1 dx_2 \wedge dx_3 + v_2 dx_3 \wedge dx_1 + v_3 dx_1 \wedge dx_2,$$

$$\int_G \operatorname{div} v \, dx dy dz = \int_{\partial G} \vec{v} \cdot d\vec{S}.$$

This is Gauß' divergence theorem.

Application—The Fundamental Theorem of Algebra

We give a first proof of the fundamental theorem of algebra, Theorem 5.19:

Every polynomial $f(z) = z^n + a_1 z^{n-1} + \cdots + a_n$ with complex coefficients $a_i \in \mathbb{C}$ has a root in \mathbb{C} .

We use two facts, the winding form ω on $\mathbb{R}^2 \setminus 0$ is closed but not exact and z^n and f(z) are "close together" for sufficiently large |z|.

We view \mathbb{C} as \mathbb{R}^2 with (a, b) = a + bi. Define the following singular 1-cubes on \mathbb{R}^2

$$c_{R,n}(s) = (R^n \cos(2\pi n s), R^n \sin(2\pi n s)) = z^n, \quad (9.40)$$

$$c_{R,f}(s) = f \circ c_{R,1}(s) = f(R \cos(2\pi s), R \sin(2\pi s)) = f(z),$$

$$(9.41)$$

where
$$z=z(s)=R(\cos 2\pi s+\mathrm{i}\sin 2\pi s),\ s\in[0,1].$$

Note that $|z|=R.$ Further, let

$$c(s,t) = (1-t)c_{R,f}(s) + tc_{R,n} = (1-t)f(z) + tz^{n}, \quad (s,t) \in [0,1]^{2},$$
(9.42)

$$b(s,t) = f((1-t)R(\cos 2\pi s, \sin 2\pi s)) = f((1-t)z), \quad (s,t) \in [0,1]^2$$
(9.43)

be singular 2-cubes in \mathbb{R}^2 .

Lemma 9.24 If |z| = R is sufficiently large, then

$$|c(s,t)| \ge \frac{R^n}{2}, \quad (s,t) \in [0,1]^2.$$

Proof. Since $f(z) - z^n$ is a polynomial of degree less than n,

$$\left| \frac{f(z) - z^n}{z^n} \right| \xrightarrow[z \to \infty]{} 0,$$

in particular $|f(z)-z^n| \leq R^n/2$ if R is sufficiently large. Then we have

$$|c(s,t)| = |(1-t)f(z) + tz^{n}| = |z^{n} + (1-t)(f(z) - z^{n})|$$

$$\geq |z^{n}| - (1-t)|f(z) - z^{n}| \geq R^{n} - \frac{R^{n}}{2} = \frac{R^{n}}{2}.$$

The only fact we need is $c(s,t) \neq 0$ for sufficiently large R; hence, c maps the unit square into $\mathbb{R}^2 \setminus 0$.

Lemma 9.25 Let $\omega = \omega(x, y) = (-y dx + x dy)/(x^2 + y^2)$ be the winding form on $\mathbb{R}^2 \setminus 0$. Then we have

$$\partial c = c_{R,f} - c_{R,n},$$

$$\partial b = f(z) - f(0).$$

(b) For sufficiently large R, c, $c_{R,n}$, and $c_{R,f}$ are chains in $\mathbb{R}^2 \setminus 0$ and

$$\int_{c_{R,n}} \omega = \int_{c_{R,f}} \omega = 2\pi n.$$

Proof. (a) Note that z(0) = z(1) = R. Since $\partial I_2(x) = (x,0) - (x,1) + (1,x) - (0,x)$ we have

$$\partial c(s) = c(s,0) - c(s,1) + c(1,s) - c(0,s)$$

= $f(z) - z^n - ((1-s)f(R) + sR^n) + ((1-s)f(R) + sR^n) = f(z) - z^n$.

This proves (a). Similarly, we have

$$\partial b(s) = b(s,0) - b(s,1) + b(1,s) - b(0,s)$$

= $f(z) - f(0) + f((1-s)R) - f((1-s)R) = f(z) - f(0)$.

(b) By the Lemma 9.24, c is a singular 2-chain in $\mathbb{R}^2 \setminus 0$ for sufficiently large R. Hence ∂c is a 1-chain in $\mathbb{R}^2 \setminus 0$. In particular, both $c_{R,n}$ and $c_{R,f}$ are defined on $\mathbb{R}^2 \setminus 0$. Hence $(\partial c)^*(\omega)$ is well-defined. We compute $c_{R,n}^*(\omega)$ using the pull-backs of dx and dy

$$c_{R,n}^*(x^2 + y^2) = R^{2n},$$

$$c_{R,n}^*(dx) = -2\pi n R^n \sin(2\pi n s) ds,$$

$$c_{R,n}^*(dy) = 2\pi n R^n \cos(2\pi n s) ds,$$

$$c_{R,n}^*(\omega) = 2\pi n ds.$$

Hence

$$\int_{c_{R,n}} \omega = \int_0^1 2\pi n \, \mathrm{d}s = 2\pi n.$$

By Stokes' theorem and since ω is closed,

$$\int_{\partial c} \omega = \int_{c} d\omega = 0,$$

such that by (a), and the above calculation

$$0 = \int_{\partial c} \omega = \int_{c_{R,n}} \omega - \int_{c_{R,f}} \omega, \quad \text{hence} \quad \int_{c_{R,n}} \omega = \int_{c_{R,f}} \omega = 2\pi n.$$

We complete the proof of the fundamental theorem of algebra. Suppose to the contrary that the polynomial f(z) is non-zero in \mathbb{C} , then b as well as ∂b are singular chains in $\mathbb{R}^2 \setminus 0$.

By Lemma 9.25 (b) and again by Stokes' theorem we have

$$\int_{c_{R,f}} \omega = \int_{c_{R,f} - f(0)} \omega = \int_{\partial b} \omega = \int_{b} d\omega = 0.$$

But this is a contradiction to Lemma 9.25 (b). Hence, b is not a 2-chain in $\mathbb{R}^2 \setminus 0$, that is there exist $s,t \in [0,1]$ such that b(s,t) = f((1-t)z) = 0. We have found that $(1-t)R(\cos(2\pi s)+i\sin(2\pi s))$ is a zero of f. Actually, we have shown a little more. There is a zero of f in the disc $\{z \in \mathbb{C} \mid |z| \leq R\}$ where $R \geq \max\{1, 2\sum_i |a_i|\}$. Indeed, in this case

$$|f(z) - z^n| \le \sum_{k=1}^{n-1} |a_k| |z^{n-k}| \le \sum_{k=1}^{n-1} |a_k| R^{n-1} \le \frac{R^n}{2}$$

and this condition ensures $|c(s,t)| \neq 0$ as in the proof of Lemma 9.24.