Calculus — 8. Series, Solutions

1. Depending on a > 0 decide whether the series ) a,, converges or diverges, where

n

a n
(a) Qp = m, (b) Ap = m

Solution. (a) Suppose first ¢ > 1. Since = and 1/a" — 0 we

olution. (a) Supp st a ince ay, T+ 1a / — 0w

find a, — 1; and the necessary condition for convergence of the series > a,

n—oo

(Corollary 19) is not satisfied. Hence > a,, diverges. If 0 < a < 1
a™ a
Ma, = | = <a<l.
" I+am  Y1+a»
Hence lim,,_,o, </a, < a < 1 and the root test applies; the series converges.

(b) Consider

any1 (n+1)%n! 1\* 1

= =(1+- :

an (n+ 1)Ine n) n+1

We show that for for arbitrary real exponents r and s, r < s implies a” < a® if

a > 1 (cf. Homework 4.1 (b) for rational exponents). For ¢t € R set M; := {a? |

q € Q, ¢ < t}. By definition a" = sup M, and a® = sup M. Since r < s, M, C M,
and Homework 1.4 (b) gives a” < a®. In particular n > 1 implies

ntl < ga

an n+1

Since 2% is a constant,
i ap+1
1m =0.

n—o0 QA

The ratio test (Corollary 26) indicates convergence.

2. Let £5 be the set of all sequences (a,) such that the series Y a2 converges. Suppose
(a,) and (by,) are in £, with " a2 = A and }_ b2 = B. Prove that

(a) > anb, converges and > anb, < VAB;
(b)  (an + by) is in £o.

Hint. The first part of (a) is easy. For the second part of (a) consider the partial
sums and use the Cauchy—Schwarz inequality. For (b) use (a).

Proof. (a) First proof. The arithmetic-geometric mean inequality gives
| axby | =/ apb; < (aj, + ;) /2.

The comparison test (Proposition 20 (a)) now indicates that > agby converges.
Moreover,

>l <} (Zak-i—ZbZ) (Zak—i—ZbZ)— (4+B)



But this estimate is not sufficient to prove the second part of (a). However, by the
Cauchy—Schwarz inequality we have

n n 1/2 n 1/2
Z lagby | < (Z ai) (Z bi)
k=1 k=1 k=1
00 1/2 00 1/2
< (Z ai) (Z bz) = VAB.
k=1 k=1

Hence v/ AB is an upper bound for the partial sum of 3" a;b;. Noting that lim s, =
lim s, since s, converges, Proposition 12 (a) yields

o0

Z|akbk‘ < VvV AB.

k=1

This proves (a).

Remark: We have shown that the Cauchy—Schwarz inequality holds for series as

well. The proofs of Holder’s inequality and Minkowski’s inequality for series are

along the same lines.

(b) Since

(an +bp)? = a> + 2a,b, + b2

The convergence of > a2, > b2, and > a,b, yields the convergence of Y _(a, + b,)%.

[

o
. Compute the radius of convergence of the power series E an 2" where

n=0

(a) ap, =n°, seQ.
(b) an =¢* q€R.

n ifnis odd
(C)an={a’ ol a,b € R.

b™, if n is even,

Solution. (a)

a:= lim V/n* = lim (¢/n)’. (1)

n—oo n—o0

Since we have not yet established limit laws for powers we will add this here.

If (z,) is a sequence of positive real numbers and limz, = x > 0 then
limz; = «° for all rational numbers s € Q.

The proof for real numbers s is a little bit more elaborate. We will do this later
after the redefinition of the power function.

2



For integers s € Z, this follows from the product and quotient rules (Proposition 3(b)
and (c)). Suppose s = 1/k with some positive integer ¥ € N. Then Lemma 1.16 (b)
shows with &k, ¢/, and /z in place of n, z, and y

Since (z,) is bounded the sandwich theorem gives

lim (4 — /) = 0,

n—0o0

which proves the claim for s = 1/k. For s = —1/k, k € N, use Proposition 3 (d).
Finally, for arbitrary s = p/q use Proposition 3 (c). Consequently, lim, ., 25 = z*
is shown for all rational s € QQ.

Now we can proceed in (1) using {/n - 1,

a= <lim W)Szl.

n—0o0

Hence, R = 1/a =1 is the radius of convergence.

(b)

R 'n,2
a=lim {/[¢"|= lim |q|* = lim |¢|".
n—o0 n—o0 n—00

Case 1. |q| < 1. This gives a = 0 and therefore R = +ooc.
Case 2. | q| > 1. This gives & = 400 and therefore R = 0.
Case 3. |g| = 1. This gives « =1 and R = 1.

(c) Let M = max{|a|,|b|}. Then

a=lim ¥/|a,| =M,

n—oo

since /| b | — |b] and *"R/|a?mt! | — |a|. Hence

1
R=— =min{1/|al,1/|]}

. Compute the sum of the series.

1 1 1
123 234 Th-Damrn

Hint. Find numbers A, B, and C such that

1 A B C
= — for all i -1,0,1. 2
= Dnmt1) n-1 ey lorvalintegersnon 101 (2)

Compute the partial sums explicitely.



Solution. First method. Multiplying (2) by (n — 1)n(n + 1) gives
1=A(n*+n)+B0n*-1)+Cn*—n)=n*(A+B+C)+n(A-C) -

Comparing the coefficients of the polynomials on the lhs (which is constant 1) and

on the rhs (which is a quadratic polynomial) we find a system of linear equations
in A, B, and C

n? : 0=A+B+C,
nt: 0=A-C,
n? : 1=-B.

The solutionis A=C =, B= —1.
Second method. Multiplying (2) by n — 1 we find
1 n—1 n—1
— =A+1B C .
n(n + 1) * n * n+1
Taking the limit n — 1 gives
1
— = A.
1-2

Similarly, multiplication of (2) by n and inserting n — 0 gives B = —1. Finally,
multiplication of (2) by n + 1 and inserting n — —1 gives C' = 1/2.

Using this and index shifts we obtain

k=2

1n—11 n 1 1n-{—l1

2 k k2 k

k=1 k=2 k=3

n—1
B0 R EIPIE DY CUNE R B S0 0 DS /6 A
_k:3k2 2 2 2 2 n 2\n n+1
—1+ 1 1
4 2(+1) 20

Taking the limit n — oo, the sum of the series is 1/4.

. (a) Prove directly (without using the Cauchy criterion) that ) 1/n = +oc.
(b) Prove that Y a,, diverges if lim na, = 1.

n—

Proof. (a) We give an estimate for the 2"th partial sum.

2" 1 1 /1 1 11 1
52":;E>1+§+<Z+Z>+"+(2n+2—n+ +2_n>
=1—i—1—|—1+---—|—1 (ntimesl>
2 2 2 2
n
-



Given E > 0 choose ng > 2F then n > 2™ implies
n
8n282n0 >EO>E

This shows ) 1/k = +o0.

(b) If limna, = 1, for all but finitely many n we have na, > % This implies

1
U > oo The comparison test (Proposition 19 (b) with d, = 1/n and C' = 3)

n
shows that > a,, diverges. n



