

Sheet 6

Question 6.1

Compute $H^i(S^1, \mathcal{C}^{\infty})$ for i > 0 where \mathcal{C}^{∞} is the sheaf of smooth functions on the circle.

Question 6.2

Consider the sheaf S of locally constant sections of the projection $p: M \to S^1$ from the open Möbius band to the circle. Compute $H^*(S^1, S)$.

Question 6.3

- (a) Find a double complex A^{pq} with $A^{pq} = 0$ for q > 0 and p < 0 with rows and columns exact except possibly in degree 0 such that, given $B^p = \operatorname{coker}(d : A^{p,-1} \to A^{p0})$, the natural map $\operatorname{Tot}^{\oplus}(A) \to B$ is *not* a quasi-isomorphism.
- (b) Find an (unbounded) double complex A^{pq} with exact rows and columns such that $H^*(\text{Tot}^{\Pi}(A)) = H^*(\text{Tot}^{\oplus}(A)) = 0.$

Question 6.4 *

Let K be any subset of $X = \mathbb{R}^n$. Assume $K = \bigcap_i U_i$ for open sets $U_i \subset X$. Write $\mathcal{F}|_K$ for the pullback of \mathcal{F} to K etc.

- (a) Show carefully that $\Gamma(K, \mathcal{F}|_K) = \operatorname{colim}_i \Gamma(U_i, \mathcal{F}_{U_i}).$
- (b) Show that the restriction of a flabby sheaf to an open subspace is flabby. Use (a) to show that the restriction of a flabby sheaf to K is flabby.
- (c) Combine these results to show that $H^*(K, \mathcal{F}|_K) = \operatorname{colim}_i H^*(U_i, \mathcal{F}_{U_i})$

Hint: A special case of this statement was used in lectures, but the argument had gaps.

Note (a) is immediate for the presheaf $V \mapsto \operatorname{colim}_{V \subset U} \mathcal{F}(U)$, but the sheafification $\mathcal{F}|_K$ needs more care: A section of $\Gamma(K, \mathcal{F}|_K)$ is given by a collection $s_\alpha \in U_\alpha$ where $K \subset U_\alpha$ and s_α and s_β agree on $U_\alpha \cap U_\beta \cap K$. You need to find for each point an open neighbourhood in X where the sections agree. Note in \mathbb{R}^n any cover has a locally finite subcover.

For point (b) note that contrary to claims in the lecture the restriction of a sheaf $\prod \mathcal{F}_x$ is not flabby a priori as products do not commute with pullbacks.

These questions will be discussed in the exercise class on 23 May 2025.