Calculus – 5. Series, Solutions

1. Using the limit laws compute $\lim_{n\to\infty} a_n$ for the following sequences

(a)
$$a_n = \frac{999n}{n^2 + 1}$$

(b) $a_n = \frac{2n^3 + 5}{\sqrt{n}(n^2 - 6)}$
(c) $a_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2}$
(d) $a_n = \frac{3 \cdot 4^n + 4 \cdot 5^{n+1}}{5^n - 8 \cdot 4^n}$
(e) $a_n = \sqrt[n]{2n^6 + 10}$

Solution. (a) We have

$$a_n = \frac{999n}{n^2 + 1} = \frac{\frac{999}{n}}{1 + \frac{1}{n^2}}.$$

Since $\lim 1/n = 0$, we obtain from Proposition 3 (c), $\lim 1/n^2 = 0$; by Proposition 3 (b) then $\lim 999/n = 0$. Using Proposition 3 (b) we have $\lim (1 + 1/n^2) = 1 + 0 = 1$. Using Proposition 3 (d) we finally have

$$\lim_{n \to \infty} a_n = \frac{\lim_{n \to \infty} \frac{999}{n}}{\lim_{n \to \infty} \left(1 + \frac{1}{n^2}\right)} = \frac{0}{1} = 0.$$

(b) We have

$$a_n = \frac{2n^3 + 5}{\sqrt{n(n^2 - 6)}} = \frac{2\sqrt{n} + \frac{5}{n^{5/2}}}{1 - \frac{6}{n^2}} > 2\sqrt{n}$$

Since $(2\sqrt{n})$ is divergent we cannot apply Proposition 3. We will show that $\lim a_n = +\infty$. For, let E > 0 and choose n_0 such that $n_0 > E^2$. Then $n \ge n_0$ implies

$$a_n > 2\sqrt{n} > \sqrt{n_0} > E$$

which shows $\lim a_n = +\infty$.

(c) Using induction it is easy to prove that $1 + 2 + 3 + \cdots + n - 1 = n(n-1)/2$. Therefore,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n(n-1)/2}{n^2} = \lim_{n \to \infty} \left(\frac{1}{2} - \frac{1}{2n}\right) = \frac{1}{2} - \lim_{n \to \infty} \frac{1}{2n} = \frac{1}{2} - 0 = \frac{1}{2}.$$

Note that Proposition 3 (a) applies only to finitely many summands.

(d) Dividing both the numerator and the denominator of the quotient by 5^n we obtain

$$a_n = \frac{3 \cdot \left(\frac{4}{5}\right)^n + 20}{1 - 8 \cdot \left(\frac{4}{5}\right)^n}.$$

Since $\lim_{n\to\infty} (4/5)^n = 0$ by Example 2 (d) we have, using Proposition 3

$$\lim_{n \to \infty} a_n = \frac{\lim_{n \to \infty} \left(3 \cdot \left(\frac{4}{5}\right)^n + 20\right)}{\lim_{n \to \infty} \left(1 - 8 \cdot \left(\frac{4}{5}\right)^n\right)}$$

$$= \frac{3 \cdot \lim_{n \to \infty} \left(\frac{4}{5}\right)^n + 20}{1 - 8 \cdot \lim_{n \to \infty} \left(\frac{4}{5}\right)^n} = \frac{3 \cdot 0 + 20}{1 - 8 \cdot 0} = 20.$$

(e) By Proposition 5 (b) and (c) we have $\lim \sqrt[n]{3} = \lim \sqrt[n]{n} = 1$ such that

$$\lim_{n \to \infty} \sqrt[n]{3n^6} = \lim_{n \to \infty} \sqrt[n]{3} \cdot \left(\lim_{n \to \infty} \sqrt[n]{n}\right)^6 = 1.$$

For $n \ge 2$ we have $10 < n^6$ and therefore $1 < a_n < \sqrt[n]{2n^6 + n^6}$. The sandwich theorem now applies:

$$1 = \lim_{n \to \infty} 1 \le \lim_{n \to \infty} a_n \le \lim_{n \to \infty} \sqrt[n]{3n^6} = 1;$$

hence $\lim a_n = 1$.

2. Let (a_n) be recursively defined by

$$a_1 = \sqrt{6}$$
 and $a_{n+1} = \sqrt{6 + a_n}$ $(n \in \mathbb{N}).$ (1)

Prove that (a_n) is monotonically increasing and bounded above. Compute $\lim_{n\to\infty} a_n$.

Proof. Using induction one shows that a_n is positive real for every n. We skip this very part. Next we show by induction that a_n is bounded above by 3, $a_n \leq 3$. Since $a_1 = \sqrt{6} < 3$ the induction start is fulfilled. Suppose $a_n \leq 3$ for some fixed n. We are going to show $a_{n+1} \leq 3$, too. Indeed, $a_n \leq 3$ implies $6 + a_n \leq 6 + 3 = 9$ and homework 4.1.(a) yields $a_{n+1} = \sqrt{6 + a_n} \leq \sqrt{9} = 3$ which completes the induction proof.

We give a direct proof that $a_{n+1} \ge a_n$ for all positive integers n. Since $a_n > 0$ and $a_n \le 3$ we have $(a_n - 3)(a_n + 2) \le 0$. This gives

$$(a_n - 3)(a_n + 2) \le 0 \iff a_n^2 - a_n - 6 \le 0 \iff a_n^2 \le a_n + 6 = a_{n+1}^2 \iff a_n \le a_{n+1}.$$

Hence a_n is monotonically increasing and bounded above, so that by Proposition 6, $\lim_{n\to\infty} a_n = a$ exists. We conclude by taking the limit $n\to\infty$ in the square of the recurrence relation (1), $a_{n+1}^2 = 6 + a_n$

$$a^{2} = \lim_{n \to \infty} a_{n+1}^{2} = \lim_{n \to \infty} (6 + a_{n}) = 6 + a.$$

This implies (a-3)(a+2)=0. Since $a_n>0$, $a\geq 0$ and we obtain a=3.

3. Find the limit points of the sequence (x_n) .

(a)
$$x_n = 1 + 2(-1)^{n+1} + 3(-1)^{\frac{n(n-1)}{2}}$$

(b) $x_n = \frac{n-1}{n+1} \cos \frac{2\pi n}{3}$

(c)
$$x_n = \cos^n \frac{2\pi n}{3}.$$

Solution. (a) We have

$$x_{4n} = 1 + 2(-1)^{4n+1} + 3(-1)^{2n(4n-1)} = 1 - 2 + 3 = 2$$

$$x_{4n+1} = 1 + 2(-1)^{4n+2} + 3(-1)^{(4n+1)2n} = 1 + 2 + 3 = 6$$

$$x_{4n+2} = 1 + 2(-1)^{4n+3} + 3(-1)^{(2n+1)(4n+1)} = 1 - 2 - 3 = -4$$

$$x_{4n+3} = 1 + 2(-1)^{4n+4} + 3(-1)^{(4n+3)(2n+1)} = 1 + 2 - 3 = 0.$$

 (a_n) is the disjoint union of four constant subsequences. Hence, the limit points of (a_n) are exactly the limits of the four subsequences, that is -4, 0, 2, and 6.

(b) We have $x_{3n} = \frac{3n-1}{3n+1}\cos 2\pi n = \frac{3n-1}{3n+1}$. Since $\cos 2\pi/3 = \cos 4\pi/3 = -\frac{1}{2}$ we conclude

$$x_{3n+1} = \frac{3n}{3n+2} \cdot \left(-\frac{1}{2}\right)$$
 and $x_{3n+2} = \frac{3n+1}{3n+3} \cdot \left(-\frac{1}{2}\right)$.

Since $\lim_{n\to\infty} x_{3n} = 1$ and $\lim_{n\to\infty} x_{3n+1} = \lim_{n\to\infty} x_{3n+2} = -\frac{1}{2}$, the points 1 and $-\frac{1}{2}$ are limit points of (x_n) . We show that (x_n) has no other limit points. Suppose to the contrary that $a \neq 1$, $a \neq -\frac{1}{2}$ is another limit point. Choose

$$\varepsilon := \min\{ |a-1|, \left| a + \frac{1}{2} \right| \}. \tag{2}$$

Since $a \neq 1$ and $a \neq -\frac{1}{2}$, $\varepsilon > 0$. Moreover, the neighborhoods $U_{\varepsilon/2}(1)$ and $U_{\varepsilon/2}(a)$ are disjoint: $U_{\varepsilon/2}(1) \cap U_{\varepsilon/2}(a) = \emptyset$. For, suppose $x \in U_{\varepsilon/2}(1) \cap U_{\varepsilon/2}(a)$; this gives

$$|x-1| < \varepsilon/2$$
 and $|x-a| < \varepsilon/2$.

By the triangle inequality we have

$$|a-1| = |x-1-(x-a)| \le |x-1| + |x-a| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

This contradicts our choice of ε in (2). Smilarly, $U_{\varepsilon/2}(-1/2) \cap U_{\varepsilon/2}(a) = \varnothing$. Since (x_{3n}) tends to 1 and both (x_{3n+1}) and (x_{3n+2}) tend to $-\frac{1}{2}$ we find $n_0 \in \mathbb{N}$ such that $n \geq n_0$ implies $x_{3n} \in U_{\varepsilon/2}(1)$ and $x_{3n+1}, x_{3n+2} \in U_{\varepsilon/2}(-\frac{1}{2})$. Hence, for $n \geq n_0$ all members of the sequence are either in $U_{\varepsilon/2}(1)$ or in $U_{\varepsilon/2}(-\frac{1}{2})$. Therefore, $U_{\varepsilon/2}(a)$ contains only finitely many elements of the sequence; a is not a limit point.

(c) We have $x_{3n} = \cos^{3n} 2\pi n = 1$, $x_{3n+1} = \cos^{3n+1} 2\pi/3 = \left(-\frac{1}{2}\right)^{3n+1}$, and $x_{3n+2} = \cos^{3n+2} \cos 4\pi/3 = \left(-\frac{1}{2}\right)^{3n+2}$. Since $\lim_{n\to\infty} x_{3n} = 1$ and $\lim_{n\to\infty} x_{3n+1} = \lim_{n\to\infty} x_{3n+2} = \lim_{k\to\infty} (-1/2)^k = 0$, 1 and 0 are limit points of (x_n) . Since (x_{3n}) , (x_{3n+1}) , and (x_{3n+2}) cover the whole sequence (x_n) , there are no other limit points besides 0 and 1.

The more detailed prove of this uniqueness statement is quite similar to the proof in (b): Suppose there is another limit point $a, a \neq 0, 1$. Choose $\varepsilon = \max\{|a|, |a-1|\}$ then $U_{\varepsilon/2}(a)$ contains only finitely many members of the sequence; hence a is not a limit point.

4. Prove or disprove:

- (a) A sequence is convergent if and only if it has a convergent subsequence.
- (b) A monotonic sequence is convergent if and only if it has a convergent subsequence.

Solution. (a) is false. A counter example is Example 1 (b) $x_n = (-1)^n + 1$. The subsequence $x_{2n} = (-1)^{2n} + 1 = 2$ is constant and therefore convergent, $\lim x_{2n} = 2$. However, (x_n) is divergent.

(b) is true. *Proof.* One direction is clear by Proposition 7. Suppose now, the sequence (x_n) is monotonically increasing and has a convergent subsequence (x_{n_k}) , say $\lim_{k\to\infty} x_{n_k} = a$. We will show that (x_n) converges (with the same limit $\lim_{n\to\infty} x_n = a$).

By Proposition 6 it is sufficient to show that (x_n) is bounded above. We already know that a is an upper bound of (x_{n_k}) , that is $x_{n_k} \leq a$ for all $k \in \mathbb{N}$. Since n_k is strictly increasing, for every $m \in \mathbb{N}$ there is some $p \in \mathbb{N}$ with $m < n_p$. Since (x_n) is increasing this gives

$$x_m \le x_{n_p} \le a;$$

hence a is an upper bound for (x_n) . This shows that (x_n) converges; Proposition 7 gives $\lim x_n = a$.

The proof for monotonically decreasing sequences is analogous.

5. Prove or disprove: If (x_n) is unbounded then there exists a subsequence of (x_n) which has an improper limit.

Solution. The statement is true. Proof. Suppose (x_n) is not bounded above. In particular, for every $n \in \mathbb{N}$ there exists $k_n \in \mathbb{N}$ such that $x_{k_n} > n$. We will show that $\lim_{n\to\infty} x_{k_n} = +\infty$.

For, let E > 0 and choose $n_0 > E$. Then $n \ge n_0$ implies

$$x_{k_n} > n \ge n_0 > E.$$

This proves the claim for a sequence which is not bounded above. The proof in case (x_n) is not bounded below is similar with some subsequence (x_{k_n}) such that $\lim_{n\to\infty} x_{k_n} = -\infty$.