Calculus — 2. Series, Solutions

1. (a) Let
1 1
M:{—-I-—‘ m,nElN}.
2n - m
Compute max M, min M, sup M, and inf M if they exist.

A one-line induction proof shows that 2" > 2 for all positive integers n (2! > 2

and 2! = 2.2 > 2.2 > 2). Hence m > 1 and 2" > 2 for all m,n € N.
Ind.hyp.

Proposition 9 (e) then implies

1 n 1 < 1 1= 3
o om -2 2
Hence, 3/2 is an upper bound for M. Since 3/2 € M we have max M = 3/2.
By the remark after Definition4, max £ = sup F if the maximum exists. Hence
sup M = 3/2.
Since m and 2™ are positive for all positive integers m, n, Proposition 9 (e) gives 1/m
and 1/2" are also positive. Hence
1 1
0< —+4+—
on + m’
and 0 is a lower bound of M. We will show that 0 = inf M. For, let € > 0. Our aim
is to show that ¢ is not a lower bound, and we are done. First note that 2" > n for

n > 3 (proof by induction on n: 23> = 8 > 3 and 2"*! = 2. 2" 2 2n > n+1).
nd.hyp.

The Archimedean property of the real numbers furnishes positive integers m and
n > 3 with
me >2 and ne > 2.

The first inequality implies 1/m < ¢/2 while the second inequality yields
2" > ne > 2 and therefore, 1/2" < ¢/2. Summing up both inequalities we arrive
t
& 1 n 1 < € n €
m o 2T ©
Hence, ¢ is not a lower bound for M, so that inf M = 0. Since 0 € M, min M does

not exist.

(b) Let A C Ry be a set with inf A > 0. Prove that

1
inf A’

sup A~ =

where A ={1/a| a € A}.

Proof. Put t = inf A > 0. Then 0 < ¢t < a for all @ € A. Proposition9 (e) gives
0 < 1/a < 1/t; hence 1/t is an upper bound for A~*. Suppose s is positive with
s < 1/t. We will show that s is not an upper bound for A~L.

First 0 < s < 1/t implies t < 1/s. Since t is the greatest lower bound of A, 1/s
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is not a lower bound for A. Hence, there is some a € A with a < 1/s. Since all a
are positive, this implies 1/a > s. Hence s is not an upper bound for A~!. This
completes the proof. [

. Solve for z € R
|22 —4| < |z—1]. (1)

Solution. Case 1: 2x — 4 > 0. This implies z > 2, in particular, x > 1. Therefore,
|20 —4| =22 —4 and |z — 1| =z — 1. Inequality (1) reads as

r—4d<x—1<+— z<3.

Our partial solution in Case 1 is the interval [2, 3).
Case 2: 2z —4 < 4 and x —1 > 0. This implies 1 <z < 2, |20 —4| = -2z + 4,
and |z — 1| =z — 1. Inequality (1) now reads as

5
—2x+4<x—1<:>§<3:.

Our partial solution in Case 2 is (2, 2).

Case 3: x—1 < 0. Thisimpliesz < 1 and 2z—4 < 0. Therefore, |22 — 4| = —22+4,
and |z — 1| = —x + 1. Inequality (1) reads as
—2r+4<-z+1<=3<um.

There is no solution in Case 3. The inequality (1) is fulfilled if and only if z belongs
to the open interval (5/3,2).

. Solve for z € R

1 1
> 1. 2
x—1+x+1_ ()

Solution.Case 1: x > 1. This impliesz —1 > 0 and x + 1 > 0 so that multiplication
of (2) by (x—1)(z+1) does not change the relation sign. We can make the following
equivalent transformations.
r+l+r—-1>@@-DE+1)=2>-1<=0>2>-2r—1
0>@z—-12-2<=V2>|z-1]

1-vV2<z<1+V2

Taking care of our assumption z > 1 we find 1 < z < 1+ /2.
Case 2: ¥ < —1. This implies z —1 < 0 and 2 + 1 < 0 so that multiplication of (2)
by (z — 1)(x + 1) does not change the sign. As in Case 1 we get

1-V2<z<14+V2.
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Taking care of x < —1, there is no solution in this case.
Case 3: —1 < x < 1. This implies x — 1 < 0 and z + 1 > 0 so that multiplication
of (2) changes the relation sign. We obtain

V2< |z —1|

which is equivalent to
x21+\/§ or :rgl—\/i.

Taking care of our assumption —1 < z < 1 we find -1 <z <1 —+/2.
The inequality (2) is fulfilled, if and only if = belongs to one of the intervals

(—1,1—+/2] or (1,1 +2].
. Define a relation < on R?* = {(z,y) | z, y € R} by
(z,y) < (2',y) if (z<2’ or (x=2" and y<y')).

Prove that (R?, <) is an ordered set. Is (R?, <) order complete?

Proof. First we show that any two elements p and g of R? are comparable, i.e. R?
has the property in Definition1 (i). Let p = (z,y) and ¢ = (2,'), and suppose
first p £ q. That is, x > 2z’ or both x = 2’ and y > y'. In the first case, ¢ < p. If
z =2z' and y = ' then p = ¢, and finally if x = 2’ and y > 3’ again ¢ < p. We have
seen that one and only one of the relations p < ¢, p = ¢, and ¢ < p is true.

We will show transitivity. Suppose further » = (z",4"), p < ¢, and ¢ < r. Then,
z <z’ and 2’ < 2 implies z < z” so that p < r in this case. If z = 2/ and y < ¢/,
then 2’ < 2" implies z < z” which means p < r. We are left with the case z = 2/,
y <y, =2" and y < y”. We conclude x = z” and y < y” which also means
p < r. This completes the proof; (R?, <) is an ordered set. [

(R?, <) is not order complete.

Proof. We will construct a subset E of R? which is bounded above; however E has
not a least upper bound.

(a) The subset E := {(z,y) € R? | z < 0} is bounded above by (0,0) since z < 0
for all (z,y) € E and therefore (z,y) < (0, 0).

Suppose to the contrary that p = (a,b) = sup E. Since p is the least upper bound
and (0,0) is an upper bound by (a), p < (0,0). Hence a < 0 or both ¢ = 0 and
b < 0. The first case is impossible since otherwise (a,b) < (a/2,b) € E, and p is
not an upper bound of E. Hence p = (0, b).

Putting ¢ = (0,b — 1), ¢ is also an upper bound of E (since again z < 0 for all
(xz,y) € E). Moreover, ¢ = (0,b—1) < (0,b) = p since 0 = 0 and b — 1 < b. This
shows that p is not the least upper bound; a contradiction! Hence, (R?, <) is not
order complete. n



5. Let n be a positive integer and x4, ..., x, real numbers. Prove that

kzl -
[T =111l (4)
k=1 k=1

Proof. We prove the statements using induction on n. The case n = 1 is obvious for

both since we have |z, | = | z1|. (a) Suppose (3) is true for some fixed positive inte-
ger n and all z1,...,z, € R. We will prove that the statement is true for arbitrary
n + 1 real numbers z1,...,%,,Z,+1. Using the triangle inequality (Lemma 14 (d))

and the induction hypothesis, we compute

n+1 n n n n+1
Zﬂﬁk = Z$k+$n+1 < Zxk + | Tnt1 | < Z|$k‘+‘xn+1|22‘$k|-
k=1 k=1 L4 Lho k=1

This proves the induction assertion.

(b) Suppose (4) is true for some fixed positive integer n and all z4,...,z, € R. We
will prove that the statement is true for arbitrary n+1 real numbers z1, ..., Z,, Typy1-
Using Lemma 14 (¢) and the induction hypotesis, we compute

n+1 n n n n+1
H:rk = Hfﬂk'fﬂnﬂ = ka tnp | = H\$k|‘\$n+1|=H\l‘k|-
L.14 ind. hyp.
k=1 k=1 k=1 k=1 k=1
This proves the induction assertion. [



