Calculus — 1. Series, Solutions

1. (a) Prove by induction. For all positive integers n and £ with 1 <k <n
i m\ [(n+1
= \k) \k+1)

Proof. We use induction over n. If n = 1, there is only one pair (n, k) = (1,1) with
1 < k < n. In this case we obtain

Eé m\ _ (Y _y_ (2) _ (D).

= \1 S\ 2 \k+1)

hence the induction start is done.

Suppose the claim is true for some fixed n and all £, 1 < k < n. We will show that

the claim is true for n + 1 and all k£, with 1 < k <n + 1.
First fix £ with 1 < k < n. Then we have

SE m _55 m\ , (n+1 B n+ 1)y | (n+1)  _ (n+2
k - — k k Ind.hy;othesis kE+1 k Lemma?2 k+1

m=k

which proves the assertion in this case. We have to consider separately the case
k = n + 1 since it is not covered by our induction hypothesis. In this case

S () -G 0 - ()

m=n+1

This completes the induction proof. [

(b) Find a positive integer ng such that all positive integers n, n > ngy implies
3" > 10n°. (1)

Prove your statement by induction.

A possible choice is ng = 6 or any ny > 6 because 3% = 729 > 360 = 10 - 62. We will
show by induction that

n>6 implies 3" > 10n°

Proof. The induction start is satisfied in case ng = 6. Suppose (1) is fulfilled for



some fixed n > 6; we will show it for n+1, i.e. 3" > 10(n+1)%. First we compute

n>6
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== n——>5H—>1
T =y
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—n"—n+->1
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=>n2—n+l—1—n2—n—§>0 | -2
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3
:>2n2—2n—1>2n2—2n—§>0 | +n® +2n+1

=3’ >n’+2n+1=(n+1)>% (2)
Now we use our induction hypothesis:

31 =3.3" > 3.10n* > 10(n+1)%
ind.hyp. (2)

This proves the induction assertion. n

. Prove that +/12 is irrational.

Proof. Suppose to the contrary that /12 = m/n with positive integers m € N
and n € N which do not have a prime factor in common (otherwise we can cancel
this factor in the enumerator and denominator of the fraction m/n). We obtain
12 = m?/n? and 12n? = m?. Since the left hand side of this equation is divisible by
3, we have 3 | m?; hence 3 | m. Therefore, m = 3m, for some m; € N. Inserting
this into our equation yields

12n% = (3m,)? = 9m?.

Dividing this by 3 gives 4n? = 3m?. Since the right hand side is divisible by 3, we
have 3 | 4n®>. We conclude 3 | n? since 3 and 4 have no factors in common. Fi-
nally 3 | n; which contradicts our choice of m and n (both are divisible by 3). n

. (a) Let E :=[0,1). Show that min E = 0 whereas E has no maximum.

Since 0 < x < 1 for all x € E, 0 is a lower bound. Since 0 € E, 0 = min F.

Suppose to the contrary that M = max F exists. Then M < 1 and M < % < 1.
M+1

This inequality shows that M is not an upper bound of F since 5~ € E; a

contradiction. Hence max E does not exist.

(b) F:={1/n|n € N}. Show that max F' = 1 whereas F' has no minimum.
For any positive integer n we have n > 1. Using Proposition 9 (e) we have 1/n <1



for all n. Hence 1 is an upper bound of F. Since 1 =1/1 € F, 1 = max F. Suppose
to the contrary that F' has a minimum, say 1/m. Again, Proposition9 (e) shows

th

at 1 1
< —.
m+1 m

0O<m<m+1 implies 0<
Hence 1/m is not a lower bound of F. A contradiction!

. (a) If E C R is bounded above and o = sup E exists, prove that —F is bounded
below and inf(—F) = —sup E.

Proof. Sorry, I've forgotten to mention the notion —F := {—z | z € E}! Since
a > x for all x € E, we obtain —a < —zx for all x € E. Hence, —F is bounded
below by —a. We will show that —« satisfies the second property in the definition
of the infimum. Let —a < [ for some 5. We have to show that [ is not a lower
bound for —FE. Equivalently, there exists some —z € —F such that —z < .

—a < [ implies a« > —f3. Since « is the least upper bound of F, —f is not an
upper bound. Hence, there is an x € F with —3 < z. This shows > —x and we
are done. [

(b) Suppose that M C N C R are bounded. Prove that sup M < sup N and
inf M > inf N.

Proof. In this exercise we must assume the existence of sup M and sup N (which is
guarantied by axiom (C)).

Let  =sup N. Then o > z for all z € N. Since N contains M, o > x is trivially
true for all x € M. Hence, « is an upper bound for M; and therefore a > sup M.

Let 5 =inf N. Then g < x for all x € N. Since M C N, 8 < x for all x € M.
Hence (3 is a lower bound for M; and therefore 5 < inf M. [

. Prove the laws of fractions (a,b,c,d € R, b #0, d # 0):
(a) ®— %ifand only if ad = be.

oA
a C a C
O e I

Proof. (a) We multiply the equation % - g by bd and obtain on the left hand side

a 1 1 1
(5) bd by Def. <a5) bd sy (56) d a2y <b5> d

= a-1-d = a-d.
(M 5) (M 4)

Similarly, c_cl bd = bc. This proves the first direction of (a).



11
Suppose now ad = bc. Multiplication of this equation by 33 gives

11 11
“ha =
T
1 1
(M:5>)a 1-5_c-1-3
11
W:z)a-g—c-a
a_
Def. Z_E

This proves the second part of (a).
(b) Multiplying % + 2 by bd we obtain

a c 1 1 1 1
Z+2)bd = (a=) bd —-lbd = —b|d —d|b
(b+d> (D) (ab) * (Cd) (Mz),(M:-x)a(b ) +C<d )

= aq-1-d+c-1-b = ad+be (3)
(M5) (M4), (M2)
On the other hand,
ad + be
bd = d + bc. 4
bd (M4), (M5) aa + be (4)

Comparing (3) and (4) we have

(% + g) bd = “dbz L

Using cancellation law, Proposition 6 (a), we get

¢ _ad+bc
d  bd
which completes the proof of (b). m
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