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Abstract. In the present paper we investigate optimal control of semiconductor melts
in zone-melting and Czochralski growth configurations. The flow is governed by the
Boussinesq approximation of the Navier-Stokes system. The control goal consists in
tracking of a prescribed flow field. As control action boundary heating in terms of
Dirichlet and Neumann-type boundary conditions is considered. Optimal control strate-
gies are characterized in terms of the first-order optimality conditions. On the numer-
ical level these optimality conditions are solved by a damped Picard iteration. We
present numerical experiments in two and three spatial dimensions for the crystal
(Bi0.25Sb0.75)2Te2, which is formed by a composition of bismuth point fifty antimony
one point fifty tellurium two, as well as for Si (Silicium).

1 Introduction

During the growth of crystals in axisymmetric zone melting devices the tran-
sition from the two-dimensional flow regime to an unsteady three-dimensional
behavior of the velocity and temperature field is observed in experiments under
certain conditions of the growth device. This behavior leads to so called stria-
tions which from the crystal quality point of view should be avoided during the
growth process. To avoid such crystal defects it is important to figure out those
parameters, which guarantee a stable steady two-dimensional melt flow during
the growth process. There are several possibilities to determine these parame-
ters. In the present work an optimization approach will be discussed.
From experiments and practical crystal production processes it is known that un-
steady behavior of the melt and vortices near the fluid-solid-interphase decrease
the crystal quality. From the optimization point of view it therefore makes sense
to gain

(i) flows, which are nearly steady, and/or
(ii) flows, which only have small vorticity in a certain region of the melt zone.

In a mathematical setting the goal in (i) may be achieved by minimizing tracking-
type functionals of the form

J(u, θc) =
1

2

∫ T

0

∫

Ω

|u − u|2 dΩdt +
α

2

∫ T

0

∫

Γc

(θ2
c + θ2

ct
) dΓdt, (1)

whereas goal (ii) may be related to minimal values of vorticity-type functionals
of the form

J(u, θc) =
1

2

∫ T

0

∫

Ω

|curlu|2 dΩdt +
α

2

∫ T

0

∫

Γc

(θ2
c + θ2

ct
) dΓdt . (2)
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Above, Ω ⊂ IR2,3 denotes the flow domain with the boundary Γ , and [0, T ] the
time horizon. Further, u denotes the flow velocity vector field in the melt, and
u the desired state, which represents a physically favourable flow situation. The
function θc denotes the temperature flux on the wall of the crucible and serves
as control variable on the control boundary Γc. Both cost functionals contain
two parts; the first part provides the mathematical formulation of the control
gain, and the second part weighs the control cost with the parameter α > 0.

Above, and from now onwards derivatives w.r.t. time are denoted by the
subscript t, i.e. vt := ∂v

∂t .
Let us comment on related literature in optimal control of convective fluids.

Optimal boundary temperature control of the Boussinesq approximation in two
spatial dimensions is investigated by Abergel and Temam in [1]. Among other
things the authors derive the first-order optimality conditions and present a
convergence proof of the steepest descent method. An analytical framework for
Robin-type boundary control of the velocity in three spatial dimensions is pre-
sented by Belmiloudi in [4]. The same author investigates regularity and optimal
control problems of a perturbation of the Boussinesq system in [3]. Analytical
contributions to the optimal control problem for the Boussinesq approximation
in the stationary case are given by Lee and Imanuvilov [15,16], and for Dirichlet
boundary control by Lee [14]. Model-predictive control of the Boussinesq ap-
proximation in two spatial dimensions, including several numerical experiments
is presented by the second author together with Matthes in [10]. In [9] Gun-
zburger et al. optimize the crystal-melt complex in magnetic Czochralski growth
for Si. As control parameters serve two real quantities, namely the Hartmann
number and the slope of a linear boundary temperature profile on the crucible
wall. Our approach differs from that taken by Gunzburger et al. in the choice of
the design variables. We seek optimal boundary temperature control strategies,
i.e. on the continuous level we have to deal with infinitely many design parame-
ters, compared to only two in [9]. More details w.r.t. this concern are given at the
end of Section 3. Finally we note that the present work extends the numerical
investigations of zone melting presented by the first author, König and Seifert
in [2].

2 Mathematical model

The flow in the crystal melt is gouverned by the Boussinesq approximation of
the Navier-Stokes system for the velocity u = (u, v, w), the pressure p and the
temperature θ;

ut + (u · ∇)u − ∆u + ∇p − Gr θ g = 0 on ΩT ,
−div u = 0 on ΩT ,

θt + u · ∇θ − 1

Pr ∆θ − f = 0 on ΩT .







(3)

Here g = (0, 0, 1), and ΩT = Ω × (0, T ) denotes the space-time cylinder with
cylindrical melt zone of height H and radius R. Furthermore, Gr denotes the
Grashof number, and Pr the Prandtl number. Since in the present work we are
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mainly interested in control via boundary temperatures the absence of external
forces is assumed.

System (3) is supplied with temperature boundary conditions of third kind
on the crucible walls (which form the control boundary Γc), at the solid-liquid
interface Γd the melting temperature is prescribed, and Dirichlet boundary con-
ditions at the remaining parts of the boundary. For the flow Dirichlet boundary
conditions are prescribed on the whole boundary Γ . More precisely we set

u = ud, v = vd, w = wd on ΓT ,
λ ∂θ

∂n
+ ã(θ − θ0) = θc on ΓcT ,

θ = θd on ΓdT ,







(4)

where ΓT := Γ × [0, T ], θ0 is some environmental temperature and λ, ã denote
physical constants. From now onwards it is convenient to rewrite the boundary
condition on Γc in the form

a
∂θ

∂n
+ bθ = θc on ΓcT , (5)

with appropriate coefficients a, b which may not vanish simultaneously. We note
that it is possible to include via ud, vd, wd certain crystal and crucible rotations,
as it is common in the case of Czochralski growth. In the case of zone melting
techniques one would require u = 0.

Finally let us discuss the initial values for (3). The initial velocity is chosen
as the neutral position of the crystal melt, i.e.

u = 0. (6)

The initial temperature field is chosen as solution of

−
1

Pr
∆ θ = 0 in Ω, θ = θ0 on Γc, and θ = θd on Γd. (7)

The material properties and the dimensionless parameters depend on the
specific application and have to be defined appropriately.

We assume that prescribing heat fluxes on the walls of the crucible is possible,
so that boundary conditions of third kind can be utilized as control mechanism.
The optimization goal then consists in finding an optimal boundary heating
strategy by adjusting the heat fluxes. We note that once this optimal strategy
is known, in a further step the methods developed in [12] may be applied to
provide optimal heater locations by solving an appropriate inverse problem.

Let us note that the choice of a ≡ 0, b 6= 0 includes pure Dirichlet boundary
control, and a 6= 0, b ≡ 0 pure Neumann boundary control. However, effects
related to radiation are excluded.

Remark 1. A precise functional analytic setting of the Boussinesq approxima-
tion can be found in e.g. [1,3]. Existence and uniqueness of solutions to the
Boussinesq approximation in the presence of boundary conditions of third kind
for the temperature may be established following the lines of [18], compare also
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[10]. In the case of pure Dirichlet boundary conditions (i.e. a ≡ 0) the boundary
values have to satisfy certain regularity requirements to guarantee the existence
of weak solutions, see e.g. [1]. However, from the practical point of view it often
is desirable to assume weaker regularity of controls, like e.g. only square inte-
grability w.r.t. the spatial variables. For this type of controls (3)-(7) may be
considered in the very-weak sense, i.e. formulated with the method of transpo-
sition [17]. The optimization problem (8) in this setting then is meaningful. We
emphasize, that an analysis of optimal control problems for the problem classes
considered in the present work in the very-weak setting is still missing. This to
the best of our knowledge even is true for optimal boundary control problems of
the Navier-Stokes system, compare [5, Section 2], where a detailed discussion of
regularity aspects of boundary controls can be found.

3 Optimization

The optimization problem considered in the present work is given by

(P)

{

min J(u, θc)
s.t.(3) − (7).

(8)

To derive the first order necessary optimality conditions for this optimization
problem we formally utilize the Lagrange technique. The related Lagrangian in
the primitive setting is given by

L(u, p, θ, θc, µ, ξ, κ, χ) = J(u, θc) + 〈µ, ut + (u · ∇)u − ∆u + ∇p − Gr θ g〉ΩT

−〈ξ, div u〉ΩT
+ 〈κ, θt + u · ∇θ −

1

Pr
∆θ − f〉ΩT

+ 〈χ, a
∂θ

∂n
+ bθ − θc〉ΓcT

, (9)

where 〈·, ·〉ΓcT
and 〈·, ·〉ΩT

denote appropriate duality pairings, and µ, ξ, κ and
χ are Lagrange parameters. For example for u, p and θ sufficiently regular one
has

< µ, ut + (u · ∇)u − ∆u + ∇p − Gr θ g >ΩT
=

∫

ΩT

[ut + (u · ∇)u − ∆u + ∇p − Gr θ g] · µ dΩ dt.

The convergence analysis of the solution algorithms proposed in the subsequent
sections will be given in a forthcoming paper. For a convergence proof of the
steepest descent method applied to the solution of related optimal control prob-
lems we refer the reader to [1].

The necessary optimality conditions for (P) are now given by

∇L = 0.
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Assembling these conditions for the cost functions of (1) and (2) leads to the
state equations (3)-(7), together with the so called adjoint system

−µt − ∆µ + (∇u)t
µ − (u · ∇)µ + ∇ξ = −κ∇θ +

{

−(u − u)
curl curl u

in ΩT ,

−div µ = 0 in ΩT

µ = 0 on ΓT ,
µ(T ) = 0 in Ω,

−κt −
1

Pr ∆κ − u · ∇κ = Gr g · µ in ΩT ,
κ = 0 on ΓdT ,

a ∂κ
∂n

+ bκ = 0 on ΓcT ,
κ(T ) = 0 in Ω,

χ =

{

− 1

bPr
∂κ
∂n

if b 6= 0
1

aPr κ if b = 0
on ΓcT ,



























































































(10)
and the optimality conditions

α(−θctt
+ θc) = χ on ΓcT

θc(0) = θ0 on Γc,
θct

(T ) = 0 on Γc.
(11)

Here θ0 denotes a temperature distribution on Γc at the beginning of the melting
process.

All together, the necessary optimality conditions for problem (P) form a
boundary value problem for u, p, θ, µ, ξ, and θc w.r.t. space and time in the
space-time domain ΩT , which inherits a very special structure.

From now onwards we assume that system (3) together with (4), (6) and
(7) for given θc admits a unique solution (this is satisfied under appropriate
assumptions at least in the two-dimensional case, see [7], [13]). Then the cost
functionals in (1),(2) may be rewritten in the form

Ĵ(θc) = J(u(θc), θc),

where the gradient of Ĵ is determined by the optimality condition (11). More
precisely, there holds

Ĵ ′(θc) = α(−θctt
+ θc) − χ. (12)

To evaluate Ĵ ′(θc) for given θc amounts to solving (3)-(7) for u, θ, and then (10)
for µ, θ and χ.

Let us note that second time derivatives in the expression Ĵ ′(θc) can be
avoided by introducing an auxiliary variable η, i.e.

θct
= η on ΓcT . (13)
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This results in the optimality condition

θct
=

1

α
ζ, θc(0) = θ0 on ΓcT

−ζt = −αθc + χ, ζ(T ) = 0 on ΓcT ,

where ζ denotes the Lagrange multiplier for (13). For Ĵ ′(θc) we obtain

Ĵ ′(θc) = α(θc − ηt) − χ, or with η = θct
=

1

α
ζ, Ĵ ′(θc) = αθc − ζt − χ.

instead of (12). To anticipate discussion let us note that for our numerical ex-
periments this and the approach based on (11) yield the same results.

Let us close this section with noting that the approach to boundary control
presented in the present work is designed to compute temperature distributions
at every single point of the control boundary, since it follows from (12) that the
gradient of the cost functional w.r.t. θc can be expressed in terms of adjoint
variables, so that the directional derivatives in all directions are available once
the adjoint variables are determined. This is different to the approach presented
in e.g. [9], were control functions are sought which only depend on a few numbers
of parameters and directional derivatives w.r.t these parameters are computed
using finite difference techniques. We note that the latter approach requires the
solution of an auxiliary linear problem for every directional derivative, so that
its computationally complexity is proportional to the number of parameters.

4 The numerical approach

We solve problem (8) by applying a damped Picard iteration to the KKT system
(3)-(7), (10),(11). The pseudo-algorithm reads

i) choose θ0
c , set θc = θ0

c ,
ii) solve the forward problem for [u, θ](θc)
iii) solve the adjoint problem for [µ, κ](u, θ)
iv) update θ+

c := σrθc + (1 − σr)H
−1(χ), σr ∈]0, 1[,

v) until convergence, set θc = θ+
c , go to ii),

where H−1(χ) for given χ denotes the solution of (11). As stopping rule in v)
we use

|Ĵ(θ+
c ) − Ĵ(θc)|

|Ĵ(θc)|
≤ 10−5.

This condition is justified by the experiences from related problems in flow
control that small changes in the control θc result in small changes of the objec-
tive functional.

Next let us describe the numerical solution methods used in ii)-iv). For this
purpose we denote by ti := iτ , i = 0, . . . Z an equidistant time grid on [0, T ],
where τ := T

Z for some Z ∈ N. Moreover, unknown quantities are supplied
with superscripts. In ii) we apply a semi-implicit time discretization scheme.



Optimization of a flow problem 7

Convective terms are treated explicitly, conductive terms implicitly. We obtain
for n = 0, . . . , Z − 1

u
n+1

τ
− ∆u

n+1 + ∇pn+1 − Gr θn+1
g =

u

τ
− (u · ∇)u, (14)

−div u
n+1 = 0, (15)

θn+1

τ
−

1

Pr
∆θn+1 =

θ

τ
− (u · ∇)θ, (16)

supplied with the boundary conditions (4) at t = tn+1. Here u and θ for n = 0
are taken from (6) and (7), respectively. Of course, given u equation (16) can be
solved for θn+1. To solve (14),(15) we apply a pressure-correction scheme which
is explained next. Taking the divergence in (14) leads to

−∆pn+1 =
1

τ
div û, (17)

where
û = u + τ [(u · ∇)u + Gr θn+1

g]. (18)

For the pressure we take Neumann boundary conditions of the form ∂pn+1

∂n
= 0

on Γ \ Γref and ∂pn+1

∂n
= −Mpn+1 on Γref , with M sufficiently large and |Γref |

sufficiently small. On the numerical level this choice corresponds to fixing the
pressure in one boundary grid point while prescribing homogeneous Neumann
boundary conditions at the remaining boundary nodes.

Using these boundary conditions for pn+1 equation (17) can be solved for
pn+1, which in turn determines the velocity field u

n+1 in terms of

1

τ
u

n+1 − ∆u
n+1 =

1

τ
u −∇pn+1 (19)

together with boundary conditions for u
n+1 from (4) for t = tn+1. In summary

step ii) amounts to solving one Poisson equation for pn+1, three Helmholtz equa-
tions for u

n+1, and one for θn+1. Spatially these subproblems are discretized by
the finite volume method on a staggered grid in cylindrical coordinates devel-
oped in [2]. The resulting linear systems are solved by ILU-preconditioned cg
methods.

For the time discretization of the adjoint system in iii) we use the scheme

µ
n−1 − µ

τ
− ∆µ

n−1 + (∇u
n−1)t

µ − (un−1 · ∇)µ + ∇ξn−1

= −κ∇θn−1 +

{

−(un−1 − u)
curl curl u

n−1,
(20)

−div µ
n−1 = 0, (21)

κn−1 − κ

τ
− u

n−1 · ∇κ −
1

Pr
∆κn−1 = Gr g · µn−1, (22)

for n = Z, . . . , 1, where we have µ = µ(T ) = 0 and κ = κ(T ) = 0 for n = Z.
The boundary conditions are taken from (10) for t = tn−1. A motivation of
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this scheme together with a detailed discussion is given in the appendix. The
quantities µ

n−1, ξn−1 are obtained from (20),(21) by the pressure-correction
method explained above, and after that eq. (22) can be solved for κn−1. Spatially
these subproblems are discretized again by the finite volume method of [2], and
the resulting linear systems are also solved by ILU-preconditioned cg methods.

To provide H−1(χ) in iv) eq. (11) is solved for the control θc by a finite
volume method in space and time, where the boundary conditions θc(γ, 0) = θc0

and θct
(γ, T ) = 0 for γ ∈ Γc are taken. We note that H := −∂tt + id.

Let us note that for the computation of µ
n−1, ξn−1, κn−1 the flow u

n−1 is
required for n = Z, . . . , 1. This means that we have to store these flow velocities
in order to compute the adjoint solution µ

n−1, κn−1, and θc. These amount of
storage can be avoided by applying checkpointing techniques as proposed e.g. in
[8,11]

Let us close this section with describing the numerical approach that we take
to tackle (13)-(14). With the notations from above it reads

θn+1
c − θn

c

τ
=

1

α
ζn+1, n = 0, . . . , Z − 1, θ0 = θ0 ,

−
ζn+1 − ζn

τ
= −αθn

c + χn, n = Z − 1, . . . , 0, ζZ = 0.

5 Results of the numerical solution of the full problem

First test problem

As a first test problem we consider a practical zone melting configuration with
Dirichlet boundary control, i.e. we set a ≡ 0, b := 1. This configuration is inves-
tigated in [2].

We use the crystal (Bi0.25Sb0.75)2Te2, a composition of bismuth point fifty
antimony one point fifty tellurium two, whose geometrical and material param-
eters are summarized in Table 1.

(Bi0.25Sb0.75)2Te2-crystals are used for small cooling devices. The Fig. 1 shows
the physical domain of the melt zone. For the velocity we have homogeneous
Dirichlet data on the whole boundary. For the temperature we have the bound-

parameter symbol value

radius of the ampulla R 0.004 m

height of the melt H 0.016 m

melting point temperature θs 613 K

thermal diffusivity a 0.44000e-05 m
2

s

kinematic viscosity ν 0.36310e-06 m
2

s

thermal expansion coefficient β 0.96000e-04 K−1

Table 1. Parameters of (Bi0.25Sb0.75)2Te2-melt and of the melt geometry
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melt zone

solid crystal

solid crystal input

output
z

r

R

H

ΩΩ

Γ

Γ

Γc

1

0

Fig. 1. Physical domain for the zone melting growth

ary conditions

θ = θc for r = R, 0 ≤ z ≤ H, ϕ ∈ (0, 2π), (control boundary Γc)

θ = θs, for 0 ≤ r ≤ R, z = H,

θ = θs, for 0 ≤ r ≤ R, z = 0.

For t = 0 we start with a given temperature profile θc = θc0 on Γc, and with
θs = 613 K.For θc0 we have

θc0(z) = θs + 4
z

H
(1 −

z

H
)δθ (23)

with δθ = 25 K. The control goal is tracking of a velocity field u, which either
is given by

i) a typical two-dimensional toroidal flow, or by
ii) a non moving melt, i.e. u = 0.

The case ii) is artificial but serves as a good test case since θc = θs = const.
implies u = 0, and this velocity field together with θ = θs is a solution of
the Boussinesq approximation. Artificial in this context means that θ = θs on
Ω is not a realistic assumption for a crystal melt and the input mixed crystal
will never change to a single homogeneous output crystal. We consider the time
interval [0, T ] = [0, 8 seconds] and Z = 60 time steps of duration 0.1222 seconds
each. For the spatial discretization we use a grid containing 20×30 finite volumes.
As regularization and damping parameters we use α = 0.25 and σr = 0.1. The
Fig. 2 shows the results for case i), and Fig. 3 presents those for case ii). In
both figures the left picture shows the development of the control temperature,
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Fig. 2. Result of the zone melting process i)

whereas the right picture depicts the development of the functional value in
relation to the iteration number of the Picard iteration. As can be seen the most
significant reduction of the functional value already is achieved after the first few
iterations. We note that the temperatures presented are dimensionless through
the setting θ̄ = θ−θs

δθ . For the case i) the optimal control (see Fig. 2) is only
slightly dependent of the time. We see only a slight increasing of the temperatures
in the profiles θc(z) in the time direction. This behaviour can be explained by
the fact that a forward simulation with constant in time temperature θc(z, t) =
θc0(z), with θc0 from (23) yields a velocity field u for which u(x, T ) is very
similar to u(x).

10

20

30

0
20

40
60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

heighttime

co
nt

ro
l t

em
pe

ra
tu

re

0 2 4 6 8 10 12 14 16 18
6

8

10

12

14

16

18

20

22

iteration number

fu
nc

tio
na

l v
al

ue

Fig. 3. Result of the zone melting process ii)
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Fig. 4. Result of the optimization of the heating parameter θ̄c i)

Next we consider thermal boundary conditions of second kind, i.e. b ≡ 0, so
that

a
∂θ

∂n
= θc for r = R, 0 ≤ z ≤ H, ϕ ∈ (0, 2π), (control boundary Γc) , (24)

and recall that for the adjoint temperature κ we have on Γc the boundary con-
dition

∂κ

∂n
= 0 for r = R, 0 ≤ z ≤ H, ϕ ∈ (0, 2π). (25)

We start with a = λ = 8, 5 W
mK , θc = θc0

= 13000 W
m2 and take the same

geometrical and material parameters of the mixed crystal (Bi0.25Sb0.75)2Te2 as
above.

As regularization parameter in the associated optimization problem we again
take α = 0.25. For σr we here apply a simple damping strategy which requires
decrease of the functional value of at least 1% in every iteration of the solution
process. Starting with σr = 0.05 the damping parameter in case of failure of this
test is reduced by the constant increment 0.01. We note that for the present nu-
merical experiment we have σr = 0.01 in the final iteration. From our numerical
tests we conclude that, compared to control by Dirichlet boundary conditions
the Picard iteration in the case of Neumann boundary control is very sensitive
with respect to damping.

The Fig. 4 shows the optimal θ̄c over the ampulla height and time (on ΓcT )
and the development of the functional values vs. the iteration counter, where
the dimensionless control temperature θ̄c now is defined as

θ̄c =
H θc

δθ λ
.

If we set u = 0 we obtain the optimization results shown in Fig. 5. The heat
flux tends to zero in time. This is what one expects in the present situation,
since zero heat flux corresponds to constant temperature in the melt, and this
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Fig. 5. Result of the optimization of the heating parameter θ̄c ii)

in turn to a non moving melt.

Second test problem

As a second test problem we consider a (idealized) Czochralski crystal growth
process. The Fig. 6 shows the geometrical configuration of the crucible, which
is taken from the benchmark in [19]. The above discussed model and the opti-

solid crystal

crystal melt

crucible

control boundary

Ω

Γc

R

H

H

z

r
R

Rcθ θ

θ

Ω
Γ

s t

c

b

Fig. 6. Physical domain for Czochralski growth

mization system is formulated and implemented in three dimensions. However,
because of the huge computational amount of work in three spatial dimensions
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we first test the optimization procedure for the two-dimensional case u = 0
(azimuthal component of the velocity) and ∂Q

∂ϕ = 0 for all transport quantities

Q (u, p, θ, etc.). Thus, we consider a two-dimensional spatial domain (see Fig.
6). Rc denotes the radius of the solid crystal, R the crucible radius and H is
the height of the crystal melt. θs denotes the melting point temperature of the
crystal material, θb and θt are temperatures with θb > θt > θs. The geometrical
and material parameters are taken as in the Silicium Czochralski growth process
described [6] and are summarized in the Table 2.

The associated Grashof number is given by 1.5e + 09 and leads to a strong CFL
restriction for time stepping in our time discretization scheme. Time steps τ
should not be taken larger than 10−5. However, from the practical point of view
this requirement is not as restrictive as it seems to be, since one dimensionless
time step τ = 10−5 corresponds to 0.80645 seconds real time.

Again we begin with investigating Dirichlet boundary control, i.e. we set
a ≡ 0 and set b := 1. For the thermal boundary conditions of our Czochralski
process we then have

θ = θc for r = R, 0 ≤ z ≤ H, ϕ ∈ (0, 2π), (control boundary Γc)

θ = θs, for 0 ≤ r ≤ Rc, z = H,

θ = θs +
r − Rc

R − Rc
(θt − θs), for Rc ≤ r ≤ R, z = H,

θ = θt, for 0 ≤ r ≤ R, z = 0.

For t = 0 we start with a given temperature profile θc = θc0 on Γc, and with
θt = 1690 K, θb = 1708 K for θc0 we set

θc0(z) = θb +
z

H
(θt − θb) .

As a desired velocity field we use u = 0. The spatial grid has the dimension
20 × 45. The Fig. 7, left shows the temperature distribution θc on ΓcT for a
time horizon containing 90 time steps (= 68,4 seconds). In this computations
α = 0.25 is taken as regularization parameter, and the relaxation parameter is
chosen σr = 0.75. Fig. 7, right compares the optimal control temperature profiles
at time t = 0 to those at t = T for different regularization parameters α. One

parameter symbol value

crucible radius R 0.15 m

crystal radius Rc 0.075 m

height of the melt H 0.4 m

melting point temperature θs 1683 K

thermal diffusivity a 0.264e-04 m
2

s

kinematic viscosity ν 0.279e-06 m
2

s

thermal expansion coefficient β 1.41*10−4 K−1

Table 2. Parameters of Silicium and of the melt geometry
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Fig. 7. Result of the optimization of the Czochralski process, second test problem

observes that the profiles at time t = T become slightly nonlinear compared to
the linear profile at t = 0. The temperatures θ̄ in the Fig. 7 are dimensionless
i.e.

θ̄ =
θ − θb

θt − θb
.

Finally, we briefly report on the influence of the regularization parameter α
on the control process. First we observe, that a reduction of α correlates to a
decrease of the damping parameter σr in the Picard iteration. In the present
example we use σr = 0.9 for α = 1.0, σr = 0.75 for α = 0.25, σr = 0.4 for
α = 0.1, and σr = 0.1 for α = 0.01.

However, it turns out that the quality of the controls does not change sig-
nificantly with decreasing α, at least in the investigated parameter range α ∈
(0.01, 1), compare Fig. 7, right, where the final control temperature profiles at
t = T are presented. With the same figure we can report an increase of the
gradient

∂θc

∂z
|{z=H,t=T} ,

at height z = H and time t = T with decreasing α, while for z ∈ (0, 35) the tem-
perature profiles remain nearly linear. These results to a certain extent justify
the Ansatz of boundary temperature control for Czochralski growth presented
in [9], where the slope of a linear boundary temperature profile serves as opti-
mization variable. However, the Fig. 7, middle, where the development of the
functional values during the optimization process for α = 0.25 and σr = 0.4
is reported, shows in the present case (u = 0) a considerable decrease of the
functional value.
For toroidal desired velocity fields we observe that the decrease of the functional
value during the optimization process is very small or even negligible. This also
is in accordance with the numerical findings of [9] for boundary temperature
control.

Third test problem

As a three-dimensional test problem we consider the zone melting configuration
of Fig. 1. The aim of the optimization is to track the velocity field u = 0. For the
spatial discretization of the domain [0, 2π]× [0, R]× [0, H ] we use a 20× 20× 30
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Fig. 8. Result of the optimization of Zone melting, third test problem

grid which is chosen equidistant in every coordinate direction. We consider the
time interval [0, T ] = [0, 4 seconds] with Z = 60 time steps of duration 0.0661
seconds each. The parameters α = 0.5 and σr = 0.1 are used for the three-
dimensional test problem. Fig. 8 shows the control temperature θc(ϕ, z, t) at
the time t = T on Γc together with the development of the functional values
during the optimization iterations. Note, that the temperature profile in Fig. 8
(left) shows θc(ϕ, z, T ) for varying ϕ and z. As one can see the profile is nearly
constant in circumferential direction. Of course, this behavior is expected since
u ≡ 0. Furthermore, in view of the first test problem, case ii), in the present test
problem one now would expect a behaviour of θc(0, z, t) similar to that shown in
Fig. 3. This in fact is the case, as Fig. 9 shows, where the control temperature
θc(ϕ, z, t) on the line ϕ = 0 = 2π is depicted.

6 Conclusion

Optimal boundary heating control strategies for fully time-dependent thermally
coupled flow problems in spatially 3-dimensional cylindrical domains are devel-
oped. Optimal heating strategies are obtained as solutions of certain minimiza-
tion problems and are computed from the related Karush-Kuhn-Tucker system
by applying a damped Picard iteration.

Numerical results are presented for zone melting and Czochralski growth
configurations in realistic 3-dimensional cylindrical domains. While boundary
heating control for zone melting configurations seems to offer a practically rel-
evant control mechanism the numerical results for Czochralski growth indicate,
that boundary heating for this configuration seems to have only limited impact
on the flow behaviour in the melt. As a result for Czochralski growth other con-
trol mechanisms should be considered, like control by magnetic fields and/or
crucible/crystal rotation.
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7 Appendix

7.1 Construction of the adjoint time discretization

The time discretization of the adjoint system presented in (20)-(22) is based
on the transpose of semi-implicit time discretization of the derivative of the
Boussinesq approximation. To become more precise let us write (3) in the form

B(u, p, θ) =

(

0

f

)

.

Then the derivative of B in direction ũ, p̃, θ̃ is given by

B′(u, p, θ)(ũ, p̃, θ̃) =





ũt − ∆ ũ + (u · ∇)ũ + (ũ · ∇)u + ∇p̃ − Gr θ̃g
−div ũ

θ̃t + u · ∇θ̃ + ũ · ∇θ − 1

Pr ∆θ̃



 . (26)

The time discretization of (26) is adapted to that of the Boussinesq Approxima-
tion presented in (14)-(16). Again we denote by ti = iτ , τ = T

Z for some Z ∈ N

an equidistant time grid. For 0 ≤ n < Z we now set

DτB′(u, p, θ)(ũn+1, p̃n+1, θ̃n+1) =






ũ
n+1−ũ

τ − ∆ũ
n+1 + (u · ∇)ũ + (ũ · ∇)u + ∇p̃n+1 − Gr θ̃n+1

g

−div ũ
n+1

θ̃n+1−θ̃
τ + u · ∇θ̃ + ũ · ∇θ − 1

Pr ∆θ̃n+1






, (27)

and note that all function values that appear without the superscript n + 1 are
taken at time instance t = tn. Next we set

A =
1

τ
id − ∆, Bn =

1

τ
id − (u · ∇)( · ) − (( · ) · ∇)u, G = ∇, F = −Gr g,

D = −div, K = −( · ) · ∇θ, E =
1

τ
id −

1

Pr
∆, L =

1

τ
id − u · ∇,

and introduce the block operators

A =





A G F
D 0 0
0 0 E



 and Bn =





Bn 0 0
0 0 0
K 0 L



 . (28)

Further we set

xn+1 =





ũ
n+1

p̃n+1

θ̃n+1



 , xn =





ũ

p̃

θ̃





and note that

Ax0 =





u0

τ − ∆u0 + ∇p0 − Gr gθ0

0
θ0

τ − ∆θ0



 .
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We are now prepared to rewrite the time discretization scheme (27) in the form

MX :=

















A 0

−B0 A 0

0 −B1 A
. . .

−BZ−2 A 0

0 −BZ−1 A



































x0

x1

x2

...
xZ−1

xZ



















. (29)

The transpose of M now defines the discretization scheme (20)-(22) of the adjoint
system (10). More precisely, let

yn+1 =





µ
n+1

ξn+1

κn+1



 and yn =





µ

ξ
κ



 =





µ
n

ξn

κn



 ,

where µ, ξ and κ denote the adjoint variables, and set Y = (y0,y1, . . .yZ)t.
Then the time discretization scheme for the adjoint system is defined through

(MX,Y) = (X,MtY),

where

MtY =

















At −B0
t 0

0 At −B1
t 0

. . .
At −BZ−2

t 0

0 At −BZ−1
t

0 At



































y0

y1

y2

...
yZ−1

yZ



















. (30)

Applying this time-discretization procedure to (10) we obtain for n = Z, Z −
1, . . . , 1

µ
n−1 − µ

τ
+ (∇u

n−1)t
µ − (un−1 · ∇)µ − ∆µ

n−1 + ∇ξn−1

= −κn−1∇θ +

{

−(un−1 − u)
curl curl u

n+1,

−divµ
n−1 = 0,

κn−1 − κ

τ
+ u

n−1 · ∇κ −
1

Pr
∆ κn−1 − Gr g · µn−1 = 0

which exactly represents (20)-(22).

7.2 Cylindrical coordinates

Since in our applications the Czochralski crucible and the zone melting ampulla
have cylindrical geometry it is convenient to present the Boussinesq approxima-
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tion in cylindrical coordinates. W.r.t. these coordinates it has the form

ut + (ruu)r/r + (uv)ϕ/r + (wu)z − v2/r =

− pr + ((ru)r/r)r + uϕϕ/r2 + uzz − 2vϕ/r2 − u/r2 ,

vt + (ruv)r/r + (vv)ϕ/r + (wv)z + uv/r =

− pϕ/r + ((rv)r/r)r + vϕϕ/r2 + vzz + 2uϕ/r2 − v/r2 ,

wt + (ruw)r/r + (vw)ϕ/r + (ww)z =

− pz + (rwr)r/r + wϕϕ/r2 + wzz + Gr θ ,

(ru)r/r + vϕ/r + wz = 0 ,

θt + (ruθ)r/r + (vθ)ϕ/r + (wθ)z =
1

Pr
[(rθr)r/r + θϕϕ/r2 + θzz] .

To derive the adjoint system in cylindrical coordinates we set µ = (µ, ν, ω)
where µ denotes the radial component, the azimuthal component is ν, and the
z-component is ω. We now transfer the adjoint equations (10) to cylindrical
coordinates and we get

−µt − ((rµ)r/r)r − µϕϕ/r2 − µzz + 2νϕ/r2 + µ/r2 + µ(ru)r/r + νvr (31)

+ωwr − (uµ)r − (vµ)ϕ/r − (wµ)z + vν/r + ξr = −(u − u) − κθr

−νt − ((rν)r/r)r − νϕϕ/r2 − νzz − 2µϕ/r2 + ν/r2 (32)

+µuϕ/r + νvϕ/r + ωwϕ/r + (νu − 2µv)/r

−(ruν)r/r + (vν)ϕ/r − (wν)z + ξϕ/r = −(v − v) − κθϕ/r

−ωt − (rωr)r/r − ωϕϕ/r2 − ωzz + µuz + νvz + ωwz (33)

−(ruω)r/r − (vω)ϕ/r − (wω)z + ξz = −(w − w) − κθz .

For the adjoint temperature κ we get

−κt−
1

Pr
[(rκr)r/r +κϕϕ/r2 +κzz]− (ruκ)r/r− (vκ)ϕ/r− (wκ)z = Gr ω, (34)

which is a convective heat conduction equation whose discretization can be per-
formed as in [2], say. We note that one also would obtain (31)-(34) as the adjoint
part of the optimality system, if in the definition of the Lagrangian in (9) cylin-
drical coordinates for the constitutive equations would be used, together with
the volume element dV = dx dy dz of the integrals replaced by r dr dϕ dz.

Having in mind the spatial discretization of the Navier-Stokes system on a
staggered grid the terms

(∇u)t
µ and κ∇θ

occurring in (31)-(33) are not standard terms. Using a staggered grid finite
volume method, u and µ live at the same gridpoints, as do v and ν, w and ω,
and θ and κ. Exemplarily we describe the discretization of the first component
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of both, (∇u)t
µ and κ∇θ. We obtain

(µur + νvr + ωwr)i+1/2jk ≈

µi+1/2jk [(ui+3/2jk + ui+1/2jk) − (ui+1/2jk + ui−1/2jk)]/(2∆xi+1/2)

+νi+1/2jk [(vi+1j+1/2k + vi+1j−1/2k) − (vij+1/2k + vij−1/2k)]/(2∆xi+1/2)

+ωi+1/2jk[(wi+1jk+1/2 + wi+1jk−1/2) − (wijk+1/2 + wijk−1/2)]/(2∆xi+1/2)

where

νi+1/2jk = (νij+1/2k + νi+1j+1/2k + νij−1/2k + νi+1j−1/2k)/4 and

ωi+1/2jk = (ωi+1jk+1/2 + ωi+1jk−1/2 + ωijk+1/2 + ωijk−1/2)/4,

and
κθr ≈ 0.5(κi+1jk + κijk)[θi+1jk − θijk ]/∆xi+1/2. (35)


