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Abstract

In this paper optimal and model predictive control applied to the Boussinesq

approximation of the Navier-Stokes system is discussed. It focuses on mathematical

modelling, discuss possible control scenarios, and provides a concise description of

the numerical implementation. In a second part the associated numerical analysis

will be presented.

1 Introduction

The Boussinesq approximation of the Navier-Stokes system is frequently used as mathe-
matical model for fluid flow in semiconductor melts. In many crystal growth technics, such
as Czochralski growth, and zone-melting technics the behavior of the flow has considerable
impact an the crystal quality. It is therefore quite natural to establish flow conditions
which guarantee desired crystal properties.

As a first step towards controlling the crystal-melt complex in Czochralski growth we
study in the present paper optimal and model predictive control technics for the Boussinesq
approximation. As control actions we consider distributed forcing, distributed heating, and
boundary heating, as well as its combinations.

To the best of the authors knowledge up to now there are no contribution to model pre-
dictive control for the Boussinesq approximation. However, in the past decade considerable
progress has been made in the field of flow control, see [5] for a comprehensive overview
and further literature in the field. In the literature also contributions to optimal control
of the Boussinesq approximation can be found. Here we mention the works [1] and [12].

The paper is organised as follows. In section 2 the variational form of the Boussinesq
approximation is introduced and the time discretization scheme is presented. In section 3
model predictive control is introduced, and in section 4 numerical results are given. In
section 5 we summarize the numerical results and give some conclusions.
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2 Mathematical model

2.1 Boussinesq approximation

The Boussinesq approximation of the Navier-Stokes system in the primitive setting is given
by

(1)

∂y
∂t

− ν∆y + ∇p = −(y∇)y − γ g τ + uF in Q
−div y = 0 in Q

y = 0 on Σ
y(0) = y0 in Ω

∂τ
∂t

− a∆τ = −(y∇)τ + uQ in Q
a∂ητ = α(u− τ) on Σ
τ(0) = τ0 in Ω

were y, p, τ denote the velocity, pressure and temperature field, respectively. Further a
denotes the thermal diffusivity, ν the kinematic viscosity, g ∈ R2 the acceleration of gravity,
γ the coefficient of volume expansion, and α a positive number. Here Ω ⊂ R2 denotes an
open, bounded domain, with boundary Γ = ∂Ω which is assumed to be sufficiently smooth.
We set Q := (0, T ) × Ω and Σ := (0, T ) × Γ with T denoting the time horizon.

The variables u, uF , uQ denote the control actions; u the boundary temperature, uF

distributed force, and uQ distributed heating.
To prepare for the variational formulation of (1) we further introduce the solenoidal

spacesH = {v ∈ C∞
0 (Ω)2 : div v = 0}

−‖·‖
L2(Ω)2 and V = {v ∈ C∞

0 (Ω)2 : div v = 0}
−‖·‖

H1(Ω)2 .
Also if X is a Banach space, Lp(0, T ;X) denotes the space of Lp-integrable functions

from (0, T ) into X, which itself is a Banach space.

2.1.1 Variational formulation

Following [1] and [15], the variational formulation of (1) reads: Given f = (uF , uQ)T ∈
L2(0, T ;V ∗ × H1(Ω)∗), u ∈ L2(0, T ;L2(Γ)) and Y0 ∈ H × L2(Ω), find Y ∈ L2(0, T ;V ×
H1(Ω)) satisfying

d

dt
(Y, U) + a(Y, U) + b(y, Y, U) + (γgτ, v)L2(Ω)2 + (ατ, η)L2(Γ) =

(f, U)(V ×H1(Ω))∗(V ×H1(Ω)) + (αu, η)L2(Γ) ∀U ∈ V ×H1(Ω), and almost all t ∈ (0, T ),(2)

and

(3) Y (0) = Y0 :=

(

y(0)
τ(0)

)

.

Here we use the notation

Y :=

(

y

τ

)

, U :=

(

v

η

)

, W :=

(

w

κ

)

,
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and forms a(·, ·) and b(·, ·, ·) are defined by

a(Y, U) := ν

∫

Ω

∇y∇u dx + a

∫

Ω

∇τ∇η dx ∀Y, U ∈ V,

b(U, Y,W ) :=

∫

Ω

(v∇)yw dx +

∫

Ω

(v∇)τκ dx ∀U, Y,W ∈ V ×H1(Ω),

and
(ατ, ·) := (S(ατ), S·)L2(Γ) ∈ V ∗ with S denoting the trace operator.

2.1.2 Existence and Uniqueness

Analogously to [15, Chap. III §3] we can prove existence and uniqueness of solutions to
(2)-(3).

Theorem 2.1. Let uF ∈ L2(0, T ;V ∗), uQ ∈ L2(0, T,H1(Ω)∗), u ∈ L2(0, T ;L2(Γ)) and
y0 ∈ H, τ0 ∈ L2(Ω). Then there exists an unique solution Y of (2)-(3) which satisfies
Y ∈ L2(0, T ;V ×H1(Ω)), Y ′ ∈ L2(0, T ;V ∗×H1(Ω)∗). Moreover, Y ∈ C([0, T ] ;H×L2(Ω))
and

(4) Y (t) → Y0, in H × L2(Ω), as t→ 0.

For the convenience of the reader a proof of this theorem is provided in the Appendix 6.

2.2 Time discretization

As time discretization scheme for (1) we use a semi-implicit Euler with time step size dt.
Semi implicit here means that the convective parts are discretized explicitly.

Giving yi, τ i the resulting system for yi+1 and τ i+1 at time instance ti+1 in the primitive
setting reads:

yi+1 − yi

dt
− ν∆yi+1 + ∇pi+1 = −(yi∇)yi − τ i+1γ g + ui+1

F in Ω,(5)

−div yi+1 = 0 in Ω,(6)

yi+1 = 0 on Γ,(7)

τ i+1 − τ i

dt
− a∆τ i+1 = −(yi∇)τ i + ui+1

Q in Ω,(8)

a∂ητ
i+1 = α(ui+1 − τ i+1) on Γ,(9)

where y0 := y0 and τ 0 = τ0 with y0, τ0 from (1).
The treatment of the convection term in (8) allows to compute the temperature τ i+1

by solving (8),(9), and subsequently the velocity yi+1 and pi+1 by (5)-(7). To anticipate
the discussion, this coupling is also advantageous for the evaluation of descent directions
in the formulation of the instantaneous control method.

It is worth noting that for given yi, τ i, ui+1
F , ui+1

Q , ui+1 in V ×H1(Ω)×V ∗×(H1)∗×L2(Γ)
the system (5)-(9) admits a unique weak solution yi+1 ∈ V, τ i+1 ∈ H1(Ω), compare [3].
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3 Model predictive control

For an integer M ≥ 1 given, model predictive control, frequently also called receding hori-
zon control, applies repeatedly optimal control on a finite discrete time horizon containing
M time steps, and uses the optimal control action associated to the first time step to steer
the system towards a prescribed desired state (z, S) = (z(t, x), S(t, z)). In the present work
the optimization problem associated to time step i is given by:

min J(y, τ, u, uF , uQ) =
i+M
∑

j=i+1

(
c0

2

∫

Ω

(yj − zj)2dx+
c1

2

∫

Ω

(τ j − Sj)2dx

+
c2

2

∫

Γ

uj2
dx+

c3

2

∫

Ω

u
j
F

2
dx+

c4

2

∫

Ω

u
j
Q

2
dx)(10)

for (y, τ, u, uF , uQ) ∈ V M ×H1(Ω)M × L2(Γ)M ×HM × (L2)M , subject to:

(11)

τ j+1− dt a∆τ j+1 = dtcQ u
j+1
Q + τ j− dt (yj∇)τ j in Ω

a∂ητ
j+1 = α(uj+1− τ j+1) on Γ

yj+1− dtν∆yj+1+ ∇(dtpj+1) = −dtγgτ j+1+ dtcFu
j+1
F + yj− dt(yj∇)yj in Ω

−div yj+1 = 0 in Ω
yj+1 = 0 on Γ

with j = i, . . . , i+M − 1. In particular in this setting we assume that controls are at least
square integrable functions.

Since the transition constraints (11) for given uQ, uF , u admit an unique solution, we
may introduce the reduced functional

Ĵ(u, uF , uQ) := J(y(u, uF , uQ), τ(u, uf , uQ), u, uF , uQ).

Problem (10),(11) then is equivalent to

(12) min Ĵ(u, uF , uQ), for (u, uF , uQ) ∈ L2(Γ)M ×HM × (L2)M .

Since Ĵ is a quadratic functional and the constraints (11) are linear, problem (12) admits
a unique solution.

It is well known, that the gradient Ĵ ′(u, uF , uQ) can be expressed with the help of the
adjoint variables associated to (10),(11). Let us discuss the details for the case M = 1 which
also forms the starting point of our investigations of the instantaneous control strategy. In
the following, superscripts are dropped. The adjoint equations associated to problem (11)
for M = 1 are given by

py − dt ν∆py + ∇pp = c0(y − z) in Ω,
py = 0 on Γ,

−div py = 0 in Ω,
pτ − dt a∆pτ = c1(τ − S) − dt γgpy in Ω,

a∂ηp
τ = −αpτ on Γ,

6



where py, pp denote the adjoint velocity field and pressure, respectively, and pτ the adjoint
temperature field. With the adjoint variables available, there holds

(

Ĵ ′(u, uF , uQ), (v, vf , vQ)
)

= (c2u− dt a∂ηp
τ, v)L2(Γ)2

+ (c3uF + dtpy, vF )H + (c4uQ + dtpτ, vQ)L2(13)

In the instantaneous control approach the reduced optimization problem (12) is solved
approximately, by applying only one steepest descent step to obtain an approximate so-
lution [2, 7, 8, 9, 10, 11, 13, 16]. Instantaneous control therefore may be regarded as an
inexact variant of MPC for M = 1.

To compute the gradient Ĵ ′(u, uF , uQ) for given u, uF , uQ the coupled system of equa-
tions (11) and (13) has to be solved for py, pp, pτ . This is accomplished by using a pre-
conditioned conjugate steepest descent method for the associated Schur-complement as
proposed in [4] and [6], say.

In system (1) different control actions are possible. To optimize all of them simulta-
neously a suitable scaling of the gradient Ĵ ′(u, uF , uQ) in the steepest descent method has
to be introduced. This may be regarded as preconditioning and is achieved by replacing
Ĵ ′ by DĴ ′ with D denoting as suitable 3 × 3 diagonal matrix. For more details see sec-
tion 4.3.2. The step size in the steepest descent method for Ĵ is computed exactly for the
instantaneous control (IC) method. This is possible since Ĵ is quadratic in its arguments
u, uF and uQ, compare [6]. The optimal step size in direction d is computed via a steepest
descent step with trial step size ρp and calculating the minimum of the parabola defined

by Ĵ(u∗), Ĵ
′(u∗) and Ĵ(u∗ + ρpd), where u∗ = (u, uF , uQ)T . For more details we also refer

to section 4.3.4.

4 Numerical results

4.1 Introduction

We test IC and MPC for two numerical examples. The control goal in both examples
consists in tracking of a desired velocity and a desired temperature field. In example 1 the
desired (normalized) temperature is zero and the desired velocity field is obtained from a
forward simulations with pre-specified boundary temperature, see section 4.3 for details.
We investigate the performance of IC for all three control actions. It turns out that IC
performs very well. These control results can be improved by applying MPC to larger
time horizons, i.e. for M > 1. This is illustrated for boundary control in section 4.4.1. In
example 2 the desired velocity filed is zero, and a non-trivial temperature filed should be
tracked. The control action here is given by boundary control alone. IC fails but MPC is
able to track the desired states see section 4.4.2.

In example 2 a zero velocity field but different temperatures are desired. The control
aim is to find a good trade-off between reaching the two aims in the case of boundary
control. The difficulty are the different time scales of steering the temperature vs. velocity
field. The IC fails, see 4.4.2, but the MPC is able to compute an acceptable control.
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Parameter Example 1 Example 2
c0 2 · 106 2 · 106

c1 2 20
c2 2 · 10−4 2 · 10−3

c3 2 · 10−2dt 2 · 10−3dt

c4 2 · 10−2dt 2 · 10−3dt

a 1.44 · 10−4 1.44 · 10−3

ν 2.5 · 10−4 1 · 10−3

γ 2.1 · 10−4 2.1 · 10−4

g (0,−9.81) (0,−9.81)

Table 1: Parameters for the examples 1 (left), and 2.

4.2 Implementation and numerical examples

All numerical examples are computed on a 20 × 20 equidistant grid on Ω := (0, 1)2. For
the velocity-pressure discretization the related staggered grid is used. The temperature is
taken on the pressure nodes. The discretization of the Laplacian is based on the 5-point
star. The parameters in our computations can be found in table 1. The resulting Reynolds-
number for example 1 is Re = L ‖z‖

ν
= 33.2 (with L = 1 unit square), and for example 2

it depends on the control. The Grashof-number for example 2 is Gr = γ|g|L3(δS)
ν3 = 2060

(were δS denotes the maximal temperature difference in the desired temperature field S)
and for example 1 it depends on the control.

All elliptic subproblems are solved with the SSOR method, which for the numerical
examples presented below converges within a few steps.

For the parameter α in the boundary condition we also choose α = ∞ i.e. Dirichlet
conditions, to test the robustness of the algorithm.

The boundary conditions are y = 0 on Γ, and τ = 0 on Γ if no boundary temperature
control is used. The initial conditions are chosen as y0 ≡ 0 and τ0 ≡ 0.

The time horizon for the integrations of J is given by [0, T ], with T = 360.

4.3 IC and Example 1

In this example we present a detailed discussion of the instantaneous control strategy
(IC), which proves very powerful in various applications to flow control, see [2, 6] and the
literature cited there. IC is an inexact variant of MPC for M = 1. For the approximate
solution of the optimality system in this case only one steepest descent step is applied.
The parameters used in our computations for this case can be found in table 1, left.

The desired state z for example 1 is depicted in figure 1, left. It is the stationary velocity
field obtained after a time of t = 10000 by choosing the constant boundary temperature
of 1 on the right half of the lower boundary, and 0 otherwise. All parameters for this
simulation are the same as in example 1.
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Figure 1: left: desired state, right: flow controlled by boundary temperature

As desired temperature S ≡ 0 is chosen but with only a small weight in the cost
functional, see table 1. For tracking of an optimal trajectory (see 4.3.8) the desired state
is the solution of an optimal control problem. For further details and results see [14].

4.3.1 Control actions

Three different control actions are investigated: distributed force, distributed heat, bound-
ary temperature, and also their combinations. In all cases the steepest descent step for IC
is initialized with zero control. The optimal steepest descent step size is used and the time
step is set to dt = 0.8. The results are shown in the figure 1, right, and figures 2, 3, 4. This
figures show the temperature and velocity field at T = 360. In all cases the IC performs
very well and is able to reach the desired state approximately. The evolution of cost func-
tional J is shown in figure 5. We take up again the case of boundary temperature control
in section 4.4.1.

4.3.2 Gradient scaling

Gradient scaling is preconditioning of the steepest descent method. It needs to be applied
if combinations of control actions are used. In figure 6 the values of the time integrated
cost functional are presented for the parameter range cF , cQ ∈ [10−7, 10−1] × [10−5, 10]. as
expected for this example small values of cQ give the best reduction of the cost functional.
Here we apply diagonal scaling with the diagonal matrix

D =





1 0 0
0 cF 0
0 0 cQ



 .

In all examples presented we set cF = 10−3, cQ = 0.3. (All except in this subsection
investigating the parameter space for Example 1.) For this choice of parameters IC also
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Figure 2: left: flow controlled by distributed heat, right: flow controlled by distributed
force

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: left: flow controlled by boundary temperature and distributed heat , right: flow
controlled by boundary temperature and distributed force
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Figure 4: left: flow controlled by distributed heat and distributed force, right: flow con-
trolled by all three controls
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Figure 5: Evolution of cost functional J for some differed control actions.
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Figure 6: different scaling of controls, all controls,

performs very well in the example of [14]. However, we note no general rule for choosing
the parameters cF , cQ is known yet.

4.3.3 Initial controls in steepest descent

As initial values for the steepest descent method either the zero control or the control
from the optimization at the previous time slice are chosen. It is observed that choosing
zero control as initialization the performance of MPC/IC is very sensitive with regard to
gradient scaling.

It is remarkable, that IC initialized with the control of the previous time slice in the
long run performs similar to MPC with M = 1, provided the controls vary not too much
between the time slices.

Start with zero control is worse in cases where combinations of controls are used. On
the other hand using the control from the previous time slice sometimes turns out to be
less robust. This strongly depends on the dynamical behavior of the underlying physical
process, see [14] for details.

4.3.4 Steepest descent step size

Since the IC control problem (10),(11) is linear-quadratic the optimal step size ρ∗ in the
steepest descent algorithm can be calculated exactly. In the calculations presented the
value ρ∗ is taken as minimum of the scalar parabola h(ρ) defined by the function values
Ĵ(u), Ĵ(u + ρpd) and the derivative Ĵ ′(u)d, where d := −J ′(u) and ρp is an estimation of
the steepest descent step size taken from the optimization problem at the previous time
slice. Compared to taking constant steepest descent step sizes the numerical overhead is
caused by an additional function evaluation Ĵ(u + ρpd), which amounts to solving (11)
with control u+ ρpd.
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Figure 7: left: distributed heat, integrated functional for different constant steepest descent
step sizes, right: distributed heat, dt = 0.1

Using a constant steepest descent step size ρ results in a slightly faster algorithm but
requires knowledge about the magnitude of this step size. If the step size is too large the
method diverges. Too short steepest descent steps lead to ineffective controls, in particular
when using zero initial control. In figure 7, left, the dependence of

∫

Jdt on ρ is shown.
Short steepest descent steps are worse with regard to reducing the functional J . On the
other hand, if the steepest descent step is too large, the steepest descent method diverges.
Because a useful steepest descent step size is not known a priori, we suggest to use the
optimized steepest descent step size instead of a fixed steepest descent step.

4.3.5 Time step

The quality of controls obtained by the IC method depends on the length of the time step.
Small time steps cause only weak control actions, so that time steps as large as possible,
obeying the CFL conditions, should be taken. At greater time steps the control is more
effective and so the IC predicts a greater win from producing stronger forces and heatings.

So the time step for reasons of control effectivity and computing time should be made
as large as possible.

Now the performance of control at different time steps is investigated. For distributed
heating compare the flows together with the temperature field in figure 7, right dt = 0.1,
figure 2, left dt = 0.8, and figure 8 dt = 6.4 respectively. As one can see flows and
temperature distributions in all three cases look very similar. For larger time steps the
controls and states are oscillating between two states, which are depicted in figure 8. We
note, that this is a purely numerical behavior caused by the large time step chosen.

The dependence of
∫

Jdt of dt is shown in figure 9, left. As one can see cost reduction
is most effective for dt ≈ 1.1.
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Figure 8: distributed heat, dt = 6.4, the state and control are oscillating between this two
states
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Figure 9: left: distributed heat and boundary temperature for different time steps dt, right:
distributed heat. The control from the coarser grid also works well on the finer grid.
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Figure 10: instantaneous control vs. optimal control

4.3.6 Simulation of practical control

In order to check the liability of numerically computed control procedures, the controls
calculated on a 20× 20 grid are applied to a discrete problem on a 39× 39 grid. To extend
the control, linear interpolation is used.

As figure 9, right shows, instantaneous controls obtained on the coarse grid perform
pretty well also on the finer grid.

4.3.7 Comparison of IC and optimal open loop control

We now compare IC to optimal open loop control (OC). To obtain a discrete in time
optimal open loop control on the time horizon [0, T ] the latter is divided into M time
slices, and the cost functional

JOC(y, τ, u, uF , uQ) =

M
∑

i=1

(

c0

2

∫

Ω

(yi − z)2dx+
c1

2

∫

Ω

(τ i − S)2dx

+
c2

2

∫

Γ

(ui)2dx+
c3

2

∫

Ω

(uF
i)2dx+

c4

2

∫

Ω

(uQ
i)2dx

)

(14)

is minimized s. t. the constraints (5)-(9), i.e. we solve (10),(11) on [0, T ]. Numerically this
is performed by applying a limited memory BFGS method on the fully discrete system.
We note that the discrete optimization problem contains 3 · 105 unknowns. The evolution
of the cost functional (at each time slice) is compared to that obtained by IC in figure 10.
The control mechanism in this case is distributed heating. Parameters taken are M = 100
and dt = 0.1 for OC. For IC dt = 0.8 is chosen because shorter time horizons are worse,
see 4.3.5. The coefficients and desired states are that of example 1, compare section 4.2.
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Figure 11: tracking of optimal control with IC: evolution of Jo for tracking of optimal state
(left), and comparison of J of optimal control, IC for tracking of the optimal state, and IC
applied to tracking of the desired state of the optimal control problem with dt = 0.8(right).

4.3.8 Tracking of optimal control with IC

Once an optimal open loop trajectory is known it may serve as dynamical desired state
to be tracked by the MPC strategy. In this context MPC, and in particular IC, serve as
(nonlinear) closed loop control mechanisms. In figure 11 the results for IC and varying
time step sizes dt are shown, where the control mechanism is distributed heating. As can
be seen, IC is able to track the optimal open loop trajectory.

We note that for IC tracking the optimal trajectory and IC applied to original desired
state the cost functionals are different. In the case of IC tracking the optimal trajectory,
the functional is

Jo(t) =
c0

2

∫

Ω

(y(t) − y(t)∗)2dt+
c1

2

∫

Ω

(τ(t) − τ(t)∗)2dt+ . . .

where (y(t)∗, τ(t)∗) denotes the optimal state. The original cost functional is given by

J(t) =
c0

2

∫

Ω

(y(t) − z)2dt+
c1

2

∫

Ω

(τ(t) − S)2dt+ . . . .

In figure 11, left, the evolution of Jo for tracking the optimal control for different time
steps, is shown. The method works very well, especially for dt = 0.1 and dt = 0.2. In
figure 11, right the same is shown now J for the difference to the desired state of the
original problem. Note that J is also calculated for IC tracking the optimal trajectory
(which cost functional is in fact Jo). The dashed line represents the evolution of J for IC
applied to track the desired state of the optimal control problem. The dash-dotted line
shows the evolution of J for tracking of the optimal trajectory y∗, τ ∗ obtained from the
optimal control problem. The solid line shows the evolution of J for the optimal control.
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Figure 12: tracking of optimal control with IC including perturbations; evolution of J for
tracking of optimal state (left), and comparison of optimal control and IC tracking the
optimal state (right)

For IC is dt = 0.8 in both cases. Note that, as shown in the figure 11, right, IC tracking
the optimal trajectory would even better with shorter time steps (contrary to IC applied
to the original problem). As one can see IC in this example is well suited to track optimal
trajectories (in the sense of a nonlinear closed loop controller) and also provides suboptimal
controls with cost of the same magnitude as those of the optimal control procedure.

To investigate whether IC is able to stabilize a disturbed system random disturbances
β are added at each time instance;

udis
F = uF + βF , udis

Q = uQ + βQ

The functions βF , βQ are random numbers defined in the corresponding nodes equally
distributed over [−1, 1]. To get an impression of the size of the disturbances we mention
that their size is approximately 17 times that of the control action in the undisturbed case
after the initial decrease.

Figure 12 shows the same quantities as figure 11, but for the disturbed case. In the
left figure the J is the cost functional of IC with z(t) = y∗(t), S(t) = τ ∗(t), where y∗, τ ∗

denote the optimal state. In the right figure the J is also the cost functional of IC but z
and S are the same as for the optimal control.

As one can see, IC is able to track the perturbed optimal trajectory in the sense of a
closed-loop controller, whereas the unperturbed optimal control strategy seems to fail.
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Figure 13: Performance of MPC in example 1, start with control from last time slice

4.4 Model predictive control with M > 1

4.4.1 MPC and Example 1

Now we try to improve the boundary temperature control by using MPC. As in the case of
IC, we only use one steepest descent step to solve the corresponding optimization problems
approximately. The results are presented in figure 13. To compare the performance of MPC
to that of IC only the values of the first addend in 10 are shown. Their values compare
to those of the cost functional used for IC. As a result MPC with M = 16, . . . , 64 and
boundary heating reduces the (instantaneous) cost functional slower but in the long run as
good as distributed heating with IC, see figure 5 and subsection 4.3. This is a substantial
improvement to the control with IC.

4.4.2 MPC and Example 2

IC is not always successful in steering system states to desired states. However, as will
be presented in the following, MPC on larger time horizons in general achieves this goal
instead. In the present example we choose z ≡ 0, and the desired temperature distribution
is given by

S :=

{

1 in [0.5, 1) × (0, 1)
0 in (0, 0.5) × (0, 1).

.

As control action boundary control is chosen. This means that the control problem con-
sists in establishing different temperatures in the left and the right part of the domain,
respectively, with velocity as small as possible. The parameters of the computation are
shown in table 1, right. We investigate (10),(11) for varying M , i.e. we vary the length of
the prediction horizon in MPC.

As figure 14 shows, MPC with M ≥ 8 has to be applied in order to reduce the value of
the cost functional. Smaller prediction horizons do not yield a reduction which is mainly
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Figure 14: Performance of MPC in example 2

caused by the fact that the velocity only has a negligible influence on the gradient of the
cost functional for small time horizons. We also note that in this case the increase of |y − z|
is superior over the decrease of |τ − S|.

5 Discussion and Conclusions

Several control approaches to the Boussinesq approximation of the Navier-Stokes system
are presented. Against the background of real-time control the instantaneous control
method (IC) and model predictive control (MPC) mechanisms are studied in detail. As
control actions, volume forces, distributed and boundary heating are considered.

IC performs very well in most of the investigated scenarios. Concerning the use of the
control actions we may propose the following recipes;

• If tracking of a velocity is the control goal, either volume forces, or distributed heat-
ing, or a combination of both should be applied. Compared to their performance
boundary temperature is less effective.

• If tracking of temperature distributions is the control goal, distributed heating com-
bined with boundary heating should be applied. The influence of volume forces in
this case is negligible.

• If a combination of control actions is chosen, the gradient of the cost functional has
to be appropriately preconditioned in order to obtain a successful control method.

As is pointed out in section 4.4.2, especially for tracking of temperature distributions, MPC
on sufficiently large time horizons has to be applied.

IC also presents a powerful tool in the context of nonlinear closed-loop control. If an
open-loop optimal control strategy for a process is given (i.e. computed a priori), IC may
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be used as a fast closed loop control mechanism which is capable of tracking the optimal
open-loop control strategy, even in the presence of perturbations.

It is astonishing how well IC, and MPC perform in the sense of suboptimal control
strategies for optimal control problems, as figures 10-12 indicate. These technics therefore
also offer promising control tools for more realistic and complex configurations as they are
dealt with in crystal growth, say.

6 Appendix

Proof of existence and uniqueness

Subsequently we use the notation U = (v, η), Y = (y, τ),W = (w, κ), and c denotes a
positive generic constant . Similar to [15, Lemma 3.4]. we have

Lemma 6.1. There holds

|b(U, Y,W )| ≤ c |v|L2 ‖Y ‖V ×H1(Ω) ‖W‖V ×H1(Ω) ∀ v ∈ V, Y,W ∈ V ×H1(Ω).

If U belongs to L2(0, T ;V × H1(Ω)) ∩ L∞(0, T ;H × L2(Ω)) then b(U, U, ·) belongs to
L2(0, T ;V ∗ × (H1(Ω))∗) and

|b(U, U, ·)|L2(0,T ;V ∗×(H1(Ω))∗) ≤ c |U |L∞(0,T ;H×L2(Ω)) |U |L2(0,T ;V ×H1(Ω)) .

Proof of lemma 6.1. By definition

b(U, Y,W ) =

∫

Ω

(v∇)yw dx +

∫

Ω

(v∇)τκ dx.

With Hölders inequality and interpolation inequality, see [15, Lemma 3.3], we get

b(U, Y,W ) ≤ c |v|L4 |∇y|L2 |w|L4 + c |v|L4 |τ |H1 |κ|L4

≤ c |v|
1
2

L2 |∇v|
1
2

L2 |w|
1
2

L2 |∇w|
1
2

L2 |∇y|L2 + c |v|
1
2

L2 |∇v|
1
2

L2 |κ|
1
2

L2 |κ|
1
2

H1 |τ |H1 .

If U, Y,W ∈ V ×H1(Ω), the relation b(U, Y,W ) = −b(U,W, Y ) gives

b(U, Y,W ) ≤ c |v|
1
2

L2 |∇v|
1
2

L2 |y|
1
2

L2 |∇y|
1
2

L2 |∇w|L2 + c |v|
1
2

L2 |∇v|
1
2

L2 |τ |
1
2

L2 |τ |
1
2

H1 |κ|H1 .

This implies
|b(U, U, Y )| ≤ c |U |L2 |U |V ×H1 |Y |V ×H1 .

If now U ∈ L2(0, T ;V ×H1(Ω))∩L∞(0, T ;H×L2(Ω)), then b(U(t), U(t), ·) ∈ (V ∗×H1(Ω)∗)
for almost every t and the estimate

|b(U(t), U(t), ·)|V ∗×(H1(Ω))∗ ≤ c |U(t)|L2 |U(t)|V ×H1

implies that b(U, U, ·) belongs to L2(0, T ;V ∗ ×H1(Ω)∗).
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Proof of Therorem 2.1. We begin with proving existence.

i) We apply the Galerkin procedure. Since V × H1(Ω) is separable and V × C∞(Ω) is
dense in V ×H1(Ω), there exists a sequence w1, . . . , wm, . . . of elements of V×C∞(Ω),
which is free and total in V ×H1(Ω). For each m ∈ N we make the ansatz

Ym =
m

∑

i=1

gim(t)wi.

for an approximate solution Ym of (2). Inserting Ym into (2) and using wj as test
functions we obtain

(Y ′
m(t), wj) + a(Ym(t), wj) + b(ym(t), Ym(t), wj) + (γgτm(t), wj12)L2(Ω)2+

+(ατm(t), wj3)L2(Γ) = 〈f(t), wj〉 + (αu(t), wj3)L2(Γ), t ∈ [0, T ], j = 1, . . . , m,(15)

Ym(0) = Y0m,(16)

where Y0m is the orthogonal projection in H × L2(Ω) of Y0 onto the space spanned
by w1, . . . , wm. Equations (15),(16) form a nonlinear system of differential equations
for the functions g1m, . . . , gmm:

m
∑

i=1

(wi, wj)g
′
im(t) +

m
∑

i=1

a(wi, wj)gim(t) +
m

∑

i,l=1

b(wi12, wl, wj)gim(t)glm(t) +

m
∑

i=1

(γgwi3, wj12)L2(Ω)2gim(t)+

m
∑

i=1

(αwi3, wj3)L2(Γ)gim(t)=〈f(t), wj〉+(αu(t), wj3)L2(Γ).

Since the mass matrix (wi, wj)
m
i,j=1 is nonsingular this system can be rewritten in the

form
(17)

g′im(t)+

m
∑

i=1

αijgjm(t)+

m
∑

i,k=1

αijkgjm(t)gkm(t)=

m
∑

i=1

βij 〈f(t), wj〉+

m
∑

i=1

β̃ij(au(t), wj3)L2(Γ),

(18) gim(0) = (Y0m)i,

with appropriate coefficients αij, αijk, βij, β̃ij.

System (17),(18) admits a maximal solution defined on some interval [0, tm]. If tm <

T , then |Ym(T )| must tend to +∞ as t → tm; the a priori estimates we shall prove
in ii) show that this can not happen and therefore tm = T .

ii) A priori estimates.

We multiply (15) by gjm(t) and add the equations for j = 1, . . . , m. This gives

(Y ′
m(t), Ym(t)) + a(Ym(t), Ym(t)) + b(ym(t), Ym(t), Ym(t)) + (γgτm(t), ym(t))L2(Ω)2

+(ατm(t), τm(t))L2(Γ) = 〈f(t), Ym(t)〉 + (αu(t), τm(t))L2(Γ),
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With [12, Lemma 2.1] and the fact that div ym(t) = 0 we get

b(ym(t), Ym(t), Ym(t)) = 0,

and
(γgτm(t), ym(t))L2(Ω)2 ≥ −c1 |Ym(t)|2H×L2(Ω) .

We conclude now

d

dt
|Ym|

2 + 2a(Ym(t), Ym(t)) + 2(ατm(t), τm(t))L2(Γ) ≤

2c1 |Ym(t)|2L2(Ω) + 2 〈f(t), Ym(t)〉 + 2 〈αu, τm(t)〉L2(Γ) ,

which implies

d

dt
|Ym|

2 + 2ν ‖ym(t)‖2 + 2a ‖τm(t)‖2 + 2(ατm(t), τm(t))L2(Γ) ≤

2c1 |Ym(t)|2L2(Ω) + 2 〈uF , ym(t)〉 + 2 〈uQ, τm(t)〉 + 2 〈αu, τm(t)〉L2(Γ) .

Using
0 ≤ (ca− c−1b)2 = c2a2 + c−2b2 − 2ab ∀a, b, c ∈ R, c 6= 0

we get the estimates

2 〈uF , ym(t)〉 ≤ 2 ‖uF (t)‖V ∗ ‖ym(t)‖V ≤ ν ‖ym(t)‖2
V +

1

ν
‖uF (t)‖2

V ∗ ,(19)

2 〈uQ, τm(t)〉 ≤ 2 ‖uQ(t)‖(H1)∗ ‖τm(t)‖H1 ≤ a ‖τm(t)‖2
H1 +

1

a
‖uQ(t)‖2

(H1)∗ ,(20)

2 〈αu(t), τm(t)〉L2(Γ) ≤ 2 ‖αu(t)‖ ‖τm(t)‖ ≤ α ‖τm(t)‖2
L2(Γ)+

1

α
‖αu(t)‖2

L2(Γ) ,(21)

and thus,

d

dt
|Ym(t)|2 + ν ‖ym(t)‖2 + a ‖τm(t)‖2 + α |τm(t)|2L2(Γ) ≤

2c1 |Ym(t)|2L2(Ω) +
1

ν
‖uF (t)‖2

V ∗ +
1

a
‖uQ(t)‖2

(H1)∗ + ‖u(t)‖2
L2(Γ) ,

as well as

(22)
d

dt
|Ym(t)|2 ≤ 2c1 |Ym(t)|2L2(Ω) +

1

ν
‖uF (t)‖2

V ∗ +
1

a
‖uQ(t)‖2

(H1)∗ + ‖u(t)‖2
L2(Γ) .

Integrating (22) from 0 to s we obtain

|Ym(s)|2 ≤ |Ym(0)|2 + 2c1

∫ s

0

|Ym(t)|2L2(Ω) dt+

+
1

ν

∫ s

0

‖uF (t)‖2
V ∗ dt+

1

a

∫ s

0

‖uQ(t)‖2
(H1)∗ dt+

∫ s

0

‖u(t)‖2
dt.
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Gronwall’s Lemma then yields:

|Ym(s)|2 ≤ (|Ym(0)|2 +
1

ν

∫ s

0

‖uF (t)‖2
V ∗ dt+

1

a

∫ s

0

‖uQ(t)‖2
(H1)∗ dt+

∫ s

0

‖u(t)‖2
dt)e2c1s,

|Ym(s)|2 ≤ (|Ym(0)|2 +
1

ν

∫ T

0

‖uF (t)‖2
V ∗ dt+

+
1

a

∫ T

0

‖uQ(t)‖2
(H1)∗ dt+

∫ T

0

‖u(t)‖2
dt)e2c1T ∀s ∈ [0, T ].

Hence,

sup
s∈[0,T ]

|Ym(s)|2 ≤ (|Ym(0)|2 +
1

ν

∫ T

0

‖uF (t)‖2
V ∗ dt+

+
1

a

∫ T

0

‖uQ(t)‖2
(H1)∗ dt+

∫ T

0

‖u(t)‖2
dt)e2c1T ,

which implies that the sequence {Ym}m remains in a bounded set of L∞(0, T ;H ×
L2(Ω)). Since c2 ‖τ‖H1(Ω) ≤ ‖τ‖H1

0 (Ω) + ‖τ‖L2(Γ) for some c2 > 0 we get

c3 ‖Ym(t)‖H1(Ω) ≤ ν ‖ym(t)‖2
V + a ‖τm(t)‖2

H1
0 (Ω) + α ‖τm(t)‖2

L2(Γ) .

From (22) we now deduce
(23)
d

dt
|Ym(t)|2+c3 ‖Ym(t)‖H1(Ω) ≤ 2c1 |Ym(t)|2L2(Ω)+

1

ν
‖uF (t)‖2

V ∗+
1

a
‖uQ(t)‖2

(H1)∗+‖u(t)‖2
.

Now we integrate (23) from 0 to T and apply Gronwall’s Lemma once more to obtain
the estimate

|Ym(T )|2 + c3

∫ T

0

‖Ym(t)‖H1(Ω) dt ≤ (|Ym(0)|2 +
1

ν

∫ T

0

‖uF (t)‖2
V ∗ dt+

+
1

a

∫ T

0

‖uQ(t)‖2
(H1)∗ dt+

∫ T

0

‖u(t)‖2
dt) exp(2c1T ).

This implies that the sequence {Ym}m remains in a bounded set of L2(0, T ;V ×
H1(Ω)).

It is now straightforward to conclude that a subsequence Ym′ exists such that Ym′ → Y

in L2(0, T, V ×H1(Ω)) weakly, and in L∞(0, T,H × L2(Ω)) weak-star.

iii) Now we will show that Ym′ → Y in L2(0, T,H × L2(Ω)) strongly.

For this purpose we firstly show that
{

d
dt
Ym

}

⊂ L4/3(V ∗× (H1(Ω))∗), see Constantin
and [3]. First let us consider (15). Since {Ym}m is bounded in L2(0, T ;V ×H1(Ω)) it
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follows that a(Ym, ·) is bounded in L2(0, T ;V ∗ × (H1(Ω))∗). This also holds for the
forms (γgτm, ·)L2(Ω)2 + (aτm, ·)L2(Γ). Note that Ym = (ym, τm)T ). By assumption f is
bounded in L2(0, T ;V ∗ × (H1(Ω))∗).

It remains to investigate the term b(ym, Ym, ·).
Using

‖v‖L4(Ω) ≤ ‖∇v‖L2(Ω) ≤ ‖v‖V ×H1(Ω) ,

‖ym‖L4(Ω) ≤ c ‖ym‖
1
2

L2(Ω) ‖∇ym‖
1
2

L2(Ω) ,

‖τm‖L4(Ω) ≤ c ‖τm‖
1
2

L2(Ω) ‖τm‖
1
2

H1(Ω) ,

and the Hölder-inequality we get

∫

Ω

(ym∇)Ymvdx =

∫

Ω

(ym∇)ymvydx+

∫

Ω

(ym∇)τmvτdx

≤ c1 ‖ym‖L4(Ω) ‖∇ym‖L2(Ω) ‖vy‖L4(Ω) + c2 ‖ym‖L4(Ω) ‖τm‖H1(Ω) ‖vτ‖L4(Ω)

≤ c3 ‖ym‖
1
2

L2(Ω) ‖∇ym‖
1
2

L2(Ω) (‖∇ym‖L2(Ω) ‖vy‖V + ‖τm‖H1(Ω) ‖vτ‖H1(Ω))

≤ c3 ‖ym‖
1
2

L2(Ω) ‖∇ym‖
1
2

L2(Ω) (‖∇ym‖L2(Ω) + ‖τm‖H1(Ω)) ‖v‖V ×H1(Ω) ,

so that

∫ T

0

‖b(ym, Ym, ·)‖
4
3

V ∗×(H1(Ω)∗) dt

≤ c4

∫ T

0

‖ym‖
2
3

L2(Ω) (‖∇ym‖
3
2

L2(Ω) + ‖∇ym‖
1
2

L2(Ω) ‖τm‖H1(Ω))
4
3dt

≤ 2c4

∫ T

0

‖ym‖
2
3

L2(Ω) max(‖∇ym‖
2
L2(Ω) , ‖∇ym‖

2
3

L2(Ω) ‖τm‖
4
3

H1(Ω))dt.

Since ‖Ym(t)‖L2(Ω) is bounded uniformly, the right argument of the max-function can
be estimated as

∫ T

0

‖∇ym‖
2
3

L2(Ω) ‖τm‖
4
3

H1(Ω) dt ≤ (

∫ T

0

‖∇ym‖
2
L2(Ω) dt)

1
3 (

∫ T

0

‖τm‖
2
H1(Ω) dt)

2
3 ,

and since ‖∇ym(t)‖2
L2(Ω) and ‖Tm(t)‖2

H1(Ω)are uniformly integrable with respect to m,

we have
{

d
dt
Ym

}

⊂ L4/3(V ∗× (H1(Ω))∗). Together with {Ym} ⊂ L2(0, T ;V ×H1(Ω))
from ii) it follows that {Ym} ⊂ W 2

4/3(0, T ;V ×H1(Ω)) is bounded.

By the Aubin-Dubinskii-Lemma, see [3], W 2
4/3(0, T ;V × H1(Ω)) compactly embeds

into L2(0, T ;H × L2(Ω)). Therefor Ym′ → Y in L2(0, T,H × L2(Ω)) strongly for a
subsequence.
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iv) This convergence results enable us to pass to the limit in (15)-(16). Let ψ be a
continuously differentiable function on [0, T ] with ψ(T ) = 0. We multiply (15) by
ψ(t), and integrate by parts. This leads to

−

∫ T

0

(Ym(t), ψ′(t)wj)dt+

∫ T

0

a(Ym(t), wjψ(t))dt+

∫ T

0

b(ym(t), Ym(t), wjψ(t))dt+

+

∫ T

0

(γgτm(t), wj12ψ(t))L2(Ω)2dt +

∫ T

0

(ατm(t), wj3ψ(t))L2(Γ)dt(24)

=

∫ T

0

〈f(t), wjψ(t)〉 dt+

∫ T

0

(αu(t), wj3ψ(t))L2(Γ)dt+ (Y0m, wj)ψ(0).

Passing to the limit with the sequence m′ is easy for the linear terms; for the non-
linear term we apply [15, Lemma 3.2 ] and obtain for every vector function w with
components in C1((0, T ) × Ω)

∫ T

0

b(yµ(t), Yµ(t), w(t))dt→

∫ T

0

b(y(t), Y (t), w(t))dt (µ→ ∞).

In the limit we find that the equation

−

∫ T

0

(Y (t), ψ′(t)U)dt +

∫ T

0

a(Y (t), Uψ(t))dt+

∫ T

0

b(y(t), Y (t), Uψ(t))dt+

+

∫ T

0

(γgτ(t), vψ(t))L2(Ω)2dt+

∫ T

0

(ατ(t), wψ(t))L2(Γ)dt(25)

=

∫ T

0

〈f(t), Uψ(t)〉 dt+

∫ T

0

(αu(t), wψ(t))L2(Γ)dt+ (Y0, U)ψ(0),

holds for U = (v, w)T in the set {w1, w2, . . .}; by linearity this equation holds for U
equal to any finite linear combination of the wj, and by a continuity argument (25)
is still valid for any U ∈ V ×H1(Ω). Thus, Y satisfies (2) in the distributional sense.

Finally, it remains to prove that Y satisfies the initial condition (3). To show this we
multiply (2) by ψ, and integrate. Integrating the first term by parts, gives

−

∫ T

0

(Y (t), ψ′(t)U)dt+

∫ T

0

a(Y (t), Uψ(t))dt +

∫ T

0

b(y(t), Y (t), Uψ(t))dt+

+

∫ T

0

(γgτ(t), vψ(t))L2(Ω)2dt+

∫ T

0

(ατ(t), wψ(t))L2(Γ)dt(26)

=

∫ T

0

〈f(t), Uψ(t)〉 dt+

∫ T

0

(αu(t), wψ(t))L2(Γ)dt+ (Y (0), U)ψ(0),

By comparison with (25),

(Y (0) − Y0, U)ψ(0) = 0.
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Now we choose ψ with ψ(0) = 1; thus

(Y (0) − Y0, U) = 0. ∀U ∈ V ×H1(Ω),

and (3) follows.

Uniqueness:

i) We first note that b(U, U, ·) belongs to L2(0, T ;V ∗ ×H1(Ω)∗), see Lemma 6.1, which
implies that Y ′ also belongs to L2(0, T ;V ∗ ×H1(Ω)∗).

This enables us to apply [15, Lemma 1.2 in Ch. III §3], which claims that Y is almost
everywhere equal to a continuous function. Thus

Y ∈ C([0, T ];H × L2(Ω)),

and (4) follows immediately. The same lemma asserts that for any function Y in
L2(0, T ;V ×H1(Ω)) which satisfies Y ′ ∈ L2(0, T ;V ∗ × (H1(Ω))∗), the equation

(27)
d

dt
|Y (t)|2 = 2 〈Y ′(t), Y (t)〉

is valid, which will be used below.

ii) Proof of uniqueness. Let us assume that Y1 and Y2 are two solutions of (2)-(3), and
let Y = Y1 − Y2. As shown before Y1, Y2, and thus Y are in L2(0, T ;V ∗ × (H1(Ω))∗).

The difference Y = Y1 − Y2 satisfies

d

dt
(Y, U) + a(Y, U) + (γgτ, v)L2(Ω)2 + (ατ, η)L2(Γ) = b(y2, Y2, U) − b(y1, Y1, U)

∀U ∈ V ×H1(Ω), and almost all t ∈ (0, T ),(28)

Y (0) = 0.(29)

Taking U = Y (t) and using (27), we get

d

dt
|Y (t)|2 + 2ν ‖y(t)‖2 + 2a ‖τ(t)‖2 + 2α |τ(t)|2L2(Γ) + 2 〈γgτ(t), y(t)〉

= 2b(y2(t), Y2(t), Y (t)) − 2b(y1(t), Y1(t), Y (t)).

Since b(v,W,W ) = 0 ∀v ∈ V,W ∈ H1
0 (Ω)2 ×H1(Ω), the right-hand side is equal to

−2b(y(t), Y2(t), Y (t)).

From Lemma 6.1 we deduce

|−2b(y(t), Y2(t), Y (t))| ≤ c |y|
1
2

L2 |∇y|
1
2

L2 |y|
1
2

L2 |∇y|
1
2

L2 |∇y2|L2 + c |y|
1
2

L2 |∇y|
1
2

L2 |τ |
1
2

L2 |τ |
1
2

H1 |τ2|H1

≤ c |y|L2 |∇y2|L2 |Y |V ×H1(Ω) + c |y|L2 |τ2|H1 |Y |V ×H1(Ω)

≤ c |Y |L2 |Y2|V ×H1(Ω) |Y |V ×H1(Ω) .
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Using Young’s inequality we estimate further

c |Y |L2 |Y2|V ×H1(Ω) |Y |V ×H1(Ω) ≤ 2 min(ν, a) |Y |2V ×H1(Ω) +
1

ε
(c |Y |L2 |Y2|V ×H1(Ω))

2.

The term
|2 〈γgτ(t), y(t)〉| ≤ 2γ |g| |Y |2L2(Ω)

is also majorized. We can conclude

d

dt
|Y (t)|2 ≤ (

c2

ε
|Y2|

2
V ×H1(Ω) + 2γ |g|) |Y (t)|2L2(Ω) ∀t ∈ [0, T ],

so that
d

dt
|Y (t)|2 ≤ c(ν, a, γg, Y2(t), t) |Y (t)|2L2(Ω) ∀t ∈ [0, T ].

Integrating from 0 to s and using (29) gives

|Y (s)|2 ≤

∫ s

0

c(ν, a, γg, Y2(t), t) |Y (t)|2 dt

Finally Gronwall’s-Lemma implies

|Y (s)|2 ≤ 0 ∀s ∈ [0, T ],

which gives
Y1 = Y2,

so that the solution of (1) is unique.
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