Calculus — 5. Series, Solutions

1. Using the limit laws compute lim a, for the following sequences
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(e) a, = V2nb+10.

Solution. (a) We have
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Since lim1/n = 0, we obtain from Proposition 3 (c), lim1/n? = 0; by Proposi-
tion 3 (b) then 1im999/n = 0. Using Proposition 3 (b) we have lim(1 + 1/n?) =
1+ 0= 1. Using Proposition 3 (d) we finally have
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Since (2y/n) is divergent we cannot apply Proposition3. We will show that
lima, = +00. For, let E > 0 and choose ng such that ng > E?. Then n > ny
implies

(b) We have

> 2v/n
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an > 20/n > /ng > F
which shows lima,, = +o00.

(c) Using induction it is easy to prove that 1+2+3+---+n—1=n(n—1)/2.
Therefore,
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Note that Proposition 3 (a) applies only to finitely many summands.

(d) Dividing both the numerator and the denominator of the quotient by 5" we
obtain .
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Since lim (4/5)" = 0 by Example 2 (d) we have, using Proposition 3
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(e) By Proposition 5 (b) and (c) we have lim {/3 = lim /n = 1 such that
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lim V3n6 = lim V/3- (lim {‘/ﬁ) =1.
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For n > 2 we have 10 < n® and therefore 1 < a,, < /2n® 4+ né. The sandwich

theorem now applies:

1= lim 1< lim a, < lim V3nb =1;
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hence lima, = 1.

. Let (ay,) be recursively defined by
a; =V6 and Uny1 = V6 +a, (neN). (1)

Prove that (a,) is monotonically increasing and bounded above. Compute lim a,,.
n—00

Proof. Using induction one shows that a, is positive real for every n. We skip this
very part. Next we show by induction that a, is bounded above by 3, a, < 3. Since
a; = V6 < 3 the induction start is fulfilled. Suppose a, < 3 for some fixed n. We
are going to show a,y1 < 3, too. Indeed, a, < 3 implies 6 +a, < 6+ 3 =9 and
homework 4.1.(a) yields ap+1 = v/6 + an < v/9 = 3 which completes the induction
proof.

We give a direct proof that a,,; > a, for all positive integers n. Since a,, > 0 and
a, < 3 we have (a, — 3)(a, +2) < 0. This gives

(an—3)(an+2)§0<:>ai—an—6§0<:>aiSan+6:ai+1(z)anganH.

Hence a,, is monotonically increasing and bounded above, so that by Proposition 6,
lim,, .o a, = a exists. We conclude by taking the limit n — oo in the square of the
recurrence relation (1), a2,; =6+ a,
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This implies (a — 3)(a + 2) = 0. Since a,, > 0, ¢ > 0 and we obtain a = 3.
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3. Find the limit points of the sequence (z,).
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Solution. (a) We have
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(ay,) is the disjoint union of four constant subsequences. Hence, the limit points of

(ay,) are exactly the limits of the four subsequences, that is —4, 0, 2, and 6.
3n— 3n—1

(b) We have x3, = 3275 cos2mn = 3% Since cos2rm/3 = cosdn/3 = —§ we
conclude
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Since lim, ,oo 3, = 1 and lim, o0 T3p41 = liMy o0 Tapio = —%, the points 1 and

—2 are limit points of (z,). We show that (z,) has no other limit points. Suppose
to the contrary that a # 1, a # —% is another limit point. Choose

g:=min{|a—1],

a+%‘}. )

Since a # 1 and a # —3, € > 0. Moreover, the neighborhoods U,/»(1) and U, »(a)
are disjoint: U,/2(1) N Uc2(a) = @. For, suppose x € U,/2(1) N U, /2(a); this gives

lr—1|<e/2 and |z—a|<e/2.
By the triangle inequality we have
la—1l=|z—1—-(z—a)|<|z—-1|+|z—a|<e/2+¢/2=c¢.

This contradicts our choice of € in (2). Smilarly, U, o(— 1/2) NU;/2(a) = @. Since
(z3n) tends to 1 and both (z3,41) and (z3,42) tend to —5 we find ny € N such that
n > ng implies z3, € U.2(1) and 3n41, Tant2 € Usj2(—3). Hence, for n > ng all
members of the sequence are either in U, 5(1) or in U.jo(—3). Therefore, U, (a)

contains only finitely many elements of the sequence; a is not a limit point. [



(c) We have 3, = cos’2mn = 1, @341 = cos®127/3 = (—%)MH, and
T3nge = cos®™2cosdr/3 = (—%)MH. Since lim,_,o 3, = 1 and lim,_,o Z3p41 =
limy, o0 T3ps2 = limg_00(—=1/2)¥ = 0, 1 and 0 are limit points of (z,). Since (z3,),
(Z3n41), and (z3,42) cover the whole sequence (z,,), there are no other limit points
besides 0 and 1.

The more detailed prove of this uniqueness statement is quite similar to the proof in
(b): Suppose there is another limit point a, @ # 0,1. Choose ¢ = max{|a|,|a — 1|}
then U, /2(a) contains only finitely many members of the sequence; hence a is not a

limit point.

. Prove or disprove:

(a) A sequence is convergent if and only if it has a convergent subsequence.

(b) A monotonic sequence is convergent if and only if it has a convergent subse-
quence.

Solution. (a) is false. A counter example is Examplel (b) z, = (—1)" + 1. The
subsequence Zs, = (—1)?"+1 = 2 is constant and therefore convergent, lim z,, = 2.
However, (z,) is divergent.

(b) is true. Proof. One direction is clear by Proposition7. Suppose now, the se-
quence (z,) is monotonically increasing and has a convergent subsequence (z,, ),
say limg_yoo Zn, = a. We will show that (z,) converges (with the same limit
limy, 00 Tn, = a).

By Proposition 6 it is sufficient to show that (z,) is bounded above. We already
know that a is an upper bound of (z,, ), that is z,, < a for all £ € N. Since ny, is
strictly increasing, for every m € N there is some p € N with m < n,. Since (z,,) is
increasing this gives

T < Tp, < 0

hence a is an upper bound for (x,). This shows that (z,) converges; Proposition 7
gives limz,, = a.
The proof for monotonically decreasing sequences is analogous. [

. Prove or disprove: If (x,) is unbounded then there exists a subsequence of (z)
which has an improper limit.

Solution. The statement is true. Proof. Suppose (z,) is not bounded above. In
particular, for every n € N there exists k, € N such that z;, > n. We will show
that lim,,_, g, = +00.

For, let £ > 0 and choose ny > E. Then n > ng implies

Tk, >N >nyg > B

This proves the claim for a sequence which is not bounded above. The proof in
case (z,) is not bounded below is similar with some subsequence (zy,) such that

lim x4, = —o0. u
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