Calculus — 4. Series, Solutions

1. Prove the following statements.
(a) For a,b > 0 and r € QQ we have
a<b<=ad <b ifr>0,
a<b<ad >b ifr<0.

(b) For a > 0 and r, s € Q we have

r<s<=ad <a ifa>1,
r<s<=ad >d ifa<l.

Hint: Use Lemma 16.

Proof. Suppose that » > 0, r = m/n with integers m,n € Z, n > 0. Using
Lemma 16 (a) twice we get

a<b<=d" <" = (am)% < (bm)%,

which proves the first claim. The second part » < 0 can be obtained by setting —r
in place of 7 in the first part and using Proposition9 (e):
1 1
a<b<:>a"<b"<:>—<b—<:>b’”<a’”.
aT' T
(b) Suppose first a > 1. Suppose further that s > r. Put x = s — r, then z € Q
and z > 0. By (a), 1 < a implies 1* < a®. Hence 1 < a* " = a*/a", and therefore,
since a” > 0, a" < a’.
If s <r, thenz =s—7r <0 and, by (a), 1 < a implies 1 > a®* = a®*/a". Hence,
a” > a’.
Suppose now 0 < a < 1. Then 1/a > 1 and (a) applies with 1/a in place of a:
1\ [1\° 11 L
r<s<— |- <| - <:>E<E<:>a <a.

In the last step we used Proposition 9 (e). n

2. Using the arithmetic-geometric mean inequality prove that the cube has the greatest
volume among all cuboids with a fixed area of the surface.

Solution. The volume V of a cuboid with edges of lengths a, b, and cis V' = abc; its
surface area is A = 2(ab + bc + ca). By the arithmetic-geometric mean inequality
applied to n = 3, 1 = ab, x5 = be, and x3 = ca we find

%:7@4—[)304_0@ > vsab-bc-ac:\/Sa?b?c?:V%,

so that V < (A/6)%2. If A is fixed, (A/6)%? is an upper bound for the volume.
The maximum is attained if all estimates are equalities, that is ab = bc = ca; hence
a=b=c



3. Let x,y be real and n > 0 an integer. Prove that
2 sinyz sin(z 4 2ky) = cos(x — y) — cos(z + (2n + 1)y). (1)
k=0
Proof. First we will show that

. a+b . a—b
cosa —cosb = —2sin 5 sin 5

a,beR. (2)

Set £ = (a+b)/2 and y = (a — b)/2, then a = z+y and b = x — y. By the addition
law for cosine we have
cosa— cos b = cos(z + y)— cos(z — y) = (cosx cosy — sinz sin y)

— (coszcosy + sinzsiny)

. . . a+b . a—b
= —2sinxsiny = —2sin 5 sin 5

We use induction over n to prove the assertion. In case n = 0 the left hand side
reads as 2sinysinz and the right hand side is cos(z — y) — cos(z + y). Both terms
are equal since by (2)

cos(x —y) — cos(z +y) = —2sinzsin(—y) = 2sinzsiny.

Suppose now that the claim is true for some fixed n. We want to show that (1) is
true for n + 1, i.e.

n+1
2siny Z sin(z + 2ky) = cos(z — y) — cos(z + (2n + 3)y) (induction assertion).
k=0

Using the induction hypothesis, (2) with a = z + (2n 4+ 1)y and b = z + (2n + 3)y,
and sin(—y) = —siny we find

cos(x — y) — cos(z + (2n + 3)y) = cos(z — y) — cos(z + (2n + 1)y)
+ cos(z + (2n + 1)y) — cos(z + (2n + 3)y)
= cos(z —y) — cos(z + (2n + 1)y) — 2sin(z + (2n + 2)y) sin(—y)
= 2sin sin(z + 2ky) + 2sinysin(z + 2(n + 1
iy, 25100 g (& + 2ky) ysin(z +2(n +1)y)

n+1

= 2siny Z sin(x + 2ky).
k=0

This completes the induction proof. m



4. (a) Using only the definition of the limit of a sequence show that
4n® + 2n
im ———— =4
nsoo nd+1

(b) Prove that the sequence a,, = n{~"" is unbounded but lim a, # +oc.
n—oo

Solution. (a) Set a, = ‘“:;—ﬁ". For n > 2 we have [2n —4|=2n—4 and % < 1 so
that

| n and+2n  4nd+4

Ay — = =

n4+1  nd41
_[2n—4] 2n-4 2n 2 1

= = <
nd+1 nd+1 nd n?2 n

Given € > 0, choose nyg € N such that ng > % and ng > 2. Then n > ng implies

1 1
la, —4| < =< — <5¢;
n No

hence a,, — 4.

(b) Suppose (a,) is bounded, say |a, | < C for some fixed C' > 0 and all positive
integers n. Choose m € N, such that m > C. Then

sm = (2m)" = 2m)' =2m > 2C > C

which contradicts | a, | < C. Hence (a,) is unbounded.
Let E > 0 be given. Choose m € N such that m > 1/E, then n > m implies

2n—1

g1 =2n -1V = @2n—1)"t =

This contradicts lim,,_,o @, = +00.

5. Prove that
..n . .
(a) lim —-=0; (b) lim — =0.

Solution. (a) In Chapter I, Example 1 (b) we have shown that 2" > 3n? for n > 8.
This is equivalent to 2 < z-. Given ¢ > 0 choose ng > max{8,1/e}. Then n > ng
implies

This proves lim, o 57 = 0.
(b) We have the following (very rough) estimate

2m 2 2 2 2< 2 4
nl 1 2 3 n n n

. on
hence lim,, o =+ = 0.



