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Abstract
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Cient́ıficas (Caracas) on February 19. Basic knowledge of forcing the-
ory and iterated forcing, as expounded in [Ku1, Chapters VII and VIII]
and [Je, Sections 14 to 16], were a prerequisite for the course.
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Lecture 1: Cohen Forcing

1.1. Set theory of the reals. Set theory of the reals investigates (families
of) subsets of the real line from the point of view of combinatorial set theory.
There is a close connection with descriptive set theory (the study of subsets of
the reals from the point of view of complexity). One of the main topics of set
theory of the reals are cardinal invariants of the continuum, see below.

For aspects of measure and category in set theory of the reals, see the ex-
haustive monograph [BJ].

1.2. Cardinal invariants of the continuum. Cardinal invariants of the
continuum are cardinal numbers which describe the combinatorial structure of
the real line. They are usually defined in terms of ideals on the reals, or some
structure very closely associated with the reals like P(ω)/fin, or ... Typically,
they assume values between ℵ1, the first uncountable cardinal, and c = |2ω| =
|ωω| = |R|, the cardinality of the continuum. So they are uninteresting under the
continuum hypothesis c = ℵ1. Also, most of the cardinal invariants are equal to
c under Martin’s axiom MA. However, in other models of set theory, they may
assume different values, and thus they provide a means for characterizing the
structure of the real line in various models. Axioms which are expressed in terms
of equalities or inequalities between cardinal invariants play an important role
in applications of set theory to other areas of mathematics like general topology
or group theory ...

For a treatment of the main cardinal invariants of the continuum, see the
survey article [Bl]. (This survey focuses on ZFC-provable inequalities between
the cardinals, and only has a short appendix about consistency results.)

1.3. The eventual dominance ordering. For f, g ∈ ωω, say f ≤∗ g (g
eventually dominates f) if f(n) ≤ g(n) holds for all but finitely many n. ≤∗ is
a preorder (i.e., it is reflexive and transitive), but it is not antisymmetric. We
can easily turn it into an antisymmetric ordering by identifying functions which
are equal on a tail, and introducing a partial order on the resulting quotient
structure: note that =∗ is an equivalence relation, let [f ] = {g ∈ ωω : g =∗ f}
denote the equivalence class of f , and let [f ] ≤ [g] if f ≤∗ g; then ({[f ] : f ∈
ωω},≤) is a p.o. However, (ωω,≤∗) is simpler to work with and we shall usually
stick with the latter structure.

A word on notation. Let ∀∞n stand for for all but finitely many n (∃k∀n ≥
k); we often say for almost all n instead. Similarly, ∃∞n means there are
infinitely many n (∀k∃n ≥ k).

A family of functions F ⊆ ωω is called bounded if it is eventually dominated
by a single function, i.e., there is g ∈ ωω such that f ≤∗ g for all f ∈ F .
Otherwise F is unbounded. F is dominating (or cofinal) if every g is eventually
dominated by a member of F . Clearly, every dominating family is unbounded.
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The (un)bounding number b is the smallest size of an unbounded family, and
the dominating number d is the least cardinality of a dominating family. b and
d are two of the most important cardinal invariants of the continuum.

Proposition 1.1. ℵ1 ≤ b ≤ cf(d) ≤ d ≤ c. Furthermore, b is a regular
cardinal.

Proof. ℵ1 ≤ b is a standard diagonal argument: given fi, i ∈ ω, the function f
defined by f(n) = max{fi(n) : i ≤ n} eventually dominates the fi.

cf(b) = b: If κ < b and Fα, α < κ, are bounded, say by fα, then
∪

α<κ Fα

is bounded by any function which eventually dominates all the fα.
b ≤ cf(d): Suppose κ < b and Fα, α < κ, are not dominating. Then

there are functions fα witnessing this (i.e., fα is not eventually dominated by
any member of Fα). Let f be a function which eventually dominates all the
fα. Then f is not bounded by any member of

∪
α<κ Fα. So

∪
α<κ Fα is not

dominating, and b ≤ cf(d) follows.
The rest is trivial.

1.4. The almost inclusion ordering. For A,B ∈ P(ω), say A ⊆∗ B (A
is almost contained in B, A is almost included in B) if A \ B is finite. Like
≤∗, ⊆∗ is a preorder which can be turned into a partial order by going over to
equivalence classes of subsets of ω (which we usually won’t do). The quotient
structure (P(ω)/fin,≤) where [A] ≤ [B] if A ⊆∗ B is one of the important
realizations of the real line (see Lecture 6).

Recall [ω]ω is the collection of all infinite subsets of ω. For A, B ∈ [ω]ω, say
that A splits B if both A∩B and B \A are infinite. A family A ⊆ [ω]ω is called
a splitting family if every infinite subset of ω is split by a member of A. A is
unsplit (or unreaped) if no single set splits all members of A. This is equivalent
to saying that for all B ∈ [ω]ω there is A ∈ A such that either A ⊆∗ B or A∩B
is finite. As for unbounding and dominating, the concepts of splitting and unsplit
are dual to each other.

The splitting number s is the least size of a splitting family, and the (un)reaping
number r is the smallest cardinality of an unreaped family.

By ω↑ω we denote the collection of all strictly increasing functions f ∈ ωω

(i.e., f(n) < f(n + 1) for all n) such that f(0) > 0. Notice that these two
conditions imply that f(n) > n for all n.

Theorem 1.2. 1. ℵ1 ≤ s ≤ d and b ≤ r ≤ c.

2. In fact, there are functions Φ : [ω]ω → ω↑ω and Ψ : ω↑ω → [ω]ω such that
whenever Φ(A) ≤∗ f then Ψ(f) splits A.

Proof. (1) ℵ1 ≤ s is a diagonal argument, and r ≤ c is obvious.
To see s ≤ d, let F ⊆ ω↑ω be a dominating family, and use (2) to argue that

{Ψ(f) : f ∈ F} is a splitting family.
Similarly, if A is an unreaped family, {Φ(A) : A ∈ A} must be unbounded

by (2), and b ≤ r follows.
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(2) For A ∈ [ω]ω and n ∈ ω, let

Φ(A)(n) = min(A \ n) + 1,

that is, Φ(A)(n) is the least element of A which is ≥ n. In particular, [n, Φ(A)(n))∩
A 6= ∅ for all n. For f ∈ ω↑ω, define recursively fk(0) by f0(0) = 0, f1(0) = f(0),
and fk+1(0) = f(fk(0)). Then let

Ψ(f) =
∪
k

[f2k(0), f2k+1(0)).

Assume Φ(A) ≤∗ f . Then, for almost all k, Φ(A)(fk(0)) ≤ fk+1(0), and thus
A has nontrivial intersection with almost all intervals [fk(0), fk+1(0)). Hence
A ∩ Ψ(f) and A \ Ψ(f) are both infinite, and Ψ(f) splits A as required.

Note that the functions Φ and Ψ in the above proof are even continuous.
Proofs on the order-relationship of cardinal invariants are often done by exhibit-
ing such functions.

The cardinals we have defined so far may be displayed in the following dia-
gram (part of Van Douwen’s diagram).

ℵ1

sb

dr

c

¡¡@@

@@¡¡@@

¡¡ @@

1.5. Cohen forcing as forcing with finite partial functions. Let I be
an infinite index set. For any set J , let Fn(I, J) denote the collection of finite
partial functions from I to J . It is ordered by reverse inclusion, i.e., s ≤ t iff
s ⊇ t. CI = Fn(I, 2) is called Cohen forcing. It is a ccc forcing notion. In case
I = ω, we write C instead of Cω. CI generically adds a new function cI ∈ 2I

given by cI =
∪
{s ∈ CI : s ∈ G} where G denotes the CI -generic filter over

the ground model V . cI is called a Cohen function and, in case I = ω, c = cω

is a Cohen real. It is well-known (and easy to see) that G can be reconstructed
from cI , that is:

Observation 1.3. V [cI ] = V [G].

Proof. For the purposes of this proof, let cG =
∪
{s ∈ CI : s ∈ G} whenever

G is a filter. cG is a (not necessarily total) function from I to 2. For such a
function d, let Hd = {s ∈ CI : s ⊆ d}. Hd is a filter. Obviously G ⊆ HcG

and
d = cHd

. To see HcG ⊆ G, let s ∈ HcG . Thus s ⊆ cG and there must be ti ∈ G,
i < n, such that s ⊆

∪
i ti. Since G is a filter,

∪
i ti ∈ G and s ∈ G follow.

Since V [HcG ] ⊆ V [cG] ⊆ V [G], we obtain that the models are equal.
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A word on forcing notation. We will be sloppy with our forcing notation.
E.g., we will in general not distinguish the forcing extension V [G] and the
Boolean-valued model V CI . Also we usually think of forcing as adding a new
real or a new function rather than a generic filter. Since V [cI ] = V [G], this is
justified.

Lemma 1.4. Any countable forcing notion is forcing equivalent to C. In par-
ticular, Fn(ω, ω) is equivalent to C.

See [Ku1, VII Exercise (C4)].

Lemma 1.5. Let κ < |I| and let ḟ be a CI-name for a function with domain κ
and values in V . Then there is J ⊆ I of size at most κ such that ḟ is (equivalent
to) a CJ -name.

Proof. For each α < κ, let Aα be a maximal antichain in CI consisting of
conditions which decide the value of ḟ(α). By the ccc, the set J =

∪
{dom(s) :

s ∈
∪

α<κ Aα} has size at most κ, and it is clear that ḟ can be construed as a
CJ -name.

Lemma 1.6. (product lemma) Let J0 and J1 be disjoint such that I = J0 ∪J1.

1. If cI is CI-generic over V , cI¹Ji is CJi-generic over both V and V [cI¹J1−i].

2. If cJ0 is CJ0-generic over V and cJ1 is CJ1-generic over V [cJ0 ], then
cJ0 ∪ cJ1 is CI-generic over V .

This is a consequence of the product lemma for forcing, [Ku1, VIII Theorem
1.4]. We include a proof for the sake of completeness.

Proof. 1. Genericity over V is trivial. To see genericity of cI¹J1 over V [cI¹J0],
let D ∈ V [cI¹J0] be dense in CJ1 . Let Ḋ be a CJ0-name for D, and put
E = {s ∈ CI : s¹J0 ° s¹J1 ∈ Ḋ}. E belongs to V and it is easy to see that it is
dense. Since cI is generic, s ⊆ cI for some s ∈ E. This means that s¹J1 ∈ D in
V [cI¹J0]. Hence cI¹J1 is indeed generic over V [cI¹J0].

2. Let D ∈ V be dense in CI . We claim that, in V [cJ0 ], E = {s ∈ CJ1 : ∃t ∈
D such that s = t¹J1 and t¹J0 ⊆ cJ0} is dense. To see this let s ∈ CJ1 . Note
that F = {u ∈ CJ0 : u ∪ v ∈ D for some v = vu ∈ CJ1 with v ≤ s} is dense
in V . By genericity, u ⊆ cJ0 for some u ∈ F . Then t = u ∪ vu witnesses that
vu ∈ E, as required.

By genericity over V [cJ0 ], s ⊆ cJ1 for some s ∈ E. Thus there is t ∈ D
such that s = t¹J1 and t¹J0 ⊆ cJ0 . This implies t ⊆ cJ0 ∪ cJ1 , and genericity of
cJ0 ∪ cJ1 is proved.

1.6. The effect of Cohen forcing on (ωω,≤∗) and ([ω]ω,⊆∗). Any
investigation of the effect of adding a real on a structure S like (ωω,≤∗) comes
in two parts: the easier part is always to show that the generic real (or some
real defined in terms of the generic real) has a certain property with respect
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to S. The harder part is to prove that reals with certain other properties with
respect to S do not get adjoined by the forcing; this is the contents of so-called
preservation theorems.

1.6.1. Properties of the generic Cohen real.

Lemma 1.7. A Cohen real c ∈ ωω is unbounded over the ground model reals.
I.e., for any f ∈ ωω ∩ V , c 6≤∗ f .

Proof. As hinted at by the formulation of the lemma, we think of C as forcing
with ω<ω. This is justified by Lemma 1.4. For f ∈ ωω ∩ V and n ∈ ω, let
Df,n = {t ∈ ω<ω : ∃m ≥ n f(m) < t(m)}. Once we establish all Df,n ∈ V are
dense, a straightforward genericity argument yields the lemma.

To see Df,n is dense, take any s ∈ ω<ω, choose m ≥ max{n, |s|}, and extend
s to t ∈ ω<ω such that |t| = m + 1 and t(m) = f(m) + 1. Then t ∈ Df,n.

Lemma 1.8. A Cohen real C = {n : c(n) = 1} = c−1(1) ∈ [ω]ω splits all
ground model infinite subsets of ω.

Proof. This is similar, and details are left as an exercise.
Think of C as forcing with 2<ω. For A ∈ [ω]ω ∩ V and n ∈ ω, let EA,n =

{t ∈ 2ω : ∃m0,m1 ∈ A\n (t(m0) = 0 and t(m1) = 1)}, and show that the EA,n

are dense.

1.6.2. Preservation results.

Main Lemma 1.9. Let ḟ be a C-name for a function in ωω. There is g =
gḟ ∈ ωω such that for all h ∈ ωω, if h 6≤∗ g, then °C h 6≤∗ ḟ .

Proof. We use the countability of Cohen forcing. Let C = {si : i ∈ ω}. For each
i, n ∈ ω, let gi(n) be any k such that some extension of si forces ḟ(n) = k. Let
g eventually dominate all gi. We show that g works.

Assume h ∈ ωω is such that h 6≤∗ g. Also let s ∈ C and n ∈ ω. It clearly
suffices to find t ≤ s and m ≥ n such that t forces ḟ(m) < h(m).

To this end, let i be such that s = si, and choose m ≥ n such that gi(m) ≤
g(m) < h(m). Next choose t ≤ si forcing ḟ(m) = gi(m). Then t forces ḟ(m) <
h(m), as well, as required.

Corollary 1.10. Assume F is an unbounded family in V . Then V CI |= “F is
unbounded” for any index set I ∈ V . In particular, Cohen forcing does not add
dominating reals.

Proof. Let f be a real in V CI . By 1.5, there is a countable J ⊆ I belonging to
the ground model V such that f is in V CJ . Let ḟ be its CJ -name. Since CJ

is forcing equivalent to C, we may apply 1.9 to obtain gḟ . As F is unbounded,
there is h ∈ F such that h 6≤∗ gḟ . h 6≤ f follows, and thus f does not dominate
F . Hence F remains unbounded.

6



Main Lemma 1.11. Let Ȧ be a C-name for an infinite subset of ω. There are
Bi = BȦ,i ∈ [ω]ω such that whenever C ∈ [ω]ω splits all Bi then °C “C splits
Ȧ”.

Proof. Exercise! (This is like the proof of Main Lemma 1.9.)

We say a family A ⊆ [ω]ω is ω-splitting if for every sequence Bi ∈ [ω]ω,
i ∈ ω, there is A ∈ A which simultaneously splits all Bi. Clearly every ω-
splitting family is a splitting family.

Corollary 1.12. Assume A is an ω-splitting family in V . Then V CI |= “A is
ω-splitting” for any index set I ∈ V . In particular, Cohen forcing does not add
unreaped (unsplit) reals.

Proof. Exercise! (This is like the proof of Corollary 1.10.)

1.6.3. We now obtain the main result on the effect of Cκ on the cardinal
invariants b, d, s, and r.

Theorem 1.13. Let κ ≥ ℵ1. In V Cκ , b = s = ℵ1 and d, r ≥ κ. In particular,
if κω = κ in V , d = r = c = κ will hold in the generic extension.

Proof. Let cα ∈ ωω, α < κ, denote the Cohen reals added by Cκ. By this,
we mean that we identify Cκ = Fn(κ, 2) with Cκ×ω = Fn(κ × ω, 2) and define
cα(n) = cκ×ω(α, n) where cκ×ω is the generic Cohen function. A standard
genericity argument shows that the cα are pairwise distinct new reals.

We argue that the cα, α < ω1, form an unbounded family in V Cκ×ω : by 1.5,
every new real f ∈ ωω belongs to V CI×ω for some countable I ⊆ κ. If α ∈ ω1 \I,
cα is Cohen over V CI×ω by the product lemma (1.6) and thus unbounded over
V CI×ω by 1.7. Hence f does not dominate cα, and b = ℵ1 follows.

To see d ≥ κ, let F ⊆ ωω be of size less than κ. By 1.5, there is I ⊆ κ of size
less than κ such that F ⊆ V CI×ω . If α ∈ κ \ I, cα is unbounded over F by the
argument in the previous paragraph. Hence, F is not dominating, and d ≥ κ
follows.

s = ℵ1 and r ≥ κ are proved similarly.
To see the last part of the theorem, note that if κω = κ in V , there are

only κ many canonical Cκ-names for reals. Hence Cκ forces c = κ, and the rest
follows by what we proved already.

If CH holds in the ground model, there is an alternative argument for b =
s = ℵ1: put F = ωω ∩ V and notice that F is unbounded in V Cκ by 1.10.
Similarly for s.
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Lecture 2: random forcing

2.1. σ-ideals and their cardinal invariants. Let I be a σ-ideal on the
real numbers. This means I ⊆ P(2ω) (or I ⊆ P(ωω)) is a family of subsets of 2ω

which is closed under subsets, under countable unions, and which contains all
singletons, but does not contain 2ω. We define four cardinal invariants related
to I:

• the additivity add(I) = min{|J | : J ⊆ I and
∪

J /∈ I},

• the covering number cov(I) = min{|J | : J ⊆ I and
∪
J = 2ω},

• the uniformity non(I) = min{|X| : X ⊆ 2ω and X /∈ I},

• the cofinality cof(I) = min{|J | : J ⊆ I and for all I ∈ I there is J ∈ J
with I ⊆ J}.

A set J which satisfies the clause in the definition of the cofinality is called a
basis of the ideal I. It is easy to see that ℵ1 ≤ add(I) ≤ cov(I) ≤ cof(I) and
add(I) ≤ non(I) ≤ cof(I). See [BJ] for more on these cardinals.

2.2. Cichoń’s diagram. Equip 2 and ω with the discrete topology, and
consider 2ω and ωω with the product topology. This means that basic clopen
sets are of the form [s] = {f ∈ ωω : s ⊆ f} where s ∈ ω<ω. The metric d given
by d(f, g) = 2−min{n:f(n) 6=g(n)} is compatible with this topology, and both 2ω

and ωω become Polish spaces (i.e., separable complete metric spaces) with this
topology. The former is called Cantor space, the latter, Baire space. The Cantor
space is compact (by Tychonoff’s theorem). See [Ke] for more on descriptive
set theory and Polish spaces.

Recall a subset X of a topological space is nowhere dense if its closure has
empty interior. X is meager if it is a union of countably many nowhere dense
sets. By the Baire category theorem, no non-empty open set in a Polish space
is meager. In particular, the collection M of all meager subsets of 2ω or ωω is
a σ-ideal (the meager ideal).

Equip 2 with the measure which gives both {0} and {1} measure 1
2 , and ω,

with the measure which gives all {n} measure 2−(n+1). Consider 2ω and ωω with
the product measures. Both are probability measure spaces, and the collection
N of all measure zero subsets of 2ω or ωω is a σ-ideal (the null ideal).

The ideals M and N are orthogonal in the sense that there is a comeager
null set X (and 2ω \ X then is a meager set of measure one): namely, for each
n find an open dense set Xn of measure ≤ 2−n and let X =

∩
n Xn.

Note that 2ω with addition modulo 2 is a Polish group. Both ideals M and
N are translation-invariant with respect to this group; i.e., for any x ∈ 2ω, x+Y
is meager iff Y is meager, and similarly for “null”.
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Proposition 2.1. cov(N ) ≤ non(M) and cov(M) ≤ non(N ). In fact, if
X,Y ⊆ 2ω are non-meager and comeager, respectively, then X + Y = {x + y :
x ∈ X and y ∈ Y } = 2ω. Similarly for “non-meager” replaced by “non-null”
and “comeager” replaced by “of measure one”.

Proof. The first part follows from the second part, the translation-invariance,
and the orthogonality of the ideals M and N .

To see the second part, let z ∈ 2ω. By translation-invariance, z + X is non-
meager. Hence z + X ∩ Y 6= ∅. Find x ∈ X and y ∈ Y such that z + x = y.
Then z = x + y.

Closed sets in either 2ω or ωω are represented by trees: T ⊆ ω<ω is a tree
if T is closed under initial segments. For a tree T , the set of its branches
[T ] = {f ∈ ωω : f¹n ∈ T for all n} is closed. Conversely, if C ⊆ ωω is closed,
there is a tree T = TC such that C = [T ]. It is easy to see that C is compact iff
TC is finitely branching iff there is a function f ∈ ωω dominating all members of
C everywhere. C is nowhere dense iff for each s ∈ TC , there is t ⊇ s which does
not belong to TC . In particular, every compact set is nowhere dense in ωω, and
every bounded family is meager. Thus we obtain:

Proposition 2.2. b ≤ non(M) and cov(M) ≤ d.

The two following theorems are more difficult to prove, and we shall only
state them.

Theorem 2.3. (Miller and Truss) add(M) = min{b, cov(M)} and cof(M) =
max{d, non(M)}.

See [BJ, 2.2.9 and 2.2.11] or [Bl, Theorem 5.6].

Theorem 2.4. (The Bartoszyński-Raisonnier-Stern Theorem) add(N ) ≤ add(M)
and cof(M) ≤ cof(N ).

See [BJ, Theorem 2.3.7].
Hence the order-relationship between the cardinals defined so far can be

summarized in the following diagram, called Cichoń’s diagram.

ℵ1 add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N ) c
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2.3. Random forcing versus Cohen forcing. Let I be an infinite index
set. Equip 2I with the product topology and the product measure (see 2.2). The
family of Baire sets BI ⊆ P(2I) is the σ-algebra generated by the clopen sets
[s] = {f ∈ 2I : s ⊆ f} where s ∈ Fn(I, 2). In case I = ω (or, more generally, for
countable I), BI coincides with the Borel sets (the σ-algebra generated by the
open sets). Every Baire set is of the form X×2I\J where I ⊆ J is countable and
X ⊆ 2I is Baire (equivalently, Borel). All Baire sets are measurable and have
the property of Baire (i.e., they are equivalent to an open set modulo a meager
set). Let MI and NI denote the meager and null ideals on 2I , respectively.
Both are Baire ideals in the sense that they have a basis consisting of Baire
sets.

Let CI = BI/MI , the Cohen algebra, and BI = BI/NI , the random algebra.
Both forcing notions are ordered by inclusion: [X] ≤ [Y ] if X \ Y is meager
(null, respectively). Both are ccc: for CI , this follows from the fact that 2I is
ccc as a topological space, i.e., any collection of pairwise disjoint open sets is
at most countable; for BI , this follows from basic properties of the measure:
any family of positive measurable sets whose pairwise intersections are null is
at most countable.

A word on Cohen forcing. Cohen forcing has already been defined in Lecture
1, albeit with a rather different definition. To see that the two definitions are
equivalent, notice that the function sending s ∈ Fn(I, 2) to [[s]] ∈ BI/MI (where
[[s]] denotes the equivalence class of the clopen set [s]) is a dense embedding: any
X ∈ BI is equivalent to an open set modulo a meager set, and thus [[s]] ≤ [X]
for some basic clopen set [s]. Hence Fn(I, 2) and BI/MI are forcing equivalent.

All the results in this subsection (2.3) hold for both BI and CI , with the
obvious adjustments. We usually state them for BI only.

In case I = ω, write B instead of Bω. BI generically adds a new function
rI ∈ 2I given by rI =

∪
{s : [[s]] ∈ G} where G is the BI -generic filter over V .

rI is a random function and r = rω is a random real.
To be able to discuss basis properties of random and Cohen forcing, we need

the concept of Baire codes. If M ⊆ N are models of (a large enough finite
fragment of) ZFC and s ∈ Fn(I, 2), we may consider the clopen set [s] in both
M and N , [s]M and [s]N . If N contains elements of 2I which do not belong to M ,
these sets will be distinct, [s]M ( [s]N . However, they are given by the same
s, and we may therefore construe them as being the same set as interpreted
in different models. We say s codes the set [s]. Incidentally, we always have
[s]M = [s]N ∩ M .

More generally, for each Baire set X, there is a Baire code c which describes
how X is built up recursively. We may think of X as the interpretation of c in
a given model M (which contains c), X = XM

c . Whenever c ∈ M and M ⊆ N ,
we can interpret c in N and obtain XN

c . Furthermore, if c ∈ M ⊆ N , we have
XM

c ⊆ XN
c and XM

c = XN
c ∩M . We shall forget about c and, instead of saying

the Baire code c ∈ M codes the set X, we shall simply say X is a Baire set
coded in M .

For a detailed treatment of the construction of the Baire codes see [Ku2,
Section 1]. See also [Je, Section 25].
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Lemma 2.5. Let rI be random over M . For every Baire set X coded in M ,
rI ∈ X iff [X] ∈ G.

Note we are rather sloppy in the formulation of this lemma: more formally,
it should be “rI ∈ XM [G] iff [XM ] ∈ G” because we interpret the code of X in
two distinct models.

Proof. We make induction on the complexity of X. (I.e., this is an induction
on the Baire hierarchy.)

• First assume X = [s] is clopen (where s ∈ Fn(I, 2)). Then, by definition
of rI , rI ∈ [s] iff s ⊆ rI iff [[s]] ∈ G (the left-to-right implication in the
last equivalence is an easy consequence of the fact that G is a filter).

• Next assume the lemma holds for Y and let X = 2ω \ Y . Then rI ∈ X iff
rI /∈ Y iff [Y ] /∈ G iff [X] ∈ G (where the latter holds by genericity).

• Finally assume the lemma holds for Xn and let X =
∪

n Xn. Then rI ∈ X
iff ∃n : rI ∈ Xn iff ∃n : [Xn] ∈ G iff [X] ∈ G (the right-to-left implication
in the last equivalence follows again from genericity).

This completes the induction and the proof of the lemma.

Lemma 2.5 allows us to define G in terms of rI via G = {[X] : X ∈ V and
rI ∈ X}, and we see that V [rI ] = V [G] holds (cf. Observation 1.3).

Proposition 2.6. (Solovay’s characterization of genericity) A function f ∈ 2I

is random generic over M iff f avoids all Baire null sets coded in M .

Proof. First assume f = rI is BI -generic over M . If X is a Baire null set coded
in M , then [2ω \ X] ∈ G, and thus rI /∈ X by the previous lemma.

Now assume f avoids all Baire null sets coded in M . Let G = {[X] : X is
a Baire set coded in M and f ∈ X}. Clearly, G ⊆ BI is a filter. Let [Xn],
n ∈ ω, be a maximal antichain in BI belonging to M . Then

∪
n Xn has measure

one and is coded in M , and f ∈
∪

n Xn follows. Thus f ∈ Xn for some n and
[Xn] ∈ G. Hence G is generic. By the previous lemma, it is immediate that the
generic function rI defined from G agrees with f . Hence f is generic.

Corollary 2.7. (existence of many generics over countable models) Let M be
a countable model of (a large enough finite fragment of) ZFC. Then the set
Ra(M) of reals random over M is a Borel set of measure one, and the set Co(M)
of Cohen reals over M is a comeager Borel set.

Proof. Indeed, Ra(M) = 2ω \
∪
{X : X ∈ N is coded in M}. The union on the

right-hand side is a countable union of Borel null sets, and the corollary follows.
The proof for Co(M) is similar.

Corollary 2.8. (downward absoluteness of genericity) Let M ⊆ N be models
of ZFC. Assume r is random over N . Then r is random over M as well.
Similarly for “Cohen” instead of “random”.
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Proof. This is immediate by Solovay’s characterization 2.6.

Lemma 2.9. Let κ < |I| and let ḟ be a BI-name for a function with domain κ
and values in V . Then there is J ⊆ I of size at most κ such that ḟ is (equivalent
to) a BJ -name.

Proof. This is similar to Lemma 1.5.
For each α < κ, let Aα be a maximal antichain in BI deciding the value of

ḟ(α). For each [X] ∈ Aα, we may find JX ⊆ I countable and a Borel set Y ⊆ 2JX

such that X = Y × 2I\JX . By the ccc, the set J =
∪
{JX : [X] ∈

∪
α<κ Aα} has

size at most κ, and it is clear that ḟ can be construed as a BJ -name.

We may as well forget about equivalence classes and think of BI as forcing
with BI \ NI , ordered by inclusion modulo null.

Say that g : 2I → 2ω is a Baire function if the inverse image of every basic
clopen set (equivalently, every Borel set) is a Baire set.

Lemma 2.10. Let ḟ be a BI-name for a real in 2ω. Then there is a Baire
function g = gḟ : 2I → 2ω such that ḟ = g(ṙI) is forced.

Proof. Define g−1([s]) = [[ḟ¹|s| = s]] for s ∈ 2<ω. Here, [[ϕ]] denotes the Boolean
value of the statement ϕ, i.e., the maximal condition forcing ϕ. See [Ku1, VII
Section 7] (or [Je, Section 14]) for a discussion of Boolean values. We note
that, since we construe BI as BI \ NI , [[ϕ]] is not unique, but any two Baire
sets representing it are equivalent modulo null. In particular, we can choose the
[[ḟ¹|s| = s]] such that they are disjoint for incompatible s, [[ḟ¹|t| = t]] ⊆ [[ḟ¹|s| =
s]] for s ⊆ t, and the union over [[ḟ¹|s| = s]] of the same length is 2I . This entails
that g is indeed a function from 2I to 2ω. By definition, it is obviously Baire.

Let G be a BI -generic filter, and let rI be the corresponding random function.
Then we have for all s:

f¹|s| = s ⇐⇒ [[ḟ¹|s| = s]] ∈ G ⇐⇒ g−1([s]) ∈ G

⇐⇒ rI ∈ g−1([s]) ⇐⇒ g(rI) ∈ [s] ⇐⇒ g(rI)¹|s| = s

The third equivalence comes from Lemma 2.5. So indeed f = g(rI).

Lemma 2.11. Let Ẋ be a BI-name for a Baire set in 2J . Then there is a Baire
set in the plane Y ⊆ 2I × 2J such that Ẋ = YṙI

is forced.

Proof. Consider first the case where Ẋ is a Borel set in 2ω. Assume Ẋ is forced
to be Σ0

α. Let U ⊆ 2ω × 2ω be a universal Σ0
α set ([Je, Lemma 11.2], [Ke,

Theorem 22.3]). Then there is a name ḟ for a real such that Ẋ = Uḟ is forced.
Now use the previous lemma to get g and put Y = {(x, y) : (g(x), y) ∈ U}.
Since U is a Borel set and g is a Baire function, it follows that Y is a Baire set.
Also, it is easy to see that Ẋ = Uḟ = Ug(ṙI) = YṙI

is forced.
If Ẋ is a Baire set in 2J , there are J0 ⊆ J countable and a Borel set Ẋ0 in

2J0 such that Ẋ = Ẋ0 × 2J\J0 . Choose Y0 ⊆ 2I × 2J0 for Ẋ0 as in the previous
paragraph, and let Y = Y0 × 2J\J0 .
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For the next lemma, we recall the Fubini and Kuratowski-Ulam Theorems
(see [Ox, Sections 14 and 15] or [Ke, 8.K and 17.A]).

Theorem 2.12. Let J0 and J1 be disjoint such that I = J0 ∪ J1. Assume
Y ⊆ 2I = 2J0 × 2J1 is a Baire set.

1. (Fubini) The set {x : Yx is null} ⊆ 2J0 is measurable. Furthermore, Y is
null iff {x : Yx is null} has measure one.

2. (Kuratowski-Ulam) The set {x : Yx is meager} ⊆ 2J0 has the property of
Baire. Furthermore, Y is meager iff {x : Yx is meager} is comeager.

Lemma 2.13. (product lemma) Let J0 and J1 be disjoint such that I = J0∪J1.

1. If rI is BI-generic over V , rI¹Ji is BJi-generic over both V and V [rI¹J1−i].

2. If rJ0 is BJ0-generic over V and rJ1 is BJ1-generic over V [rJ0 ], then
rJ0 ∪ rJ1 is BI-generic over V .

Proof. 1. We use Proposition 2.6. Genericity of rI¹J1 over V is easy and left to
the reader.

To see genericity of rI¹J1 over V [rI¹J0], let X ⊆ 2J1 be a Baire null set
coded in V [rI¹J0]. Let Ẋ be a BJ0-name for X. Without loss of generality, we
may assume that the trivial condition forces that Ẋ is a null set. By 2.11, there
is a Baire set Y ⊆ 2I = 2J0 × 2J1 such that BJ0 forces Ẋ = YṙJ0

= YṙI¹J0 . By
Fubini, Y must be a null set.

For suppose Y was not null. Then Z = {x : Yx is not null} ⊆ 2J0 would be
a measurable non-null set coded in V , by 2.12. Without loss of generality, we
may assume Z is a Baire non-null set. Z would force that Ẋ is not null for if
rJ0 ∈ Z is random over V , YrJ0

= X is not null. A contradiction.
By 2.6 we obtain that rI /∈ Y . Therefore rI¹J1 /∈ YrI¹J0 = X, as required.
2. This is also proved by a combination of 2.6 and 2.12. Let Y ⊆ 2I =

2J0 × 2J1 be a Baire null set coded in V . By Fubini, Z = {x : Yx is null} ⊆ 2J0

is a measure one set coded in V . Hence rJ0 ∈ Z, i.e., YrJ0
is Baire null set coded

in V [rJ0 ]. Thus rJ1 /∈ YrJ0
. Therefore rJ0 ∪ rJ1 /∈ Y , as required.

The analogous lemma for Cohen forcing can be proved using the Kuratowski-
Ulam Theorem (2.12). However, a simpler proof is provided by 1.6.

2.4. The effect of random (and Cohen) forcing on Cichoń’s dia-
gram. We start with investigating the effect of B on (ωω,≤∗).

Lemma 2.14. Random forcing is ωω-bounding. That is, for every BI-name for
a real ḟ ∈ ωω, there is g = gḟ such that °BI

ḟ ≤∗ g.

Proof. Let X ∈ BI . By the σ-additivity of measure, we can find, for each n,
a number g(n) such that the measure of Xn = [[ḟ(n) ≤ g(n)]] ∩ X is at least
(1 − 2−(n+2))µ(X). This means the measure of Y =

∩
n Xn is at least 1

2µ(X)
and Y forces that ḟ(n) ≤ g(n) for all n.
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By the ccc we can therefore find a maximal antichain Yi, i ∈ ω, and functions
gi such that Yi forces ḟ(n) ≤ gi(n) for all n. Any g eventually dominating all
gi is as required.

Lemma 2.15. Assume A ⊆ 2ω has outer measure one in the ground model V .
Then A has outer measure one in V BI as well.

Note that we are not talking about a Borel set, but about an arbitrary set
A. That is, we do not mean that we interpret a Borel code for A in two different
models, but rather that we consider the same set A in V and V BI . A typical
application would be A = 2ω ∩ V : by 2.15, it has outer measure one in the
extension. On the other hand, it is easy to see it must have inner measure zero
(this necessarily happens in any extension which adds reals). Therefore A is a
non-measurable set in V BI .

Proof. Let Ẋ be a BI -name for a set of measure < 1. We need to show that
A 6⊆ Ẋ is forced.

By 2.11, there is Y ⊆ 2I × 2ω such that Ẋ = YṙI is forced. Since the trivial
condition forces that µ(Ẋ) < 1, {x : µ(Yx) < 1} must be a measure one set, and
by Fubini (2.12), it follows that µ(Y ∩ (Z × 2ω)) < µ(Z) for any Z ∈ BI \ NI .
(See the proof of 2.13 for the details of a similar argument.)

Fix Z ∈ BI \ NI . By Fubini again, {y : µ(Y y ∩ Z) = µ(Z)} is a measurable
set which is not of measure one. Since A has outer measure one, there is y ∈ A
such that µ(Y y ∩Z) < µ(Z). The condition Z \ Y y forces that y ∈ A \ Ẋ, for if
rI ∈ Z \ Y y is random over V , y /∈ YrI

= X. Since Z was arbitrary, the trivial
condition forces that A \ Ẋ is non-empty.

An analogous argument shows:

Lemma 2.16. Assume A ⊆ 2ω is not meager in any non-empty open set, in
the ground model V . Then A is not meager in any non-empty open set, in V CI

as well.

Proof. Exercise!

Theorem 2.17. Let κ ≥ ℵ1. In V Bκ , non(N ) = ℵ1, cov(N ) ≥ κ, b = bV ,
and d = dV . In particular, if κω = κ, cov(N ) = c = κ will hold in the generic
extension. Furthermore, if CH holds in the ground model, d = ℵ1.

Proof. b = bV and d = dV follow from Lemma 2.14.
First let F be an unbounded family in V . We claim that F is still unbounded

in V Bκ . Indeed, if f ∈ ωω in V Bκ , by 2.14 there is gf ∈ ωω in V with f ≤∗ gf .
Since F is unbounded, there is h ∈ F such that h 6≤∗ gf . Hence h 6≤∗ f , and F
is indeed unbounded in V Bκ . Thus b ≤ bV .

Next let F ⊆ ωω be a family of functions in V Bκ of size less than b. By 2.14,
for each f ∈ F we find gf ∈ ωω in V with f ≤∗ gf . Then G = {gf : f ∈ F}
is a bounded family in V , and therefore F is bounded in V Bκ . Hence bV ≥ b
follows.

14



The argument for d = dV is similar and left to the reader.
Let rα ∈ 2ω, α < κ, denote the random reals added by Bκ. That is, we

identify Bκ with Bκ×ω and define rα(n) = rκ×ω(α, n).
We argue that the rα, α < ω1, form a non-null set in V Bκ . Let X be a Borel

null set in V Bκ . Since X is coded by a real, by 2.9 there is a countable I ⊆ κ
such that X is coded in V BI . By 2.13, if α ∈ ω1 \ I, then rα is random over
V BI , and rα /∈ X by 2.6. non(N ) = ℵ1 follows.

To see cov(N ) ≥ κ, let J be a family of Borel null sets of size less than κ.
By 2.9, there is I ⊆ κ of size less than κ such that all members of J are coded in
V BI . As in the previous paragraph, we see that if α ∈ κ \ I, then rα is random
over V BI and therefore does not belong to

∪
J . Hence, J is not covering, and

cov(N ) ≥ κ follows.
To see the last part of the theorem, note that if κω = κ in V , there are

only κ many canonical Bκ-names for reals. Hence Bκ forces c = κ, and the rest
follows by what we proved already.

If CH holds in the ground model, non(N ) = ℵ1 can alternatively be proved
as follows: let A = 2ω ∩ V , and note that A has outer measure one in V Bκ

by 2.15.
An analogous argument shows:

Theorem 2.18. Let κ ≥ ℵ1. In V Cκ , non(M) = ℵ1 and cov(M) ≥ κ. In
particular, if κω = κ, cov(M) = c = κ will hold in the generic extension.

Proof. Exercise!
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Lecture 3: Hechler forcing

3.1. General introduction to iterated forcing. How do we add many
reals? Say we want to add κ reals fα, α < κ, such that fα is generic not only
over V , but also over V [{fβ : β < α}] (?). One option are

• Products.
We used them for Cohen or random forcing. We have the product lemma
(1.6 and 2.13) which says that “generics are even generic over an initial
segment of the extension” (property (?) above).

Unfortunately, for most forcing notions adjoining real numbers, there is no such
product lemma, and we need another approach:

• Iterations.
They are explicitly described by recursion in such a way that fα is added
by a forcing notion in V [{fβ : β < α}] and will thus be generic over
V [{fβ : β < α}].

There are two main techniques for iterations: finite support iteration discussed
here, and countable support iteration discussed in the next lecture.

3.2. Finite support iteration of ccc forcing. We briefly review –
without any proofs – the basics of iterated forcing theory.

Let P be a forcing notion, and let Q̇ be a P-name for a forcing notion. We
put

P ? Q̇ = {(p, q̇) : p ∈ P and °P q̇ ∈ Q̇},
the two-step iteration of P and Q̇. The order is given by (p′, q̇′) ≤ (p, q̇) if p′ ≤ p
and p′ °P q̇′ ≤ q̇. It is well-known that forcing with P ? Q̇ is the same as forcing
first with P and then, over V P, with Q.

Lemma 3.1. Assume P is ccc and P forces that Q̇ is ccc. Then P ? Q̇ is ccc.
More generally, this holds with “ccc” replaced by “κ–cc”.

Let δ be an ordinal. Recursively define (Pα, Q̇α : α < δ) to be a δ-stage
iteration with limit Pδ if all Pα, α ≤ δ, are forcing notions consisting of functions
with domain α and

1. (basic stage) P0 = {∅} is trivial,

2. (successor stage) Q̇α is a Pα-name for a p.o., Pα+1 = {p : p¹α ∈ Pα and
°α p(α) ∈ Q̇(α)} ∼= Pα ? Q̇α, and for p, q ∈ Pα+1, we put q ≤α+1 p if
q¹α ≤α p¹α and q¹α °α q(α) ≤Q̇α

p(α),

3. (limit stage) for limit β ≤ δ, Pβ is either the direct limit or the inverse
limit of the Pα, α < β; i.e., either Pβ = {p : ∃α < β (supp(p) ⊆ α and
p¹α ∈ Pα)} or Pβ = {p : ∀α < β p¹α ∈ Pα}; for p, q ∈ Pβ , we put q ≤β p
if q¹α ≤α p¹α for all α < β.
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Here, supp(p) = {α : p(α) 6= 1Q̇α
} denotes the support of p. It is well-known

that forcing with an iteration Pδ is the same as first forcing with an initial
segment Pα, α < δ, and then, over V Pα , with the remainder forcing, Pδ/Pα.

An iteration is called finite support iteration (fsi for short) if all elements of
Pδ have finite support. This is equivalent to stipulating that direct limits are
taken at all limit ordinals. An iteration is a countable support iteration (csi for
short) if inverse limits are taken at all ordinals of countable cofinality and direct
limits are taken at all limit ordinals of uncountable cofinality. This implies that
all elements of Pδ have at most countable support.

Lemma 3.2. Fsi of ccc forcing notions are ccc. I.e., if (Pα, Q̇α : α < δ) is an
fsi such that °α “Q̇α is ccc”, then Pδ is ccc.

Lemma 3.3. Let δ be a limit ordinal. Assume (Pα, Q̇α : α < δ) is an fsi of
ccc forcing notions. Let κ < cf(δ) and let ḟ be a Pδ-name for a function with
domain κ and values in V . Then there is α < δ such that ḟ is (equivalent to) a
Pα-name.

Proof. Exercise! (This is like Lemmata 1.5 and 2.9.)

3.3. Hechler forcing. Let D = {(s, f) : s ∈ ω<ω, f ∈ ωω and s ⊆ f},
ordered by (t, g) ≤ (s, f) if t ⊇ s, g dominates f everywhere, and t(i) ≥ f(i)
for all i ∈ |t| \ |s|. D is called Hechler forcing. It generically adds a new real
d =

∪
{s : (s, f) ∈ G for some f ∈ ωω}, where G denotes the D-generic filter over

V . d is called a Hechler real. We again have V [d] = V [G] (cf. Observation 1.3).
A straightforward genericity argument shows:

Observation 3.4. A Hechler real d real is dominating, that is, it eventually
dominates all reals of V .

Lemma 3.5. Hechler forcing adds a Cohen real.

Proof. Let d ∈ ωω be a Hechler real over V . Define c ∈ 2ω by c(n) = d(n)
mod 2. We claim that c is Cohen over V .

To see this, let D ⊆ C be dense and (s, f) ∈ D. We need to find (t, g) ≤ (s, f)
and u ∈ D such that (t, g) °D u ⊆ ċ. Let v = s mod 2. Find u ⊇ v with u ∈ D.
Next choose t ⊇ s with t ≥ f everywhere such that u = t mod 2. Finally let
g be such that t ⊆ g and g(n) = f(n) for n ≥ |t|. Then (t, g) ≤ (s, f) and
(t, g) °D u ⊆ ċ.

A subset P of a forcing notion P is called centered if any finitely many
elements of P have a common extension, i.e., for all finite F ⊆ P there is q ∈ P
such that q ≤ p for all p ∈ F . P is σ-centered if there are centered sets Pn such
that P =

∪
n Pn.

Observation 3.6. D is a σ-centered forcing notion.

Proof. For s ∈ ω<ω, let Ds = {(s, g) : g ∈ ωω and s ⊆ g}. Clearly all Ds are
centered and D =

∪
s Ds.
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Lemma 3.7. σ-centered forcing does not add random reals.

Proof. Let P be σ-centered, P =
∪

i Pi where the Pi are centered. Also let ḟ be
a P-name for a function in 2ω.

Fix i. We claim that for each n there is s ∈ 2n such that no p ∈ Pi forces
ḟ¹n 6= s. For if there was no such s, we could find a condition ps ∈ Pi forcing
ḟ¹n 6= s for each s ∈ 2n. A common extension of the ps would then force
ḟ¹n /∈ 2n, a contradiction.

By König’s Lemma, there is a function gi ∈ 2ω such that for all n, no p ∈ Pi

forces ḟ¹n 6= gi¹n.
Unfix i. We claim that whenever h : ω → 2<ω, h(n) ∈ 2n, is such that for

all i, there are infinitely many n with gi¹n = h(n), then P forces that there are
infinitely many n with ḟ¹n = h(n). To see this, fix m and a condition p. Next
fix i such that p ∈ Pi and n ≥ m such that gi¹n = h(n). Since p does not force
ḟ¹n 6= gi¹n, there is q ≤ p forcing ḟ¹n = h(n), as required.

Put Ah = {f : ∃∞n f¹n = h(n)} and note that this is a Gδ measure zero
set. By the previous paragraph, any new real is contained in such a set from
the ground model. Thus, by 2.6, no new real is random.

3.4. The effect of Hechler forcing on cardinal invariants of the
continuum. As mentioned earlier (beginning of Subsection 1.6), any inves-
tigation of the effect of a forcing on the combinatorial structure of the reals
boils down to studying properties of the generic and to proving preservation
theorems. For products, one preservation result typically is sufficient, but for
iterations, preservation splits into two – usually quite distinct – proofs:

• preservation by the single-step forcing which heavily uses the combinatorial
properties of the forcing notion involved;

• preservation in the limit step, a general argument showing that if all Pα,
α < δ, have a certain property, then so does Pδ; this does not depend at
all on the forcing notion we are iterating.

3.4.1. Preservation in the single step.
For the purposes of the next proof, we use a slightly different representation
of Hechler forcing1. Say D consists of all pairs (s, ϕ) such that s ∈ ω<ω and
ϕ : ω<ω → ω. The order is given by (t, ψ) ≤ (s, ϕ) if t ⊇ s, ψ dominates ϕ
everywhere, and t(i) ≥ ϕ(t¹i) for all i ∈ |t| \ |s|.

Main Lemma 3.8. Assume Ȧ is a D-name for an infinite subset of ω. There
are sets Ai, i ∈ ω, such that whenever B ∈ [ω]ω splits all Ai, then °D “B splits
Ȧ”.

1Denoting classical Hechler forcing by D, and the representation here by D′, it can be
shown that D adds a D′-generic, and that the two-step iteration of D′, D′ ? Ḋ′, adds a D-
generic. Therefore the fsi of the two forcing notions have the same combinatorial properties.
I do not know, though, whether D and D′ are forcing equivalent.
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Proof. This is a rank argument. Such rank arguments are quite common for
establishing combinatorial properties of forcing notions adding dominating reals.
In this sense, the present proof is a paradigm for many other proofs.

For s ∈ ω<ω and n ∈ ω, say that s favors that k is the n-th element of Ȧ if
there is no condition with first coordinate s which forces that “k is not the n-th
element of Ȧ”. Define the rank rkn(s) by recursion on the ordinals, as follows:

• rkn(s) = 0 if for some k, s favors that k is the n-th element of Ȧ;

• for α > 0: rkn(s) = α if there is no β < α such that rkn(s) = β and there
are infinitely many ` such that rkn(ŝ `) < α.

Clearly, rkn(s) must either be a countable ordinal or undefined (in which case
we write rkn(s) = ∞). We show the latter never happens.

Claim 3.9. rkn(s) < ω1 for all s and n.

Proof. Assume rkn(s) = ∞. Notice that for any t, if rkn(t) = ∞, then rkn(t̂ `) =
∞ for almost all `. This allows us to recursively construct a function ϕ : ω<ω →
ω such that whenever t ⊇ s and t(i) ≥ ϕ(t¹i) for all i ∈ |t|\|s|, then rkn(t) = ∞.

Consider the condition (s, ϕ). Find (t, ψ) ≤ (s, ϕ) and k such that (t, ψ)
forces that k is the n-th element of Ȧ. Then clearly rkn(t) = 0. However, by
the preceding paragraph, rkn(t) = ∞, a contradiction.

We continue with the proof of the main lemma. If s is such that rkn(s) = 0
for infinitely many n, find kn ≥ n such that s favors that kn is the n-th element
of Ȧ, and let As be the collection of the kn. If s and n are such that rkn(s) = 1,
there are infinitely many ` such that rkn(ŝ `) = 0, and for each such ` we may
find k` such that ŝ ` favors that k` is the n-th element of Ȧ. It is easy to see
that for each k, the set {` : k` = k} must be finite for otherwise k witnesses
that rkn(s) = 0. In particular, the collection As,n of such k` must be infinite.

We claim that if B splits all As and all As,n, then it is forced to split Ȧ.
Let (s, ϕ) be condition and let m ∈ ω. We need to find (t, ψ) ≤ (s, ϕ) and

m0,m1 ≥ m such that m0 ∈ B, m1 /∈ B, and (t, ψ) forces both m0 and m1

belong to Ȧ. Since the construction of m0 and m1 is analogous, it suffices to
produce the former.

First assume there are infinitely many n such that rkn(s) = 0. Since B ∩As

is infinite, we find m0 ≥ m in this intersection. By definition of As there is some
n such that s favors that kn = m0 is the n-th element of Ȧ, and thus there is
(t, ψ) ≤ (s, ϕ) such that (t, ψ) °D m0 ∈ Ȧ.

Next assume rkn(s) > 0 for all but finitely many n. Choose n ≥ m such
that rkn(s) > 0. Extend s to t such that t(i) ≥ ϕ(t¹i) for all i ∈ |t| \ |s| and
rkn(t) = 1. That this can be done is proved by induction on rkn(s).

If rkn(s) = 1, put t = s. If rkn(s) > 1, we can find, by definition of rkn, an
` such that ` ≥ ϕ(s) and 1 ≤ rkn(ŝ `) < rkn(s). By induction hypothesis, ŝ `
can be extended to the required t.
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Since B ∩ At,n is infinite, we find ` ≥ ϕ(t) and k` = m0 ≥ m such that
m0 ∈ B ∩At,n. Thus t̂ ` favors that m0 is the n-th element of Ȧ. Hence we can
find a condition (u, ψ) ≤ (s, ϕ) such that t̂ ` ⊆ u and (u, ψ) °D m0 ∈ Ȧ.

3.4.2. Preservation in the iteration.

Proposition 3.10. Let δ be a limit ordinal. Let (Pα, Q̇α : α < δ) be an fsi of
ccc forcing notions. Assume that for all α < δ we have

(?α) for any Pα-name Ȧ for an infinite subset of ω, there are Ai ∈ [ω]ω, i ∈ ω,
such that whenever B splits all Ai, then °α “B splits Ȧ”.

Then (?δ) holds as well.

Proof. By Lemma 3.3, no new reals arise in limit stages of uncountable cofinality
so that the proposition vacuously holds if cf(δ) > ω. Hence assume cf(δ) = ω.
To simplify notation suppose δ = ω.

Let Ȧ be a Pω-name for an infinite subset of ω. Fix n ∈ ω. Work in V Pn

for the moment. There is a decreasing sequence of conditions pk = pn,k in
the remainder forcing Pω/Pn such that pk decides the k-th element of Ȧ. Say
pk °[n,ω) “`k is the k-th element of Ȧ”. Let An = {`k : k ∈ ω}.

Work in the ground model V . We have a Pn-name Ȧn for An. By (?n), we
can find An,i, i ∈ ω, such that whenever B splits all An,i, then °n “B splits
Ȧn”. Unfix n. We claim that if B splits all An,i, n, i ∈ ω, then °ω “B splits
Ȧ”.

To see this, let p ∈ Pω and m ∈ ω. We need to find q ≤ p and m0,m1 ≥ m
such that m0 ∈ B, m1 /∈ B, and q °ω m0,m1 ∈ Ȧ. As in the proof of Main
Lemma 3.8, it suffices to find m0.

Fix n such that p ∈ Pn and work in V Pn . We know that B splits An. Thus
there is m0 ≥ m such that m0 ∈ B ∩ An. There is k such that m0 = `k and
pk °[n,ω) m0 ∈ Ȧ.

In V , we have Pn-names ṁ0 for m0 and ṗk for pk. By strengthening p ∈ Pn,
if necessary, we may assume p decides ṁ0 to be m0 and ṗk to be pk, a partial
function with domain [n, ω), so that q = p̂ pk is a condition. Then q °ω m0 ∈
Ȧ.

By a similar argument we show that an iteration of σ-centered forcing does
not add random reals. The exact statement is as follows:

Proposition 3.11. Let δ be a limit ordinal. Let (Pα, Q̇α : α < δ) be an fsi of
ccc forcing notions. Assume that for all α < δ we have

(??α) for any Pα-name ḟ for a function in 2ω, there are gi ∈ 2ω, i ∈ ω, such
that: whenever h : ω → 2<ω, h(n) ∈ 2n, is such that for all i, there are
infinitely many n with gi¹n = h(n), then °α “there are infinitely many n
with ḟ¹n = h(n)”.

Then (??δ) holds as well.
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Corollary 3.12. Iterations of σ-centered forcing do not add random reals.

Proof. Let (Pα, Q̇α : α < δ) be an fsi of σ-centered forcing. By induction on α,
show that (??α) holds. The case α = 0 is trivial. Suppose (??β) holds and let
α = β +1. Since Pα = Pβ ? Q̇β and Qβ is forced to be σ-centered, the induction
hypothesis together with the argument in the proof of Lemma 3.7 yield (??α). If
α is a limit ordinal and (??β) holds for β < α, (??α) follows by Proposition 3.11.

The argument in the proof of Lemma 3.7 now shows that (??δ) implies that
Pδ does not add random reals.

3.4.3. The effect of D on cardinal invariants.

Theorem 3.13. Let κ ≥ ℵ1 be a regular cardinal. In V Dκ , s = cov(N ) = ℵ1,
add(M) = b = d = cof(M) = κ, and r, non(N ) ≥ κ.

Proof. By 3.5 we know that D adds a Cohen real. Let cα, α < ω1, denote the
Cohen reals added by the first ℵ1 many Hechler reals. By 1.8 and 3.3, we know
that the cα form an ω-splitting family A in V Dℵ1 . Now show by induction on
ℵ1 ≤ α ≤ κ that (?α) holds with respect to V Dℵ1 .

The case α = ℵ1 is trivial. Suppose (?β) holds and let α = β + 1. Since
Dα = Dβ?Ḋ, the induction hypothesis together with Main Lemma 3.8 yield (?α).
If δ is a limit ordinal and (?α) holds for α < δ, (?δ) follows by Proposition 3.10.

Therefore (?κ) holds with respect to V Dℵ1 , and thus A remains ω-splitting
in V Dκ . Hence s = ℵ1.

cov(N ) = ℵ1 is similar. More explicitly, one shows that if c : ω → 2<ω,
c(n) ∈ 2n, is Cohen over a model M , then Ac = {f : ∃∞n f¹n = c(n)} is a
Gδ measure zero set containing all reals from M (exercise!). Therefore the Acα ,
α < ω1, form a covering family for the null ideal in V Dℵ1 , and this family is still
covering in V Dκ by a combination of 3.11 and the proof of 3.7.

To see b ≥ κ, let F ⊆ ωω be of size less than κ in the generic extension.
By 3.3, there is α < κ such that F is contained in V Dα . Since the Hechler real
dα added in the α-th step of the iteration dominates V Dα (3.4), F is bounded
in V Dκ . Hence b ≥ κ.

Using once again that a Hechler real is dominating, one also sees that the
sequence dα, α < κ, of Hechler generics is a dominating family. Hence d ≤ κ
follows, and b = d = κ must hold.

Using the Miller-Truss theorem (2.3) and the Cohen reals added by D (3.5),
one in fact sees that add(M) = cof(M) = κ.

More explicitly, let J be a family of Borel meager sets of size less than κ.
By 3.3, there is α < κ such that all members of J are coded in V Dα . Let cα be
the Cohen real added in the α-th step of the iteration. Then, by 2.6, cα /∈

∪
J

so that J is not covering. cov(M) ≥ κ follows, and 2.3 yields add(M) = κ.
A similar argument proves non(M) ≤ κ, and cof(M) = κ follows.
Since b ≤ r (1.2) and add(M) ≤ cov(M) ≤ non(N ) (2.1), r, non(N ) ≥ κ

follow easily.
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If CH holds in the ground model, s = ℵ1 can more easily be proved by
showing that A = [ω]ω ∩ V is ω-splitting in V Dκ , using again 3.8 and 3.10.
Similarly for cov(N ) = ℵ1.

3.5. Limitations of the method of fsi of ccc forcing. An alternative
argument for showing that Cohen reals are added in the iteration in 3.13 goes
by observing that they naturally arise in limit stages of countable cofinality of
fsi.

Lemma 3.14. Let δ be an ordinal of countable cofinality and let (Pα, Q̇α : α <
δ) be an fsi such that all Q̇α are forced to be nontrivial. Then Pδ adds a real
which is Cohen over all V Pα , α < δ.

Proof. To simplify notation suppose δ = ω. For each n, let q̇n be a Pn-name for
a condition in Q̇n such that °n q̇n 6= 1Q̇n

. In the extension, define c ∈ 2ω by
c(n) = 1 iff the interpretation of q̇n belongs to the generic filter. We claim that
c is Cohen over all V Pm .

To see this fix m. Without loss of generality, m = 0. Let D be a dense subset
of C in V , and let p ∈ Pω. We need to find r ≤ p and t ∈ D such that r forces
t ⊆ ċ. Fix k such that p ∈ Pk. Strengthening p if necessary, we may assume
that for all n < k, either °n p(n) ≤ q̇n or °n “p(n) and q̇n are incompatible”.
This defines s ∈ 2k given by s(n) = 1 iff the first alternative holds. Clearly p
forces s ⊆ ċ. Find t ∈ D with s ⊆ t. Let ` = |t| and extend p to r ∈ P` such
that r¹k = p and for k ≤ n < `, r(n) = q̇n if t(n) = 1, and r(n) is forced to be
incompatible with q̇n if t(n) = 0. Then q forces t ⊆ ċ, as required.

More generally, if δ is a limit ordinal and (Pα, Q̇α : α < δ) is an fsi with
nontrivial Q̇α, then Pδ adds a Cδ-generic over V .
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Lecture 4: proper forcing

4.1. Introduction to properness. There are many combinatorial prob-
lems which cannot be solved by fsi of ccc forcing. Reasons are that

• there may be no ccc forcing with the right combinatorial properties,

• it may be necessary that no Cohen reals – or no larger Cohen functions –
are adjoined to solve the problem at hand (by 3.14 we know that Cohen
reals are added in limit stages of fsi, no matter what the individual forcing
notions are).

Therefore we look for a larger class of forcing notions which still preserve cardi-
nals – or at least ℵ1 – so that they may be used for blowing up the continuum
and we also look for a method for iterating them. This leads to proper forcing
and csi of proper forcing. We note in this context that fsi will not work for
non-ccc forcing.

Lemma 4.1. Assume (Pn, Q̇n : n ∈ ω) is an fsi such that °n “Q̇n is not ccc”
for infinitely many n. Then Pω collapses ℵ1.

Proof. For simplicity, assume all Q̇n are forced not to be ccc, and let {q̇α
n : α <

ω1} be a Pn-name for an antichain of Q̇n. In the extension, define f : ω → ω1 by
f(n) = α if the interpretation of q̇α

n belongs to the generic filter, and f(n) = 0
otherwise. It is easy to see that f is onto. (In fact, an argument exactly like the
one in the proof of 3.14 shows that f is generic for Fn(ω, ω1), the Levy collapse
of ω1 to ω.)

4.2. Proper forcing. Let χ be a cardinal. H(χ) denotes the collection
of sets which are hereditarily of size less than χ. That is, x ∈ H(χ) iff the
transitive closure of x has cardinality less than χ. The H(χ) are transitive
sets, and for regular χ > ℵ0, H(χ) is a model of ZFC minus the power set
axiom. If χ is large with respect to a p.o. P (typically, χ > 2|P| is enough),
then any statement relevant for forcing purposes which is true in the universe
(in V ) is already true in H(χ), and vice-versa. Thus we may as well discuss
forcing-theoretic properties of P within H(χ).

Now let N ≺ H(χ) be countable, i.e., N is a countable elementary submodel
of H(χ). Assume P ∈ N . We say that q ∈ P is (N, P)-generic if for all dense
D ⊆ P with D ∈ N , D ∩ N is predense below q. (Recall that the latter means
that any condition stronger than q is compatible with some condition from
D ∩ N .)

Lemma 4.2. The following are equivalent:

1. q is (N, P)-generic.

2. For all dense D ⊆ P with D ∈ N , q ° D ∩ N ∩ Ġ 6= ∅.
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3. For all maximal antichains A ⊆ P with A ∈ N , q ° A ∩ N ∩ Ġ 6= ∅.

4. q ° N [Ġ] ∩ On = N ∩ On.

5. q ° N [Ġ] ∩ V = N .

Here, Ġ is the canonical P-name for the generic filter, and On denotes as
usual the ordinals.

Proof. The equivalence of (1) and (2) is immediate.
It is also easy to see that it doesn’t matter whether we quantify over dense

sets or over maximal antichains (or over predense sets or over open dense sets,
for that matter). Hence (2) and (3) are equivalent.

To see that (3) implies (5), let ẋ ∈ N be a P-name for an element of V
(that is, ẋ belongs to N as a P-name). Let A ∈ N be a maximal antichain of
conditions deciding the value of ẋ. Say p ° ẋ = xp for p ∈ A. If p ∈ A ∩ N ,
then, since N |= “p decides the value of ẋ”, we must have xp ∈ N . By (3),
q ° A ∩ N ∩ Ġ 6= ∅. Hence q ° ẋ ∈ {xp : p ∈ A ∩ N}. Therefore q forces that ẋ
belongs to N , as required (that is, q forces the interpretation of ẋ is in N).

(5) implies (4) is trivial.
To see that (4) implies (3), let A ∈ N be a maximal antichain. In N , let

f : A → On be one-to-one. We may think of f as a P-name α̇ for an ordinal,
namely, p ° α̇ = f(p) for p ∈ A. Since f ∈ N , α̇ ∈ N is immediate. By (4),
q ° α̇ ∈ N . Since p ∈ N iff f(p) ∈ N , q ° A ∩ N ∩ Ġ 6= ∅.

A forcing notion P is called proper if for all large enough regular cardinals
χ, all countable N ≺ H(χ) with P ∈ N , and all conditions p ∈ P ∩ N , there is
q ≤ p which is (N, P)-generic.

Properness has a number of equivalent definitions, one in terms of stationary
sets, one in terms of games, and one in terms of distributive laws for cBa’s.
However, the model-theoretic definition given above is by far the most useful
one, and we shall not discuss the other definitions in detail. Let us prove,
however, that properness implies that stationary subsets of ω1 are preserved.

Theorem 4.3. Let P be proper. Assume S ⊆ ω1 is stationary. Then P forces
that S is stationary.

Proof. The proof is a paradigmatic properness argument, and we go through the
details.

Let Ċ be a P-name for a club subset of ω1. We need to show that P forces
that Ċ ∩ S 6= ∅. Let p ∈ P. We need to find q ≤ p and an ordinal γ such that
q ° γ ∈ Ċ ∩ S.

Choose χ large enough and N ≺ H(χ) countable such that P, p, S, Ċ ∈ N
and N ∩ω1 ∈ S. To see that this is possible, first note that N ∩ω1 must indeed
be an ordinal: let α ∈ N ∩ ω1. Since H(χ) thinks α is countable, so does N .
Therefore N contains a bijection f : ω → α. Since ω ⊆ N , α ⊆ N follows, and
N∩ω1 is an ordinal. Next note that the collection {N∩ω1 : N ≺ H(χ)} contains
a club subset of ω1. This is so because the union of a countable increasing chain
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of countable elementary submodels is again a countable elementary submodel.
Thus we may indeed choose N with N ∩ ω1 ∈ S.

Let q be (N, P)-generic. Since N ∩ω1 ∈ S, the following claim completes the
proof of the theorem.

Claim 4.4. q ° N ∩ ω1 ∈ Ċ.

Proof. For fixed α ∈ ω1 ∩ N , let Dα = {r ∈ P : r ° β ∈ Ċ for some β ≥ α}.
Clearly Dα ∈ N . Let r ∈ Dα ∩ N . Then we have

H(χ) |= ∃β ≥ α r ° β ∈ Ċ.

By elementarity, we see

N |= ∃β ≥ α r ° β ∈ Ċ.

Hence r forces β ∈ Ċ for some β with α ≤ β < N ∩ω1. Since Dα∩N is predense
below q,

q ° “∃β with α ≤ β < N ∩ ω1 and β ∈ Ċ.”

Unfixing α, we see that q forces this for all α ∈ ω1 ∩N . Since Ċ is forced to be
club, q forces ω1 ∩ N ∈ Ċ, as required.

Corollary 4.5. Let P be proper. Then P preserves ℵ1.

Proof. Let S be any subset of ω1 such that ω1 \ S is unbounded. If P forces
that |ωV

1 | = ℵ0, then P forces that there is an increasing ω-sequence in ω1 \ S
converging to ω1. This sequence trivially is club, so that S cannot be stationary
in the generic extension. Hence many stationary sets are destroyed.

An alternative argument for 4.5 goes by proving first that a proper p.o. forces
that any countable set of ordinals is covered by a countable set of ordinals from
the ground model (see, e.g, [Go, Fact 3.13] or [Sh, III Lemma 1.16]).

Proper forcing notions form a much larger class than ccc forcing notions.

Proposition 4.6. 1. Any ccc forcing is proper.

2. Any σ-closed forcing is proper.

Proof. (1) Let P be ccc. Let χ and N ≺ H(χ) be as required, and notice that
any condition p ∈ P is (N, P)-generic. To see this, let A ∈ N be a maximal
antichain in P. By ccc, A is countable (in H(χ)), and by elementarity, this is
true in N as well. Hence there is a bijection f : ω → A in N . Since ω ⊆ N ,
A ⊆ N follows. But clearly, p forces that A ∩ Ġ is nonempty.

(2) Let P be σ-closed. Again let χ and N ≺ H(χ) be as required, and let
p ∈ P∩N . Let {Di : i ∈ ω} enumerate all dense subsets of P which belong to N .
Recursively construct conditions pi ∈ N such that p0 = p and pi+1 ≤ pi belongs
to Di ∩ N . This is clearly possible. Since P is σ-closed, the sequence of the pi

has a lower bound q. Then q ° pi ∈ Ġ for all i. Hence q is (N, P)-generic.
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We shall see further examples for proper forcing notions in the next two
lectures.

For a more comprehensive discussion of proper forcing and countable support
iteration of proper forcing, see [Sh, Chapter III], [Go] or [Ab].

4.3. Preservation of properness in countable support iterations.

Lemma 4.7. Let P ? Q̇ be a two-step iteration. Let N ≺ H(χ) be countable
with P ? Q̇ ∈ N . Then (p, q̇) is (N, P ? Q̇)-generic iff p is (N, P)-generic and p
forces that q̇ is (N [Ġ], Q̇)-generic. In particular, if P is proper and forces that
Q̇ is proper, then P ? Q̇ is proper.

Proof. Clearly,
(p, q̇) ° N [Ġ][Ḣ] ∩ On = N ∩ On

is equivalent to

p ° “N [Ġ] ∩ On = N ∩ On and q̇ ° N [Ġ][Ḣ] ∩ On = N [Ġ] ∩ On”.

Hence the first part follows from Lemma 4.2.
To see that properness is preserved in two-step iterations, let χ and N ≺

H(χ) be as required, and let (p, q̇) ∈ N . Since P is proper, there is p′ ≤ p
such that p′ is (N, P)-generic. Since P forces that Q̇ is proper and that N [Ġ] ≺
H(χ)[Ġ] = H(χ)V [Ġ], there is a P-name q̇′ such that p forces that q̇′ ≤ q̇ is
(N [Ġ], Q̇)-generic. (p′, q̇′) ≤ (p, q̇) follows and, by the first part, (p′, q̇′) is P ? Q̇-
generic.

Main Lemma 4.8. Let P̄ = (Pα, Q̇α : α < δ) be a csi such that °α “Q̇α is
proper”. Let N ≺ H(χ) be countable with P̄ ∈ N . Then, for all β ∈ N ∩ (δ +1),
all α ∈ N ∩ (β + 1), and all Pα-names ṗ ∈ N for a condition in Pβ, if

(i) q ∈ Pα,

(ii) q is (N, Pα)-generic,

(iii) q °α ṗ¹α ∈ Ġα ∩ N ,

then there is q′ such that

(i’) q′ ∈ Pβ, q′¹α = q,

(ii’) q′ is (N, Pβ)-generic,

(iii’) q′ °β ṗ ∈ Ġβ ∩ N .

Proof. We make induction on β ≥ α.
Basic step. The case β = α is trivial.
Successor step. Let β = γ +1. By induction hypothesis, we know the lemma

holds for the pair (α, γ), and we may thus assume without loss of generality that
α = γ. Since Q̇γ is forced to be proper, there is a Pγ-name q̇ such that q forces
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“q̇ ∈ Q̇γ , q̇ ≤ ṗ(γ) and q̇ is (N [Ġγ ], Q̇γ)-generic”. By Lemma 4.7, we know that
q′ = (q, q̇) is (N, Pβ)-generic. Since q′ forces that ṗ(γ) belongs to ĠQ̇γ

∩N [Ġγ ],

it also forces that ṗ belongs to Ġβ ∩ N .
Limit step. Let β ∈ N be a limit ordinal. Put γ = sup(N ∩ β). Clearly, γ

is a limit ordinal of countable cofinality. Let αn ∈ N be such that α0 = α and
supn αn = γ. Also let Dn, n ∈ ω, list the dense sets of Pβ belonging to N .

First: construct ṗn ∈ N such that ṗ0 = ṗ, all ṗn are Pαn-names for conditions
in Pβ , and

• °αn+1 ṗn+1 ≤ ṗn,

• °αn+1 ṗn+1 ∈ Dn,

• °αn+1 “if ṗn¹αn+1 ∈ Ġαn+1 then ṗn+1¹αn+1 ∈ Ġαn+1”.

Let us argue why this is possible. Work in N . It suffices to prove that given
r ∈ Pαn+1 ∩ N , we can find s ∈ Pαn+1 ∩ N , s ≤ r, and pn+1 ∈ N such that

• s °αn+1 pn+1 ≤ ṗn,

• pn+1 ∈ Dn,

• s °αn+1 “if ṗn¹αn+1 ∈ Ġαn+1 then pn+1¹αn+1 ∈ Ġαn+1”.

For then we can produce the required Pαn+1-name in N . By strengthening r,
we may assume that it decides ṗn, say r ° ṗn = pn for some pn ∈ N . We may
also assume r decides whether pn¹αn+1 belongs to Ġαn+1 .

Assume first r forces that pn¹αn+1 /∈ Ġαn+1 . Since pn and Dn both belong
to N and N |= “Dn is dense in Pβ”, we may find pn+1 ≤ pn in N belonging to
Dn, and s = r works.

Next assume r forces pn¹αn+1 ∈ Ġαn+1 . Then r ≤ pn¹αn+1 must hold. So r
and pn have a common lower bound r′ ∈ Pβ in N . Let pn+1 ≤ r′ be an element
of Dn in N . Then s := pn+1¹αn+1 forces that pn+1¹αn+1 ∈ Ġαn+1 , and s ≤ r.

Next: construct qn such that

• q0 = q, qn ∈ Pαn , qn+1¹αn = qn,

• qn is (N, Pαn)-generic,

• qn °αn ṗn¹αn ∈ Ġαn ∩ N .

qn+1 is obtained from qn by applying the induction hypothesis to αn, αn+1,
and ṗn¹αn+1. Thus we obtain that qn+1 forces that ṗn¹αn+1 ∈ Ġαn+1 ∩ N .
By applying the above property of the ṗn, we also obtain that qn+1 forces that
ṗn+1¹αn+1 ∈ Ġαn+1∩N , as required. This completes the recursive construction.

Let q′ =
∪

n qn. This is a condition in Pβ (even in Pγ) and we have q′ ≤ qn

for all n. We claim that q′ forces that ṗn ∈ Ġβ ∩ N . To see this, first note
that since qn is generic and q′ ≤ qn by construction, q′ forces that ṗn ∈ N .
Next notice that q′ forces that ṗn¹αn ∈ Ġαn ∩ N . Since the ṗn are forced to
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be decreasing, this means that q′ forces that ṗn¹αm ∈ Ġαm
∩ N for all m ≥ n.

Let q′′ ≤ q′ be an arbitrary condition deciding ṗn, say q′′ °β ṗn = pn for some
pn ∈ N . Since q′′ °β pn¹αm ∈ Ġαm for all m, we obtain q′′¹αm ≤ pn¹αm for
all m. Next, pn ∈ N implies that supp(pn) ⊆ N so that supp(pn) ⊆ γ. This
means we may construe pn as a condition in Pγ , and q′′ ≤ pn now follows. Thus
q′′ °β pn ∈ Ġβ . Since q′′ was arbitrary below q′, q′ °β ṗn ∈ Ġβ as well.

In particular, q′ forces ṗ ∈ Ġβ ∩N so that (iii’) holds, and it also forces that
ṗn+1 ∈ Dn ∩ Ġβ ∩ N so that (ii’) holds.

Theorem 4.9. Csi of proper forcing notions are proper. I.e., if (Pα, Q̇α : α < δ)
is a csi such that °α “Q̇α is proper”, then Pδ is proper.

Proof. This is a consequence of Main Lemma 4.8 with α = 0 and β = δ.

Theorem 4.10. Assume CH. Let (Pα, Q̇α : α < ω2) be a csi of proper forcing
such that Pα forces Q̇α has size at most ℵ1, for all α. Then Pα, α < ω2, has a
dense subset of size ℵ1 and CH still holds in V Pα . Furthermore, Pω2 is ℵ2-cc
and thus preserves all cardinals.

This is similar to 4.9 and 4.8. See [Ab, Theorem 2.10] or [Sh, III Theorem
4.1].

Next comes the analog of 3.3 (see also 1.5 and 2.9).

Lemma 4.11. Let δ be a limit ordinal of uncountable cofinality. Assume
(Pα, Q̇α : α < δ) is a csi of proper forcing notions. Let f be a new real in
V Pδ . Then there is α < δ such that f already belongs to V Pα .

Proof. Let ḟ be a Pδ-name for f . By 4.9, we know that Pδ is proper. Let χ
be large enough, let p ∈ Pδ, and let N ≺ H(χ) be such that ḟ , p in N . Put
α = sup(N ∩ δ). By properness, there is q ≤ p which is (N, Pδ)-generic. We
claim that q forces that ḟ belongs to the extension via Pα.

Indeed, if for each n we let An be the maximal antichain of conditions
deciding ḟ(n), then An ∈ N , and q forces that the generic meets An ∩ N .
However all conditions in An ∩N have support contained in α. Therefore, if we
know the Pα-generic filter, we also know which condition of An ∩ N is in the
filter, and therefore we know the value of ḟ(n). Hence the interpretation of ḟ is
in the Pα-generic extension.

4.4. Limitations of the method of csi of proper forcing. An argument
exactly as in Lemma 3.14 shows that csi add Cohen subsets of ω1 in limit steps
of cofinality ω1.

Lemma 4.12. Let δ be an ordinal of cofinality ω1 and let (Pα, Q̇α : α < δ) be
a csi such that all Q̇α are forced to be nontrivial. Then Pδ adds a subset of ω1

which is Fn(ω1, 2, ω1)-generic over V (and even over all V Pα , α < δ).

Proof. Exercise!
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It is well-known that Fn(ω1, 2, ω1) forces CH (and even ♦), see [Ku1, VII
Theorem 8.3]. As a consequence we obtain

Corollary 4.13. Let (Pα, Q̇α : α < ω2 + ω1) be a csi of proper forcing. Then
Pω2+ω1 forces CH. In particular, if all Q̇α add reals, then ℵ2 is collapsed to ℵ1.

Proof. By 4.11, any new real added by Pω2+ω1 is already added by Pα for
some α < ω2 + ω1. The argument of the proof of 4.12 in fact shows that the
Fn(ω1, 2, ω1)-generic added by Pω2+ω1 codes all reals adjoined at an earlier stage.
Since it has size ω1, it can code only ω1 many reals, and c = ℵ1 follows.

If all Q̇α do add reals, then ℵV
2 many reals get added. Hence ℵV

2 is collpased
to ℵ1.
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Lecture 5: Sacks forcing

5.1. Sacks forcing. A tree T ⊆ 2<ω is called perfect if for all t ∈ T
there is u ⊇ t such that both u 0̂ and u 1̂ belong to T . T is perfect iff the
closed set [T ] consisting of the branches of T (see Lecture 2) is perfect; that is,
[T ] has no isolated points. Sacks forcing S consists of all perfect trees ordered
by inclusion; i.e., S ≤ T iff S ⊆ T . It generically adds a new real s with
{s} =

∩
{[T ] : T ∈ G} where G denotes the S-generic filter over V . To see

that this intersection is indeed a singleton, first note that it must be non-empty
because G is a filter and the sets [T ] are compact. Then notice that by genericity
it cannot contain more than one element. s is called a Sacks real. As usual,
V [s] = V [G].

An alternative description of s is obtained as follows. The stem of a (perfect)
tree T , stem(T ), is the unique u ∈ T such that u 0̂, u 1̂ ∈ T and u is comparable
with all members of T . Then s =

∪
{stem(T ) : T ∈ G}.

It is easy to see that every perfect T can be split into continuum many
perfect trees Tα, α < c, which have pairwise finite intersection (this is like the
construction of an almost disjoint family of size continuum). In particular, for
α 6= β, [Tα] ∩ [Tβ ] = ∅, and Tα and Tβ are incompatible. Thus S is not c-cc,
but of course it is c+-cc (because |S| = c). Hence, under CH, it is ℵ2-cc and
preserves cardinals ≥ ℵ2. Therefore, the main issue is the preservation of ℵ1.
This is obtained by a so-called fusion argument. This kind of argument is very
common for forcing notions consisting of trees, and in this sense, the proof of 5.1
below is paradigmatic.

For u ∈ T , define Tu = {t ∈ T : t ⊆ u or u ⊆ t}, the subtree of T determined
by u. By recursion on n, define the n-th splitting level splitn(T ) of T , as follows.
split0(T ) = {stem(T )}, and splitn+1(T ) = {stem(Tu î) : u ∈ splitn(T ) and
i ∈ 2}. Notice that |splitn(T )| = 2n. The fusion orderings ≤n are given by
S ≤n T if S ≤ T and splitn(S) = splitn(T ). Clearly, S ≤n+1 T implies S ≤n T
which in turn implies S ≤ T . A sequence of conditions Tn, n ∈ ω, is a fusion
sequence if Tn+1 ≤n Tn for all n. For such a fusion sequence, define the fusion
S :=

∩
n Tn. It is easy to see that the fusion is again a perfect tree. In fact, it

can also be described as {u : ∃n∃t (t ∈ splitn(Tn) and u ⊆ t)}.

Main Lemma 5.1. (fusion for Sacks forcing) Let N ≺ H(χ) be countable, and
let T ∈ S∩N . Let An, n ∈ ω, list (some of) the maximal antichains of S which
belong to N . Then there are S ≤ T and finite sets Bn ⊆ An of size at most
2n with Bn ∈ N which are predense below S. In particular, if the An list all
maximal antichains of N , S is (N, S)-generic.

Proof. In N , we recursively construct conditions Tn and finite sets Bn such that

• T0 ≤ T ,

• Tn+1 ≤n Tn,
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• Bn is predense below Tn,

• |Bn| ≤ 2n.

We emphasize that while the list of all An in general does not belong to N ,
any finite initial segment of this list does. Therefore any finite segment of this
construction can be done in N (in particular, the Tn and Bn belong to N), while
the construction as a whole is not an element of N .

For the basic step note that, by elementarity, N |= “A0 is a maximal an-
tichain”. Hence there is U0 ∈ A0 ∩ N compatible with T . Let T0 ∈ N be a
common extension and put B0 = {U0}.

Suppose Tn and Bn have been constructed. For u ∈ splitn(Tn) and i ∈ 2,
consider (Tn)u î ∈ N . There is Uu î ∈ An+1 ∩ N compatible with (Tn)u î.
Let (Tn+1)u î ∈ N be a common extension of these two conditions, and put
Tn+1 =

∪
{(Tn+1)u î : u ∈ splitn(Tn) and i ∈ 2}. Then Tn+1 belongs again to

N , Tn+1 ≤n Tn holds, and Bn+1 = {Uu î : u ∈ splitn(Tn) and i ∈ 2} is a finite
subset of An+1 of size at most 2n+1 which belongs to N and which is predense
below Tn+1. This completes the recursive construction.

Now, let S be the fusion of the sequence of Tn’s. Since S ≤n Tn for all n,
all Bn are predense below S, as required. Since Bn ∈ N is finite, Bn ⊆ N is
immediate, and therefore S is (N, S)-generic.

Corollary 5.2. Sacks forcing S is proper and thus preserves ℵ1 and, under
CH, all cardinals.

Proof. Properness is immediate from Main Lemma 5.1. The preservation of ℵ1,
then, follows from Corollary 4.5.

We say that a forcing notion P has the Sacks property if for every condition
p ∈ P and every P-name ḟ ∈ ωω there are a condition q ≤ p and a function
F : ω → [ω]<ω with |F (n)| ≤ 2n such that q forces that ḟ(n) ∈ F (n) for all n.
Recall (Lecture 2) that P is ωω-bounding if for all p ∈ P and all P-names ḟ ∈ ωω

there are q ≤ p and g ∈ ωω such that q forces that ḟ(n) ≤ g(n) for all n. The
following is easy to see.

Observation 5.3. If P has the Sacks property, then P is ωω-bounding.

The converse need not be true. In fact, random forcing is ωω-bounding (see
Lemma 2.14), but does not have the Sacks property (the latter follows from
properties of random forcing discussed in Lecture 2 and the consequences of the
Sacks property exhibited below).

Corollary 5.4. Sacks forcing S has the Sacks property.

Proof. Let T ∈ S and let ḟ be an S-name for a real in ωω. Let N ≺ H(χ) be
countable such that T, ḟ ∈ N . Let An be a maximal antichain of conditions
deciding ḟ(n). Clearly An ∈ N , and we may apply Main Lemma 5.1 to obtain
S ≤ T and Bn of size at most 2n such that Bn is predense below S. Let
F (n) = {k : ∃U ∈ Bn U ° ḟ(n) = k}. Then F (n) has size at most 2n, and S
forces that ḟ(n) belongs to F (n) for all n.
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5.2. The countable support product of Sacks forcing. How do we add
many Sacks reals? As we saw earlier (Lemma 4.1 at the beginning of Lecture
4), a finite support product or a finite support iteration of Sacks forcing will
collapse cardinals. By the discussion of properness (Theorem 4.9 in Lecture 4),
we know we can iterate Sacks forcing with countable support (see below).

However, there is an alternative: the countable support product (csp, for
short) of Sacks forcing. Let I be an index set. The forcing SI consists of all
functions f : I → S such that supp(f) = {i ∈ I : f(i) 6= 1S} is at most
countable. SI is ordered coordinatewise by g ≤ f if g(i) ≤ f(i) for all i (this
implies in particular that supp(g) ⊇ supp(f)). SI adds |I| many Sacks reals.
Namely, each si added in coordinate i ∈ I is Sacks over the ground model.

Properties of SI are very similar to those of S, and we refrain from giving
detailed proofs (basically, the arguments are just combinatorially more compli-
cated versions of the arguments for S). In particular:

Lemma 5.5. SI is a proper forcing notion with the Sacks property. Thus it
preserves ℵ1 and, under CH, all cardinals. Also it is ωω-bounding.

However, unlike for Cohen and random forcing (Lemmata 1.6 and 2.13), we
do not have a product lemma for the csp of Sacks forcing. In particular, if i 6= j,
sj is not S-generic over V [si].

We saw earlier (Lemma 2.14 and Theorem 2.17) that the ωω-bounding prop-
erty is closely related to (preservation of) the cardinal invariant d. In a similar
vein, the Sacks property is closely related to (preservation of) cof(N ). Say
F : ω → [ω]<ω is a slalom if |F (n)| ≤ 2n for all n.

Theorem 5.6. (Bartoszyński’s characterization of additivity and cofinality of
the null ideal)

1. add(N ) = min{|F| : F ⊆ ωω and for all slaloms F there is f ∈ F such
that f(n) /∈ F (n) for infinitely many n}.

2. cof(N ) = min{|F| : F is a family of slaloms and for all f ∈ ωω there is
F ∈ F such that f(n) ∈ F (n) for (almost) all n}.

See [BJ, Theorem 2.3.9].

Theorem 5.7. Assume CH holds in the ground model V . Let κ be arbitrary,
and let Sκ be the csp of S. In V Sκ , cof(N ) = ℵ1. If additionally κω = κ, c = κ
holds in the generic extension.

Proof. By 5.5, Sκ has the Sacks property. Thus, for every f ∈ ωω ∩V Sκ there is
a slalom F ∈ V such that f(n) ∈ F (n) for all n. By CH and 5.6, cof(N ) = ℵ1

follows.
Since Sκ adds κ many Sacks reals, c ≥ κ is obvious. A standard argument

shows that if κω = κ, then there are only κ many canonical Sκ-names for reals.
Thus c ≤ κ as well.
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5.3. The countable support iteration of Sacks forcing. We have the
following general preservation theorem for the Sacks property.

Theorem 5.8. Csi of proper forcing notions with the Sacks property have the
Sacks property. I.e., if (Pα, Q̇α : α < δ) is a csi such that °α “Q̇α is proper and
has the Sacks property”, then Pδ has the Sacks property.

This is similar to 4.9. See [Go, Section 6, Application 5].

Theorem 5.9. Assume CH holds in the ground model V . Let Sω2 be the csi
of S. In V Sω2 , cof(N ) = ℵ1 and c = ℵ2.

Proof. This is like the proof of Theorem 5.7. However, instead of 5.5, we use 5.8.
More explicitly, by 5.2 and 4.9, Sω2 is proper and preserves ℵ1, and by CH

and 4.10, it preserves ℵ2. Moreover, by 5.4 and 5.8, Sω2 has the Sacks property,
and cof(N ) = ℵ1 follows from 5.6 and CH. Again, it is obvious that Sω2 adds
exactly ℵ2 many reals so that c = ℵ2 follows.

In fact, one also has r = ℵ1 in the iterated Sacks model. For this, one uses
the P -point preservation theorem [BJ, Theorem 6.2.6].
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Lecture 6: Mathias forcing

6.1. Mathias forcing. Mathias forcing M consists of all pairs (s, A) where
s is a finite subset of ω, A is an infinite subsets of ω, and max(s) < min(A). The
order is given by (t, B) ≤ (s,A) if t ⊇ s, B ⊆ A, and t \ s ⊆ A. It generically
adds a new real m with m =

∪
{s : (s,A) ∈ G for some A} where G denotes the

M-generic filter over V . m is called a Mathias real. As usual, V [m] = V [G]. m
is an unsplit real (this is a straightforward genericity argument):

Observation 6.1. For all ground model reals A ∈ [ω]ω, either m ⊆∗ A or m∩A
is finite.

Also, m codes a dominating real:

Observation 6.2. Let f be the increasing enumeration of m; i.e., f(i) is the
i-th element of m. Then f eventually dominates all ground model reals.

Proof. Let (s,A) ∈ M and g ∈ ωω. Let k = |s|. Then find B ⊆ A such that
the i-th element of B is larger than g(k + i). By the definition of the ordering
of M, it is clear that (s,B) forces that the k + i-th element of ṁ is larger than
g(k + i), for all i.

If Aα, α < c, is an almost disjoint family of infinite subsets of ω of size c,
the conditions (∅, Aα) are pairwise incompatible. Thus M is not c-cc but c+-cc.

For s ∈ [ω]<ω and A ∈ [ω]ω, let A−s = {n ∈ A : n > max(s)}. For A ∈ [ω]ω

let {aj : j ∈ ω} be its increasing enumeration. Also put Ai = {aj : j ≥ i}. The
fusion orderings ≤i are given by (t, B) ≤i (s,A) if (t, B) ≤ (s,A), t = s, and
the first i elements of B and A are the same. A sequence (s,Ai) is a fusion
sequence if (s,Ai+1) ≤i (s,Ai) for all i. The fusion is (s,B) with B =

∩
i Ai.

Then (s,B) ≤i (s,Ai) for all i.

Main Lemma 6.3. (fusion for Mathias forcing) Let N ≺ H(χ) be countable,
and let (s,A) ∈ M ∩ N . Let Dn list (some of) the open dense sets of M which
belong to N . Then there is (s,B) ≤ (s,A) such that for all i, whenever n < i,
t ⊆ {bj : j < i}, and C ⊆ B are such that (s∪ t, C) ∈ Dn, then (s∪ t, Bi) ∈ Dn.
If the Dn list all open dense sets of N , (s,B) is (N, M)-generic. In particular,
it follows that M is proper and preserves ℵ1.

Proof. In N recursively construct sets Ai such that

• A0 = A,

• (s,Ai+1) ≤i (s,Ai),

• whenever n < i, t ⊆ {aj
i : j < i}, and C ⊆ Ai are such that (s∪t, C) ∈ Dn,

then (s ∪ t, Ai
i) ∈ Dn. (?)
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Again, all finite initial segments of this construction belong to N .
The basic step is clear. Suppose Ai has been constructed. Let (nk, tk),

k < `, list all pairs (n, t) such that n < i + 1 and t ⊆ {aj
i : j < i + 1}. In N ,

by recursion on k ≤ `, construct decreasing Ai,k: let Ai,0 = Ai. Suppose Ai,k

has been produced. If there is C ⊆ Ai,k such that (s ∪ tj , C) ∈ Dn, then let
Ai,k+1 = {aj

i : j < i + 1} ∪ C. Otherwise, let Ai,k+1 = Ai,k. Let Ai+1 = Ai,`.
Since {aj

i+1 : j < i + 1} = {aj
i : j < i + 1}, Ai+1 has the required properties.

This completes the recursive construction.
Let (s,B) be the fusion. It is clear that (s,B) has the required property, but

we still need to check that it is (N, M)-generic. Let (u,C) ≤ (s,B) and n ∈ ω.
We need to find a condition in Dn ∩ N which is compatible with (u,C). By
further extending (u, C), if necessary, we may assume (u, C) ∈ Dn. Let u = s∪t.
Then, for some i > n, t ⊆ {bj : j < i} = {aj

i : j < i}. We made (?) above hold
in N , but by elementarity it holds in H(χ) as well. Since the antecedent of (?)
is true in H(χ), the conclusion holds as well, and therefore (u,Ai

i) ∈ Dn. This
completes the proof because (u,C) ≤ (u, Ai

i) and (u,Ai
i) ∈ N .

Here are further properties of M. They use the previous lemma together
with some additional fusion argument.

Lemma 6.4. (pure decision property) Let ϕ be a sentence of the forcing lan-
guage. Assume (s, A) ∈ M. Then there is B ∈ [A]ω such that (s,B) decides ϕ
(i.e., either (s,B) ° ϕ or (s, B) ° ¬ϕ).

Proof. Let D be the open dense set of conditions deciding ϕ. By 6.3, we may
assume that whenever t ⊆ A, and C ⊆ A are such that (s∪ t, C) decides ϕ, then
(s ∪ t, A − t) decides ϕ. (??)

We claim that if t ⊆ A and (s ∪ t, A − t) does not decide ϕ, then for almost
all k ∈ A − t, (s ∪ t ∪ {k}, A − {k}) does not decide ϕ. Indeed, if there was an
infinite B ⊆ A − t such that (s ∪ t ∪ {k}, A − {k}) forces ϕ for all k ∈ B, then
(s∪t, B) forces ϕ. By (??) we see that (s∪t, A−t) also forces ϕ, a contradiction.
Similarly, if ¬ϕ is forced for all k ∈ B.

Assume now that (s,A) does not decide ϕ. We make a proof by contradic-
tion. Recursively construct Ai such that

• A0 = A,

• (s,Ai+1) ≤i (s,Ai),

• whenever t ⊆ {aj
i : j < i}, (s ∪ t, Ai − t) does not decide ϕ.

Suppose Ai has been constructed. By the previous paragraph, we easily obtain
Ai

i+1 ⊆ Ai
i such that for all t ⊆ {aj

i : j < i} and all k ∈ Ai
i+1, (s∪t∪{k}, Ai

i−{k})
does not decide ϕ. Clearly Ai+1 = {aj

i : j < i} ∪ Ai
i+1 is as required.

Let (s,B) be the fusion of the (s,Ai). Choose (s ∪ t, C) ≤ (s,B) deciding
ϕ. Then t ⊆ {aj

i : j < i} for some i, and (s ∪ t, Ai − t) does not decide ϕ.
Hence (s ∪ t, A − t) does not decide ϕ. This contradicts (??) and the proof is
complete.
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We say a forcing notion P has the Laver property if for every condition p ∈ P,
every function g ∈ ωω, and every P-name ḟ for a function bounded by g, there
are a condition q ≤ p and a function F : ω → [ω]<ω with |F (n)| ≤ 2n such that
q forces that ḟ(n) ∈ F (n) for all n. The following is easy to see.

Observation 6.5. P has the Sacks property iff P is ωω-bounding and has the
Laver property.

Now comes a consequence of pure decision.

Corollary 6.6. Mathias forcing M has the Laver property.

Proof. Let (s,A) ∈ M, g ∈ ωω, and let ḟ be an M-name for a function bounded
by g. Recursively construct Ai and F (i) such that

• A0 ≤ A,

• (s,Ai+1) ≤i (s,Ai),

• for all t ⊆ {aj
i : j < i}, (s ∪ t, Ai

i) decides the value of ḟ(i) and forces this
value to be a member of F (i),

• (s,Ai) forces ḟ(i) ∈ F (i),

• |F (i)| ≤ 2i.

Notice that the forth item is an immediate consequence of the third.
Since ḟ(0) may assume only finitely many values, we may apply pure decision

(6.4) finitely often to obtain A0 ⊆ A such that (s,A0) decides the value of ḟ(0).
Let F (0) be the singleton consisting of this value.

Suppose Ai and F (i) have been constructed. Let ` = 2i+1 and let tk, k < `,
list all subsets of {aj

i : j < i + 1}. By recursion on k ≤ `, construct decreasing
Ai,k: let Ai,0 = Ai. Suppose Ai,k has been produced. Using again pure decision,
we obtain Ai,k+1 ⊆ Ai,k such that (s ∪ tk, Ai+1

i,k+1) forces ḟ(i + 1) = xk for some
xk. Let Ai+1 = Ai,`. Clearly Ai+1 and F (i+1) = {xk : k < `} have the required
properties. This completes the recursive construction.

Let (s,B) be the fusion of the (s,Ai). By the forth item we see that (s,B)
forces that ḟ(i) ∈ F (i) for all i, as required.

6.2. P(ω)/fin as a forcing notion. A family A ⊆ [ω]ω has the finite
intersection property if the intersection of any finitely many members of A is
infinite. B ∈ [ω]ω is a pseudointersection of a family A ⊆ [ω]ω if B ⊆∗ A for all
A ∈ A. A family with a pseudointersection obviously has the finite intersection
property, but the converse is false in general. The pseudointersection number p
is the smallest size of a family with the finite intersection property which has
no pseudointersection. A tower A ⊆ [ω]ω is a family which is well-ordered by
reverse inclusion ⊇∗ (i.e., A = {Aα : α < κ} and α < β implies Aβ ⊆∗ Aα) and
which has no pseudointersection. The tower number t is the least cardinality of
a tower. It is easy to see that t must be regular.
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For A,B ⊆ ω say A =∗ B if the symmetric difference A \B ∪B \A is finite.
=∗ is an equivalence relation. The corresponding quotient structure P(ω)/fin
consists of equivalence classes [A] of subsets A of ω. Put [A] ≤ [B] if A ⊆∗ B.
We can naturally identify the forcing notion (P(ω)/fin,≤) with ([ω]ω,⊆∗).

In this language, maximal antichains are just maximal almost disjoint fami-
lies (mad families for short) of subsets of ω, and it follows that P(ω)/fin is not
c-cc (and trivially c+-cc).

Furthermore, P(ω)/fin is σ-closed. In fact, by definition of t, it is < t-closed.
In particular, it does not add any new reals. The distributivity number h is the
least cardinal κ such that P(ω)/fin is not κ-distributive. In particular, h is the
smallest κ such that P(ω)/fin adds a new function f : κ → V . It is easy to see
that h is regular.

Here, a p.o. P is λ-distributive if for any collection Aα, α < λ, of maximal
antichains on P, there is a common refinement, i.e. a maximal antichain A such
that for all α and q ∈ A there is p ≥ q in Aα. Alternatively, P is λ-distributive
iff any intersection of λ many open dense subsets of P is open dense iff P does
not add new functions to V with domain λ.

Proposition 6.7. ℵ1 ≤ p ≤ t ≤ h ≤ s and h ≤ b.

Proof. The first inequality is an easy diagonal argument, and the second is
obvious.

Let κ < t and let Dα, α < κ, be open dense in P(ω)/fin. Fix A ∈ [ω]ω.
Recursively produce Aα, α ≤ κ, with A0 = A, Aβ ⊆∗ Aα for β > α and
Aα+1 ∈ Dα. The successor step is trivial and the limit step is possible by κ < t.
Then Aκ belongs to

∩
α<κ Dα. Hence this intersection is open dense, and t ≤ h

follows.
For A ∈ [ω]ω, BA = {A,ω \ A} is a maximal antichain in P(ω)/fin. If a

maximal antichain B ⊆ [ω]ω refines BA, then no member of B is split by A.
Hence, if A ⊆ [ω]ω is a splitting family, then {BA : A ∈ A} has no common
refinement. This implies h ≤ s.

For f ∈ ωω, let Af be a maximal antichain in P(ω)/fin such that the in-
creasing enumeration of each A ∈ Af eventually dominates f . If B refines Af

and B ∈ B, then for some k, the increasing enumeration of B \ k dominates f .
Hence, if F is unbounded, {Af : f ∈ F} has no common refinement, and we
obtain h ≤ b.

It is also known that p is regular [Bl, Theorem 7.15], and that t ≤ add(M)
(see [BJ, Theorem 2.2.10] or [Bl, Theorem 6.12]). It is open whether p < t is
consistent.

The cardinals we have defined in Lecture 1 and here may be displayed in
the following diagram which is a somewhat extended version of Van Douwen’s
diagram.
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Theorem 6.8. (base-matrix lemma) There are maximal almost disjoint fami-
lies Aα, α < h, such that

(i) α < β implies Aβ refines Aα,

(ii) for each α and each A ∈ Aα, c many members of Aα+1 are almost con-
tained in A,

(iii) for all A ∈ [ω]ω there are α and B ∈ Aα such that B is almost contained
in A.

Such a collection of Aα is called a base-matrix tree. Note that the last
condition in particular implies that

∪
α<h Aα is dense in P(ω)/fin.

Proof. By definition of h, we know there are open dense Dα, α < h, whose
intersection is not dense. By an easy homogeneity argument, we can in fact
assume that the intersection of the Dα is empty: let A ∈ [ω]ω be such that there
is no B ∈

∩
α Dα with B ⊆ A. Let f : B → ω be a bijection. Then the f -images

of the Dα, α < h, form a family of open dense sets whose intersection is empty.
Let {Xγ : γ < c} enumerate [ω]ω.
By recursion on α construct Aα = {Aα,δ : δ < c} such that (i) and (ii) hold

and we additionally have

• Aα ⊆ Dα,

• if |{δ : Aα,δ ∩ Xγ is infinite}| = c then there is B ∈ Aα+1 such that
B ⊆ Xγ .

The case α = 0 is straightforward.
Next consider the case α = β+1 is a successor. We have Aβ = {Aβ,δ : δ < c}

and construct Aα by recursion on δ. At stage δ, let γ be the smallest ordinal
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which has not been considered yet such that Aβ,δ∩Xγ is infinite. Choose a mad
family Bδ below Aβ,δ of size continuum such that Bδ ⊆ Dα and one member of
Bδ is almost contained in Aβ,δ ∩ Xγ . Finally, let Aα be the union of the Bδ,
δ < c.

Finally, let α be a limit ordinal. By α < h, we can find a common refinement
Aα of the previous Aβ , and we can also assume Aα ⊆ Dα.

This completes the recursive construction.
We need to check property (iii): Fix A ∈ ωω. Let γ be such that A =

Xγ . Since the intersection of the Dα is empty, there must be α0 such that
Xγ intersects at least two members of Aα0 . Similarly, there must be α1 > α0

such that both of these intersections intersect at least two members of Aα1 .
Continuing this way, produce a strictly increasing sequence αn. Let α be their
limit. Since cf(h) ≥ ℵ1, we have α < h, and it is now easy to see that Xγ must
intersect continuum many members of Aα. By construction, this means that
there is B ∈ Aα+1 almost contained in A = Xγ , as required.

Corollary 6.9. P(ω)/fin preserves all cardinals ≤ h and ≥ c+, and collapses c
to h. In particular, P(ω)/fin preserves all cardinals iff h = c.

Proof. Since P(ω)/fin is < h-distributive, all cardinals up to and including h
are preserved. By the c+-cc, all cardinals ≥ c+ are preserved.

Let {Aα : α < h} be a base-matrix tree (see Theorem 6.8). For each B ∈ Aα,
let {AB,γ : γ < c} enumerate {C ∈ Aα+1 : C ⊆∗ B}. Define a P(ω)/fin-name
for a function ḟ : h → c by stipulating that for B ∈ Aα, AB,γ forces that
ḟ(α) = γ. We need to argue that ḟ is forced to be an onto function. Let
A ∈ [ω]ω be a condition and let γ < c. By 6.8, there are α < h and B ∈ Aα

such that B ⊆∗ A. Then AB,γ ⊆∗ A forces that ḟ(α) = γ, as required.

What kind of generic object does P(ω)/fin add? An ultrafilter U on ω is
called a Ramsey ultrafilter if for every partition (Xn : n ∈ ω) of ω such that
Xn /∈ U for all n, there is U ∈ U such that U ∩Xn has at most one element for
all n. Such U is called a selector for the Xn.

Observation 6.10. P(ω)/fin generically adds a Ramsey ultrafilter G = U .

Proof. Since no new reals are added, the generic filter G = U clearly is an
ultrafilter. So it suffices to check the Ramsey property. Again, as no reals are
added, it suffices to consider partitions (Xn : n ∈ ω) in the ground model. Let
A ∈ [ω]ω. It is easy to see that there is B ⊆ A such that either B ⊆ Xn for
some n or B is a selector for the Xn. Thus Ġ = U̇ is forced to be Ramsey.

6.3. Mathias forcing with an ultrafilter. Let U be an ultrafilter on ω.
Mathias forcing with U , MU , consists of all (s,A) ∈ M such that A ∈ U , with
the inherited ordering. Unlike M, MU is a σ-centered forcing notion. Indeed,
since U is an ultrafilter, any finitely many conditions of the form (s,Ai), i < n,
are compatible, with common extension (s,

∩
i Ai). In particular, MU is ccc and

thus preserves cardinals.
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The generic real mU (which is defined as for M) is a pseudointersection of
the ultrafilter U , i.e. for all A ∈ U , we have mU ⊆∗ A. In particular, mU is also
an unsplit real (as m, see 6.1). For most U , mU also codes a dominating real
over V (as m, see 6.2), but it is consistent there are ultrafilters U such that MU
does not add a dominating real (certain P -points).

An interesting feature of Mathias forcing is that it naturally decomposes as
a two-step iteration:

Proposition 6.11. M ∼= P(ω)/fin ? MU̇ where U̇ is the P(ω)/fin-name for the
generic Ramsey ultrafilter (see 6.10). That is, M is forcing equivalent to forcing
first with P(ω)/fin and then with MU̇ .

Proof. Let (s,A) ∈ M. Then (A, (s,A)) ∈ P(ω)/fin ? MU̇ , and we need to check
the mapping sending (s, A) to (A, (s,A)) is a dense embedding. To see this, let
(A, (ṡ, Ḃ)) ∈ P(ω)/fin ? MU̇ . Since P(ω)/fin does not add reals, there is A′ ⊆ A

deciding what (ṡ, Ḃ) is, say, A′ ° (ṡ, Ḃ) = (s,B). Since we also have A′ ° B ∈
U̇ , we obtain A′ ⊆∗ B. Let B′ = A′ ∩ B. Then (B′, (s,B′)) ≤ (A, (ṡ, Ḃ)) as
required.

Corollary 6.12. M preserves all cardinals ≤ h and ≥ c+ and collapses c to h.
M preserves all cardinals iff h = c.

Proof. By 6.9 and 6.11.

6.4. The countable support iteration of Mathias forcing. Like for
the Sacks property (Theorem 5.8) we have:

Theorem 6.13. Csi of proper forcing notions with the Laver property have the
Laver property.

This is similar to 4.9. See [Go, Section 6, Application 4, Corollary 6.33].

Lemma 6.14. A forcing notion P with the Laver property does not add random
or Cohen reals. In particular, the family of meager sets of the ground model
stays covering in the extension. Similarly for the family of null sets of the
ground model.

Proof. Let ḟ be a P-name for an element of 2ω. Also let p ∈ P. By the Laver
property there are q ≤ p and a function F : ω → [2<ω]<ω with F (n) ⊆ 22n and
|F (n)| ≤ 2n such that q forces that ḟ¹2n ∈ F (n) for all n.

For F as above put AF = {f : ∀n f¹2n ∈ F (n)}. Since |F (n)|
22n = 1

2n , AF is
a closed measure zero set. In particular, AF is nowhere dense. Furthermore, q
forces that ḟ belongs to the set AF which is coded in the ground model. By 2.6,
ḟ is neither random nor Cohen over the ground model V . Also, the family of sets
AF from V is a covering family of closed measure zero sets in the extension.

Theorem 6.15. Assume CH holds in the ground model V . Let Mω2 be the csi
of M. In V Mω2 , cov(M) = cov(N ) = ℵ1 and h = s = b = c = ℵ2.
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Proof. By 6.3 and 4.9, Mω2 is proper and preserves ℵ1, and by CH and 4.10,
it preserves ℵ2. Moreover, by 6.6 and 6.13, Mω2 has the Laver property, and
cov(M) = cov(N ) = ℵ1 follow from 6.14 and CH.

It is obvious that Mω2 adds exactly ℵ2 many reals so that c = ℵ2 follows.
Next, b = s = ℵ2 can easily be proved directly using 6.1 and 6.2 (and iteration).
However, this also follows from h = ℵ2 (see below) and 6.7.

To establish h = ℵ2, let Dα, α < ω1, be open dense in P(ω)/fin in the
extension V Mω2 . By homogeneity (see also the proof of 6.8), it suffices to show
that the intersection of the Dα is non-empty. A reflection argument shows that
there is β < ω2 with cofinality ω1 such that all Dα ∩ V Mβ are open dense in
V Mβ .

Indeed, since all V Mγ , γ < ω2, satisfy CH (see 4.10), the ℵ2-cc (see again 4.10)
implies that for all γ there is δ = δγ < ω2 such that for all X ∈ V Mγ and all
α < ω1 there is a Y ∈ Dα ∩ V Mδ with Y ⊆ X. Let β < ω2 with cf(β) = ω1 be
such that δγ < β for all γ < β. Since each X ∈ [ω]ω in V Mβ belongs to some
V Mγ for γ < β by 4.11, we see that all Dα ∩ V Mβ are open dense in V Mβ .

By genericity, it is easy to see that the generic Mathias real mβ added at
stage β is almost contained in a member of Dα ∩ V Mβ , for all α (exercise!).
Hence mβ ∈

∩
α Dα, and

∩
α Dα 6= ∅ follows, thus establishing h = ℵ2.

6.5. Fragments of Martin’s Axiom. Statements about some of the
cardinals in this and earlier sections can be reformulated in terms of Martin-
axiom like statements.

Theorem 6.16. (Bell’s Theorem) MA holds for σ-centered posets iff p = c.

See [Bl, Theorem 7.12].

Proposition 6.17. MA holds for countable posets iff cov(M) = c.

Proof. Exercise! (This uses 1.4 and 2.6.) See also [BJ, Theorem 2.4.5] or [Bl,
Theorem 7.13].

41



References

[Ab] U. Abraham, Lectures on proper forcing, in: Handbook of Set Theory
(A. Kanamori et al., eds.), to appear.
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