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Abstract: We consider variational discretization of Neumann-type elliptic optimal control problems

with constraints on the control. In this approach the cost functional is approximated by a sequence of

functionals which are obtained by discretizing the state equation with the help of linear finite elements.

The control variable is not discretized. Optimal error bounds for control and state are obtained both

in two and three space dimensions. Finally, we discuss some implementation issues of a generalized

Newton method applied to the numerical solution of the problem class under consideration.
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1 Introduction

Let Ω ⊂ R
d (d = 2, 3) be a bounded domain with a smooth boundary ∂Ω. In this note, we

are interested in the following control problem:

minw∈U J(w) = 1
2

∫

Ω |G(Bw) − y0|
2 + α

2 ‖w‖2
U

subject to w ∈ Uad.
(1.1)

We suppose that α > 0 are given. Further (U, (·, ·)U ) denotes a Hilbert space which we identify
with its dual, and B : U → (H1(Ω))′ a linear, continuous operator, and Uad ⊆ U denotes the
closed, convex set of admissible controls. Furthermore, for given f ∈ (H1(Ω))′ the function
G(f) denotes the unique weak solution y ∈ H1(Ω) to the elliptic boundary value problem

a(y, v) = 〈f, v〉 ∀ v ∈ H1(Ω). (1.2)

Here, 〈·, ·〉 denotes the dual pairing of H1(Ω)′ and H1(Ω), the bilinear form a is defined by

a(y, v) :=

∫

Ω

(

d
∑

i,j=1

aij(x)yxi
vxj

+

d
∑

i=1

bi(x)yxi
v + c(x)yv

)

dx,

where we assume that the coefficients ai,j, bi and c are sufficiently smooth and chosen such
that the form is H1-coercive with constant c1 > 0. Finally, Γ := ∂Ω.
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Now, it is not hard to prove that problem (1.1) admits a unique solution u ∈ Uad. Moreover,
there exists a function p ∈ H1(Ω) which together with y = G(Bu) satisfies

a(v, p) =

∫

Ω
(y − y0)v ∀v ∈ H1(Ω) (1.3)

(B∗p + αu, q − u)U ≥ 0 for all q ∈ Uad, (1.4)

Example 1.1. There are several examples for the choice of B and U .

(i) Distributed control: U = L2(Ω), B = Id : L2(Ω) → H1(Ω)′.

(ii) Boundary control: U = L2(Γ), Bu(·) =
∫

Γ uγ0(·) dx : L2(Ω) → H1(Ω)′, where γ0 is the
trace operator in H1(Ω).

(iii) Linear combinations of input fields: U = R
n, Bu =

∑n
i=1 uifi, fi ∈ H−s(Ω), s <

(d − 1)/d.

From here onwards we consider Example 1.1(ii).

A finite element analysis for general semilinear elliptic Neumann boundary control problems
on two-dimensional polygonal convex domains is provided by Casas and Mateos in [2]. Among
other things they prove ‖u − uh‖L2(Γ) = o(h)(h → 0) for a piecewise linear, continuous finite
element approximation uh of u, and, for cost functionals with quadratic structure in the
control part, ‖u − uh‖L2(Γ) = O(h3/2−ǫ)(h → 0) for the variational discretization uh, where
in both cases u ∈ Uad denotes a solution to the corresponding optimal control problem.
Here we provide results for two- and three-dimensional domains and provide optimal error
estimates in L2(Γ) and L∞(Γ) for variational discretizations of problem (1.1). We use a
general proof technique which differs from that applied in [2]. We concentrate on linear-
quadratic optimal control problems since the essential nonlinearity from the point of view
of optimization is introduced through the constraint u ∈ Uad in terms of the orthogonal
projection associated with this constraint.
Let us comment on further approaches that tackle optimization problems for pdes with con-
strained boundary controls. In [3] a problem similar to that of [2] is studied and piecewise
constant approximations for the control are investigated. In [1] Dirichlet boundary control for
semilinear elliptic control problems is considered for convex polygonal domains in two dimen-
sions. Finally, [12] proves h2 convergence for superpositions of smooth Dirichlet boundary
control actions for linear-quadratic optimal control problems.
The rest of the paper is organized as follows: In Section 2 we collect basic results on (1.1).
In Section 3 we present the finite element analysis of problem (1.1). Among other aspects we
show that bounds

‖u − uh‖L2(Γ) ∼ ‖p − ph(u)‖L2(Γ) + ‖y − yh(u)‖

where uh denotes the unique solution to (3.6) and yh, ph denote finite element approximations
to the optimal state y and to the adjoint state p associated to u, respectively. In Section 5 we
describe the numerical implementation of the semi-smooth Newton algorithm for the problem
class under consideration and present numerical results which confirm our theoretical findings.
Semi-smooth Newton methods for elliptic and parabolic variational discrete control problems
are investigated in [9].

2 The continuous problem

Since problem (1.1) is a convex it admits a unique solution u ∈ Uad with unique associated
state y = G(Bu) and unique adjoint p. Crucial for the finite element analysis is the regularity
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of the involved state, adjoint, and control. From here onwards let us assume that Uad =
{v ∈ L2(Γ); a ≤ v ≤ b a.e. in Γ}, where for simplicity a < b denote constants (or sufficiently
smooth, bounded functions). From (1.4) we deduce that u satisfies

u = PUad

(

−
1

α
B∗p

)

, (2.5)

where B∗ denotes the adjoint of B, and in the present setting coincides with the trace oper-
ator, and the action of the orthogonal projection PUad

: U → Uad is given by

PUad
(f)(x) = max{a,min{f(x), b}}.

Since max,min are Lipschitz continuous functions we may at best expect Lipschitz continuity
of PUad

(f), regardless how smooth the function f is. Thus, a bootstrapping argument at best
yields u ∈ W 1,∞(Γ) with corresponding state y ∈ W 2,s(Ω) and adjoint p ∈ W 4,s(Ω) for all
1 ≤ s < ∞. In the case of a convex polygonal domain both the regularity of y and p is further
restricted to y ∈ W 2,s0(Ω) for some d ≤ s0 < ∞, and p ∈ W 2,s(Ω) for some d ≤ s < ∞.

3 Finite element discretization and error analysis for (1.1)

Let Th be a triangulation of Ω with maximum mesh size h := maxT∈Th
diam(T ) and vertices

x1, . . . , xm. We suppose that Ω̄ is the union of the elements of Th so that element edges lying
on the boundary are curved. In addition, we assume that the triangulation is quasi-uniform
in the sense that there exists a constant κ > 0 (independent of h) such that each T ∈ Th is
contained in a ball of radius κ−1h and contains a ball of radius κh. Let us define the space
of linear finite elements,

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each T ∈ Th}

with the appropriate modification for boundary elements.
In what follows it is convenient to introduce a discrete approximation of the operator G. In
fact, for a given function f ∈ H1(Ω)′ we denote by zh = Gh(f) ∈ Xh the solution of the
discrete Neumann problem

a(zh, vh) = 〈f, vh〉 for all vh ∈ Xh.

Problem (1.1) is now approximated by the following sequence of control problems depending
on the mesh parameter h:

min
u∈Uad

Jh(u) :=
1

2

∫

Ω
|Gh(Bu) − y0|

2 +
α

2
‖u‖2

U . (3.6)

Problem (3.6) represents a convex infinite-dimensional optimization problem of a similar
structure as problem (1.1). It admits a unique solution uh ∈ Uad with corresponding state
yh ∈ Xh. Furthermore, in accordance with problem (1.1), there exist a unique function
ph ∈ Xh satisfying

a(vh, ph) =

∫

Ω
(yh − y0)vh for all vh ∈ Xh, and (3.7)

(αuh + B∗ph, v − uh)U ≥ 0 for all v ∈ Uad. (3.8)

Moreover

uh = PUad

(

−
1

α
B∗ph

)

. (3.9)
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We note that the control is not discretized in (3.6), which is reflected by the appearance of
the orthogonal projector PUad

in (3.9), compare [7, 8] for a more detailed discussion of this
discretization approach.
Next we prove a general error estimate in h.

Theorem 3.1. Let u denote the solution of (1.1) with y = G(Bu), and uh the solution to
(3.6) with yh = Gh(Buh). Then

α‖u − uh‖
2
U + ‖y − yh‖

2 ≤ Cα‖p − ph‖2
L2(Γ) + ‖y − yh‖2, (3.10)

where yh, ph denote the unique solutions to a(yh, vh) = 〈Bu, vh〉, and a(vh, ph) =
∫

Ω(y−y0)vh

for all vh ∈ Xh.

Proof. We use uh as test function in (1.4), u as test function in (3.7) and add the resulting
variational inequalities. This yields

α‖u − uh‖
2
U ≤ 〈B(uh − u), p − ph〉 = 〈B(uh − u), p − ph〉 + 〈B(uh − u), ph − ph〉 ≤

≤ ‖B∗(p − ph)‖U‖u − uh‖U + a(yh − yh, ph − ph) =

= ‖B∗(p − ph)‖U‖u − uh‖U +

∫

Ω

(y − yh)(yh − yh) ≤

≤ ‖B∗(p − ph)‖U‖u − uh‖U −
1

2
‖y − yh‖

2 +
1

2
‖y − yh‖2.

Since B∗ coincides with the trace operator we obtain with the help of Young’s inequality

α‖u − uh‖
2
U + ‖y − yh‖

2 ≤ Cα‖p − ph‖2
L2(Γ) + ‖y − yh‖2.

This completes the proof.
Next we prove L∞ error estimates for the optimal controls.

Theorem 3.2. Let u denote the solution of (1.1) with y = G(Bu), and uh the solution to
(3.6) with yh = Gh(Buh). Then

‖u − uh‖L∞(Γ) ≤ C
{

‖p − ph‖L∞(Γ) + γ(h)‖y − yh‖
}

, (3.11)

where γ(h) = | ln h| for d = 2, and γ(h) = h−1/2 for d = 3.

Proof. With the help of (2.5),(3.9) we obtain

‖u − uh‖L∞(Γ) = ‖PUad
(−

1

α
B∗p) − PUad

(−
1

α
B∗ph)‖L∞(Γ) ≤

1

α
‖p − ph‖L∞(Γ) ≤

≤
1

α
‖p − ph‖L∞(Ω) +

1

α
‖ph − ph‖L∞(Ω) ≤

≤
1

α
‖p − ph‖L∞(Ω) + γ(h)‖ph − ph‖H1(Ω),

where γ(h) = | ln h| for d = 2, and γ(h) = h−1/2 for d = 3, see [13]. We proceed with
estimating ‖ph − ph‖H1(Ω) according to

‖ph − ph‖
2
H1(Ω) ≤ Ca(ph − ph, ph − ph) ≤ C‖ph − ph‖‖y − yh‖.

This completes the proof.
From the estimates (3.10) and (3.11) we deduce that the approximation quality of the control
is steered by the approximation quality of finite element solutions yh to the state y, and by
the finite element approximation ph of the adjoint p.
Let us consider some examples.
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Example 3.3. 1. Let us consider the situation of [2, Section 5,6], where Ω is a two-
dimensional convex polygonal domain, i.e. d = 2. Further let y0 ∈ L2(Ω). Then y, p ∈
H2(Ω), so that by [2, Theorem 4.1] we have ‖y − yh‖ ≤ Ch2 and ‖p − ph‖L2(Γ) ≤ h3/2.
Thus, (3.10) directly yields

‖u − uh‖L2(Γ) ≤ Ch3/2.

2. Let us consider a smooth, bounded two- or three-dimensional domain Ω and let the
approximation properties A1-A4 of [10] be satisfied. Bootstrapping yields at least y ∈
H2(Ω) and p ∈ H4(Ω) →֒ W 2,∞(Ω) for d < 4. Thus we deduce from [10, Theorem 2.2]

‖p − ph‖∞ ≤ Ch2− d
q | log h|‖p‖W 2,q for all d ≤ q ≤ ∞,

compare also [4, Lemma 3.4], and again ‖y − yh‖ ≤ Ch2. Thus, (3.11) directly delivers

‖u − uh‖L∞(Γ) ≤ C
{

h
2− d

q | log h| + γ(h)h2
}

for all d ≤ q ≤ ∞.

We should note that when using finite element approximations defined over partitions
formed of simplexes one has to consider also an error induced by boundary approx-
imations. However, locally, for small enough gridsizes the smooth boundary may be
parametrized as graph over the faces of the corresponding simplex. For smooth bound-
aries the difference of the areas of the face and the corresponding graph is bounded by
the square of the gridsize, so that error estimates of the same quality as in this example
also hold for the accordingly transformed continuous solution, see [5].

4 Semismooth Newton algorithm

To solve problem (3.6) numerically we apply a semi-smooth Newton algorithm to the equation

G(u) := u − PUad
(−

1

α
B∗ph(u)) = 0 in U, (4.12)

where for given u ∈ U with associated discrete state yh(u) the function ph(u) solves (3.7). It
follows from (2.5) that this equation in our setting admits the unique solution uh ∈ Uad of
problem (3.6). Moreover, it directly follows with the results of [6, 11] that G is semi-smooth
in the sense that

sup
M∈∂G(u+s)

‖G(u + s) − G(u) − Ms‖U = o(‖s‖U ) as ‖s‖U → 0,

where

∂G(u) :=

{

I + D(u)(
1

α
B∗p′h(u))

}

with D(u)(x) =















0, if − 1
αB∗ph(u)(x) /∈ [a, b]

∈ [0, 1], if − 1
αB∗ph(u)(x) ∈ {a, b}

1, if − 1
αB∗ph(u)(x) ∈ (a, b)

denotes the generalized differential. With g ≡ g(u) denoting the indicator function of the
inactive set I(u) := {x ∈ Γ;− 1

αB∗ph(u)(x) ∈ (a, b)} we set

G′(u) := I +
1

α
gB∗p′h(u) ∈ ∂G(u).

It follows from the considerations related to (4.16) that G′(u) is bounded invertible, since
p′h(u) = S∗

hShB with Sh denoting the finite element solution operator. Thus, B∗p′h(u) =
B∗S∗

hShB is positive semi-definite on U .
We are now in the position to formulate
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Algorithm 4.1. Semi-smooth Newton algorithm
Choose u ∈ U
While G(u) 6= 0 solve

G′(u)unew = G′(u)u − G(u) (4.13)

for unew and set u = unew.

We emphasize that this algorithm works in the infinite-dimensional space U so that it is not
obvious that this algorithm is numerically implementable. For a related discussion we refer
to [7].
Using

β := (I − g)bounds ≡















a, if − 1
αB∗ph(u) < a

b, if − 1
αB∗ph(u) > b

0, else

a short calculation shows, that the Newton equation (4.13) can be rewritten in the form

unew = bounds on A(u) := Γ \ I(u), and (4.14)

(αgI + gB∗S∗
hShBg)unew = −gB∗(S∗

hy0 − S∗
hShBβ). (4.15)

We solve the equation

(αgI + gB∗S∗
hShBg)unew = −gB∗(S∗

hy0 − S∗
hShBβ)

with a conjugate gradient method. This is feasible since for given u ∈ U the operator E∗
I (αI +

B∗S∗
hShB)EI is positive definite on L2(I(u)), where the function EIf ∈ L2(Γ) denotes the

extension-by-zero to Γ of functions f ∈ L2(I(u)), and E∗
I denotes its adjoint whose action

for s ∈ L2(Γ) is given by E∗
I s = (gs)|I(u)

. Thus, formally solving (4.15),(4.14) corresponds to
solving

E∗
I (αI + B∗S∗

hShB)EIu
new
I = −E∗

I B∗(S∗
hy0 − S∗

hShBβ) (4.16)

and then setting unew = unew
I on I(u), and unew = bounds on A(u), compare also [6, (4.7)].

It is now clear from these considerations that the Newton iterates may develop kinks or
even jumps along the border of the active set, see the numerical results of the next section.
However, it follows from the definition of the active set A(u) that its border consists of
polygons, since we use continuous, piecewise linear ansatz functions for the state. We note
that this border in general consists of piecewise polynomials of the same degree as that of
the finite element ansatz functions, if higher order finite elements are used, compare [8].
Therefore, Algorithm 4.1 is numerically implementable, since in every of its iterations only
a finite number of degrees of freedom has to be managed, which in the present case of linear
finite elements can not exceed 3nv+2ne, where nv denotes the number of finite element nodes,
and ne the number of finite element edges, see [8, Chapter 3] and [7] for details. Moreover,
the main ingredient of the cg algorithm applied to solve the Newton equation (4.16) consists
in evaluating E∗

I (αI + B∗S∗
hShB)EIf for functions f ∈ L2(I(u)). From the definitions of B

and Sh it is then clear which actions have to be performed for this evaluation.
It is also clear, that only local convergence of the semi-smooth Newton algorithm can be
expected, where the convergence radius at the solution depends on the penalization parameter
α. For the numerical examples presented in the next section and the considered values of α
it is sufficient use a cascadic approach where linear interpolations of numerical solutions on
coarse grids are used as starting values on the next finer grid. Further details on the semi-
smooth Newton methods applied to variationally discretized optimal control problems can
be found in [9], where, among other things, also time-dependent problems are considered and
globalization strategies are proposed.
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5 Numerical experiments

We consider 2 numerical examples taken from [2] and compare the results of our numerical
approach to the classical approach with piecewise linear, continuous ansatz functions for the
controls taken there. For this purpose we define the experimental order of convergence by

eoc =
log E(h1) − log E(h2)

log h1 − log h2
,

where E(h) denotes an error functional an h the finite element grid size. There holds eoc ∼ γ
if E(h) ∼ hγ .
In the examples investigated later there is an additional nonlinear function eu : Γ → R which
makes the projection of nonlinear functions necessary.

u = PUad
(−

1

α
(B∗ph + eu))

For the integration over the boundary control with kinks, we divide the boundary additionally
to the division by the FEM discretization at the positions of the kinks. The kinks occur at
prescribed points in eu and at the intersections with the constraints. The latter are calculated
with the Pegasus method (an improved regula-falsi method) because of the nonlinearity in
eu.

5.1 Example 1

is taken from Casas and Mateos [2, Section 7.1] and reads

min Ĵ(u) =
1

2

∫

Ω
(yu(x) − yΩ)2dx +

α

2

∫

Γ
u(x)2dx +

∫

Γ
eu(x)u(x)dx +

∫

Γ
ey(x)yu(x)dx

subject to u ∈ Uad =
{

u ∈ L2; 0 ≤ u(x) ≤ 1 a.e. x ∈ Γ
}

, where yu solves

−∆yu(x) + c(x)yu(x) = e1(x) in Ω,

∂νyu(x) + yu(x) = e2(x) + u(x) on Γ.

Here, Ω = (0, 1)2, α = 1, c(x) = 1 + x2
1 − x2

2, ey(x) = 1, yΩ(x) = x2
1 + x1x2, e1(x) =

−2 + (1 + x2
1 − x2

2)(1 + 2x2
1 + x1x2 − x2

2),

eu(x) =







































−1 − x3
1 on Γ1

−1 − min







8(x2 − 0.5)2 + 0.58

1 − 16x2(x2 − y∗1)(x2 − y∗2)(x2 − 1)







on Γ2

−1 − x2
1 on Γ3

−1 + x2(1 − x2) on Γ4,

with y∗1 = 1
2 −

√
21

20 and y∗2 = 1
2 +

√
21

20 . Further

e2(x) =



























1 − x1 + 2x2
1 − x3

1 on Γ1

7 + 2x2 − x2
2 − min

{

8(x2 − 0.5)2 + 0.58, 1
}

on Γ2

−2 + 2x1 + x2
1 on Γ3

1 − x2 − x2
2 on Γ4
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where Γ1 to Γ4 are the four edges of the unit square, numbered counterclockwise, starting
with the bottom edge. The adjoint equation is given by

−∆φ(x) + c(x)φ(x) = yu(x) − yΩ(x) in Ω

∂νφ(x) + φ(x) = ey(x) on Γ.

An easy calculation shows that the optimal solution is given by

ū(x) =



























x3
1 on Γ1

min
{

8(x2 − 0.5)2 + 0.58, 1
}

on Γ2

x2
1 on Γ3

0 on Γ4,

with corresponding state ȳ(x) = 1 + 2x2
1 + x1x2 − x2

2 and adjoint state φ̄(x) = 1.
We note that in the numerical approach for this example (4.12) has to be replaced by

G(u) = u − PUad
(−

1

α
(B∗ph + eu))

so that special attention caused by the nonlinearity appearing in eu has to payed when
evaluating PUad

(− 1
α (B∗ph(u) + eu)) for given u.

The errors and eocs are shown in table 1 for the Casas-Mateos-ansatz and the variational
discretization respectively. The eoc of the numerical experiments of Casas and Mateos is
calculated from tables of [2]. The eoc of the numerical experiments of Casas and Mateos
is 1.5 and about 1.0 for the L2 and L∞ norm respectively. The eoc is 2 for our approach.
This is better than expected by Example 3.3, 1. However, this may be caused by the special
regularity of the continuous solution and the domain. The latter is polygonal but forms the
limit case in regularity theory for elliptic domains with corners, so that also the estimate of
Example 3.3 2. may apply. This would coincide with our numerical results. We further note
that already the errors on the coarsest mesh for h = 1 are smaller in our approach than than
those for h = 2−4 or h = 2−6 in the conventional Casas-Mateos-ansatz.
The Newton iteration is terminated if ‖G(ui)‖/‖G(u0)‖ ≤ 10−5 and ‖ui −
ui−1‖/max(‖ui‖, ‖ui−1‖) ≤ 10−5 holds. The inner cg iteration is terminated if ‖r‖ ≤
10−4

i min
{

1, ‖G(ui)‖/, ‖G(ui)‖/‖G(u0)‖
}

holds with r denoting the current residuum of the
Newton system.
In figure 1 the optimal control together with the error for h = 0.5 and the finite element grid
is shown.

5.2 Example 2

is taken from Casas and Mateos [2, Section 7.2] and contains a semi-linear state equation
instead of a linear one. It reads

min Ĵ(u) =
1

2

∫

Ω
(yu(x) − yΩ)2dx +

α

2

∫

Γ
u(x)2dx +

∫

Γ
eu(x)u(x)dx +

∫

Γ
ey(x)yu(x)dx

subject to u ∈ Uad =
{

u ∈ L2; 0 ≤ u(x) ≤ 1 a.e. x ∈ Γ
}

, where yu satisfies the semilinear
equation

−∆yu(x) + c(x)yu(x) = e1(x) in Ω

∂νyu(x) + yu(x) = e2(x) + u(x) − y(x)2 on Γ.
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Casas Mateos This Paper Casas Mateos This Paper

h Eu
L2

EuL∞
Eu

L2
EuL∞

eocu
L2

eocuL∞
eocu

L2
eocuL∞

2−0 - - 6.67e-3 5.03e-3 - - - -

2−1 - - 2.27e-3 2.14e-3 - - 1.55 1.23

2−2 - - 6.28e-4 5.72e-4 - - 1.86 1.90

2−3 - - 1.62e-4 1.47e-4 - - 1.95 1.96

2−4 8.5e-3 4.1e-2 4.10e-5 3.73e-5 - - 1.98 1.98

2−5 3.0e-3 1.5e-2 1.03e-5 9.34e-6 1.5 1.5 1.99 2.00

2−6 1.1e-3 1.1e-2 2.58e-6 2.34e-6 1.4 0.4 2.00 2.00

2−7 3.7e-4 3.8e-3 6.44e-7 5.84e-7 1.6 1.5 2.00 2.00

2−8 1.4e-4 2.7e-3 1.61e-7 1.46e-7 1.4 0.5 2.00 2.00

2−9 - - 4.03e-8 3.65e-8 - - 2.00 2.00

2−10 - - 1.00e-8 9.09e-9 - - 2.01 2.01

Table 1: Errors in u for the linear example

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4
−2.5

−2

−1.5

−1

−0.5

0
x 10

−3

Figure 1: Optimal control u left, error in u right, both for h = 0.5.

Here, Ω = (0, 1)2, α = 1, c(x) = x2
2 +x1x2, ey(x) = −3− 2x2

1 − 2x1x2, yΩ(x) = 1+(x1 +x2)
2,

e1(x) = −2 + (1 + x2
1 + x1x2)(x

2
2 + x1x2),

eu(x) =







































1 − x3
1 on Γ1

1 − min







8(x2 − 0.5)2 + 0.58

1 − 16x2(x2 − y∗1)(x2 − y∗2)(x2 − 1)







on Γ2

1 − x2
1 on Γ3

1 + x2(1 − x2) on Γ4,
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with y∗1 = 1
2 −

√
21

20 and y∗2 = 1
2 +

√
21

20 . Furthermore,

e2(x) =



























2 − x1 + 3x2
1 − x3

1 + x4
1 on Γ1

8 + 6x2 + x2
2 − min

{

8(x2 − 0.5)2 + 0.58, 1
}

on Γ2

2 + 4x1 + 3x2
1 + 2x3

1 + x4
1 on Γ3

2 − x2 on Γ4,

The adjoint equation is given by

−∆φ(x) + c(x)φ(x) = yu(x) − yΩ(x) in Ω

∂νφ(x) + φ(x) = ey(x) − 2y(x)φ(x) on Γ.

Again a short calculation shows that

ū(x) =



























x3
1 on Γ1

min
{

8(x2 − 0.5)2 + 0.58, 1
}

on Γ2

x2
1 on Γ3

0 on Γ4

denotes the optimal control with corresponding optimal state ȳ(x) = 1+x2
1+x1x2 and adjoint

φ̄(x) = −1.

Casas Mateos This Paper Casas Mateos This Paper

h Eu
L2

EuL∞
Eu

L2
EuL∞

eocu
L2

eocuL∞
eocu

L2
eocuL∞

2−0 - - 1.13e-2 1.83e-2 - - - -

2−1 - - 4.72e-3 6.43e-3 - - 1.26 1.51

2−2 - - 1.33e-3 2.19e-3 - - 1.82 1.55

2−3 - - 3.45e-4 6.69e-4 - - 1.95 1.71

2−4 8.5e-3 4.1e-2 8.75e-5 1.89e-4 - - 1.98 1.82

2−5 3.0e-3 1.5e-2 2.20e-5 5.11e-5 1.5 1.5 1.99 1.89

2−6 1.1e-3 1.1e-2 5.50e-6 1.33e-5 1.4 0.4 2.00 1.94

2−7 3.8e-4 3.8e-3 1.38e-6 3.42e-6 1.5 1.5 2.00 1.96

2−8 1.4e-4 2.7e-3 3.44e-7 8.66e-7 1.4 0.5 2.00 1.98

2−9 - - 8.61e-8 2.18e-7 - - 2.00 1.99

2−10 - - 2.15e-8 5.47e-8 - - 2.00 1.99

Table 2: Errors in u for the semilinear example

For the numerical solution of the present example again a semi-smooth Newton method is
applied. Since we are dealing with nonlinear state equations the determination of unew in
(4.15) has to be replaced by

(αgI + gB∗p′h(u)g)unew = −gB∗(ph(u) − p′h(u)(u − β)), and unew = bounds on Ω \ I(u).

The numerical results are very similar to that of the previous example. This is due to the
fact that the nonlinearity in the state equation is monotone.
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The errors and eocs for the present example are shown in table 2 for the Casas-Mateos-ansatz
and the variational discretization respectively. The eoc of the numerical experiments of Casas
and Mateos is calculated from tables of [2]. The eoc of the numerical experiments of Casas
and Mateos is 1.5 and about 1.0 for the L2 and L∞ norm respectively. The eoc is 2 for our
approach. This again is better than expected by Example 3.3, 1, but the same arguments
as used in the previous example may justify also convergence order 2. We further note that
also for this example already the errors on the coarsest mesh for h = 1 are smaller in our
approach than than those for h = 2−4 in the conventional Casas-Mateos-ansatz.
The terminated conditions are the same as in the previous example.
In figure 2 the optimal control together with the error for h = 0.5 and the finite element grid
is shown.
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Figure 2: Optimal control u left, error in u right, both for h = 0.5

Acknowledgements

The first author gratefully acknowledges the support of the DFG Priority Program 1253
entitled Optimization With Partial Differential Equations.

References

[1] Casas, E., Raymond, J.P.: Error Estimates for the Numerical Approximation of Dirichlet

Boundary Control for Semilinear Elliptic Equations, Siam J. Control Optim. 45, 1586-
1611, (2007)

[2] Casas, E., Mateos, M.: Error Estimates for the Numerical Approximation of Neumann

Control Problems , Comp. Appl. Math., to appear.
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