
Sheaves in Topology
Master’s Course

Summer Semester 2025

Julian Holstein *

University of Hamburg
Department of Mathematics

*Please email comments and corrections to julian.holstein@uni-hamburg.de



Contents

1. Introduction 1
1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Basic theory of sheaves 2
2.1. Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2. Stalks and sheafification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Limits and colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4. Functors of sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A. Basic category theory 11
A.1. Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A.1.1. Categories and Functors . . . . . . . . . . . . . . . . . . . . . . . . 11
A.1.2. Natural Transformations . . . . . . . . . . . . . . . . . . . . . . . . 14
A.1.3. Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A.1.4. Opposite categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
A.1.5. The hom functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.2. Universal constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
A.2.1. Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
A.2.2. Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.2.3. Filtered colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.2.4. Existence of (co)limits . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.2.5. Adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

These are the lecture notes as of April 15, 2025.
An up to date version of these notes can be found at http://www.math.uni-hamburg.

de/home/holstein/lehre/STnotes.pdf.

ii

http://www.math.uni-hamburg.de/home/holstein/lehre/STnotes.pdf
http://www.math.uni-hamburg.de/home/holstein/lehre/STnotes.pdf


1. Introduction

1.1. Overview

In this course we study the basic theory of sheaves with a view to applications in topology.
– presheaves and sheaves, stalks and sheafifiaciton, pushforward and pullback functors. ,

sheaf cohomology.
This will require some background in category theory and homological algebra, in particular

the notion of derived functors, that I will review very very briefly.
Here is an outline of the course as it is planned at the moment. There may well be changes.

1. Basic definitions, examples and constructions. Presheaves, sheaves, stalks, sheafifi-
caiton, pushforward, inverse image.

2. A very brief introduction to homological algebra. Derived functors, the derived
category.

3. Cohomology as derived global sections. Injective, flasque and soft sheaves, de Rham
and Cech cohomology.

4. Computations. Cohomology and pushforward with compact support; Mayer-Vietoris,
base change; Projection formula.

5. Local systems. Cohomology with local coefficients, Riemann-Hilbert, constructible
sheaves.

6. If time permits: Advanced topics.

This is an advanced graduate course, the main pre-requisites is a course and on advanced
algebra (language of functors and homological algebra). A course on algebraic topology
(including cohomology) is extremely useful, but can be taken at the same time.

The course is not complete in the sense that I reserve the right to leave out some details and
use non-trivial results from the literature.

You can influence the pace and focus of the course somewhat by making requests, asking
questions or telling me to slow down or speed up.
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2. Basic theory of sheaves

2.1. Definitions and Examples

Let X be a topological space and Op(X) the category (poset) of open sets. The category has
the open subsets of X as objects and a unique morphism U → V , written U ⊂ V if U is a
subset of V and no other morphisms.

Definition 2.1. A presheaf on X with values in a category C is a functor F : Op(X)op → C
We call F (U) the sections of F on U.
A morphism of presheaves F → G is just a natural transformation.

We can unravel these abstract definitions: A presheaf on X provides an object F (U) of C
for any open set in X and a restriction map rUV : F (U) → F (V) for any inclusion V → U
that is compatible with compsition: rUW = rUV ◦ rVW . A morphism f : F → G is a map
fU : F (U)→ G (U) for every U such that fV ◦ rF

UV = rG
UV ◦ fV .

We will be mostly interested in the case that C is the category of abelian groups or more
generally R-modules for some commutative ring R. We will always assume that C has all
small limits and that it is a concrete category equipped with a forgetful functor to sets, i.e. we
can characterise F (U) by its elements.

For a section s ∈ F (U) we also write s|V for rUV(s) ∈ F (V).

Example 2.2. 1. On any X the functor sending any open set U to Z is a presheaf with
values in abelian groups called the constant presheaf.

2. Ony any X the functor sending any open U to the set C 0(U,R) of continuous functions
on U is a presheaf.

Definition 2.3. A collection {Ui}i∈I in Op(X) such that ∪Ui = U is called a cover.
A presheaf F is called a sheaf if for any cover Ui of an open U and for any collection of

sections si ∈ F (Ui) such that ∀i, j ∈ I

si|Ui∩U j = s j|Ui∩U j

there exists a unique section s ∈ F (U) such that si = s|Ui for all i ∈ I.

The uniqueness of the section means that sections of a sheaf are determined by their
restrictions, they are locally determined. A presheaf satisfying this condition is sometimes
called separated.

The existence of the section means that sheaves can be glued from consistent local data.
We can write the sheaf condition somewhat compactly as a limit:
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Lemma 2.4. A presheaf F on X is a sheaf if and only if for any cover {Ui}i∈I of any open
U ⊂ X we have

F (U) = eq

∏
i∈I

F (Ui)⇒
∏
i, j∈I

F(Ui ∩ U j)


Proof. Unravelling this limit returns the definition in words. □

From either definition we can read off two useful facts:

1. For any sheaf F (⨿iUi) =
∏

i F (Ui) as the Ui form a cover and all intersections are by
definition empty.

2. For any sheaf F (∅) = ∗, the final object of the category C . This is a special case of the
previous point, we can cover the empty set by the empty set and read off that F (∅) is
the limit over the empty category, i.e. the final object!

Example 2.5. The constant presheaf on a topological space is typically not a sheaf. Assume
X has two disjoint open subsets U,V and consider the constant sheaf with value Z. Then for a
sheaf F we have F (U ∪ V) = F (U) ×F (V), but the constant sheaf takes value Z , Z × Z.

Example 2.6. Let Y be a topological space, for example Y = R. Let X be an arbitrary
toplogical space. Define C (U) to be the set of continuous maps U → Y . Then C is a sheaf.

Let Ui be a cover of U. Then U is the colimit of the Ui, to be precise U = coeq(⨿iUi ⇔
Ui ∩ U j), which we write colim Ui by abuse of notation to simplify things. But then C is a
sheaf because

C (colim Ui) := Hom(colim Ui,Y) = lim Hom(Ui,Y) = lim C (Ui)

by the fundamental property of limits and homs.
Alternatively, one can unravel the definitions.
In the case Y = R we call this the sheaf of real-valued (continuous) functons on X. I.e. the

presheaf of real-valued continuous functions on X is a sheaf.

Example 2.7. In the previous example let Y have the discrete topology, for example Y = Z.
Then we have constructed the sheaf of locally constant functions on X with values in Y . We
call it the constant sheaf and denote it by Y . This is not to be confused with the constant
presheaf. To be precise, the value on a set U is Zc(U) where c(U) is the number of connected
components of U.

Example 2.8. Let E be a vector bundle of rank n on a topological space X, i.e. a space E
with a surjection p : E → X such that X has a cover Ui and each p−1(Ui) is homeomorphic to
Ui × R

n.
Then E defined by E (U) = {s : U → p−1(U) | p ◦ s = 1U} is a sheaf, the sheaf of sections

of E. If E = X × R is the trivial rank one vector bundle its sheaf of sections is the sheaf of
R-valued functions.
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Example 2.9. More generally for any continuous map p : Y → X we may define the sheaf
of sections S that sends any U ⊂ X to the set of maps s : U → Y satisfying ps = 1U . By
definition S (U) = C (U) ×Hom(U,X) {ιU} where ιU is the inclusion U ⊂ X and thus for a cover
we have

S (colim
i

Ui) � C (colim
i

Ui) ×Hom(colimi Ui,X) {ιU}

�
(
lim

i
C (Ui)

)
×lim Hom(Ui,X) {ιUi}

� lim
i

(
C (Ui) ×Hom(Ui,X) {ιUi}

)
� lim

i
S (Ui)

as limits commute with limits, in particular the pullback commutes with the equalizer of
products in the sheaf condition.

Example 2.10. As sheaves are defined locally we may make local modifications: If E is a
smooth vector bundle on a smooth manifold the presheaf of smooth sections of E is a sheaf:
As the presheaf of smooth sections is contained in the sheaf of continuous sections we can
always glue compatible smooth sections to a unique continuous section. But this continuous
section must be smooth as it restricts to a smooth section on each open in our cover.

Similarly we may define the sheaf of locally constant functions or holomorphic functions
as a subsheaf of the sheaf of all continuous functions into C.

Here and in future a subsheaf F of a sheaf G is just a sheaf on the same space such that
F (U) ⊂ G (U) for all U.

Example 2.11. Let X = ∗. Then a C -valued sheaf on X is exactly an object of C.
Let ∗ be a terminal object in C . Then the constant presheaf with value ∗ is a sheaf.

Example 2.12. Let R be a commutative ring and M an R-module. We let Spec(R) be the set
of all prime ideals of R and define a topology a follows. Let for each f ∈ R D f ⊂ Spec R be
the set of prime ideals not containing f . This is a basis of open sets for a topology on Spec R
called the Zariski topology. Define a presheaf M̃ as follows:

1. on the D f by M̃(D f ) = M f , the localisation of M at f , i.e. the R-module of formal
quotients {m

f i | m ∈ M, j ∈ N}.

2. on an arbitrary U = ∪ f D f we define M̃(U) = lim M̃(D f ).

Then one can show with some commutative algebra that this is sheaf on Spec R. In particular
R itself gives rise to a sheaf on Spec R called the structure sheaf with the property that every
M̃(U) is a module over R̃(U). We say M̃ is a quasi-coherent sheaf an the afine scheme Spec R
and these (and their generalizations to general schemes) play a huge role in algebraic geometry,
but our focus will lie elsewhere.

Definition 2.13. A topological space X equipped with a sheaf of rings R is called a ringed
space. A sheaf of R-modules is a sheaf M of abelian groups on X such that M (U) is a (left)
R(U)-module for every open set U in X. A morphism of sheaves of R-modules is a morphism
of sheaves F → G such that each F (U)→ G (U) is R(U)-linear.
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We will probably only look at sheaves of commutative rings, but there is no reason not to
define things in general.

Definition 2.14. Given a topological space X and a category C we define the category
PSh(X,C ) as the category of presheaves on X.

We denote by Sh(X,C ) the full subcategory of sheaves.

We will be particularly interested in sheaves with values in the category of R-modules for
some commutative ring R.

We write Sh(X,R) for Sh(X,R-Mod) for a commutative ring R and Sh(X) for Sh(X,Z) =
Sh(X,Ab) for the category of sheaves of abelian groups. If (X,R) is a ringed space we write
Sh(X,R) for the category of sheaves of R-modules.

2.2. Stalks and sheafification

As sheaves are local we may look at them at a point. We begin by looking at presheaves
at points. To simplyif things we look at sheaves with values in an abelian category A , for
example abelian groups. Bt everything will be true in greater generality, for sheaves of sets
one needs minor modifications of the proofs.

Definition 2.15. The stalk Fx of a presheaf F on X at a point x ∈ X is defined as
colimx∈U F (U) where the colimit is taken in the category A over all open sets containing
x.

Given s ∈ F (U) we denote by s|x its image in Fx, called the germ of s.

Explicitly, objects of Fx are pairs (U, s) with x ∈ U ⊂ X open and s ∈ F (U) up to the
equivalence (U, s) ∼ (W, t) if there is V ⊂ U ∩W with s|V = t|V .

This is an example for a filtered colimit, which is sometimes (confusingly!) called a direct
limit. See the section in the appendix if you are unfamiliar with these kinds of colimits.

Example 2.16. The constant presheaf with value R has stalk R = colim R.
The constant sheaf R also has stalk R. The connected open neighbourhoods of a point P are

final in all open neighbourhoods, thus we can compute the stalk on connected open sets, see
Lemma A.35. But on a connected open set R(U) = R.

Example 2.17. The presheaf of continuous functions C on a manifold M has as stalk at the
point p the set (in fact, ring) of germs of functions at p.

Any morphism f : F → G induces a morphism of stalks fx : Fx → Gx by sending the
germ represented by (U, s) to the germ represented by (U, f (s)).

Lemma 2.18. Two morphisms f , g : F → G of sheaves agree if they agree on stalks.
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Proof. For any U we have a commutative diagram

F (U) G (U)

∏
x∈U Fx

∏
x∈U Gx

(2.1)

and the vertical maps are injections: Assume given s ∈ G (U) with sx = 0 for all x ∈ U. This
means for any x there is some Ux on which s vanishes. But the {Ux} form a cover of U and by
the uniqueness part of the sheaf condition s must be 0.

As the maps induced by f , g in the bottom row agree, they must also agree in the top row. □

Lemma 2.19. A morphism f : F → G of sheaves is an isomorphism if and only if all induced
morphisms on stalks are isomorphisms.

Proof. The only if direction is clear.
So let f be such that fx is an isomorphism for all x ∈ X. We will show that for all U we have

an isomorphism fU : F (U) → G (U), then U 7→ f −1
U is an inverse morphism in the category

of sheaves.
To show f is injective assume f (s) = 0 for all s ∈ U. In particular f (s)x = 0 for all x,

thus by injectivitiy sx = 0, so there is some Ux with s|Ux = 0. By the uniqueness property of
sheaves this means s|U = 0 as in Diagram 2.1.

To show surjectivity assume we have t ∈ G (U). By surjectivity on stalks at the point x there
is some Ux and sx ∈ F (Ux) such that ( f (sx),Ux) represents tx. Shrinking Ux if necessary we
may even assume f (sx) = t|Ux .

We want to glue the sx into a section of F (U). The Ux cover U, so we have to check
overlaps. Let Uxy = Ux∩Uy be nonempty. Then sx|Uxy and sy|Uxy are sent to tUxy by assumption.
By the injectivity we have already established we have sx|Uxy = sy|Uxy . Thus by the sheaf
property of F we can glue to obtain s ∈ F (U). As f (s) agrees with t on all stalks we see that
s maps to t by Diagram 2.1. □

The constant presheaf seemed like a reasonable construction and we did then construct
something we called the constant sheaf. Could we have obtained the constant sheaf directly
from the constant presheaf?

Definition 2.20. The sheafification of a presheaf F is defined as follows.

F sh(U) := {( fp ∈ Fp)p∈U | fp are compatible}

where compatibility means that for any q ∈ U there is an open q ∈ V ⊂ U and a section
s ∈ F (V) with fp = sp for p ∈ V . The restriction maps are the natural restriction maps.

Here the product is taken in the category A and the compatibility condition is expressible
as an equaliser, so if F takes values in A so does F sh(U).
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Theorem 2.21. Given a presheaf F on X there is a natural map u : F → F sh such that any
presheaf morphism f : F → G for a sheaf G factors uniquely through u.

Proof. Let F ∈ PSh(X). We first note that F sh is indeed a sheaf. Given any cover we have
(Ui) and compatible sections si ∈ F sh(Ui) we define s by ((si)x) | x ∈ Ui), i.e. we have to
specify an element of the stalk Fx for any x ∈ U, and just choose any x ∈ Ui in our cover and
choose the germ (si)x. By definition of the stalks this is well-defined. Thus we have existence
of sections. But the construction is also unique as s|Ui = si implies sx = (si)x.

We now consider the map of presheaves u : F → F sh given on U by s ∈ F (U) 7→
(sx)x∈U ∈ F sh(U).

Let G be a sheaf and f : F → G a map of presheaves. We define F sh(U) → G (U) for
any open U as follows. Take s = (sx)x∈U ∈ F sh(U). By definition there is a cover {Ui} of U
and sections si ∈ F (Ui) such that for all x we have sx = (si)x for a suitable i. We consider
f (si) ∈ G (Ui). By the sheaf property of G they glue to a section of G (U) that we call f (s).
(Note that si|Ui∩U j = s j|Ui∩U j as they agree on stalks.) This defines f # : F sh → G. This
morphism is unique as morphisms of sheaves are determined on stalks by Lemma 2.18. □

Example 2.22. Let F be the constant presheaf with value R. Then F sh(U) is given by
functions from U to R which locally come from a section of F (U) = R, i.e. they are locally
constant functions. Thus F sh = R, the constant sheaf is the sheafification of the constant
presheaf.

Corollary 2.23. We have ux : Fx � (F sh)x for any x ∈ X

Proof. The morphism is from Theorem 2.21, the result follows by unravelling the definition
of (F sh)x. □

Corollary 2.24. If F is a sheaf F is uniquely isomorphic to F sh.

Proof. We have a map F → F sh by Theorem 2.21. By Lemma 2.19 it suffices to compare
stalks, so the result follows from Corollary 2.23. □

Corollary 2.25. Sheafification provides a functor left adjoint to the inclusion ι : Sh(X,A )→
PSh(X,A ) of presheaves into sheaves, i.e. HomSh(X,A )(F sh,G ) � HomPSh(X,A )(F ,G ) for a
sheaf G and presheaf F on X.

Proof. Given f : F → G a map of presheaves we obtain a map f sh : F sh → G sh by applying
Theorem 2.21 to F → G → G sh. Uniqueness ensures that this is functorial.

Theorem 2.21 provides the isomorphism of hom spaces for the adjunction. The map
u : F → ι(F sh) is the unit and the identity map is the counit of this adjunction. □

Remark 2.26. There are different ways of considering sheafification. We may view the
sheafification of a presheaf as the sheaf of sections of a certain space associated to the presehaf,
the espace étalé, which is the union of all stalks of F , equipped with a topology such that the
natural projection map to X is a local homeomorphism.
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This is just a different flavour of the construction we chose, but there are generally different
constructions. Grothendieck’s plus construction associates to any presheaf a separated
presehaf and to any separated presheaf a sheaf, doing it twice is sheafification.

We could have of course also just defined sheafification as a left adjoint. We could have
then shown existence by constructing it explicitly, or by some general machinery like an
adjoint functor theorem. The main ingredient is checking that the inclusion of presheaves
into sheaves preserves limits (see below for (co)limits of (pre)sheaves).

2.3. Limits and colimits

Recall that a category is called (co)complete if it has all (co)limits.

Theorem 2.27. Let X be a topological spaces. If C is complete then so are PSh(X,C ) and
Sh(X,C ). Limits of presheaves and sheaves are computed objectwise.

If C is cocomplete then so are PSh(X,C ) and Sh(X,C ). Colimits of presheaves are
computed objectwise while the colimit of a diagram of sheaves is the sheafifiaciton of the
(objectwise) colimit of the underlying diagram of presheaves.

In particular the stalk of a colimit of sheaves is the colimit of the stalks.

Proof. We first observe that limits and colimits in the category of presheaves are determined
objectwise. If you are less familiar with (co)limits it’s a good exercise to check this for
yourself.

By the adjunction (−)sh ⇆ ι of Lemma 2.25 sheafification preserves colimits, thus with
Corollary 2.24 we have

colim
j

F j = colim
j

(ιF j)sh = (colim
j
ιF j)sh.

By Corollary 2.23 the statement about stalks follows.
To compute the limit of sheaves not that the objectwise limit of a diagram of sheaves is

again a sheaf: The sheaf condition may be formulated as a limit and limits commute with
limits. In other words, we may compute that for a cover {U j} of U and our diagram Fi of
sheaves we have

lim
i

Fi(U) � lim
i

lim
j

Fi(U j)

� lim
j

lim
i

Fi(U j)

where we used that the Fi are sheaves and then that limits commute with limits (by what it
means to be a limit). So the objectwise limit is a sheaf and satisfies the universal property of
being a limit of presheaves, but then it also satisfies the weaker universal property of being a
limit of sheaves.

Note that the fact that limits of sheaves exist and are given by the limit of presheaves also
follows from the (non-trivial) category-theoretic statement that any inclusion with a left adjoint
creates limits. □
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We now consider sheaves with values in a fixed abelian category A , for example R-modules
for a fixed commutative ring R.

Then in particular a kernel of a map of sheaves is determined pointwise. We say that a map
of sheaves is injective if its kernel is the 0 sheaf, i.e. it is injective on each open.

We say f : F → G is surjective if the cokernel is the 0 sheaf, which is the case if and only
if all the maps fx : Fx → Gx on stalks are surjective. In particular the map does not have to
be surjective on each open. The condition is also called locally surjective to emphasize this
point.

Remark 2.28. In fact these are precisely monomorphisms and epimorphisms in the category
of sheaves and arguably these are the better terms to use. But enough people use the words
injections and surjections.

Example 2.29. The need to sheafify the cokernel may look like a formal inconvenience, but
it has a mathematical meaning. Let X be a complex manifold (like C \ {0}) and O the sheaf of
holomorphic functions.

Consider for example the inclusion of sheaves Z
2πi
−−→ O . This is the kernel of the exponential

map from O → O× whose image as a presheaf we denote by F . Then F is the presheaf of
functions admitting a logarithm. We obtain a short exact sequence of presheaves

0→ Z→ O → F → 0

which is just a compact way of saying O → F is an epimorphism with kernel Z.
However, the presheaf cokernel F is not a sheaf. Having a logarithm is not a local property

so if we try to glue locally defined functions which admit logarithms into a global function,
the result will not in general have a logarithm.

The sheafification of F is O×, the sheaf of invertible holomorphic functions. It is clear
this is a sheaf so it suffices to check that O× is the stalkwise cokernel of the map Z → O .
The sheaf of locally constant funnctions is the kernel of the exponentiation map, s we need to
check surjectivity. Let (s,U) be a nonzero holomorphic function on some open U containing
y. Shrinking U if necessary we may assume s(y) ∈ B 1

2 | f (x)|( f (x)) and we have a well-defined
logarithm.

The proof of the following lemma contains a brief reminder what an abelian category is.

Lemma 2.30. The category Sh(X,A ) of sheaves with values in the abelian category A is
itself abelian.

Proof. Sh(X) clearly has hom spaces which are abelian groups, it has a zero object given by
the constant sheaf taking the value zero and we have seen it has finite limits and colimits in
Theorem 2.27 as A has finite limits and colimits. We also observe that finite coproducts are
equal to finite products. The presheaf finite product and coproduct agree, and this shows the
finite coproduct is already a sheaf and thus equal to its own sheafifiaciton by Corollary 2.24
which is the coproduct of sheaves.
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It remains to show that the natural map from the image of a map f (defined as ker coker( f ))
to the coimage (defined as coker ker( f )) is an isomorphism. But this may be checked on stalks
by Theorem 2.27 and Lemma 2.31 below, and on stalks it follows from the result in A . □

Lemma 2.31. Let (Fi)i∈I be a finite diagram of sheaves on X. Then (lim Fi)x � limi(Fi)x for
all x ∈ X.

Proof. By definition the stalk is a filtered colimit and colimits commute with finite limits in
categories sufficiently like Set, see Theorem A.37.

But one can also prove this in a more elementary way. Every finite limit is an equalizer of
maps between finite products by a variation of Lemma A.38. In an abelian category the finite
products are finite coproducts and commute with stalks, and the equalizer may be replaced
by a kernel. Thus it suffices to show that given a map of sheaves f : F → G we have
ker( f )x = ker(Fx → Gx) and this follows by unravelling definitions: Elements of the left hand
side are germs (U, s) with f (s) = 0 and elements of the right hand side are germs (V, t) with
f (t|V′ = 0 for some x ∈ V ′ ⊂ V . Up to equivalence of germs these sets agree. □

Note that infinite limits cannot usually be computed stalkwise.

2.4. Functors of sheaves

Given a continuous map f : X → Y of topological spaces we would like to transport sheaves
along f .

Definition 2.32. Let f : X → Y be continuous and let F be a sheaf on X. Then we define the
pushforward sheaf f∗F (U) = F ( f −1U) on Y .

Lemma 2.33. The pushforward sheaf is indeed a sheaf.

Proof. This follows as the preimage of a cover is a cover. □

Example 2.34. Let X be any topological space and p : X → ∗ the only map to the one element
space. Then for any F in Sh(X,C ) the object p∗F = F (X) in Sh(∗,C ) = C is also written
as Γ(X,F ), the global sections of F .
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A. Basic category theory

I will give a rapid fire overview of category theory. The focus is on definitions and examples,
with a few results thrown in, but no proofs (those can be found in any standard reference, e.g.
Mac Lane’s “Categories for the working mathematician”).

If you have met a few concepts here and there this should be nice refresher putting
everything we need together in a systematic way

If you are comfortable with categories up to limits and adjunctions you can skip this. The
least standard part is probably Section A.2.3 on filtered colimits.

A.1. Basics

A.1.1. Categories and Functors

Definition A.1. A category C consists of the following data:

• a class of objects Ob(C ),

• for every pair of objects X,Y ∈ Ob(C ) a class of morphisms HomC (X,Y) (also called
arrows),

• for every object X a distinguished morphism 1X ∈ HomC (X, X), the identity

• for every three objects X,Y,Z ∈ Ob(C ) a composition ◦ : HomC (Y,Z) ×HomC (X,Y)→
HomC (X,Z),

such that

• compositon is associative: ( f ◦ g) ◦ h = f ◦ (g ◦ h),

• the identity is an identity for composition: 1Y ◦ f = f = f ◦ 1X for f ∈ HomC (X,Y).

Given f in HomC (X,Y) we call X the source and Y the target of f .

Example A.2.

1. Sets and functions form a category we denote by Set. (Since we want to consider the
category of all sets and want to avoid paradoxa we referred to a class of objects in our
definition.)

2. Topological spaces and continuous maps form a category Top. It is easy to consider the
subcategory of CW complexes or path connected spaces etc.
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3. There is also a category Top∗ whose objects are pointed topological spaces (X, x0) and
whose morphisms are base-point preserving maps, i.e. f : (X, x0) → (Y, y0) is given by
f : X → Y with f (x0) = y0.

This is an example of an undercategory: Given any category C with an object C there is
a category whose objects are arrows f : C → D in C , and whose morphisms are maps
g : D → D′ making the obvious triangle commute: g ◦ f = f ′ : C → D1. Top∗ is the
category of topological spaces under the one point space.

4. In algebra we find many further categories: Groups and homomorphisms form the
category Group, vector spaces over k and linear maps form Vectk, abelian groups, rings,
fields, etc. all form categories

5. There is a category with one object and one morphism (the identity of the object). In
general a category is called discrete if the identities are the only morphisms. Every set
I can be considered as a discrete category I with Ob(I) = I.

6. For every category C there is an opposite category C op with the same objects,
HomC op(A, B) = HomC (B, A) and f ◦C op g B g ◦C f . Thus we obtain the opposite
category C op from C by turning around all arrows.

We will often abuse notation and write C ∈ C as a shortcut for “C is an object of C ”.

Definition A.3. A morphism f : C → D is called isomorphism, if there is g : D → C such
that g ◦ f = 1C and f ◦ g = 1D.

Homeomorphisms and (group/ring/vector space) isomorphisms are examples.
In all categories we consider isomorphic object as equivalent and (almost) interchangeable.

Remark A.4. If the objects and morphisms of a category form sets we call it a small category.
If there may be a class of objects but the morphisms between any two pair of objects form a
set we say the category is locally small.

Many categories we are interested in, like Top, Set and Group are not small, but locally
small.

Example A.5. A small category in which there is at most one morphism between any two
objects and in which any isomorphism is an identity is called a partial order. Then the
composition is uniquely determined by the morphisms (as there is only one function into a
set with one element).

An example is the category N whose objects are the natural numbers and where there is a
morphism i→ j if and only if i ≤ j.

An important motivation for the study of category theory is the observation that mathe-
matical objects are often better understood through the morphisms between them. The same
principle holds for categories.
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Definition A.6. A functor F between two categories C and D consists of the following data:

• a map that associates to any X ∈ Ob(C ) an object F(X) ∈ Ob(D).

• for each pair of objects X,Y ∈ Ob(C ) a map from HomC (X,Y) to HomD (F(X), F(Y))
which we write as f 7→ F( f ),

such that

• F is compatible with composition: F( f ◦ g) = F( f ) ◦ F(g),

• F preserves the identities: F(1X) = 1F(X).

Example A.7.

1. For every category C there is an identity functor 1C that does nothing on objects and
morphisms.

2. Let C and D be categories and D an object of D . Then there is a constant functor
cD : C → D that sends every object of C to D and any morphism of C to 1D.

3. A family of topological spaces (Xi)i∈I is nothing but a functor from I, considered as a
discrete category, to Top.

4. From every category whose objects have an underlying set e.g. Top,Group,Vectk) there
is a forgetful functor to Set, that forgets all additional structure.

5. Algebraic Topology is in no small part the study of functors from topological spaces to
algebraic categories.

The homotopy groups are functors πn : Top∗ → Group associating to any pointed
topological space (X, x0) the homotopy group πn(X, x0) and to any map f : X → Y the
induced map f∗.

Similary homology groups are functors Hn : Top→ Ab.

Cohomology groups are functors Hn : Topop
→ Ab. Note that these functors turns

around the direction of arrows, which is why we write it as a functor from the opposite
category. We also call such functors contravariant.

It is easy to see that functors can be composed, so there is a category of categories whose
objects are (small) categories and whose morphisms are functors.
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A.1.2. Natural Transformations

Remarkably, there are not just maps between categories (the functors) but also maps between
maps betwen categories.

Definition A.8. Let F,G : C → D be two functors. A natural transformation α from F to G
consists of maps αC : FC → GC for every C ∈ C such that for every map f : C → C′ in C
there is a commutative diagram:

FC FC′

GC GC′
αC

F f

αC′

G f

Remark A.9. You might think that it is easier to write αC′ ◦ F f = G f ◦αC instead of drawing
the commutative diagram.

The commutative diagram has the advantage that it keeps track of all the objects as well
as the morphisms between them. More importantly, in category theory, algebraic topology
and homological algebra there is often a plethora of maps whose compositions we want to
compare, and it is much easier to keep track if one arrange them all in a beautiful diagram.

Example A.10. 1. There is a functor D : Vectk → Vectk that takes every vector space to
its double dual V 7→ (V∗)∗. Then for every vector space there is a map ι : V → DV that
sends v ∈ V to the functional α 7→ α(v). This map is natural, meaning it is compatible
with linear maps. In other words, ι is a natural transformation from the identity functor
1Vect to the double dual D.

2. For any functor F : C → D there is the identity natural transformation 1F defined by
(1F)C = 1FC for every C ∈ C .

3. Fix two categories I and C , where we may think of I as being somehow small.

We will consider a functor F : I → C as a diagram in C , given by objects F(i) together
with arrows F( f ) : F(i)→ F( j) for every morphism f : i→ j in I.

Any object C of C determines a constant functor cC : I → C that sends any i to C and
any f : i→ j to 1C.

Then natural transformation from c to another functor F : I → C is given by maps
αi : C → F(i) for every i ∈ I such that F( f ) ◦ αi = α j for every f : i→ j.

We call a natural transformation from a constant diagram to F a cone over F. We think
of C as the tip of the cone, and there are arrows going to all the vertices of the diagram,
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making all the triangles commute.

C

F(i) F(k)

F( j)

4. For every n ≥ 1 the Hurewicz homomorphism hn : πn(X, ∗)→ Hn(X,Z) from homotopy
to homologoy of path connected spaces is a natural transformation. (To be precise it
is a natural transformation from πn to the composition of homology with the functor
forgetting basepoints. If n = 1 we also have to compose with the inclusion functor from
abelian groups to all groups.)

5. For every topological space X we have a functor which takes the underlying set of X
and equips it with the discrete topology, write this as Xδ. Then the identity map from Xδ

to X is continuous. In fact it is a natural transformation from the discretization functor
to the identity functor Xδ 7→ X.

Natural transformations may be composed and form the morphism in the category of
functors Fun(C ,D) between two categories.

Definition A.11. A natural tranformation α such that all αC are isomorphisms is an
isomorphism in the category of functors and is called a natural isomorphism.

A.1.3. Equivalences

Definition A.12. Two categories are equivalent if there are functor F : C → D and
G : D → C such that F ◦G is naturally isomorphic to 1D and G ◦ F is naturally isomorphic
to 1C .

We can give a more concrete description, for which we need some definitions.

Definition A.13. functor F : C → D is full if it induces surjections on all hom sets, i.e. every
g : FC → FC′ in D is F( f ) for some f : C → C′.

The functor F is faithful if it induces injections on all hom sets, i.e. F( f ) = F( f ′) only if
f = f ′.

F is fully faithful if it is both full and faithful.
F is essentially surjective if every object in D is isomorphic to some object FC in the image

of F.

Then one can prove that F : C → D is an equivalence of categories if and only if it is fully
faithful and essentially surjective. (The “if” direction needs the axiom of choice.)
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Example A.14. 1. Let k be a field. There is an equivalenc of categories from finite-
dimensional k-vector spaces to its opposite category, given by V 7→ V∗ on objects.

2. Let Mat be the category whose objects are non-negative integers and whose morphisms
from m to n are (m × n)-matrices. Composition is given by matrix multiplication.

Then there is a natural functor from Mat to the category of finite-dimensional R-vector
spaces, given by n 7→ Rn on objects. This is an equivalence of categories.

A.1.4. Opposite categories

We recall the following Example A.2.6:

Definition A.15. Let C be any category. Then its opposite category C op is defined to have the
same objects as C but HomC op(C,D) B HomC (D,C) and f ◦C op g B g ◦C f .

In words C is obtained by turning around all the arrows in C .
Clearly any functor F : C → D induces an opposite functor Fop : C op → Dop.
Many natural functors, like cohomology, turn around the order of arrows, i.e. cohomology

is a functor Topop
→ Ab.

Definition A.16. We call a functor C op → D a contravariant functor from C → D .

By using the opposite of categories and functors, we can dualize all the definitions and
results in category theory.

Moreover, whenever we prove a statement about a category C then the dual statement holds
for its opposite category.

This is a very powerful idea, which we will come back to soon.

A.1.5. The hom functor

Forming the hom sets in a category is actually functorial. Let us explain what this means.
Let C be a locally small category, i.e. the morphisms between any two objects form a set

(rather than a proper class). Let C be an object of C .

Definition A.17. The hom-functor, denoted hC : C → Set, sends any object D to HomC (C,D)
and any morphism f : D → D′ to the map f∗ : HomC (C,D) to HomC (C,D′) defined by
g 7→ f ◦ g.

We can of course also put the object C in the second place of Hom. Then our functor will
be contravariant and turn around the order of arrows. We obtain hC : C op → Set which is
defined by D 7→ HomC (D,C) and f 7→ f ∗, where f ∗(g) = g ◦ f .

For another level of abstraction, h(−) defines a functor from C op to the category of functors
Fun(C ,Set). This is a fully faithful functor that is called the Yoneda embedding. Any functor
naturally isomorphic to hC is called representable.
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Example A.18. The forgetful funtor U : Group → Set is representable by the group of
integers.

Unravelling our definition this means that there for every group G there is an isomorphism
HomGroup(Z,G) � U(G), and these isomorphisms are compatible with group homomorphisms.

But this just says that the set of morphisms from Z to G is exactly the set of elements of G,
the isomorphism is given by sending f : Z→ G to f (1) ∈ G.

Remark A.19. A key result in category theory is the Yoneda lemma. It states that natural
transformations from hC to some other functor F : C → Set are in natural bijection with
F(C). It’s not hard, but very consequential. (Although we won’t need it.)

A.2. Universal constructions

A.2.1. Limits

Category theory allows us to unify many constructions in mathematics, in particular those
characterised by universal properties.

Definition A.20. Let I be a small category and C any category. A diagram of shape I in C is
just a functor D : I → C .

A cone over D is an object C in C together a natural transformation from the constant
diagram C to D.

Explicitly a cone consists of C with maps γi : C → D(i) for all objects i in I such that for
any a : i→ j we have D(a) ◦ γi = γ j.

A map of cones (C, γ) → (E, ϵ) is a map f : C → E compatible with the maps, i.e.
ϵi ◦ f = γi.

We will often write Fi for the objects F(i) for i ∈ I.

Definition A.21. A limit of the diagram F : I → C is a cone (L, αi) over F that is universal in
the sense that any cone (C, γi) maps uniquely to (L, αi).

In other words, L and α have the property that whenever we have C in the following diagram
there is exactly one dashed arrow C → L making the diagram commute.

C L

F(i) F(k)

F( j)

αi
α j

αk

This universal property (like all universal property) ensures that if there are two limits L
and L′ there is a unique isomorphism between them: As L is a limit there is a unique map
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g : L′ → L and as L′ is a limit there is a unique map g′ : L→ L′. As g′g and 1L′ are both maps
of cones from L′ to itself they must agree and g′ and g are inverse.

We thus also speak of the limit and denote it by limI F or lim Fi.

Remark A.22. Note that the limit need not exist! If we can form arbitrary (small) limits in a
category C we say that C has all small limits.

Let us make this more concrete.

Definition A.23. Let I a set considered as a discrete category. The limit of F : I → C is
called the product of the F(i), often written

∏
i∈I Fi.

Thus
∏

i Fi has the property that there are natural maps π j :
∏

i Fi → F j for all j (called
projection) and whenever we are given maps β j : C → F j for all j we obtain a map
β : C →

∏
i Fi such that β j = π j ◦ β.

This recovers the familiar product of sets, topological spaces, abelian groups etc.
We consider a special case:

Definition A.24. Let I be the empty set considered as a discrete category without objects! The
limit of the unique functor I → C is called the terminal object of C , often written ∗. It has the
property that for every C ∈ C there is a unique morphism C → ∗.

The terminal object in Set is the set with 1 Element.

Definition A.25. Let I be the category with two objects and two arrows in the same direction
•⇒ •. The limit of F : I → C is called equalizer.

Definition A.26. Let I be the category with three objects • → • ← •. The limit of F : I → C
is called pullback.

Example A.27. 1. The terminal object in Groups is the group with 1 element.

2. The terminal object in Top is the topological space with 1 point.

3. In the diagram • → • ← • that defines pull-backs the middle object is terminal.

4. If a pull-back diagram in Set or Top takes the form ∗ → Y
f
←− X then the pull-back is

the fiber of f (equipped with the subspace topology in the case of Top).

5. If a pull-back diagram takes the form X → ∗ ← Y , i.e. the middle object goes to the
terminal object of C , then the limit is the product X × Y .

6. In the category Groups there is a unique map from ∗ to any group H and the pullback

of the diagram ∗ → H
f
←− G is nothing but the kernel of f .

7. The equalizer of two maps f , g : A → B in Set is exactly the subset of A given by all
elements a with f (a) = g(a), this explains the name.
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A.2.2. Colimits

We now apply the idea of dualizing categorical notions by turning around all the arrows to the
previous section.

So we change the orientation of all the arrows in the definition of a limit. This gives the
dual notion of a limit, called the colimit.

Definition A.28. A colimit of the diagram F : I → C , denoted by colimI F, is an object D of
C together with a natural transformation α : F ⇒ cD that is universal, in the sense that any
natural transformation from F to a constant functor cC factors uniquely through cD.

The corresponding diagram looks like this:

C D

F(i) F(k)

F( j)

Remark A.29. To make the duality of limit and colimit more precise we can observe that
(D, α) is a colimit of the diagram F : I → C exactly if (D, αop) is a limit of the diagram
Fop : Iop → C op. Here αop : cop

D ⇒ Fop is the natural transformation corresponding to
α : F ⇒ cD under the correspondence of morphisms in C and C op.

Definition A.30. The colimit over a discrete category is called the coproduct or sum.
The colimit of the empty diagram is called the initial object.
The colimit of the diagram • ← • → • is called pushout.
The colimit of a diagram of shape •⇔ • is called coequalizer.

Example A.31. 1. In Set and Top ithe coproduct is given by the disjoint union.

2. In Group the coproduct is given by the free product of groups.

3. In Vect the product and coproduct of two vector spaces V and W agree, both are given
by V ⊕W. (This holds for all finite products and coproducts in Vect, but it is no longer
true for infinite products and coproducts!)

4. The initial object in Set is given by the empty set.

5. The group with one object is both initial and terminal.

6. The pushout of the diagram 0← V → W of vector spaces is the quotient space W/V .

7. The coequalizer of two maps f , g : A → B in Set is given by the quotient of B by the
relation generated by f (a) ∼ g(a) for all a ∈ A.
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From the definition of limit and colimits it is not hard to obtain the following extremely
useful result:

Lemma A.32. Let F : I → C and G : J → C be diagrams. Then we have natural
isomorphisms

HomC (C, lim
I

Fi) � lim
I

HomC (C, Fi)

and
HomC (colim

J
Gi,C) � lim

J
HomC (G j,C)

A.2.3. Filtered colimits

A special kind of colimit is given by the following.
A category I is filtered if any finite diagram in I has a cone. Equivalently I is filtered when

it is not empty, for every two objects i, i′ there exists an object k with two arrows i → k and
i′ → k; for any two parallel arrows u, v : i ⇒ j there is an object k and morphism f : j → k
with f u = f v.

A filtered diagram is a diagram I → C with I filtered.

Definition A.33. A colimit over a filtered diagram is a filtered colimit

Example A.34. 1. The category (N,≤) with objects the natural numbers and a single
morphism a→ b whenevere a ≤ b is filtered. A colimit indexed by (N,≤) is also called
a sequential colimit. Increasing unions are a typical example: R = colima∈N(−a, a) as
sets or topological spaces.

2. The set of all neighbourhoods of a point x in a topological space X is a filtered category
under inclusion.

Such examples where there is at most one morphism between two objects are also called
posets.

A functor F : I → J is called cofinal if

1. For any object j in J there is i in I with a morphism j→ F(i)

2. For any two arrows j → F(i) and j → F(i′) there is a zig-zag of arrows i
f1
←− · · ·

fn
−→ i1

making the natural diagram commute:

k

F(i) F(i1) · · · F(in) F(i′)
F( f1) F( fn)

Note that the second condition is automatic if J is filtered.
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Lemma A.35. Let F : I → J be a final functor and G : J → C a diagram. Then if colimI GF
exists then colimJ G also exists and agrees with colimI GF.

Example A.36. The inclusion of all prime numbers into (N,≤) is final.
The inclusion of connected open neighbourhoods in all neighbourhoods of a point in a

topological set is final.

The key result about filtered colimits is the following:

Theorem A.37. In the category Set and A-Mod for any ring A finite limits commute with
filtered colimits.

A.2.4. Existence of (co)limits

We say a category C has all small limits or is complete if every diagram I → C has a limit.
Similarly we say C has all small colimits or is cocomplete if every diagram I → C has a
colimit.

This may seem extremely difficult to check, but in fact one can build any limit from just two
types of limit:

Recall that an equalizer is a limit for a diagram of the shape • ⇒ • and a product is a
diagram whose shape is a discrete category.

We say a category C has all equalizers if any equalizer diagram has a limit, and similarly
for products (and other shapes of diagrams).

Lemma A.38. A category C has all limits if and only if it has all products and equalizers. It
has all colimits if and only if it has all coproducts and coequalizers.

A.2.5. Adjunctions

It is rare that categories are equivalent, but a weaker notion is extremely fruitful.

Definition A.39. We say F : C → D is left adjoint to G : D → C , in symbols F ⊣ G if for
all C ∈ C and D ∈ D there are natural isomorphisms

ϕC,D : HomC (C,GD) � HomD (FC,D)

Here naturality means that for every map C → C′ in C the natural diagram commutes:

HomC (C′,GD) HomD (FC′,D)

HomC (C,GD) HomD (FC,D)

ϕC′ ,D

f ∗ F f ∗

ϕC,D

and a similar diagram commutes for g : D→ D′ in D .
If C and D are locally small we can also phrase naturality as saying that the two functors

HomC (−,G(−)) and HomD (F(−),−) from C op ×D to Set are naturally isomorphic.
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Example A.40. 1. Throughout algebra there are adjunctions between free and forgetful
functors. For example the forgetful functor U : Group → Set has a left adjoint given
by taking a set X to the free group with set of X as set of generators.

2. The forgetful functor Top → Set has a left adjoint given by equipping any set with
the discrete topology. It also has a right adjoint given by equipping any set with the
indiscrete topology.

Left and right adjoints are naturally dual: If F : C → D is left adjoint to G, then
Fop : C op → Dop is right adjoint to Gop.

Let F ⊣ G : C ⇄ D and C ∈ C . By the adjunction the identity map 1FC : FC → FC
corresponds to a map ϵC : C → GFC. By naturality in the definition of an adjunction the ϵ
assemble into a natural transformation ϵ : 1C ⇒ GF. This is called the unit of the adjunction.

Simlarly there is a natural transformation η : FG ⇒ 1D , called the counit of the adjunction.

Lemma A.41. Let F ⊣ G. Then unit and counit satisfy the following identities of natural
transformations: For every C ∈ C we have

ηFC ◦ F(ϵC) = 1FC

and for every D ∈ D we have
G(ηC) ◦ ϵGD = 1GD.

Put a little differently, we have the following identities of natural transformations: Gη◦ϵG =
1G and ηF ◦ Fϵ = 1F .

In fact, adjoints may be equivalently characterized by the existence of unit and counit.

Remark A.42. An adjunction induces an equivalence of categories if and only if unit and
counit are natural isomorphisms.

One can also show that adjoints are given by a universal property and are thus unique up to
unique natural isomorphism.

Adjoints are closely related to limts:

Lemma A.43. Let F be a left adjoint. Then F preserves colimits, i.e. whenever (D, α) is a
colimit of a diagram G : I → C then (FD, Fα) is a colimit for F ◦G : I → D .

Dually, if G is a right adjoint then G preserves limits.

Remark A.44. Under some assumption on the categories C and D there is even a converse to
the lemma: Any functor preserving all colimits has a left adjoint. There are different theorems,
depending on the precise assumptions made, but they are all called adjoint functor theorems.

We can even characterize limits using adjoints.

Lemma A.45. Consider the category Fun(I,C ) of I-shaped diagrams in C . There is a
diagonal functor ∆ : C → Fun(I,C ) sending any object C to the constant functor cC. Then
taking the limit of a diagram is right adjoint to ∆, and taking the colimit is left adjoint.
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