Calculus -2. Series, Solutions

1. (a) Let

$$M = \left\{ \frac{1}{2^n} + \frac{1}{m} \,\middle|\, m, n \in \mathbb{N} \right\}.$$

Compute $\max M$, $\min M$, $\sup M$, and $\inf M$ if they exist.

A one-line induction proof shows that $2^n \geq 2$ for all positive integers n ($2^1 \geq 2$ and $2^{n+1} = 2 \cdot 2^n \geq 2 \cdot 2 \geq 2$). Hence $m \geq 1$ and $2^n \geq 2$ for all $m, n \in \mathbb{N}$.

Proposition 9 (e) then implies

$$\frac{1}{2^n} + \frac{1}{m} \le \frac{1}{2} + 1 = \frac{3}{2}.$$

Hence, 3/2 is an upper bound for M. Since $3/2 \in M$ we have $\max M = 3/2$. By the remark after Definition 4, $\max E = \sup E$ if the maximum exists. Hence $\sup M = 3/2$.

Since m and 2^n are positive for all positive integers m, n, Proposition 9 (e) gives 1/m and $1/2^n$ are also positive. Hence

$$0<\frac{1}{2^n}+\frac{1}{m},$$

and 0 is a lower bound of M. We will show that $0 = \inf M$. For, let $\varepsilon > 0$. Our aim is to show that ε is not a lower bound, and we are done. First note that $2^n > n$ for $n \ge 3$ (proof by induction on n: $2^3 = 8 > 3$ and $2^{n+1} = 2 \cdot 2^n > 2n > n+1$).

The Archimedean property of the real numbers furnishes positive integers m and $n \geq 3$ with

$$m\varepsilon > 2$$
 and $n\varepsilon > 2$.

The first inequality implies $1/m < \varepsilon/2$ while the second inequality yields $2^n \varepsilon > n\varepsilon > 2$ and therefore, $1/2^n < \varepsilon/2$. Summing up both inequalities we arrive at

$$\frac{1}{m} + \frac{1}{2^n} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence, ε is not a lower bound for M, so that $\inf M = 0$. Since $0 \notin M$, $\min M$ does not exist.

(b) Let $A \subset \mathbb{R}_+$ be a set with $\inf A > 0$. Prove that

$$\sup A^{-1} = \frac{1}{\inf A},$$

where $A^{-1} = \{1/a \mid a \in A\}.$

Proof. Put $t = \inf A > 0$. Then $0 < t \le a$ for all $a \in A$. Proposition 9 (e) gives $0 < 1/a \le 1/t$; hence 1/t is an upper bound for A^{-1} . Suppose s is positive with s < 1/t. We will show that s is not an upper bound for A^{-1} .

First 0 < s < 1/t implies t < 1/s. Since t is the greatest lower bound of A, 1/s

is not a lower bound for A. Hence, there is some $a \in A$ with a < 1/s. Since all a are positive, this implies 1/a > s. Hence s is not an upper bound for A^{-1} . This completes the proof.

2. Solve for $x \in \mathbb{R}$

$$|2x-4| < |x-1|$$
. (1)

Solution. Case 1: $2x - 4 \ge 0$. This implies $x \ge 2$, in particular, $x \ge 1$. Therefore, |2x - 4| = 2x - 4 and |x - 1| = x - 1. Inequality (1) reads as

$$2x - 4 < x - 1 \iff x < 3$$
.

Our partial solution in Case 1 is the interval [2,3).

Case 2: 2x - 4 < 4 and $x - 1 \ge 0$. This implies $1 \le x < 2$, |2x - 4| = -2x + 4, and |x - 1| = x - 1. Inequality (1) now reads as

$$-2x + 4 < x - 1 \Longleftrightarrow \frac{5}{3} < x.$$

Our partial solution in Case 2 is $(\frac{5}{3}, 2)$.

Case 3: x-1 < 0. This implies x < 1 and 2x-4 < 0. Therefore, |2x-4| = -2x+4, and |x-1| = -x+1. Inequality (1) reads as

$$-2x + 4 < -x + 1 \iff 3 < x.$$

There is no solution in Case 3. The inequality (1) is fulfilled if and only if x belongs to the open interval (5/3, 2).

3. Solve for $x \in \mathbb{R}$

$$\frac{1}{x-1} + \frac{1}{x+1} \ge 1. \tag{2}$$

Solution. Case 1: x > 1. This implies x - 1 > 0 and x + 1 > 0 so that multiplication of (2) by (x - 1)(x + 1) does not change the relation sign. We can make the following equivalent transformations.

$$x + 1 + x - 1 \ge (x - 1)(x + 1) = x^{2} - 1 \iff 0 \ge x^{2} - 2x - 1$$
$$0 \ge (x - 1)^{2} - 2 \iff \sqrt{2} \ge |x - 1|$$
$$1 - \sqrt{2} \le x \le 1 + \sqrt{2}.$$

Taking care of our assumption x > 1 we find $1 < x \le 1 + \sqrt{2}$.

Case 2: x < -1. This implies x - 1 < 0 and x + 1 < 0 so that multiplication of (2) by (x - 1)(x + 1) does not change the sign. As in Case 1 we get

$$1 - \sqrt{2} \le x \le 1 + \sqrt{2}.$$

Taking care of x < -1, there is no solution in this case.

Case 3: -1 < x < 1. This implies x - 1 < 0 and x + 1 > 0 so that multiplication of (2) changes the relation sign. We obtain

$$\sqrt{2} \le |x - 1|$$

which is equivalent to

$$x \ge 1 + \sqrt{2} \quad \text{or} \quad x \le 1 - \sqrt{2}.$$

Taking care of our assumption -1 < x < 1 we find $-1 < x < 1 - \sqrt{2}$.

The inequality (2) is fulfilled, if and only if x belongs to one of the intervals $(-1, 1 - \sqrt{2}]$ or $(1, 1 + \sqrt{2}]$.

4. Define a relation \prec on $\mathbb{R}^2 = \{(x,y) \mid x, y \in \mathbb{R}\}$ by

$$(x, y) \prec (x', y')$$
 if $(x < x')$ or $(x = x')$ and $(x < y')$.

Prove that (\mathbb{R}^2, \prec) is an ordered set. Is (\mathbb{R}^2, \prec) order complete?

Proof. First we show that any two elements p and q of \mathbb{R}^2 are comparable, i. e. \mathbb{R}^2 has the property in Definition 1 (i). Let p=(x,y) and q=(x',y'), and suppose first $p \not\prec q$. That is, x>x' or both x=x' and $y\geq y'$. In the first case, $q\prec p$. If x=x' and y=y' then p=q, and finally if x=x' and y>y' again $q\prec p$. We have seen that one and only one of the relations $p\prec q$, p=q, and $q\prec p$ is true.

We will show transitivity. Suppose further r = (x'', y''), $p \prec q$, and $q \prec r$. Then, x < x' and $x' \le x''$ implies x < x'' so that $p \prec r$ in this case. If x = x' and y < y', then x' < x'' implies x < x'' which means $p \prec r$. We are left with the case x = x', y < y', x' = x'', and y' < y''. We conclude x = x'' and y < y'' which also means $p \prec r$. This completes the proof; (\mathbb{R}^2, \prec) is an ordered set.

 (\mathbb{R}^2, \prec) is not order complete.

Proof. We will construct a subset E of \mathbb{R}^2 which is bounded above; however E has not a least upper bound.

(a) The subset $E := \{(x, y) \in \mathbb{R}^2 \mid x < 0\}$ is bounded above by (0, 0) since x < 0 for all $(x, y) \in E$ and therefore $(x, y) \prec (0, 0)$.

Suppose to the contrary that $p=(a,b)=\sup E$. Since p is the least upper bound and (0,0) is an upper bound by (a), $p \leq (0,0)$. Hence a<0 or both a=0 and $b\leq 0$. The first case is impossible since otherwise $(a,b) < (a/2,b) \in E$, and p is not an upper bound of E. Hence p=(0,b).

Putting q = (0, b - 1), q is also an upper bound of E (since again x < 0 for all $(x, y) \in E$). Moreover, $q = (0, b - 1) \prec (0, b) = p$ since 0 = 0 and b - 1 < b. This shows that p is not the least upper bound; a contradiction! Hence, (\mathbb{R}^2, \prec) is not order complete.

5. Let n be a positive integer and x_1, \ldots, x_n real numbers. Prove that

$$\left| \sum_{k=1}^{n} x_k \right| \le \sum_{k=1}^{n} |x_k|, \tag{3}$$

$$\left| \prod_{k=1}^{n} x_k \right| = \prod_{k=1}^{n} |x_k|. \tag{4}$$

Proof. We prove the statements using induction on n. The case n=1 is obvious for both since we have $|x_1|=|x_1|$. (a) Suppose (3) is true for some fixed positive integer n and all $x_1,\ldots,x_n\in\mathbb{R}$. We will prove that the statement is true for arbitrary n+1 real numbers x_1,\ldots,x_n,x_{n+1} . Using the triangle inequality (Lemma 14 (d)) and the induction hypothesis, we compute

$$\left| \sum_{k=1}^{n+1} x_k \right| = \left| \sum_{k=1}^n x_k + x_{n+1} \right| \le \sum_{k=1}^n x_k + \left| \sum_{k=1}^n x_k \right| + \left| x_{n+1} \right| \le \sum_{k=1}^n \left| x_k \right| + \left| x_{n+1} \right| = \sum_{k=1}^{n+1} \left| x_k \right|.$$

This proves the induction assertion.

(b) Suppose (4) is true for some fixed positive integer n and all $x_1, \ldots, x_n \in \mathbb{R}$. We will prove that the statement is true for arbitrary n+1 real numbers $x_1, \ldots, x_n, x_{n+1}$. Using Lemma 14 (c) and the induction hypotesis, we compute

$$\left| \prod_{k=1}^{n+1} x_k \right| = \left| \prod_{k=1}^n x_k \cdot x_{n+1} \right| = \prod_{k=1}^n x_k \cdot \left| \cdot |x_{n+1}| \right| = \prod_{i=1}^n |x_k| \cdot |x_{n+1}| = \prod_{k=1}^{n+1} |x_k|.$$

This proves the induction assertion.