## Calculus – 3. Series, Solutions

1. (a) Compute real part, imaginary part, and absolute value of the complex numbers

$$(1-7i)(4+3i), \quad \frac{2+3i}{1-4i}, \quad (1-7i)^2, \quad 5\left(\cos\frac{5\pi}{3}+i\sin\frac{5\pi}{3}\right).$$

(b) Determine the polar form of the following complex numbers

$$-2i$$
,  $1-i$ ,  $-\sqrt{3}-i$ .

Solution. (a)  $z_1 = (1-7i)(4+3i) = 4+3i-28i+21 = 25-25i$ . Hence, Re  $z_1 = 25$  and Im  $z_1 = -25$ , and  $|z_1| = \sqrt{25^2 + 25^2} = 25\sqrt{2}$ .

$$z_2 = \frac{2+3i}{1-4i} = \frac{(2+3i)(1+4i)}{(1-4i)(1+4i)} = \frac{2-12+8i+3i}{1+16} = -\frac{10}{17} + \frac{11i}{17}.$$

Hence Re  $z_2 = -10/17$ , Im  $z_2 = 11/17$ , and  $|z_2| = \sqrt{100 + 121}/17 = \sqrt{221}/17$ . Further  $z_3 = (1-7\mathrm{i})^2 = 1-14\mathrm{i}-49 = -48-14\mathrm{i}$ . We find Re  $z_3 = -48$ , Im  $z_3 = -14$ , and  $|z_3| = \sqrt{48^2 + 14^2} = \sqrt{2304 + 196} = \sqrt{2500} = 50$ . The last statement also follows from  $|z_3| = |(1-7\mathrm{i})^2| = |1-7\mathrm{i}|^2 = 1+49=50$ . Since  $5\pi/3$  corresponds to an angle in the 4th quadrant,  $\sin 5\pi/3 = -\sin \pi/3 = -\frac{1}{2}\sqrt{3}$  and  $\cos 5\pi/3 = \cos(-\pi/3) = \cos \pi/3 = \frac{1}{2}$ . Hence,

$$z_4 = 5\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right) = 5\left(\frac{1}{2} - i\frac{1}{2}\sqrt{3}\right) = \frac{5}{2} - i\frac{5}{2}\sqrt{3}.$$

Hence, Re  $z_4 = \frac{5}{2}$ , Im  $z_4 = -\frac{5}{2}\sqrt{3}$ , and  $|z_4| = 5$ . The last statement is clear since the first factor in the polar form gives the absolute value of the complex number.

(b) We have Re (-2i) = 0, Im (-2i) = -2, and therefore  $|-2i| = \sqrt{0^2 + (-2)^2} = 2$ . For the argument  $\varphi$  of -2i we find  $\cos \varphi = 0$  and  $\sin \varphi = -1$ ; hence  $\varphi = 3\pi/2$ , and  $-2i = 2(\cos 3\pi/2 + i\sin 3\pi/2)$ .

We have Re (1-i)=1, Im (1-i)=-1, and therefore  $|1-i|=\sqrt{1+1}=\sqrt{2}$ . For the argument  $\varphi$  of 1-i we find  $\cos\varphi=1/\sqrt{2}$  and  $\sin\varphi=-1/\sqrt{2}$ ;  $\varphi$  is in the 4th quadrant. Hence  $\varphi=7\pi/4$ , and  $1-i=\sqrt{2}(\cos 7\pi/4+i\sin 7\pi/4)$ .

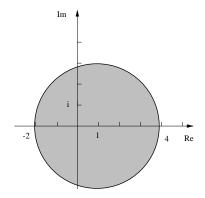
Since sine and cosine are  $2\pi$  periodic functions, it is also possible to use  $7\pi/4 - 2\pi = -\pi/4$  in the polar form,  $1 - i = \sqrt{2}(\cos(-\pi/4) + i\sin(-\pi/4))$ .

For  $z=-\sqrt{3}-i$  we find  $\operatorname{Re} z=-\sqrt{3}$ ,  $\operatorname{Im} z=-1$ , and  $|z|=\sqrt{3+1}=2$ . Hence  $\varphi=\arg z$  satisfies  $\cos\varphi=-\sqrt{3}/2$  and  $\sin\varphi=-1/2$ . Since both sine and cosine are negative in the 3rd quadrant, we find using our tabular with special values,  $\varphi=210^\circ=7\pi/6$ . Hence,  $z=2(\cos7\pi/6+i\sin7\pi/6)$ .

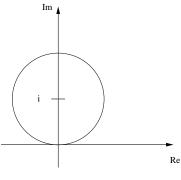
2. Which subsets of the complex plane are described by the following inequalities?

1

a) 
$$|z-1| \le 3$$
, b)  $(z-i)(\overline{z}+i) \ge 1$ , c)  $z+\overline{z} \ge -1$ .



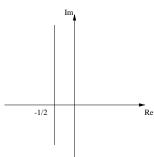
Solution. a) The closed disc midpoint 1 and radius 3.



b) The inequality is equivalent to

$$(z - i)(\overline{z} + i) = (z - i)\overline{z - i} = |z - i|^2 \ge 1.$$

Taking the square root, this is equivalent to  $|z - i| \ge 1$ . This describes the exterior of a disc with midpoint i and radius 1.



c)  $2 \operatorname{Re} z = z + \overline{z} \ge -1$ , therefore  $\operatorname{Re} z \ge -1/2$ . This is the right half plane described by the line x = -1/2 including the line itself.

3. Use de Moivre formula to express

 $\cos 3\alpha$  and  $\sin 4\alpha$ 

in terms of  $\cos \alpha$  and  $\sin \alpha$ .

Solution. The binomial formula gives

$$(\cos \alpha + i \sin \alpha)^3 = \cos^3 \alpha + 3 \cos^2 \alpha i \sin \alpha + 3 \cos \alpha (i \sin \alpha)^2 + (i \sin \alpha)^3.$$

Now De Moivre's formula shows that the real part of the above formula is  $\cos(3\alpha)$  whereas the imaginary part is  $\sin(3\alpha)$ . Hence,

$$\cos(3\alpha) = \cos^3 \alpha - 3\cos\alpha \sin^2 \alpha = \cos^3 \alpha - 3\cos\alpha (1 - \cos^2 \alpha)$$
$$= 4\cos^3 \alpha - 3\cos\alpha.$$

Here we used  $\cos^2 \alpha + \sin^2 \alpha = 1$ .

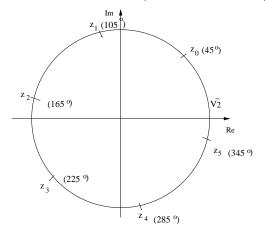
Similarly, the binomial formula gives

$$(\cos \alpha + i \sin \alpha)^4 = \cos^4 \alpha + 4 \cos^3 \alpha i \sin \alpha + 6 \cos^2 \alpha (i \sin \alpha)^2 + 4 \cos \alpha (i \sin \alpha)^3 + (i \sin \alpha)^4$$
$$= \cos^4 \alpha + 4i \cos^3 \alpha \sin \alpha - 6 \cos^2 \alpha \sin^2 \alpha - 4i \cos \alpha \sin^3 \alpha + \sin^4 \alpha.$$

Now De Moivre's formula shows that the imaginary part of the above formula is  $\sin(4\alpha)$ . Hence,

$$\sin(4\alpha) = 4\cos^3\alpha \sin\alpha - 4\cos\alpha \sin^3\alpha = (4\cos^3\alpha - 4\cos\alpha(1-\cos^2\alpha))\sin\alpha$$
$$= \sin\alpha(8\cos^3\alpha - 4\cos\alpha).$$

4. Solve for  $z \in \mathbb{C}$ . a)  $z^6 + 8i = 0$ , b)  $z^2 + i = 0$ .



Solution. a) First we have to find the polar form of w=-8i. Since  $\operatorname{Re} w=0$  and  $\operatorname{Im} w=-8$  we have |w|=8 and  $\cos\varphi=0$ ,  $\sin\varphi=-1$ . Therefore,  $\varphi=\arg w=3\pi/2$  and  $w=8(\cos 3\pi/2+i\sin 3\pi/2)$ . By the formula for the nth roots with n=6 we find

$$z_k = \sqrt[6]{8} \left( \cos \frac{3\pi/2 + 2k\pi}{6} + i \sin \frac{3\pi/2 + 2k\pi}{6} \right), \quad k = 0, \dots, 5$$
$$= \left( 2^3 \right)^{\frac{1}{6}} \left( \cos \left( \frac{\pi}{4} + \frac{k\pi}{3} \right) + i \sin \left( \frac{\pi}{4} + \frac{k\pi}{3} \right) \right).$$

Explicitly,

$$z_0 = \sqrt{2}(\cos \pi/4 + i \sin \pi/4), \qquad z_1 = \sqrt{2}(\cos 7\pi/12 + i \sin 7\pi/12),$$

$$z_2 = \sqrt{2}(\cos 11\pi/12 + i \sin 11\pi/12), \qquad z_3 = \sqrt{2}(\cos 15\pi/12 + i \sin 15\pi/12),$$

$$z_4 = \sqrt{2}(\cos 19\pi/12 + i \sin 19\pi/12), \qquad z_5 = \sqrt{2}(\cos 23\pi/12 + i \sin 23\pi/12).$$

Using addition formulas for sine and cosine we find

$$\cos 7\pi/12 = \cos 105^{\circ} = \cos(45^{\circ} + 60^{\circ}) = \cos 45^{\circ} \cos 60^{\circ} - \sin 45^{\circ} \sin 60^{\circ} = \frac{1}{4}(\sqrt{2} - \sqrt{6}).$$

Similarly one gets,  $\sin 7\pi/12 = (\sqrt{2} + \sqrt{6})/4$ ,  $\cos 11\pi/12 = (-\sqrt{2} - \sqrt{6})/4$ , and  $\sin 11\pi/12 = (\sqrt{6} - \sqrt{2})/4$ . The rectangular coordinates of the six roots are

$$z_0 = 1 + i,$$
  $z_1 = \frac{1 - \sqrt{3}}{2} + \frac{1 + \sqrt{3}}{2}i$  (1)

$$z_2 = \frac{-1 - \sqrt{3}}{2} + \frac{\sqrt{3} - 1}{2}i,$$
  $z_3 = -z_0,$  (2)

$$z_4 = -z_1, z_5 = -z_2. (3)$$

b) Since  $-i = 1(\cos 3\pi/2 + i \sin 3\pi/2)$ , the formula for the *n*th roots with n = 2 gives

$$z_0 = 1(\cos 3\pi/4 + i\sin 3\pi/4), \quad z_1 = 1(\cos 7\pi/4 + i\sin 7\pi/4).$$

Hence, 
$$z_0 = -\sqrt{2}/2 + i\sqrt{2}/2$$
,  $z_1 = -z_0$ .

5. Find the mistake in the following deduction. Let  $a, b \in \mathbb{R}$  with a > b. Then

$$\sqrt{a-b} = \sqrt{(-1)(b-a)} = \sqrt{-1}\sqrt{b-a}$$

$$\sqrt{a-b} = \sqrt{-1}\sqrt{(-1)(a-b)} = \sqrt{-1}\sqrt{-1}\sqrt{a-b} \quad | \cdot \frac{1}{\sqrt{a-b}}$$

$$1 = \sqrt{-1}\sqrt{-1} = i^2$$

$$1 = i^2.$$

Solution. Only roots of non-negative real numbers are uniquely defined in the real field. The square root of a negative real number or of an arbitrary complex number w has always two values z and -z. In particular,  $\sqrt{-1}$  can take the two values i and -i.

The first mistake appears here

$$\sqrt{(-1)(b-a)} = \sqrt{-1}\sqrt{b-a}$$

since both  $\sqrt{-1}$  and  $\sqrt{b-a}$  are not well-defined.