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1 Introduction

In what follows, ZFC− will denote ZFC minus the Foundation axiom. The main purpose
of this presentation is to prove the consistency of an extension of this theory, involving a
new axiom that we shall discuss later. I will follow very closely [3]. I will start by shortly
explain some of the motivations behind the conception of such a theory (Introduction).
I will quickly move on to introduce some key concepts and results that will be needed
for the announced proof of consistency (Sections 2), and will conclude with this proof
(Section 4).

When paradoxes arised at the begining of the XXth century, circularity was soon
denounced as closely connected to them1. A natural reaction was thus to avoid any kind
of circularity by technical means, for example by typing the universe of discourse or by
restraining the naive schema of comprehension. A side effect of these treatments was that
the universe in which mathematics were to be formalised – the set theoretical universe –
was restrained as well : only the so-called well-founded sets were allowed to exist.

Beyond the paradoxes, at least two other factors contributed to exclude non-well-
founded sets. On the one hand, the axiom of foundation is needed to prove that every set
appears at some stage of the Von Neumann hierarchy, a result which is both very elegant
and convenient. On the other hand, one could argue that well-founded sets are intuitively
prior, or at least easier to manipulate and understand for a start2. Before the end of the
XXth century, it was difficult to make sense of collections which actualy never end. One
revolutionary (and thus controversial) aspect of Cantor’s work was precisely to consider
actual infinite collections. However, though Cantor’s sets may never end, they must begin
somewhere. After Cantor’s inovations towards a science of infinity, a step further might
be to extend the universe of sets by welcoming the non-well-founded ones.

Today, we could say that though natural, set-theoretists’ reaction regarding circularity
was undoubtedly too radical. There are more subtil ways of getting rid of a scratch on

1See the discussion between B. Russell and H. Poincaré in Revue de métaphysique et de morale, Vol.
14, 1906, in particular [5], [6]

2On this point and its connection to the iterative conception of sets, see the introduction of [1].
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the leg than cutting it off entirely. Indeed, if manipulated not carefuly, circularity can
lead to contradictions. But not every circular object does lead to contradictions. And in
fact, there are circular objects that do diserve to be studied from a mathematical point
of vue, and thus represented in a suitable set theory3.

2 A graphical representation of sets

In this section, we introduce some key concepts and results of graph theory.

Definition 1. A graph G is given by an oredred pair (G,R) where G is a non-empty set
of nodes together with a binary relation R on G. The elements of R are called edges.
Whenever (x, y) ∈ R, we say that x is a parent of y and that y is a child of x. A path in
G is a sequence of nodes, each of which (except the firt one) is a child of its predecessor.
A graph is well-founded if it has no infinite path. For all x ∈ G, chG(x) will denote the
set of all children of x in G. A graph is rooted if it contains a unique node n0 (the "top
node") such that every path starts at n0.

Example : G1 = (N,→) where N = {n0, n1, n2, n3},→= {(n3, n2), (n3, n1), (n3, n0),
(n2, n1), (n2, n0), (n1, n0)} and G2 = ({0},=) are graphs. In G1, n3 is a parent of n2.
n2 → n1 → n0 and 0 = 0 = 0 = ... are respectively paths in G1 and G2. G2 is well-founded,
but G3 is not. chG1(n2) = {n1, n0} and chG2(0) = {0}. G1 is rooted, G2 is not.

Note that all the graphs we will be working with are rooted. Hence from now on
whenever I write "graph", read "rooted graph". The two fundamental operations we will
perform on graphs will consist of tagging and decorating them.

Definition 2. Let G be a graph with top node n0. A tagging of G is a map from the set
of childless nodes to {∅}.

Remark. If we were to work with atoms, a tagging of G would be a map from the set
of childless nodes to {∅} ∪ A where A is a class of atoms. This remark extends to the
following definition.

Definition 3. Let G = (G,R) be a graph and t be a tagging of G. A decoration of G is a
map d such that d(x) = t(x) if x ∈ dom(t), and d(x) = {d(y) : (x, y) ∈ R}.

Given a set x, any tagged graph with a decoration which assigns x to the top node is
called a picture of x. It is easy to verify that every set has at least one picture. Now one
can formulate the Foundation Axiom in these terms : no non-well-founded graph can be
decorated. Intuitively, it is easy to see why. By Foundation, there is no non-well-founded

3For a discussion on these objects, see [2] or [4]
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set, therefore there is no function that assigns a set to a non-well-founded graph. On the
contrary, the Anti-Foundation Axiom (AFA) states that every tagged graph has a unique
decoration. In particular, a non-well-founded graph can be decorated, i.e there exists a
(unique) set that can be assigned to its top node.

Remark. In ZFC, the axiom of extensionality guarantees that the identity of a set is
entirely determined by its elements. In this perspective, extensionality also provides an
informative (non-trivial) question that one should ask himself when wondering if two sets
are equal : are their elements equal ? Given a = {c} and b = {d}, the problem "Is a equal
to b ?" reduces to "Is c equal to d ?"4. However, this informative potential is lost when
applied to non-well-founded sets : given a = {b} and b = {a}, extensionality tells us that
a = b if and only if a = b... Several anti-foundations axioms were proposed depending on
the way one wants to treat equality of sets when dealing with non-well-founded ones. One
of the approach, the first one according to Aczel, during the 60’s and the 70’s by Maurice
Boffa, was simply to stick to extensionality as the sole axiom governing identity.

Proving that ZFC−+AFA is consistent is proving that it has a model. Such a model
will be built out of a generalization of the concept of a graph, namely a system.

Definition 4. A system is an ordered pair S = (S,R) where S is a class of nodes, R is
a class of edges satisfying the requirement that for any node s in S, chS(s) must be a set.

Any graph is a system, but the converse does not hold : (V,−→) with x −→ y if y ∈ x
is a system but not a graph. Taggings and decorations can be extended in a natural way
to systems. Assuming AFA (every tagged graph has a unique decoration), one can prove
that every labeled tagged system has a unique decoration.

3 Relative consistency of ZFC− + AFA

Let M be a system. We will say that a relation R on M is a bisimulation on M if for all
x, y ∈ M , whenever (x, y) ∈ R then any child of x must be R-related to some child of y
and vice-versa.

Example : for two sets x, y, write x ≡ y if and only if there is a graph M that pictures
both x and y. Then ≡ is a binary relation on the system V = (V,−→) and one can prove
that it is a bismulation on V . A bisimulation on M will be called small if it is a set.
Define ≡M on M by x ≡M y if and only if (x, y) ∈ R for some small bisimulation on M .

Lemma 1. Let M be a system. Then the relation ≡M is the unique maximal bisimulation
on M . That is : (i) ≡M is a bisimulation on M and (ii) if R is any bisimulation on M ,
then for any x, y ∈M , if Rxy holds then x ≡M y.

4Besides, note that by foundation this process will always stop, even though it might stop after
infinitely many steps.
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Theorem 1. For all x, y ∈ V , let x ≡ y if and only if there is a graph G that both pictures
x and y. Then ≡ is the maximal bisimulation on V . Formaly, for all sets x, y, x ≡ y if
and only if x ≡V y.

Definition 5. A system M is said to be extensional if x ≡M y implies x = y for all
x, y ∈M .

Theorem 2. The following are equivalent : (i) Every graph has at most one decoration
; (ii) The system (V,→) is extensional.

Remark. "Every graph has at least one decoration" is equivalent to "every extensional
system is an exact picture".

Definition 6. A system map from M to M ′ is a map f : M → M ′ such that for all
x ∈M , chM ′(f(x)) = {f(y) : y ∈ chM(x)}.

In words, f : M →M ′ is a system map if for all x ∈M , f maps the children of x onto
the children of f(x).

Definition 7. Let R be a bisimulation equivalence relation on some system M . We say
that M ′ is the quotient of M by R if and only if there is a surjective map f : M → M ′

such that for all x, y ∈M , xRy holds if and only if f(x) = f(y) holds as well.

In short, a quotient of M by R is simply a system M ′ in which all the nodes linked by
R are identified. Surjectivity tells us that M ′ is nothing more than that. As will become
clear later, our main interest in quotients here concerns the extensional ones. Note that
one can prove5 that a quotient of M by R is extensional if and only R is ≡M . Using this
result, it is also possible to prove that any system has an extensional quotient (the proof
uses AC).

Theorem 3. Let M be any system. Then the following are equivalent : (i) M is exten-
sional ; (ii) for each system M ′, every system map f : M → M ′ is one-one ; (iii) for
each small system M0 there is at most one system map f : M0 →M

Given a system M , an M-decoration of a graph G is a system map f : G → M . In
particular, a V -decoration of G is simply a decoration of G. A system is called M-complete
if every graph has a unique M -decoration (AFA says that V is a complete system).

Let V0 = {Gx, Gy, ...} be the class of all graphs, where x, y... are the top nodes of the
graph they index. We define the system (V0, R) such that R contains (Gx, Gy) if and only
if (x, y) ∈ RG (RG being the set of edges in G). Let fq : V0 → Vq be the extensional
quotient of V0 (I mentioned earlier that any system has an extensional quotient).

5[3], Lemma 7.8.8.
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Lemma 2. Let M be any system. Then there is a unique system map f : M → Vq.

As a corolary, Vq is complete : every graph has a unique Vq-decoration. Given any
system M , we may obtain an interpretation of the language of set theory by letting the
variables range over the nodes of M and interpreting the predicate symbol ∈ by the
relation ∈M with the following semantics : x ∈M y if and only if y → x ∈ R for all
x, y ∈M .

We are almost there : we are about to show that Vq is a model of ZFC−+AFA. The
steps will run as follows. First we will introduce a new concept, namely a "full" system.
After noticing that any complete system is full, we will prove that any full system is a
model of ZFC−, which will establish that any complete system is a model of ZFC−. Then
we will show that any complete system is also a model of AFA. Since Vq is complete, it
will follow that Vq is a model of ZFC− + AFA.

A system is full if for every set u ⊆ M , there is a unique element x ∈ M such that
u = chM(x). For example, V is a full system. One can prove that every complete system
is full.

Theorem 4. Every full system is a model of ZFC−.

Let M be a full system. For all u ⊆M , we write uM to denote the unique a such that
u = chM(a). We verify that each axiom of ZFC− is true in (M,∈M) :

• Extensionality. Suppose M |= ∀x(x ∈ m ↔ x ∈ n) for some m,n ∈ M . Then
chM(m) = chM(n). But m = chM(m)M and n = chM(n)M . Hence M |= m = n.

• Pairing. Let m,n ∈ M . Then {m,n} ⊆ M , so let c = {m,n}M . Then chM(c) =
{a, b}, so M |= m ∈ c ∧ n ∈ c.

• Union. Let m ∈ M . Then x = ⋃{chM(y) : y ∈ chM(m)} is a subset of M , so let
c = xM . Then M |= ∀y∀z((y ∈ m ∧ z ∈ y)→ z ∈ c).

• Power set. Let a ∈ M and define x = {yM : y ⊂ chM(a)}. Then x ⊆ M , so let
c = xM . Then M |= ∀v(∀z(z ∈ v → z ∈ a)→ v ∈ c).

• Infinity. Let θ0 = ∅M , θn+1 = (chM(θn) ∪ {θn})M with n ∈ N. Then θn ∈ M for all
n ∈ N, so let θ = {θn : n ∈ N}M ∈M . Clearly, M |= [θ0 ∈ θ ∧ (∀x ∈ θ)(∃y ∈ θ)(x ∈
y)].
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• Separation. Let a ∈ M and ϕ(x) be a formula with at most x free written on
the signature {∈} and eventualy containing constants from M . Define c = {b ∈
chM(a) : M |= ϕ(b)}M . Then M |= ∀x(x ∈ c↔ x ∈ a ∧ ϕ(a)).

• Collection. Let a ∈ M and ϕ(x, y) be a formula with at most x, y free written
on the signature {∈} and eventualy containing constants from M . Suppose that
M |= (∀x ∈ a)∃yϕ(x, y). Then (∀x ∈ chM(a))(∃y ∈ B)(y ∈ M ∧M |= ϕ(x, y)). By
the collection schema, there is a set b such that ∀x ∈ chM(a)(∃y ∈ b)(y ∈M ∧M |=
ϕ(x, y)). Let c = (b ∩M)M . Then M |= (∀x ∈ a)(∃y ∈ c)ϕ(x, y).

• Choice. Let a ∈ M be such that M |= (∀x ∈ a)(∃y)(y ∈ x) (a is a set of non-
empty sets) and M |= (∀x1, x2 ∈ a)(∃y(y ∈ x1 ∧ y ∈ x2) → x1 = x2) (the elements
of a are pairwise disjoint). Thus {chM(x) : x ∈ chM(a)} is a set of non-empty
pairwise disjoint sets. By AC, there exists b such that for each x ∈ chM(a), the set
b ∩ chM(x) has a unique element cx ∈ M . Then c = {cx : x ∈ chM(a)}M is such
that M |= (∀x ∈ a)(∃y ∈ x)(∀u ∈ x)(u ∈ c↔ u = y)

As we saw earlier, every complete system is full. Since we just proved that every full
system is a model of ZFC−, we can conclude that every complete system is a model of
ZFC−. In particular, Vq is a model of ZFC−. All that is left to do concerns AFA.

Theorem 5. Every complete system is a model of AFA.

Proof. Let M a complete system. For a, b ∈M , define the M -ordered pair (a, b)M by
(a, b)M = {{a}M , {a, b}M}M . For c ∈ M , define M |= c is a graph if and only if there are
a, b ∈ M such that c = (a, b)M and it is true in M that b is a binary relation on a. This
last requirement reduces to chM(b) ⊆ {(x, y)M : x, y ∈ chM(a)}.

Hence, if c ∈ M is such that M |= c is a graph, we may define a genuine graph G

by taking a, b as above and letting the elements of chM(a) be the nodes of G and the
ordered pairs (x, y) such that (x, y)M ∈ chM(b) the edges. Since M is complete, G has
a unique M -decoration, let it be d. Then d : chM(a) → M , and for all x ∈ chM(a),
d(x) = {d(y) : (x, y)M ∈ chM(b)}. Set f = {(x, d(x))M : x ∈ chM(a)}M . Then f ∈ M ,
and it is routine to verify that M |= f is the unique decoration of the graph c.

In fact, by virtue of lemma 2, there is a unique system map f : V → Vq, so Vq is a
model of ZFC−+AFA that canonicaly embeds V . Thus we may regard our construction
of Vq as an extension of V 6.

6A big thank you to Yurii Khomskii for organizing the project on alternative set theories and to all
the participants for their curiosity and enthousiasm.

6



References

[1] Peter Aczel. “Non-well-founded sets”. In: (1988).

[2] Jon Barwise and Lawrence Moss. Vicious circles: on the mathematics of non-wellfounded
phenomena. Center for the Study of Language and Information, 1996.

[3] Keith Devlin. The joy of sets: fundamentals of contemporary set theory. Springer
Science & Business Media, 2012.

[4] Lawrence S. Moss. “Non-wellfounded Set Theory”. In: The Stanford Encyclopedia
of Philosophy. Ed. by Edward N. Zalta. Spring 2017. Metaphysics Research Lab,
Stanford University, 2017.

[5] Henri Poincaré. “Les mathématiques et la logique”. In: Revue de métaphysique et de
morale 14.3 (1906), pp. 294–317.

[6] Bertrand Russell. “Les paradoxes de la logique”. In: Revue de métaphysique et de
morale 14.5 (1906), pp. 627–650.

7


