
SFB 609

Sonderforschungsbereich 609
Elektromagnetische Strömungsbeeinflussung in
Metallurgie, Kristallzüchtung und Elektrochemie

M. Hinze, S. Ziegenbalg

Optimal control of the free
boundary in a two-phase Stefan

problem

SFB-Preprint SFB609-02-2005 .

Preprint Reihe
SFB 609

�

Diese Arbeit ist mit Unterstützung des von der Deutschen
Forschungsgemeinschaft getragenen Sonderforschungsbereiches 609
entstanden und als Manuskript vervielfältigt worden.

Dresden, Oktober 2005

The list of preprints of the Sonderforschungsbereich 609 is available at:
http://www.tu-dresden.de/sfb609/pub.html

1 Introduction

Solidification processes play an important role in many areas of metallurgy.
For example, in many crystal growth processes the evolution and the form of
the interface between the solid and liquid phase strongly influences the quality
of the crystal. It is known from engineering experience, that certain forms of
interfaces (flat, concave, convex) exclude dislocations, say and thus enhance
material properties.

In the present work we develop an optimization strategy for the free bound-
ary in a two phase Stefan problem. As mathematical model we use heat con-
duction in the two phases, where the coupling of the phases is established
through the Stefan condition at the free boundary. We use a sharp interface
model and assume that the free boundary can be described by a graph. Our
goal is to control the evolution of the free boundary using the temperature
on the container boundary as control function. Control through boundary
temperature is a macroscopic control mechanism. Considering this, we ne-
glect effects on the meso- and microscale, such as dendritic growth and the
evolution of point defects, in our mathematical model. To achieve the control
goal we track a prescribed evolution of the interface which from the optimiza-
tion point of view serves as desired state. For this purpose we define a cost
functional in which the error between the graphs of the free boundary and a
desired free boundary is to be minimized. The modeling of the interface as
a graph is motivated by the ability to access directly the free boundary in
terms of an optimization variable. To anticipate discussions we note that the
incorporation of meso- and microscopic effects would necessitate a different
modelling of the interface.

Altogether we end up with an optimization problem for the temperature
on our container wall, which is coupled to the temperature in the solid and
liquid phases and to the desired free boundary by an highly nonlinear system
of pde’s.

To the best of our knowledge this is the first attempt to control the evo-
lution of the free boundary directly using a sharp interface model. With the
approach presented we advance simulation and optimization capabilities in
solidification processes in the following respects; the interface serves as an
optimization variable itself and thus can be controlled directly. This is differ-
ent for control of the free boundary in phase field and level set models where
the free boundary is diffuse or represented as a zero level set, respectively,
so that it only admits indirect control. Furthermore at any stage of the op-
timization process the physical laws constituted by our mathematical model
are conserved. This among other things guarantees that every solution to our
optimization problem consisting of the interface and the states in the solid and

1

liquid phases, is physical in the sense that it obeys the physics constituted by
the mathematical model.

Let us first comment on closely related literature in this research field.
Zabaras et al. in [18], [20], [7], [19] and [16] consider an approach where the
free boundary is assumed to be known a-priori. In [18] a one dimensional
problem is considered. The heat flow into the free boundary and the position
of the free boundary is given and the heat flow into the fixed boundary is to be
determined. In particular, in both phases an inverse heat conduction equation
is solved using a integral method such that the melting temperature condition
ϑ = ϑm is satisfied at the free boundary, where ϑ is the temperature and ϑm

is the melting temperature.

In [7] and [19] the inverse problem is replaced by a minimization problem.
Its goal consists in minimizing the temperature difference at the free boundary,
i.e. 1

2
‖ϑm − ϑ(x, t)‖2

L2(Γ×[0,T]) = min
q0

, where q0 is the heat flow into the solid

phase at the fixed boundary. This means that the free boundary is set to the
desired boundary without ensuring that the melting temperature condition
ϑ = ϑm is satisfied at the free boundary. A-priori fixing of the free boundary
also implies, that the Stefan condition is applied at a wrong position (namely
not at the real free boundary) and that the wrong physical constants for the
heat equation in the area between the real free boundary and the desired
free boundary are used. The heat flow at the fixed boundary into the liquid
phase is set to 0 (this means, that the container is isolated). This allows to
separate the problems for each phase. In particular, the heat flow into the
free boundary can be computed using the Stefan condition, and by solving
a direct (forward) heat conduction problem [7], or a direct (forward) heat
conduction problem including convection [19]. The optimization goal consists
in determining the heat flux at the fixed boundary of the solid phase and is
solved by a conjugated gradient algorithm, where the sensitives are determined
using the adjoint approach.

Yang in [16] extends the approach of [19] to the case where the tempera-
ture at the fixed boundary in the liquid phase is also variable. To separate the
problems for each phase the heat flux into the free boundary is assumed to be
given. The minimization problem in the liquid phase consists in determining
the temperature at the fixed boundary considering heat conduction, convec-
tion and the Stefan condition, such that the error of the temperature at the
free boundary ‖ϑm − ϑ(x, t)‖2

L2(Γ×[0,T]) is minimized, with the position of the
free boundary and heat flux into the free boundary given. The minimization
problem for the solid phase then reads as in [7] and [19]: Given the position
and the heat flux of the free boundary, find the heat flux on the fixed boundary
such that the error of the temperature at the free boundary is minimized.

2

Let us comment more detailed on the differences of our approach compared
to those presented by Kang and Zabaras in [7], Zabaras and Nguyen in [19],
and Yang in ([16]). In these approaches the heat flux into the free boundary
needs to be specified a-priori in the optimization problem. This is unusual
since in an optimization approach to a Stefan problem the heat flux into the
free boundary should be variable and not be specified a-priori. Zabaras et al.
resolve this problem by fixing the heat flux into the liquid phase (see above).
As a consequence only the heat flux into the solid phase may serve as control
variable in his approach. This is different in the approach presented here,
where the heat fluxes into both, the liquid and the solid phase are variable and
therefore may serve as control variables. This in turn gives further flexibility
in the optimization process. Yang fixes the heat flux into the free boundary
a-priori, which is usually unknown in practice. As already mentioned above,
both, the approach of Zabaras et al. and Yang have in common that the free
boundary is a-priori fixed so that the Stefan condition probably is applied
at a wrong position and the underlying physics is not longer represented by
the mathematical model. Speaking in mathematical terms their approach only
guarantees a physical solution ϑ if ‖ϑm−ϑ(x, t)‖2

L2(Γ×[0,T]) = 0 is satisfied which
for a-priori fixed free boundaries certainly only happens by chance. We recall
that in the approach presented here every solution is guaranteed to satisfy the
mathematical system which certainly forms an advantage compared to the
approaches sketched above.

Let us also briefly comment on further literature related to our research.
In [3] the free boundary is controlled by thermostats acting on the bound-
ary. Instead of optimal control a feedback control based on real temperature
measurements is applied. As mathematical model a hyperbolic Stefan prob-
lem based on the the linearized Gurtin-Pipkin heat conduction law is used.
In [6] a one dimensional two-phase Stefan problem with “on - off” control is
analyzed.

In [5],[4] free boundary control is performed by inversion of the one di-
mensional Stefan problem with a quadratic nonlinear reaction term. Kearsley
in [8] controls the amount of melted material for a Stefan problem using a
sequential quadratic programming algorithm.

Pawlow in [10], [11] presents an approach, where the error between a desired
temperature ϑd and the temperature of the substance is to be minimized over
the whole space-time domain using boundary control. She considers a two-
phase Stefan problem which is transformed into a variational inequality, and
also develops an efficient gradient type algorithm based on the adjoint system
approach.

The present paper is organized as follows. Section 2 contains the problem
specification including the physical model and the optimization problem. Fur-

3

ther an expression for the gradient of the cost functional is presented which
uses adjoint information. Section 3 contains the description of the numerical
approach taken in the present work, including a detailed discussion of the opti-
mization algorithm. Section 4 presents numerical results for the solidification
of a silicon melt, and the Appendix contains a detailed derivation of the ad-
joint system and of the compatibility conditions of the boundary temperature
at the intersection of the container wall and the free boundary.

2 Problem definition

2.1 Physical model

Let Ω ⊂ Rn+1 be a bounded domain containing the substance. For t ∈ [0, T]
let Ωs(t), Ωl(t) ⊂ Ω denote the parts containing the solid and the liquid phase,
where Ωs(t) ∩ Ωl(t) = ∅ and Ω = Ωs(t) ∪ Ωl(t). The free boundary is n-
dimensional and defined by Γ(t) = Ωs(t) ∩ Ωl(t), see Figure 1 for n = 1.

In each phase the heat equation for the absolute temperature holds;

∂tϑ =
ks

csρs

∆ϑ in Ωs, ∂tϑ =
kl

clρl

∆ϑ in Ωl . (1)

Here ks, kl are the heat conductivities in the solid and liquid phase, respec-
tively, cs, cl denote the specific heat capacities, and ρs, ρl the corresponding
densities.

The Stefan condition is a conservation law on the free boundary which
balances the heat transported into the free boundary and the melting heat

Ωs Ωl

∂ΩΓ

Figure 1: Solid phase Ωs, liquid phase Ωl and free boundary Γ in a container
with boundary ∂Ω.

4

generated through solidification. In mathematical terms it reads

VΓ(Ll − Ls) =
ks

ρs

∂µϑ|Ωs −
kl

ρl

∂µϑ|Ωl
=: −

[ks/l

ρs/l

∂µϑ
]

Γ
on Γ . (2)

Here µ denotes the unit normal vector of the free boundary, directed from
the solid into the liquid phase. VΓ is the velocity in direction of µ and L is
the latent heat per unit volume in each of the phases. The right hand side of
(2) describes the heat transported into the boundary and the left hand side
describes the (melting) heat which is generated by the solidification, see [9],
[15], [8] for a description of this model.

At the free boundary Γ the temperature satisfies

ϑ = ϑM , (3)

where ϑM denotes the melting temperature.
The temperature ϑb of the container is coupled to the temperature at the

phase boundaries through the heat transfer equation

q = αs/l(ϑ− ϑb) on ∂Ωs/l ,

where the heat flow density q is given by q = ks/l∂νϑ. (α = 0 would refer to
the case that the container is isolated.) This leads to a third order boundary
condition of the form

ϑ +
ks/l

αs/l
∂νϑ = ϑb on ∂Ω , (4)

where ν is the outer normal vector of the boundary ∂Ω, i.e. µ = ν|∂Ωs = −ν|∂Ωl

on Γ.
To avoid problems with mass conservation we assume ρl = ρs = ρ, which

forms no real restriction since in most practical applications the density in solid

and liquid phase is approximately equal. We set u := ϑ−ϑM

ρ(Ll−Ls)
and Ds/l :=

ks/l

cs/lρ

so that equations (1) - (4) transform into

∂tu = Ds/l∆u in Ωs/l

VΓ = −
[
ks/l∂µu

]
Γ

on Γ,

u = 0 on Γ,

ub = u +
ks/l

αs/l
∂νu on ∂Ω.

As initial value conditions we now have

u(0, x) = u0(x) in Ω and

Γ(0) = Γ0 .

5

2.2 Optimization Problem

Our goal is to control the free boundary using the boundary temperature
ub(t, x) on the container walls. As control horizon we take t ∈ (0, T] for some
T > 0. We split ub into two parts:

ub = ub0 + βubc ,

with a fixed part ub0 (e.g. a temperature known from experience), and a
control temperature part βubc, where β is a weight function which allows to
tailor the control part of the boundary condition.

The domain is assumed a-priori known to be a container of the form Ω =
(0, X1)× (0, X2)× · · · × (0, Xn+1). The free boundary is described as a graph

Γ(t) =

{(
y

f(t, y)

)
: y ∈ [0, X1]× · · · × [0, Xn]

}
with f : [0, T] × [0, X1] × · · · × [0, Xn] → [0, Xn+1]. For the ease of notation
we define S := [0, X1]× · · · × [0, Xn].

We model the desired evolution Γ also as a graph by f : [0, T] × S →
[0, Xn+1], and then are in the position to formulate the objective functional of
our minimization problem;

J(f, ubc) :=
1

2

T∫
0

∫
S

(
f(t, y)− f(t, y)

)2
dydt

+
λ2

2

∫
S

(
f(T, y)− f(T, y)

)2
dy

+
λ1

2

T∫
0

∫
∂Ω

β(t, x)2ubc(t, x)2dxdt

= min!
ubc

.

(5)

The first two terms in this expression model the objective in our minimization
problem with λ2 weighing the deviation of the free boundary from the desired
free boundary at time t = T . The third term weighs the control cost with λ1.

Next we develop equations for the velocity of a graph in the two dimensional
case (n = 1). The tangential vector of the graph

Γ(t) =
{(y

f(t, y)

)
: y ∈ [0, X1]

}
6

at the point y is given by
(
1 fy(t, y)

)T
, and the normal µ can be expressed as

µ(t, y) =
1√

1 + fy(t, y)2

(
−fy(t, y)

1

)
.

For the velocity of the graph in normal direction we obtain

VΓ(t, y) :=
∂

∂t

(
y

f(t, y)

)T

µ(t, y) =
1√

1 + fy(t, y)2

(
0

ft(t, y)

)T (−fy(t, y)
1

)
=

ft(t, y)√
1 + fy(t, y)2

.

(6)

Next we specify the initial and boundary conditions for f . For this purpose
we recall that f denotes the desired evolution of the free boundary. As initial
condition we set f(0, y) = f(0, y) and define f0(y) := f(0, y). Moreover we
introduce the following boundary condition for f ;

f(t, 0) = f(t, 0) , f(t,X1) = f(t,X1) . (7)

Besides the fact that we intend to incorporate as much a-priori information as
possible into our mathematical model, this choice simplifies our moving grid
implementation. Especially it avoids the need of an additional boundary grid
for the boundary temperature, and this avoids the interpolation of its values
between the two grids. Further details are given in Section 3.5.

To ensure continuity at the intersection of the container wall and the free
boundary the introduction of (7) requires the following compatibility condi-
tions for ub, whose detailed derivation is presented in Appendix B;

f tfy

1 + f 2
y

= (αs − αl)ub on (0, T]× {
(
0, f(t, 0)

)
}, (8)

f tfy

1 + f 2
y

= −(αs − αl)ub on (0, T]× {
(
X1, f(t,X1)

)
}. (9)

Since fy is unknown we also specify fy with the help of f as follows;

fy(t, 0) = f y(t, 0) , fy(t,X1) = f y(t,X1) . (10)

The continuity of our system finally leads to

∂e2ub|Ωs/l
=

f t

1 + f
2

y

(
1

αs − αl

(αs/l

ks/l

+ 2
f yfyy(

1 + f
2

y

)2)− ub

Ds/l

)

−
f yt

(αs − αl)
(
1 + f

2

y

)2
(11)

7

on (0, T]× {
(
0, f(t, 0)

)
}, and

∂e2ub|Ωs/l
=

f t

1 + f
2

y

(
1

αs − αl

(αs/l

ks/l

− 2
f yfyy(

1 + f
2

y

)2)− ub

Ds/l

)

+
f yt

(αs − αl)
(
1 + f

2

y

)2
(12)

on (0, T]×{
(
X1, f(t,X1)

)
}. Since fyy is unknown in these equations we further

set

fyy(t, 0) = f yy(t, 0) , fyy(t,X1) = f yy(t,X1) . (13)

Appendix B contains a detailed derivation of these compatibility conditions.
To anticipate the discussion of Section 3.5 we note, that these boundary condi-
tions are motivated mathematically. In particular they simplify the numerical
implementation.

Further we need to ensure that the boundary condition is satisfied for t = 0,
i.e. we need to set

ub(0, x) = u0(x) +
ks/l

αs/l
∂νu0(x) . (14)

We recall that the temperature ub on the container wall is split into two
parts, i.e. ub = ub0 + βubc. Now we require that ub0 satisfies the compatibility
conditions (8), (9), (11), (12) and (14) and assume

β(t, x) = ∂e2β(t, x) = 0 for x ∈ Γ ∩ ∂Ω and t ∈ (0, T],

β(0, x) = 0 for x ∈ ∂Ω.
(15)

These conditions ensure that ub for every choice ubc satisfies (8), (9), (11), (12)
and (14), so that ubc may serve as the control variable in our optimization
problem specified below. Particular choices for β are presented in Section 4.1.

Our optimization problem now reads

J(f, ubc) :=
1

2

T∫
0

X1∫
0

(
f(t, y)− f(t, y)

)2
dydt

+
λ1

2

T∫
0

∫
∂Ω

β(t, x)2ubc(t, x)2dxdt

+
λ2

2

X1∫
0

(
f(T, y)− f(T, y)

)2
dy

= min!
u,f,ubc

(16)

8

subject to the conditions

∂tu(t, x)−Ds/l∆u(t, x) = 0 for t ∈ (0, T] and x ∈ Ωs/l(t), (17)

ft(t, y) +
√

1 + fy(t, x)
[
ks/l∂µu

](
t,

(
y

f(t, y)

))
= 0 (18)

for t ∈ (0, T] and y ∈ (0, X1),

u(t, x) = 0 for x =

(
y

f(t, y)

)
, t ∈ (0, T] and y ∈ (0, X1), (19)

ks/l

αs/l
∂νu(t, x) + u(t, x)− ub0(t, x)− β(t, x)ubc(t, x) = 0 (20)

for t ∈ (0, T) and x ∈ ∂Ωs/l(t) \ Γ(t),

u(0, x) = u0(x) for x ∈ Ω, (21)

f(0, y) = f(0, y) for y ∈ [0, X1], and (22)

f(t, 0) = f(t, 0) f(t,X1) = f(t,X1) ,

fy(t, 0) = f y(t, 0) fy(t,X1) = f y(t,X1) ,

fyy(t, 0) = f yy(t, 0) fyy(t,X1) = f yy(t,X1)

 for t ∈ (0, T]. (23)

The functions ub0, β, f and u0 are given and the functions u, f , ubc are sought.
The equations (17) – (20) represent the heat equation, the Stefan condition,
the condition for the melting temperature and the heat transfer condition
at the boundary ∂Ω. The equations (21)–(23) represent the initial and the
boundary conditions for u and f . From here onwards we assume that the
optimization problem admits a solution (u∗, f∗, u∗bc).

2.3 Sensitives via the adjoint equation approach

We now formally derive the first order necessary optimality condition for the
minimization problem (16) – (23) using the Lagrange approach. The Lagrange

9

functional associated to the minimization problem (16) – (20) is given by

L(f, u, ubc, ps, pl, pbs, pbl, pΓ,1, pΓ,2)

:= J(f, ubc) +

T∫
0

∫
Ωs

(
∂tu−Ds∆u

)
ps +

T∫
0

∫
Ωl

(
∂tu−Dl∆u

)
pl

+

T∫
0

X1∫
0

(√
1 + f 2

y

[
ks/l∂µu

]
◦ Φ + ft

)
pΓ,1 +

T∫
0

X1∫
0

(u ◦ Φ)pΓ,2

+

T∫
0

∫
∂Ωs(t)\Γ(t)

(
ks

αs
∂νu + u− ub0 − βubc

)
pbs

+

T∫
0

∫
∂Ωl(t)\Γ(t)

(
kl

αl
∂νu + u− ub0 − βubc

)
pbl ,

where u and f are required to satisfy (21) – (23), and with

Φ(t, y) :=

(
t,

(
y

f(t, y)

))
.

The functions ps, pl, pbs, pbl, pΓ,1 and pΓ,2 denote the Lagrange multipliers
associated to (17) – (20). The first-order necessary optimality condition for
our optimization problem now is given by

∇L = 0 , (24)

and the adjoint equation system for our problem is defined through

Luũ = 0 and Lf f̃ = 0

for all feasible directions ũ and f̃ . (Lu and Lf here denote the directional
derivatives of L with respect to u and f , respectively.) Using the normaliza-
tions

ps =
ks

Ds

qs on Ωs, pl =
kl

Dl

ql on Ωl, qΓ = −pΓ,1 , (25)

these conditions lead to the following adjoint equation system.

∂tqs(t, x) + Ds∆qs(t, x) = 0

∂tql(t, x) + Dl∆ql(t, x) = 0
for

x ∈ Ωs(t)

x ∈ Ωl(t)
and t ∈ (0, T), (26)

10

qs(t, x) = − ks

αs
∂νqs(t, x)

ql(t, x) = − kl

αl
∂νql(t, x)

for
x ∈ ∂Ωs(t) \ Γ(t)

x ∈ ∂Ωl(t) \ Γ(t)
and t ∈ (0, T), (27)

pbs(t, x) = αsqs(t, x)

pbl(t, x) = αlql(t, x)
for

x ∈ ∂Ωs(t) \ Γ(t)

x ∈ ∂Ωl(t) \ Γ(t)
and t ∈ (0, T), (28)

qs(T) = 0

ql(T) = 0
for

x ∈ Ωs(t)

x ∈ Ωl(t) ,
(29)

qs(t, x) = qΓ(t, y) for t ∈ (0, t), y ∈ (0, X1) and x =

(
y

f(t, y)

)
, (30)

ql(t, x) = qΓ(t, y) for t ∈ (0, t), y ∈ (0, X1) and x =

(
y

f(t, y)

)
, (31)

−∂tqΓ(t, y) = f(t, y)− f(t, y) (32)

for t ∈ (0, t), y ∈ (0, X1) and x =

(
y

f(t, y)

)
,

qΓ(T, y) = λ2

(
f(T, y)− f(T, y)

)
for y ∈ [0, X1) and (33)

qΓ(t, 0) = qΓ(t,X1) = 0 for t ∈ [0, t]. (34)

Equations (26) – (31) are deduced from Luũ = 0. They describe a “backward
heat equation” in each phase with homogeneous third-order boundary condi-
tions on the container boundary and Dirichlet boundary conditions on the free
boundary. The functions ps, pl are the adjoint temperatures in the phases, and
pbs and pbl are the adjoint temperatures on the container boundary. The func-
tion pΓ is the adjoint graph function and is determined by Luũ = 0 ∧ Lf f̃ = 0,
which leads to (32) – (34). This equations can be equivalently written as

qΓ(t, y) = λ2

(
f(T, y)− f(T, y)

)
+

t∫
T

f(s, y)− f(s, y)ds .

11

Appendix A contains a detailed derivation of the adjoint equation system.
Now we assume that the Stefan problem for every ubc admits a unique

solution. In particular we consider f as a function of ubc, f = f(ubc). With
these assumptions it is meaningful to define the reduced cost functional

K(ubc) := J
(
f(ubc), ubc

)
,

and it is well known, that

K ′(ubc) = Lubc
(f, u, ubc, ps, pl, pbs, pbl, pΓ,1, pΓ,2)

holds. Since here

Lubc
(f, u, ubc, ps, pl, pbs, pbl, pΓ,1, pΓ,2)(t, x)

= λ1β(t, x)2ubc(t, x)−

βpbs(t, x) : for x ∈ ∂Ω \ ∂Ωl

0 : for x ∈ ∂Ω ∩ Γ

βpbl(t, x) : for x ∈ ∂Ω \ ∂Ωs

and all t ∈ (0, T], there holds

K ′(ubc)(t, x) = λ1β(t, x)2ubc(t, x)−

βαsqs(t, x) : for x ∈ ∂Ω \ ∂Ωl

0 : for x ∈ ∂Ω ∩ Γ

βαlql(t, x) : for x ∈ ∂Ω \ ∂Ωs ,

(35)

where we have used (28). As a consequence the gradient K ′(ubc) for given ubc

can be computed by first solving (17) – (23) for u, f , and then by solving (26)
– (34) for the adjoint variables.

In our case the optimally condition (24) is equivalent to

K ′(ubc) = 0 . (36)

In Section 3 we introduce a gradient method with line search to solve this
equation numerically.

Remark 2.1 In practical applications pointwise bounds apply to boundary
controls, i.e. a ≤ ubc ≤ b has to hold with some functions a and b satisfying
a < b. In this case the first order necessary optimally condition reads

T∫
0

∫
∂Ω

K ′(ubc)(t, x)
(
v(t, x)− ubc(t, x)

)
dxdt ≥ 0 (37)

for all boundary functions v satisfying a ≤ v ≤ b.

12

3 The numerical approach

The algorithmical approach we take is an explicit finite difference approach on
a moving grid on Ω = (0, X1)× (0, X2). To be more precise we define the grid
G at the time instance t by

G(t) :=
{
xij(t) : 0 ≤ i ≤ N1;−N2 ≤ j ≤ N2} with xi,j(t) =

(
xij,1(t), xij,2(t)

)
and fix the discretization in the first spatial direction (e1-direction) by

xij,1(t) = yi(t) =

X1

2

(
1−

(
1− 2i

N1

)δ
)

: i
N1

< 1
2

X1

2

(
1 +

(
2i
N1
− 1
)δ
)

: i
N1
≥ 1

2
,

(38)

where the parameter δ is used to adjust the grid width at the boundary, see
Figure 2. Practical values are 0.3 < δ ≤ 1. The discretization of the second
direction (e2 direction) at t = 0 is defined by

xij,2(0) =

f0(yi)
(
1 + j

N2

)
: j < 0

f0(yi)
(
1− j

N2

)
+ X2

j
N2

: j ≥ 0 .
(39)

The polygon defined by the points {xi0(0)} is the discretized free boundary
Γ0.

For the time discretization we use the equidistant grid

τ :=
T

Nt

, tl = lτ, l = 0, . . . , Nt.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

e 1

e2

δ = 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

e 1

e2

δ = 1.0

Figure 2: Two grids with different parameters δ. Between the free boundary
and the cylinder boundary the grid is equidistant in e2 direction. For δ = 1 it
is also equidistant in e1 direction.

13

With ûij(tl) and f̂i(tl) the discrete temperature ûij(tl) ≈ u
(
tl, xij(tl)

)
and the

discrete free boundary f̂i(tl) ≈ f(tl, yi) are described. The discrete versions of
the other variables are also supplemented with a hat.

For the numerical solution of the equation

K ′(ubc) = 0

we use the following gradient algorithm.

C0: Initialization of û
(0)
bc :

û
(0)
bc,ij = 0 for i = 1, N1 and j = N2 + 1, . . . , N2 − 1,

û
(0)
bc,ij = 0 for |j| = N2 and i = 1, . . . , N1 − 1.

FWD: Forward step 0: computation of û(0), f̂ (0) using û
(0)
bc = 0

S1: For all 1 ≤ k ≤ kmax

BWD: Solving of the adjoint equation system

GRD: Computation of the gradient K̂ ′(û
(k−1)
bc) =: v̂(k)

LM: Line minimization: K̂(û
(k−1)
bc + s(k)v̂(k)) = min!

s(k)

FWD: Forward step k: computation of û(k), f̂ (k) using

û
(k)
bc = û

(k−1)
bc + s(k)v̂(k) .

The particular steps are described in detail in the following subsections. Suit-
able stopping criterions are

kmax := min
{

k :
Ĵ (k−1) − Ĵ (k)

Ĵ (0)
≤ εJ

}
(40)

and/or

kmax := min
{

k :
‖s(k)v̂(k)‖
‖ub0‖2

≤ εv

}
. (41)

14

3.1 FWD: Forward step k

FWD.0: Initialization of the temperature û
(k)
ij (0) = u0

(
x

(k)
ij (0)

)
and of

the grid, see (38) and (39).

FWD.1: For all l = 1, . . . , Nt

FWD.1.1 Computation of the motion of the free boundary using the
Stefan condition:

∆f̂
(k)
i (tl) =

(
ks∂̂

−

e2
u

(k)
i0 (tl−1)− kl∂̂

+

e2
u

(k)
i0 (tl−1)

)(
1 + ∂̂yf̂

(k)
i (tl−1)

2
)
τ ,

for all i = 1, . . . , N1 − 1, where ∂̂
∓
e2

û
(k)
i0 (tl−1) denotes the finite back-

ward/forward differences of ∂e2u
(
tl−1, x

(k)
i0 (tl−1)

)∣∣∣
Ωs/l

. The discrete free

boundary is equal to f̂
(k)
i (tl−1) = x̂

(k)
i0,2(tl−1), and ∂̂yf̂

(k)
i (tl−1) denotes

the finite difference corresponding to ∂yf(tl−1, yi).

Setting of the boundary values:

∆f̂
(k)
0 (tl) := fb1(tl)− fb1(tl−1) ∆f̂

(k)
N1

(tl) := fb2(tl)− fb2(tl−1) .

FWD.1.2 Computation of the new grid:

x
(k)
ij,2(tl) = x

(k)
ij,2(tl−1) + ∆f̂

(k)
i (tl)

(
1− |j|

N2

)
for all i = 0, . . . , N1 and j = −N2 + 1, . . . , N2 − 1.

FWD.1.3 Computation of the temperature at the new grid G(tl):

û
(k)
ij (tl) =û

(k)
ij (tl−1) + Ds/l∆̂û

(k)
ij (tl−1)τ

+ ∂̂e2û
(k)
ij (tl−1)

(
x

(k)
ij,2(tl)− x

(k)
ij,2(tl−1)

)
for i = 1, . . . , N1 − 1 and |j| = 1, . . . , N2 − 1. The terms ∆̂u

(k)
ij (tl−1)

and ∂̂e2u
(k)
ij (tl−1) denote the finite difference approximation of ∆u and

∂e2u at
(
tl−1, x

(k)
ij (tl−1)

)
.

15

FWD.1.4 Setting of the boundary values:

û
(k)
ij (tl) = ub

(
tl, x

(k)
ij (tl)

)
+ β

(k)
l,ij û

(k)
bc,ij(tl)∓

ks/l

αs/l
∂̂e1u

(k)
ij (tl)

for i = 0, N1 and j = −N2 + 1, . . . , N2 − 1,

û
(k)
ij (tl) = ub

(
tl, x

(k)
ij (tl)

)
+ β

(k)
l,ij û

(k)
bc,ij(tl)±

ks/l

αs/l
∂̂e2u

(k)
ij (tl)

for j = ±N2 and i = 1, . . . , N1 − 1,

where β
(k)
l,ij = β

(
x

(k)
ij (tl)

)
.

The first equation in Step FWD.1.1 is the discrete version of the Stefan Con-
dition (18) together with ∂µu = ∂e2u

√
1 + fy. For the computation of the

finite differences of the u-derivatives in step FWD.1.3 it has to be considered,
that the grid in general is not orthogonal. The grid line {x̂(k)

i0 (tl)} defines the

discrete free boundary: x̂
(k)
i0,2(tl) = f̂

(k)
i (tl). Both, in the solid phase (between 0

and f̂
(k)
i (tl)) and in the liquid phase (between f̂

(k)
i (tl) and X2) the grid points

are distributed equidistantly in e2 direction, see Figure 2.

3.2 BWD: Backward step k

For the backward problem the same grid {x(k−1)
ij (tl)} as for the (previous)

forward problem is used.

BWD.0: Initialization of the adjoint temperatures:

q̂
(k)
s,ij(T) = 0 for i = 0, . . . , N1, j = −N2, . . . ,−1,

q̂
(k)
l,ij(T) = 0 for i = 0, . . . , N1, j = 1, . . . , N2,

q̂
(k)
Γ,i (T) = λ2

(
f(T, yi)− f̂

(k−1)
i (T)

)
for i = 0, . . . , N1.

16

BWD.1: For all l = Nt − 1, . . . , 0

BWD.1.1 Setting of the adjoint temperatures q̂
(k)
s and q̂

(k)
l at the free

boundary:

q̂
(k)
s,i0(tl+1) = q̂Γ,i(tl+1) ,

q̂
(k)
l,i0(tl+1) = q̂Γ,i(tl+1) .

∂̂
±
e2

û
(k)
i0 (tl−1) denote the finite forward/backward differences, as de-

scribed above.

BWD.1.2 Computation of the adjoint temperature within the phases:

q̂
(k)
s,ij(tl) =q̂

(k)
s,ij(tl+1) + Ds∆̂q̂

(k)
s,ij(tl+1)τ

+ ∂̂e2 q̂
(k)
s,ij(tl+1)

(
x

(k−1)
ij,2 (tl)− x

(k−1)
ij,2 (tl+1)

)
q̂
(k)
l,ij(tl) =q̂

(k)
l,ij(tl+1) + Ds∆̂q̂

(k)
l,ij(tl+1)τ

+ ∂̂e2 q̂
(k)
l,ij(tl+1)

(
x

(k−1)
ij,2 (tl)− x

(k−1)
ij,2 (tl+1)

)
As in the forward algorithm, ∆̂q̂ denotes the finite difference approxi-
mation of ∆q.

BWD.1.3 Setting of the boundary values:

q̂
(k)
s,ij(tl) = ∓ ks

αs
∂̂e1q

(k)
s,ij(tl) for i = 0, N1 and j = 1, . . . , N2 − 1,

q̂
(k)
s,ij(tl) = ks

αs
∂̂e2q

(k)
s,ij(tl) for j = −N2 and i = 1, . . . , N1 − 1,

q̂
(k)
l,ij(tl) = ∓ kl

αl
∂̂e1q

(k)
l,ij(tl) for i = 0, N1 and j = −N2 + 1, . . . ,−1,

q̂
(k)
l,ij(tl) = − kl

αl
∂̂e2q

(k)
l,ij(tl) for j = N2 and i = 1, . . . , N1 − 1.

BWD.1.4 Computation of the adjoint temperature qΓ:

q̂
(k)
Γ,i (tl) = q̂

(k)
Γ,i (tl+1) + τ

(
f̂

(k−1)
i (tl)− f(tl, yi)

)
for i = 1, . . . , N1 − 1. Setting of the boundary values

q̂
(k)
Γ,0(tl) = q̂

(k)
Γ,N1

(tl) = 0 .

17

3.3 GRD: Computation of the gradient

The numerical approximation of the gradient is computed according to (35);

GRD: Computation of the gradient:

v̂
(k)
ij (tl) =λ1β

(k)2
l,ij u

(k−1)
bc,ij (tl)

−

αsβ
(k)
l,ijq

(k)
s,ij(tl) for i = 0, N1 and j = 1, . . . , N2

αsβ
(k)
l,ijq

(k)
s,ij(tl) for j = −N2 and i = 0, . . . , N1

0 for j = 0 and i = 0, N1

αlβ
(k)
l,ijq

(k)
l,ij(tl) for i = 0, N1 and j = −N2, . . . ,−1,

αlβ
(k)
l,ijq

(k)
l,ij(tl) for j = N2 and i = 0, . . . , N1

and for l = 1...Nt.

3.4 LM: Line minimization

We use a quadratic approximation approach for line minimization of

s(k) = argmin K(s) where K(s) := K
(
û

(k−1)
bc + sv̂(k)

)
.

If we would evaluate K on the same grid as the one used for the forward
and backward step, the line minimization would require the main part of the
computation time. Numerical experience shows that high accuracy of s(k)

isn’t required. Therefore in line minimization we evaluate K on a grid which
is twice as coarse as the grid used for the forward and backward step. This
increases the computational speed by a factor of eight. With Ǩ we denote the
discrete version of K computed on the coarse grid.

LM.0: Choose three initial values: s
(k)
0,0 < s

(k)
1,0 < s

(k)
2,0

LM.1: For all l = 1, . . . , lmax

LM.1.1: Determine the quadratic function

q ∈ Π2 satisfying q(s
(k)
i,l−1) = Ǩ(s

(k)
i,l−1) for i = 0, 1, 2

and set

s
(k)
l = argmin

s≥0
q(s) .

18

LM.1.2: Set the new support points:

if s
(k)
l < s

(k)
0,l−1:

s
(k)
0,l = s

(k)
l s

(k)
1,l = s

(k)
0,l−1 s

(k)
2,l = s

(k)
2,l−1

else if s
(k)
0,l−1 ≤ s

(k)
l < s

(k)
1,l−1:

s
(k)
0,l = s

(k)
0,l−1 s

(k)
1,l = s

(k)
l s

(k)
2,l = s

(k)
1,l−1

else if s
(k)
1,l−1 ≤ s

(k)
l < s

(k)
2,l−1:

s
(k)
0,l = s

(k)
1,l−1 s

(k)
1,l = s

(k)
1,l−1 s

(k)
2,l = s

(k)
2,l−1

else

s
(k)
0,l = s

(k)
0,l−1 s

(k)
1,l = s

(k)
2,l−1 s

(k)
2,l = s

(k)
l

LM.1.3: if s
(k)
2,l − s

(k)
0,l < ε

(
|s(k)

0,l |+ |s(k)
2,l |
)

then GOTO LM.2

LM.2: Setting s(k) to the last minimum in LM.1.1: s(k) = s
(k)
l

3.5 Discussion of equations (7)–(13)

Enforcing f(t, 0) = f(t, 0) and f(t,X1) = f(t,X1) in (7) simplifies the nu-
merical implementation. With this setting the grid points at the container
boundary x

(k)
ij with i = 0, N1 or |j| = N2 are known a priori. (This means,

that they are independent of the gradient iteration k, unlike the grid points on
the rest of the grid). This allows us to use these grid points for the discretiza-
tion of the container boundary, because these points have to be specified a
priori in order to store the data, e.g. for û

(k)
bc and v̂(k).

4 Numerical results

4.1 Test problem

As test configuration for our optimal control approach we consider a container
of the size 20cm × 40cm filled with a silicon melt. We optimize the solidifica-
tion process over the time period [0, T] with T = 3600. The physical constants

19

for silicon are listed in Table 6. For αs/l we choose

αs = 0.1
J

s · cm2 ·K
and αl = 0.05

J

s · cm2 ·K
.

The desired free boundary is the moving line f(t, y) = 10 + 1
180

t. As initial
condition for the temperature we choose

u0(x) = u′s/l(x2 − 10) for x = (x1, x2) ∈ Ωs/l, (42)

where u′s and u′l are defined by

u′s/l :=
αs/l

180ks/l(αs − αl)
.

For the boundary value ub0 we choose

ub0(t, x) = u′s/l

(
x2 − f(t, 0)

)
+ νT e2

ks/l

αs/l
u′s/l (43)

for x ∈ ∂Ω and t ∈ [0, T].
For this choice of f the function ub0 in (43) satisfies the compatibility

conditions (8), (9), (11), (12) and (14). For β we consider the two cases

β1

(
t, (0, x2)

)
= β1

(
t, (X1, x2)

)
=

tx2

(
f(t,0)−x2

)2

Tf(t,0)3
: x2 < f(t, 0)

t
(

x2−f(t,0)
)2

(X2−x2)

T
(

X2−f(t,0)
)3 : x2 ≥ f(t, 0) ,

β1

(
t, (x1, 0)

)
= β1

(
t, (x1, X2)

)
=

t
√

x1(X1 − x1)

TX1

,

and

β2

(
t, (0, x2)

)
= β2

(
t, (X1, x2)

)
=

t
T

min
{

1, 2

(
f(t,0)−x2

)2

f(t,0)2

}
: x2 < f(t, 0)

t
T

min
{

1, 2

(
x2−f(t,0)

)2(
X2−f(t,0)

)2

}
: x2 ≥ f(t, 0) ,

β2

(
t, (x1, 0)

)
= β2

(
t, (x1, X2)

)
=

t

T

for x1 ∈ [0, X1] and x2 ∈ [0, X2]. We note that both these choices of β satisfy
(15).

At the corners (0, 0), (0, X2), (X1, 0) and (X1, X2) of the domain the func-
tion β1 is equal to 0. This means, that we enforce ubc = 0 at these points. This
prevents large boundary temperatures ub, i.e. the choice of β = β1 admits the

20

flavour of a regularization of the problem. Therefore we set λ1 = 0 in the case
β = β1. For β = β2 we set λ1 = 1.

The spatial grid contains 51 points in e1 direction and 101 points in e2

direction. This implies X1 = X2 = 50. We set δ = 0.6. The temporal grid
contains 75001 grid points, i.e. Nt = 75000. This means that the number of
optimization variables is approximately 4 · 108.

The computational time for one forward step (FWD) takes approximately
136s on a single AMD Athlon MP 2133 MHz, for the backward step (BWD)
it takes 133s and the average computation time for one line minimization step
(LM) is 142s.

ρ = 2.5 g
cm3

cs = 0.98 J
g·K cl = 2.3 J

g·K

ks = 0.56 J
s·cm·K kl = 0.22 J

s·cm·K

L = Ll − Ls = 16.4J
g

ϑM = 1420◦C

Table 6: Physical constants for silicon.

4.2 Results for the uncontrolled case

First we examine the results for the uncontrolled forward problem with ubc = 0
(Forward step 0 of the algorithm). Figure 3 shows the shape of the free
boundary, the temperature u and the graphs u

(
t, (0, x2)

)
and ub

(
t, (0, x2)

)
with respect to x2 at four different time instances, and Figure 4 shows the
corresponding grids. As expected forms the free boundary a concave graph
during its evolution.

The temperature images (e.g. in Figure 3) show white and grey stripes.
Every stripe represents a temperature interval corresponding to the legend
shown right. The black line depicts the free boundary. Above every temper-
ature image two graphs are plotted. The black one shows the temperature
u
(
t, (0, x2)

)
and the grey graph represents the temperature ub

(
t, (0, x2)

)
.

4.3 Results for the controlled case

Fist we examine the case β = β1 and λ1 = 0 for different weights λ2. Later
we compare these results with the results for the second case, β = β2 and

21

λ1 > 0. We present results obtained after the first gradient iteration together
with results obtained after the stopping criterion (40) is met, where we set
εJ = 10−5. Finally we compare the numerical performance obtained with the
stopping criterions (40) and (41).

We begin our numerical investigation with the parameter setting β = β1

and λ1 = λ2 = 0. This means that the error of the free boundary at time T is
not penalized. As already noted in Section 4.1, we avoid large temperatures on
the container wall by the choice of β = β1, which allows us to set λ1 = 0. Figure
5 shows the shape of the free boundary, the temperature and the boundary
temperature at three different time instances. (At t = 0 the temperature and
the free boundary are equal to the temperature and free boundary, respectively
of the uncontrolled problem.) Figure 7 presents the cost functional J for every

t = 0 t = 1200

t = 2400 t = 3600

Figure 3: The temperature u (white and grey stripes) and the free boundary
(black line), together with the temperatures u

(
t, (0, x2)

)
(black graph) and

ub

(
t, (0, x2)

)
(grey graph) at four different time instances for the uncontrolled

problem (ubc = 0).

22

gradient iteration k. As can be seen the error

J0 :=

T∫
0

X1∫
0

(
f(t, y)− f(t, y)

)2
dxdt (44)

is reduced very quickly, and that the optimized evolution of the free boundary
delivers a nearly flat graph at all time instances.

Next, we set λ2 = 500, β = β1 and λ1 = 0. The numerical results are
presented in Figure 8 (cost Functional) and Figure 6 (temperatures and free
boundary). With this parameter choice

J2 :=

X1∫
0

(
f(T, y)− f(T, y)

)2
dx (45)

is penalized. As expected, our numerical algorithm quickly reduces this error,
see Figure 12, where the behaviour of this part of the functional is illustrated
also for different parameter settings. The behaviour of J0 for the same pa-
rameter settings is shown in Figure 11. Again, the graph of the optimized
evolution is nearly flat.

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

t = 0

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

t = 1200

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

t = 2400

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

t = 3600

Figure 4: The grid for the uncontrolled problem at four different time in-
stances, see Figure 3

23

Now we investigate our second choice of β, i.e. we set β = β2 and λ1 = 1.
Since effects due to λ2 are similar to those in the case β = β1, λ1 = 0, we
now fix λ2 = 500. The temperatures are shown in Figure 9 and the iteration
history of the cost functional is presented in Figure 10. With this parameter
choice

J1 =

T∫
0

∫
∂Ω

β(t, x)2ubc(t, x)2dxdt (46)

is penalized. In Figures 11 and 12 it can be seen, that in the first gradient
iterations the errors J0 and J2 of the free boundary are reduced as quick as in
the case β = β1, λ1 = 0 with the same value for λ2. But after approximately
six iterations the errors J0 and J2 remain larger than in the cases β = β1,
λ1 = 0. This can be explained by the fact that the setting λ1 = 1 only allows
smaller control actions as in the case λ1 = 0. As a consequence the optimal
evolution of the free boundary in the present case is not as flat as in the case
β = β1, λ1 = 0.

Table 7 shows the number of iterations kmax resulting from the stopping
criterions (40) and (41). Using the first stopping criterion with εJ = 10−5 or
the second one with εv = 10−3 the algorithm converges quickly, and needs only
about 10 iterations. With the choice λ2 = 500 the algorithm converges a little
bit faster than with λ2 = 0.

With the tolerances εJ = 10−5 and εv = 10−3 the iteration numbers kmax

resulting from the stopping criterions (40) and (41) are very similar. For this
reason we only present numerical results obtained with stopping criterion (40),
see Figures 5, 6, 9.

β β1 β1 β2

λ1 0 0 1
λ2 0 500 500
kmax 14 10 9

stopping criterion (40)

β β1 β1 β2

λ1 0 0 1
λ2 0 500 500
kmax 12 10 9

stopping criterion (41)

Table 7: The number of iterations kmax resulting from the stopping criterions
(40) and (41) for all considered cases. As tolerances we set εJ = 10−5 and
εv = 10−3.

As a result we note that with all investigated parameter constellations
tracking of the desired evolution f works very well, see Figures 5, 6 and 9. In
particular we observe that the curvature of the optimized free boundary is in
all considered cases close to zero.

24

k = 1, t = 1200 k = 14, t = 1200

k = 1, t = 2400 k = 14, t = 2400

k = 1, t = 3600 k = 14, t = 3600

Figure 5: The temperature u (white and grey stripes) and the free boundary
(black line), together with the temperatures u

(
t, (0, x2)

)
(black graph) and

ub

(
t, (0, x2)

)
(grey graph). The images show the results for the case β = β1

and λ1 = 0 with λ2 = 0 at three different time instances after the first gradient
iteration (left) and after 14 gradient iterations, when the the stopping criterion
(40) is met.

25

k = 1, t = 1200 k = 10, t = 1200

k = 1, t = 2400 k = 10, t = 2400

k = 1, t = 3600 k = 10, t = 3600

Figure 6: The temperature u (white and grey stripes) and the free boundary
(black line), together with the temperatures u

(
t, (0, x2)

)
(black graph) and

ub

(
t, (0, x2)

)
(grey graph). The images show the results for the case β = β1

and λ1 = 0 with λ2 = 500 at three different time instances after the first
gradient iteration (left) and after 10 gradient iterations, when the the stopping
criterion (40) is met. With λ2 = 500 the error of the free boundary at time T
is reduced quicker than with λ2 = 0 (Figure 5).

26

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20

Gradient iteration number k

Jk
1/2

Figure 7: Iteration history of
√

J for the controlled problem with λ2 = 0 for
each gradient step k in the case β = β1 and λ1 = 0.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20

Gradient iteration number k

Jk
1/2

Figure 8: Iteration history of
√

J for the controlled problem with λ2 = 500
for each gradient step k for the case β = β1 and λ1 = 0.

27

k = 1, t = 1200 k = 9, t = 1200

k = 1, t = 2400 k = 9, t = 2400

k = 1, t = 3600 k = 9, t = 3600

Figure 9: The temperature u (white and grey stripes) and the free boundary
(black line), together with the temperatures u

(
t, (0, x2)

)
(black graph) and

ub

(
t, (0, x2)

)
(grey graph). The images show the results for the case β = β2

and λ1 = 1 with λ2 = 500 at three different time instances after the first
gradient iteration and after 9 gradient iterations, when the stopping criterion
(40) is met.

28

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20

Gradient iteration number k

Jk
1/2

Figure 10: Iteration history of
√

J for the controlled problem with λ2 = 500
for each gradient step k for the case β = β2 and λ1 = 1.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20

Gradient iteration number k

λ1=λ2=0, β=β1
λ1=0, λ2=500, β=β1
λ1=1, λ2=500, β=β2

Figure 11: Iteration history of the error of the free boundary
√

J0 (compare
(44)). In the cases λ1 = 0 the function J0 is reduced more, since these cases
only deal with minimizing the error of the free boundary.

29

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20

Gradient iteration number k

λ1=λ2=0, β=β1
λ1=0, λ2=500, β=β1
λ1=1, λ2=500, β=β2

Figure 12: Iteration history of the error of the free boundary
√

J2 at time T
(compare (45)). As expected, for λ2 > 0 the functional J2 is reduced most.

Conclusion

We present control of solidification for a two-phase Stefan problem with sharp
interface modeled as a graph. The control goal consists of tracking a prescribed
evolution of the free boundary.

Our optimization approach ensures that the physical laws constituted by
our mathematical model hold at every stage of the optimization process.
This is accomplished by regarding the interface itself as optimization vari-
able. We present several numerical examples which demonstrate the scope of
our method. In all numerical investigations the tracking of the interface works
very well.

The optimization procedure in all cases yields a boundary temperature
distribution which quickly guarantees the desired flat free boundary.

We currently extend our approach to mathematical models which also in-
corporate flow driven by convection, and also include Lorentz forces as addi-
tional control variable. Further our approach easily extends to other physical
models and/or other control configurations.

30

A Development of the adjoint equation sys-

tem

The directive derivative of L with respect to u is equal to

Luũ =

T∫
0

∫
Ωs

(
∂tũ−Ds∆ũ

)
ps +

T∫
0

∫
Ωl

(
∂tũ−Dl∆ũ

)
pl

+

T∫
0

X1∫
0

(√
1 + f 2

y

[
ks/l∂µũ

]
◦ Φ
)
pΓ,1 +

T∫
0

X1∫
0

(
ũ ◦ Φ

)
pΓ,2

+

T∫
0

∫
∂Ωs(t)\Γ(t)

(
ks

αs
∂ν ũ + ũ

)
pbs +

T∫
0

∫
∂Ωl(t)\Γ(t)

(
kl

αl
∂ν ũ + ũ

)
pbl .

Integration by parts of ∂tu with respect to t and of ∆u with respect to x leads
to

Luũ =

∫
Ωs

ũ(T, x)ps(T, x)dx−
∫
Ωs

ũ(0, x)ps(0, x)dx−
T∫

0

∫
Ωs

ũ∂tps

−
T∫

0

∫
∂Ωs\Γ

Dsps∂ν ũ−
T∫

0

∫
Γ

Dsps∂ν ũ

+

T∫
0

∫
∂Ωs\Γ

Ds∂νpsũ +

T∫
0

∫
Γ

Ds∂νpsũ−
T∫

0

∫
Ωs

Dsũ∆ps

+

∫
Ωl

ũ(T, x)pl(T, x)dx−
∫
Ωl

ũ(0, x)pl(0, x)dx−
T∫

0

∫
Ωl

ũ∂tpl

−
T∫

0

∫
∂Ωl\Γ

Dlpl∂ν ũ−
T∫

0

∫
Γ

Dlpl∂ν ũ

+

T∫
0

∫
∂Ωl\Γ

Dl∂νplũ +

T∫
0

∫
Γ

Dl∂νplũ−
T∫

0

∫
Ωl

Dlũ∆pl

+

T∫
0

X1∫
0

(√
1 + f 2

y

[
ks/l∂µũ

]
◦ Φ
)
pΓ,1 +

T∫
0

X1∫
0

(
ũ ◦ Φ

)
pΓ,2

31

+

T∫
0

∫
∂Ωs(t)\Γ(t)

(
ks

αs
∂ν ũ + ũ

)
pbs +

T∫
0

∫
∂Ωl(t)\Γ(t)

(
kl

αl
∂ν ũ + ũ

)
pbl .

The temperature u must not vary at t = 0, since u satisfies (21). This means
that ũ(0, x) has to vanish. Now we set Luũ = 0 for all feasible directions ũ.

1a. We start with setting Luũ = 0 for all ũ with ũ(t, x) = 0 and ∂ν ũ(t, x) = 0
for x ∈ ∂Ωs ∪ Ωl or t = T :

0 = −
T∫

0

∫
Ωs

(
∂tps + Ds∆ps

)
ũ

⇒ 0 = ∂tps(t, x) + Ds∆ps(t, x) for t ∈ (0, T) and x ∈ Ωs(t).

1b. We set Luũ = 0 for all ũ with ũ(t, x) = ∂ν ũ(t, x) = 0 for x ∈ ∂Ωs ∪ ∂Ωl

or t = T . Considering the equation above we obtain:

0 = −
T∫

0

∫
Ωl

(
∂tpl + Dl∆pl

)
ũ

⇒ 0 = ∂tpl(t, x) + Dl∆pl(t, x) for t ∈ (0, T) and x ∈ Ωl(t).

2a. We set Luũ = 0 for all ũ with ũ(t, x) = 0 for x ∈ ∂Ωl or t = T and
∂ν ũ(t, x) = 0 for x ∈ ∂Ωs ∪ ∂Ωl. Considering the equations above we
obtain:

0 =

T∫
0

∫
∂Ωs\Γ

(
Ds∂νps + pbs

)
ũ

⇒ pbs(t, x) = −Ds∂νps(t, x) for t ∈ (0, T) and x ∈ ∂Ωs(t) \ Γ(t).

2b. We set Luũ = 0 for all ũ with ũ(t, x) = 0 for x ∈ Γ or t = T and
∂ν ũ(t, x) = 0 for x ∈ ∂Ωs ∪ ∂Ωl. Considering the equations above we
obtain:

0 =

T∫
0

∫
∂Ωl\Γ

(
Dl∂νpl + pbl

)
ũ

⇒ pbl(t, x) = −Dl∂νpl(t, x) for t ∈ (0, T) and x ∈ ∂Ωl(t) \ Γ(t).

32

3a. We set Luũ = 0 for all ũ with ũ(t, x) = 0 for x ∈ Γ or t = T and
∂ν ũ(t, x) = 0 for x ∈ ∂Ωl. Considering the equations above we obtain:

0 =

T∫
0

∫
∂Ωs\Γ

(
−Dsps + ks

αs
pbs

)
∂ν ũ .

Substitution of pbs = −Ds∂νps (see 2a) leads to:

⇒
ps(t, x) = − ks

αs
∂νps(t, x)

pbs(t, x) =
Dsαs

ks

ps(t, x)
for t ∈ (0, T) and x ∈ ∂Ωs(t) \ Γ(t).

3b. We set Luũ = 0 for all ũ with ũ(t, x) = ∂ν ũ(t, x) = 0 for x ∈ Γ or t = T
Considering the equations above we obtain:

0 =

T∫
0

∫
∂Ωl\Γ

(
−Dlpl + kl

αl
pbl

)
∂ν ũ .

Substitution of pbl = −Dl∂νpl (see 2b) leads to:

⇒
pl(t, x) = − kl

αl
∂νpl(t, x)

pbl(t, x) =
Dlαl

kl

pl(t, x)
for t ∈ (0, T) and x ∈ ∂Ωl(t) \ Γ(t).

4a. We set Luũ = 0 for all ũ with ũ(t, x) = ∂ν ũ(t, x) = 0 for x ∈ Γ or
(t, x) ∈ {T} × Ωl(T) Considering the equations above we obtain:

0 =

∫
Ωs

ũ(T, x)ps(T, x)dx

⇒ ps(T, x) = 0 for x ∈ Ωs(T).

4b. We set Luũ = 0 for all ũ with ũ(t, x) = ∂ν ũ(t, x) = 0 for x ∈ Γ Considering
the equations above we obtain:

0 =

∫
Ωl

ũ(T, x)pl(T, x)dx

⇒ pl(T, x) = 0 for x ∈ Ωl(T).

33

5a. We set Luũ = 0 for all ũ with
(
ũ ◦Φ

)
(t, y) = 0 and

(
∂µũ ◦Φ

)
(t, y)

∣∣
Ωs

= 0

for y ∈ (0, X1) and t ∈ (0, T). For the integrals over Γ we have to change
the parametrization:

∫
Γ

g =

X1∫
0

‖Φy‖2 · g ◦ Φ =

X1∫
0

√
1 + f 2

y · g ◦ Φ

Considering this together with the equations above, we obtain:

0 =

T∫
0

X1∫
0

√
1 + f 2

y

(
klpΓ,1 + Dl(pl ◦ Φ)

)
(∂µũ

∣∣
Ωl
◦ Φ)

⇒ pΓ,1(t, y) = −Dl

kl

pl(t, x)

for t ∈ (0, t), y ∈ (0, X1) and x =

(
y

f(t, y)

)
.

5b. We set Luũ = 0 for all ũ with
(
ũ ◦ Φ

)
(t, y) = 0 for y ∈ (0, X1) and

t ∈ (0, T). Considering the equations above we obtain:

0 =

T∫
0

X1∫
0

√
1 + f 2

y

(
− kspΓ,1 + Ds(ps ◦ Φ)

)
(∂µũ

∣∣
Ωl
◦ Φ)

⇒ pΓ,1(t, y) = −Ds

ks

ps(t, x)

for t ∈ (0, t), y ∈ (0, X1) and x =

(
y

f(t, y)

)
.

5c. We set Luũ = 0 for all ũ. Considering the equations above we obtain:

0 =

T∫
0

X1∫
0

(√
1 + f 2

y

(
Ds∂νps ◦ Φ + Dl∂νpl ◦ Φ

)
+ pΓ,2

)
·
(
ũ ◦ Φ

)
⇒ pΓ,2(t, y) =

√
1 + f 2

y

[
Ds/l∂µps/l

](
t,

(
y

f(t, y)

))
(47)

for y ∈ (0, X1) and t ∈ (0, t).

34

With the substitutions (25) the adjoint equation system (26) - (31) follows.
As next we reassemble the Lagrange function by integration by parts (sim-

ilar as Luũ):

L =
1

2

T∫
0

X1∫
0

(f − f)2 +
λ1

2

T∫
0

∫
∂Ω

β2u2
bc +

λ2

2

X1∫
0

(
f(T, y)− f(T, y)

)2
dy

+

∫
Ωs

u(T, x)ps(T, x)dx−
∫
Ωs

u(0, x)ps(0, x)dx−
T∫

0

∫
Ωs

u∂tps

−
T∫

0

∫
∂Ωs\Γ

Dsps∂νu−
T∫

0

∫
Γ

Dsps∂νu

+

T∫
0

∫
∂Ωs\Γ

Ds∂νpsu +

T∫
0

∫
Γ

Ds∂νpsu−
T∫

0

∫
Ωs

Dsu∆ps

+

∫
Ωl

u(T, x)pl(T, x)dx−
∫
Ωl

u(0, x)pl(0, x)dx−
T∫

0

∫
Ωl

u∂tpl

−
T∫

0

∫
∂Ωl\Γ

Dlpl∂νu−
T∫

0

∫
Γ

Dlpl∂νu

+

T∫
0

∫
∂Ωl\Γ

Dl∂νplu +

T∫
0

∫
Γ

Dl∂νplu−
T∫

0

∫
Ωl

Dlu∆pl

+

T∫
0

X1∫
0

(√
1 + f 2

y

[
ks/l∂µu

]
◦ Φ + ft

)
pΓ,1 +

T∫
0

X1∫
0

(u ◦ Φ)pΓ,2

+

T∫
0

∫
∂Ωs(t)\Γ(t)

(
ks

αs
∂νu + u− ub0 − βubc

)
pbs

+

T∫
0

∫
∂Ωl(t)\Γ(t)

(
kl

αl
∂νu + u− ub0 − βubc

)
pbl .

35

Substituting the already known parts of the adjoint equation system we
obtain:

L =
1

2

T∫
0

X1∫
0

(
f − f

)2
+

λ1

2

T∫
0

∫
∂Ω

β2u2
bc +

λ2

2

X1∫
0

(
f(T, y)− f(T, y)

)2
dy

−
∫
Ωs

u(0, x)ps(0, x)dx−
∫
Ωl

u(0, x)pl(0, x)dx +

T∫
0

X1∫
0

ftpΓ,1

+

T∫
0

∫
∂Ωs(t)\Γ(t)

(
−ub0 − βubc

)
pbs +

T∫
0

∫
∂Ωl(t)\Γ(t)

(
−ub0 − βubc

)
pbl .

The directional derivative with respect to f is equal to

Lf f̃ =

T∫
0

X1∫
0

(f − f)f̃ + λ2

X1∫
0

(
f(T, y)− f(T, y)

)
f̃(T, y)dy +

T∫
0

X1∫
0

f̃tpΓ,1 .

Integration by parts leads to

Lf f̃ =

T∫
0

X1∫
0

(f − f)f̃ + λ2

X1∫
0

(
f(T, y)− f(T, y)

)
f̃(T, y)dy

+

X1∫
0

pΓ,1(T, y)f̃(T, y)dy −
X1∫
0

pΓ,1(0, y)f̃(0, y)dy −
T∫

0

X1∫
0

∂tpΓ,1f̃ .

The function f must not vary at t = 0, since f satisfies (22). This means that
f̃(0, y) vanish. We set Lf f̃ = 0 for all feasible directions f̃ .

1. We set Lf f̃ = 0 for all f̃ with f̃(T, y) = 0 (y ∈ [0, x1]). Considering the
re-parametrization we obtain:

0 =

T∫
0

X1∫
0

(
f − f − ∂tpΓ,1

)
f̃

⇒ −∂tpΓ,1 = f(t, y)− f(t, y)

for t ∈ (0, T) and y ∈ (0, X1).

36

2. Finally we set Lf f̃ = 0 for all f̃ . Considering the equations above we
obtain.

0 =

X1∫
0

(
λ2

(
f(T, y)− f(T, y)

)
+ pΓ,1(T, y)

)
f̃(T, y)dy

⇒ pΓ,1(T, y) = λ2

(
f(T, y)− f(T, y)

)
for y ∈ (0, X1).

With the substitutions (25) the adjoint equation system (32) - (34) follows.

B Compatibility conditions (8), (9), (11) and

(12)

To derive (8), (9), (11) and (12) we assume continuity of our mathematical
system at the intersection of the free boundary and the container wall. In the
present two-dimensional setting we need to distinguish two cases, namely the
intersection at {

(
0, f(t, 0)

)
} and the intersection at {

(
X1, f(t,X1)

)
}. Since

these cases only differ in signs we distinguish between the two cases using
“±” and “∓”, respectively, where the upper sign refers to the intersection at
{
(
0, f(t, 0)

)
} and the lower sign refers to the intersection at {

(
X1, f(t,X1)

)
}.

Theorem B.1
If u(t, x), ub(t, x) and ∇u(t, x) are continuous with respect to x and ft(t, y) is
continuous with respect to y, the following equations are satisfied on (0, T]×
{
(
0, f(t, 0)

)
} and on (0, T]× {

(
X1, f(t,X1)

)
}, respectively;

ftfy

1 + f 2
y

= ±(αs − αl)ub , and (48)

∂e2ub

∣∣
Ωs/l

=
ft

1 + f 2
y

(
1

αs − αl

(αs/l

ks/l

± 2
fyfyy(

1 + f 2
y

)2)− ub

Ds/l

)
∓ fyt

(αs − αl)
(
1 + f 2

y

)2 .

(49)

These form the compatibility conditions (8), (9), (11) and (12).

Proof of (48): Let us recall some identities for the normal vector at the free
boundary and the temperature gradient at the container wall;

µ =
1√

1 + f 2
y

(
−fy

1

)
∇u =

(
∂e1u
∂e2u

)
=

(
∓∂νu
∂e2u

)
.

37

The tangential vector τ at the free boundary is given by

τ =
1√

1 + f 2
y

(
1
fy

)
.

From the melting temperature condition u = 0 on the free boundary we obtain

∂τu =
∓∂νu

∣∣
Ωs/l

+ fy∂e2u
∣∣
Ωs/l√

1 + f 2
y

= 0 ,

which implies

±∂νu
∣∣
Ωs/l

= fy∂e2u
∣∣
Ωs/l

. (50)

Using ∂µu =
±fy∂νu+∂e2u√

1+f2
y

and (50) we obtain;

fy∂µu
∣∣
Ωs/l√

1 + f 2
y

=
±f 2

y ∂νu
∣∣
Ωs/l

+ fy∂e2u
∣∣
Ωs/l

1 + f 2
y

=
(50)

±f 2
y ∂νu

∣∣
Ωs/l

± ∂νu
∣∣
Ωs/l

1 + f 2
y

= ±∂νu
∣∣
Ωs/l

.

(51)

From the boundary condition ub−u =
ks/l

αs/l
∂νu
∣∣
Ωs/l

and from u = 0 on the free

boundary it follows that

ub =
ks/l

αs/l
∂νu
∣∣
Ωs/l

. (52)

Using the calculations above and substituting ft by the Stefan condition (18)
we finally obtain

fyft

1 + f 2
y

=
(Stefan cond.)

−kl

fy∂µu
∣∣
Ωl√

1 + f 2
y

+ ks

fy∂µu
∣∣
Ωs√

1 + f 2
y

=
(51)

∓kl∂νu
∣∣
Ωl
± ks∂νu

∣∣
Ωs

=
(52)

±(αs − αl)ub ,

which is (48). �

Proof of (49): By (50) and (51) we obtain

∂µu
∣∣
Ωs/l√

1 + f 2
y

= ∂e2u
∣∣
Ωs/l

. (53)

From the boundary condition ub = u +
ks/l

αs/l
∂νu it follows that

∂e2ub

∣∣
Ωs/l

= ∂e2u
∣∣
Ωs/l

+
ks/l

αs/l
∂e2∂νu

∣∣
Ωs/l

. (54)

Thus we need to derive formulations for ∂e2u and ∂e2∂νu.

38

First we consider ∂e2u. From (51), (52) and (48) it follows that

fy∂µu
∣∣
Ωs/l√

1 + f 2
y

=
(51)

±∂νu
∣∣
Ωs/l

=
(52)

±
αs/l

ks/l

ub =
(48)

αs/l

(αs − αl)ks/l

· ftfy

1 + f 2
y

,

which implies

∂µu
∣∣
Ωs/l

=
αs/l

(αs − αl)ks/l

· ft√
1 + f 2

y

. (55)

From (53) we obtain

∂e2u
∣∣
Ωs/l

=
αs/l

(αs − αl)ks/l

· ft

1 + f 2
y

. (56)

The expression ∂ν∂e2u is composed of ∂τ∂e2u and ∂µ∂e2u. In order to derive
expressions for the latter quantities we need to provide derivatives in direction

τ of re-parametrized variables of the form g

((
y

f(y)

))
. Forming limits gives

∂τg

((
y

f(y)

))
= lim

ε→0

g

((
y

f(y)

)
+ ε√

1+f2
y

(
1

fy(y)

))
− g

((
y

f(y)

))
ε

= lim
ε→0

ε√
1+f2

y

∇gT

(
1
fy

)
ε

=
1√

1 + f 2
y

∂yg

((
y

f(y)

))
Now the expression for ∂τ∂e2u follows from (56);

∂τ∂e2u
∣∣
Ωs/l

=
αs/l

(αs − αl)ks/l

· ∂y

(
ft

1 + f 2
y

)
1√

1 + f 2
y

=
αs/l

(αs − αl)ks/l

(
fty

(1 + f 2
y)1.5

− 2
ftfyfyy

(1 + f 2
y)2.5

)
.

(57)

From the heat equation at the free boundary (∂2
τu = 0) and from (55) it

follows that

Ds/l∂
2
µu
∣∣
Ωs/l

= ∂tu
∣∣
Ωs/l

= −VΓ∂µu
∣∣
Ωs/l

= − ft√
1 + f 2

y

∂µu
∣∣
Ωs/l

=
(55)

−
αs/l

(αs − αl)ks/l

· f 2
t

1 + f 2
y

,

39

and by substitution of (53) we obtain

∂µ∂e2u
∣∣
Ωs/l

= −
αs/l

(αs − αl)ks/lDs/l

· f 2
t

(1 + f 2
y)1.5

. (58)

Finally we can derive an expression for ∂e2∂νu from (57) and (58);

∂ν∂e2u
∣∣
Ωs/l

= νT τ∂τ∂e2u
∣∣
Ωs/l

+ νT µ∂µ∂e2u
∣∣
Ωs/l

= ∓

(
1√

1 + f 2
y

∂τ∂e2u
∣∣
Ωs/l

− fy√
1 + f 2

y

νT µ∂µ∂e2u
∣∣
Ωs/l

)

= ∓
αs/l

(αs − αl)ks/l

(
fty

(1 + f 2
y)2

− 2
ftfyfyy

(1 + f 2
y)3

+
1

Ds/l

· fyf
2
t

(1 + f 2
y)2

)
=

(48)
∓

αs/l

ks/l

(
1

αs − αl

(
fty

(1 + f 2
y)2

− 2
ftfyfyy

(1 + f 2
y)3

)
± ub

Ds/l

· ft

1 + f 2
y

)
.

(59)

Now (49) can be assembled directly from (54), (56) and (59);

∂e2ub

∣∣
Ωs/l

=
ft

1 + f 2
y

(
1

αs − αl

(αs/l

ks/l

± 2
fyfyy(

1 + f 2
y

)2)− ub

Ds/l

)
fyt

(αs − αl)
(
1 + f 2

y

)2 .

�

References

[1] H.W. Alt. Lineare Funktionalanalysis. Springer, 5th edition, 2002.

[2] H.-J. Bungartz, A. Frank, F. Meier, T. Neunhoeffer, and S. Schulte. Effi-
cient treatment of complicated geometries and moving interfaces for CFD
problems. In High Performance Scientific and Engineering Computing,
pages 113–123, 1999.

[3] P. Colli, M. Grasselli, and J. Sprekels. Automatic control via thermostats
of a hyperbolic stefan problem with memory. Appl. Math. Optimiz.,
39:229–255, 1999.

[4] W.B. Dunbar, N. Petit, P. Rouchon, and P. Martin. Boundary control
of a nonlinear Stefan problem. In Proceedings of the 2003 Conference on
Decision and Control, Maui, HI, pages 1309–1314, 2003.

40

[5] W.B. Dunbar, N. Petit, P. Rouchon, and P. Martin. Motion planning
for a nonlinear Stefan problem. Control, Optimisation and Calculus of
Variations, 9:275–296, 2003.

[6] K.-H. Hoffmann and J.Sprekels. Real-time control in a free boundary
problem connected with the continuous casting of steel. In K.-H. Hoff-
mann and W. Krabs, editors, Optimal Control of Partial Differential
Equations. Birkhäuser, 1984.

[7] S. Kang and N. Zabaras. Control of the freezing interface motion in
two-dimensional solidification processes using the adjoint method. Inter-
national Journal for Numerical Methods in Engineering, 38:63–80, 1995.

[8] A. J. Kearsley. The Use of Optimization Techniques in the Solution of
Partial Differential Euations from Science and Engineering. PhD thesis,
Rice University, 1996.

[9] T. Neunhoeffer. Numerische Simulation von Erstarrungsprozessen un-
terkühlter Flüssigkeiten unter Berücksichtigung von Dichteunterschieden.
PhD thesis, Technische Universität München, Fakultät für Informatik,
1997.

[10] I. Pawlow. Optimal control of two-phase stefan problems – numerical
solutions. In K.-H. Hoffmann and W. Krabs, editors, Optimal Control of
Partial Differential Equations II. Theory and Applications. Birkhäuser,
1987.

[11] I. Pawlow. Optimal control of dynamical processes in two-phase systems
of solid-liquid type. Banach Center Publications, 24:293 – 319, 1990.

[12] A. Schmidt. Die Berechnung dreidimensionaler Dendriten mit Finiten
Elementen. PhD thesis, Universität Freiburg, Institut für Angewandte
Mathematik, 1993.

[13] A. Schmidt. Computation of three dimensional dendrites with finite ele-
ments. Journal of Computational Physics, pages 293–312, 1996.

[14] F. Tröltzsch. Optimalsteuerung bei partiellen Differentialgleichungen.
Vieweg, 2005.

[15] A. Visintin. Models of Phase Transitions. Birkhäuser, 1996.

[16] Z. Yang. The adjoint method for the inverse design of solidification pro-
cesses with convection. PhD thesis, Cornell University, 1997.

41

[17] N. Zabaras. Inverse problems in heat transfer. In W.J. Minkowycz, E.M.
Sparrow, and J.Y. Murthy, editors, Handbook of Numerical Heat Transfer,
chapter 17. John Wiley & Sons, 2nd edition, 2004.

[18] N. Zabaras, S. Mukherjee, and O. Richmond. An analysis of inverse heat
transfer problems with phase changes using an integral method. Journal
of Heat Transfer ASME, 110:554–561, 1988.

[19] N. Zabaras and T. Hung Nguyen. Control of the freezing interface mor-
phology in solidification processes in the presence of natural convection.
International Journal for Numerical Methods in Engineering, 38:1555–
1578, 1995.

[20] N. Zabaras, Y. Ruan, and O. Richmond. On the design of two-dimensional
stefan processes with desired freezing front motions. Numerical Heat
Transfer, Part B, 21:307–325, 1992.

42

	Introduction
	Problem definition
	Physical model
	Optimization Problem
	Sensitives via the adjoint equation approach

	The numerical approach
	FWD: Forward step k
	BWD: Backward step k
	GRD: Computation of the gradient
	LM: Line minimization
	Discussion of equations (7)--(13)

	Numerical results
	Test problem
	Results for the uncontrolled case
	Results for the controlled case

	Development of the adjoint equation system
	Compatibility conditions (8), (9), (11) and (12)

