Calculus — 7. Series, Solution
1. Prove that the following series converge and compute their sums.
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Solution. We use the formula
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if |q| <1,

which was given in the class.

(a) With ¢ = —1/3, ¢ =1/3, and ng = 2 we obtain
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(b) With ¢ =1/4, ¢ =100/4 = 25, and ny = 1 we obtain
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(c) The series can be splitted into two converging geometric series with both ng = 0;
the first one with ¢ = 7/8 and ¢ = 1, the second one with ¢ = 1/8 and ¢ = 2. Hence,
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2. Which of the following series are convergent which are divergent. Give reasons!
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(Hint. Use the quotient and the comparison tests)

Solution. (a) Noting that (5/4)% < 2, n > 4 implies
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hence the ratio test gives convergence.

(b) Since
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the comparison test with the geometric series 2> | (3/4)F < oo gives convergence.
(c) Since 1/(2k) < 1/(2k — 1) the comparison test with the harmonic series
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gives divergence.



3. Which of the following series are convergent which are divergent?
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— — the necessary condition for convergence
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a, — 0 does not hold; hence the series diverges.
(b) Since for every positive integer n, 1/(1000n + 1) > 1/(1001n) we have

Solution. (a) Since a, =
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Comparing this with the harmonic series gives divergence.

(c) Since
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Example 10 together with the comparison test give convergence.
(d) Since
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such that the ratio test gives convergence.
(e) Since {/p — 1 for every positive number p > 0 (Proposition 5 (b)), Corollary 19
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gives divergence.

4. True or false? The series Y - | a, converges if for every positive integer p

lim (apt1 + @nio+ -+ + angp) = 0.
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Solution. The statement is false. A counterexample is the harmonic series > >° | 1/n.
Indeed, for every positive integer p we have
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The condition of the statement is fulfilled; however, the harmonic series diverges.
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. Consider the following series.
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. Apply both the root test and

v a’na a’n’
the ratio test‘

Solution. We have

1 1
Qop—1 = o and ag, = 3
Therefore
n
Qo 2
n__ “ 0;
a2p—1 3 n—00
1 n
A2n+1 ontl 3
R e
aop 3 2""’ n—00
Y v 1 . 1
n=1a = — R}
-1 22 ll/n n—oo \/5’
1

2n/ N
B2n = f n—)oo f
Since the odd and the even numbers cover the entire N, we find
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Since v < 1 the root test indicates convergence. The ratio test gives no information,
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since neither ¢ < 1 nor all but finitely many elements of are greater than or

n

equal to 1.



