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1. Introduction

Generalized Descriptive Set Theory is an area of research dealing with generalizations of classical de-
scriptive set theory on the Baire space ωω and Cantor space 2ω, to the generalized Baire space κκ and the 
generalized Cantor space 2κ, where κ is an uncountable regular cardinal satisfying κ<κ = κ. Some of the 
earlier papers dealing with descriptive set theory on (ω1)ω1 were motivated by model-theoretic concerns, see 
e.g. [24] and [30, Chapter 9.6]. More recently, generalized descriptive set theory became a field of interest 
in itself, with various aspects being studied for their own sake, as well as for their applications to different 
fields of set theory.

This paper is the first systematic study of regularity properties for subsets of generalized Baire spaces. 
We will focus on regularity properties derived from tree-like forcing partial orders, using the framework 
introduced by Ikegami in [16] (see Definition 3.1) as a generalization of the Baire property, as well as a num-
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ber of other standard regularity properties (Lebesgue measurability, Ramsey property, Sacks property etc.) 
In the classical setting, such properties have been studied by many people, see, e.g., [15,3,4,19]. Typically, 
these properties are satisfied by analytic sets, while the Axiom of Choice can be used to provide counterex-
amples. On the second projective level one obtains independence results, as witnessed by “Solovay-style” 
characterization theorems, such as the following:

Theorem 1.1. (See Solovay [29].) All Σ1
2 sets have the Baire property if and only if for every r ∈ ωω there 

are co-meager many Cohen reals over L[r].

Theorem 1.2. (See Judah–Shelah [15].) All Δ1
2 sets have the Baire property if and only if for every r ∈ ωω

there is a Cohen real over L[r].

These types of theorems make it possible to study the relationships between different regularity properties 
on the second level. Far less is known for higher projective levels, although some results exist in the presence 
of large cardinals (see [16, Section 5]) and some other results can be found in [1, Chapter 9] and in the 
recent works [8,6]. Solovay’s model [29] provides a uniform way of establishing regularity properties for all 
projective sets, starting from ZFC with an inaccessible.

When attempting to generalize descriptive set theory from ωω to κκ for a regular uncountable κ, at 
first many basic results remain intact after a straightforward replacement of ω by κ. But, before long, 
one starts to notice fundamental differences: for example, the generalized Δ1

1 sets are not the same as 
the generalized Borel sets; absoluteness theorems, such as Σ1

1- and Shoenfield absoluteness, are not valid; 
and in the constructible universe L, there is a Σ1

1-good well-order of κκ, as opposed to merely a Σ1
2-good 

well-order in the standard setting (see Section 2 for details). Not surprisingly, regularity properties also 
behave radically different in the generalized context. Halko and Shelah [13] first noticed that on 2κ, the 
generalized Baire property provably fails for Σ1

1 sets. On the other hand, it holds for the generalized Borel 
sets, and is independent for generalized Δ1

1 sets. This suggests that some of the classical theory on the Σ1
2

and Δ1
2 level corresponds to the Δ1

1 level in the generalized setting.
It should be noted that other kinds of regularity properties have been considered before, sometimes 

leading to different patterns in terms of consistency of projective regularity. For example, in [27] Schlicht 
shows that it is consistent relative to an inaccessible that a version of the perfect set property holds for all 
generalized projective sets. By [22], as well as recent results of Laguzzi and the first author, similar results 
hold for suitable modifications of the properties studied here.

This paper is structured as follows: Section 2 will be devoted to a brief survey of facts about the “gen-
eralized reals”. In Section 3 we introduce an abstract notion of regularity and prove that, under certain 
assumption, the following results hold:

1. Borel sets are “regular”.
2. Not all analytic sets are “regular”.
3. For Δ1

1 sets, the answer is independent of ZFC.

In Section 4 we focus on some concrete examples on the Δ1
1-level and generalize some classical results from 

the Δ1
2-level. Section 5 ends with a number of open questions.

2. Generalized Baire spaces

We devote this section to a survey of facts about κκ and 2κ which will be needed in the rest of the paper, 
as well as specifying some definitions and conventions. None of the results here are new, though some are 
not widely known or have not been sufficiently documented.
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Notation 2.1. κ<κ denotes the set of all functions from α to κ for some α < κ, similarly for 2<κ. We use 
standard notation concerning sequences, e.g., for s, t ∈ κ<κ we use s�t to denote the concatenation of s
and t, s ⊆ t to denote that s is an initial segment of t etc. κκ

↑ denotes the set of strictly increasing functions 
from κ to κ, and κ<κ

↑ the set of strictly increasing functions from α to κ for some α < κ. Also, we will 
frequently refer to elements of κκ or 2κ as “κ-reals” or “generalized reals”.

For finite sequences, it is customary to denote the length by |s|. In the generalized context, in order to 
avoid confusion with cardinality, we denote the length of a sequence (i.e., the unique α such that s ∈ κα or 
2α) by “len(s)”.

2.1. Topology

We always assume that κ is an uncountable, regular cardinal, and that κ<κ = κ holds. The standard 
topology on κκ is the one generated by basic open sets of the form [s] := {x ∈ κκ | s ⊆ x}, for s ∈ κ<κ; 
similarly for 2κ. Many elementary facts from the classical setting have straightforward generalizations to the 
generalized setting. The concepts nowhere dense and meager are defined as usual, and a set A has the Baire 
property if and only if A�O is meager for some open O. The following classical results are true regardless 
of the value of κ:

• Baire category theorem: the intersection of κ-many open dense sets is dense.
• Kuratowski–Ulam theorem (also called Fubini for category): if A ⊆ κκ × κκ has the Baire property then 

A is meager if and only if {x | Ax is meager} is comeager, where Ax := {y | (x, y) ∈ A}.

Definition 2.2. A tree is a subset of κ<κ or 2<κ closed under initial segments. For a node t ∈ T , we write 
SuccT (t) := {s ∈ T | s = t�〈α〉 for some α}. A node t ∈ T is called

• terminal if SuccT (t) = ∅,
• splitting if |SuccT (t)| > 1, and
• club-splitting if {α | t�〈α〉 ∈ T )} is a club in κ.

We use the notation Split(T ) to refer to the set of all splitting nodes of T .
A t ∈ T is called a successor node if len(t) is a successor ordinal and a limit node if len(t) is a limit ordinal. 

A tree is pruned if it has no terminal nodes, and <κ-closed if for every increasing sequence {si | i < λ} of 
nodes from T , for λ < κ, the limit 

⋃
i<λ si is also a node of T .

Notice that concepts such as club-splitting, successor and limit node, and <κ-closed are inherent to the 
generalized setting and have no classical counterpart. Most of the trees we consider will be pruned and 
<κ-closed.

A branch through T is a κ-real x ∈ κκ or 2κ such that ∀α (x�α ∈ T ), and [T ] denotes the set of all 
branches through T . As usual, [T ] is topologically closed and every closed set has the form [T ] for some 
tree T .

The Borel and projective hierarchies are defined in analogy to the classical situation: the Borel sets form 
the smallest collection of subsets of κκ or 2κ containing the basic open sets and closed under complements 
and κ-unions. A set is Σ1

1 iff it is the projection of a closed (equivalently: Borel) set; it is Π1
n iff its complement 

is Σ1
n; and it is Σ1

n+1 iff it is the projection of a Π1
n set, for n ≥ 1. It is Δ1

n iff it is both Σ1
n and Π1

n, and 
projective iff it is Σ1

n or Π1
n for some n ∈ ω.

In spite of the close similarity of the above notions to the classical ones, there are also fundamental 
differences:
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Fact 2.3. Borel 	= Δ1
1.

A proof of this fact can be found in [11, Theorem 18 (1)], and we also refer readers to Sections II and III 
of the same paper for a more detailed survey of the basic properties of κκ and 2κ.

2.2. The club filter

Sets that will play a crucial role in this paper are those related to the club filter. As usual, we may identify 
2κ with P(κ) via characteristic functions.

Fact 2.4. The set C := {a ⊆ κ | a contains a club} is Σ1
1.

Proof. For every c ⊆ κ, note that c is closed (in the “club”-sense) if and only if for every α < κ, c ∩ α is 
closed in α. Therefore, “being closed” is a (topologically) closed property. Being unbounded, on the other 
hand, is a Gδ property, so “being club” is Gδ. Then for all a ⊆ κ we have a ∈ C iff ∃c (c is club and c ⊆ a), 
which is Σ1

1. �
In [13] it was first noticed that the club filter provides a counterexample to the Baire property.

Theorem 2.5 (Halko–Shelah). The club filter C does not satisfy the Baire property.

We will prove a generalization of the above, see Theorem 3.10. An immediate corollary of Theorem 2.5
is that in the generalized setting, analytic sets do not satisfy the Baire property. Although the club filter 
clearly cannot be Borel (Borel sets do satisfy the Baire property, in any topological space satisfying the 
Baire category theorem), it can consistently be Δ1

1 for successors κ.

Theorem 2.6 (Mekler–Shelah; Friedman–Wu–Zdomskyy). For any successor cardinal κ, it is consistent that 
the club filter on κ is Δ1

1.

Proof. For κ = ω1, this was first prove in [23]. The argument contained a flaw, which was corrected in [14]. 
For arbitrary successor cardinals κ, this was proved using different methods in [12]. �

It is also consistent that the club filter is not Δ1
1—this will follow from Theorem 3.13.

2.3. Absoluteness

Two fundamental results in descriptive set theory are analytic (Mostowski) absoluteness and Shoenfield 
absoluteness. In general, this type of absoluteness does not hold for uncountable κ. For example, let κ = λ+

for regular λ, pick S ⊆ κ ∩Cof(λ) such that both S and (κ ∩Cof(λ)) \ S are stationary. Let P be a forcing 
for adding a club to S ∪ Cof(<λ). Then, if Φ is the Σ1

1 formula defining the club filter C ⊆ P(κ) from 
Fact 2.4, we have that V |= ¬Φ(S ∪ Cof(<λ)) while V P |= Φ(S ∪ Cof(<λ)), so Σ1

1-absoluteness fails even 
for κ+-preserving forcing extensions. On the other hand, Σ1

1-absoluteness does hold for generic extensions 
via <κ-closed forcings.

Lemma 2.7. Let P be a <κ-closed forcing. Then Σ1
1 formulas are absolute between V and V P.

Proof. Let φ(x) be a Σ1
1 formula with parameters in V . Let x ∈ κκ and assume V P |= φ(x). Let T (in V ) 

be a two-dimensional tree such that {x | φ(x)} = p[T ], i.e., the projection of T to the first coordinate. Let 
h ∈ κκ ∩ V P be such that V P |= (x, h) ∈ [T ] and let ḣ be a P-name for h.
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By induction, build an increasing sequence {pi | i < κ} of P-conditions, and an increasing sequence 
{ti ∈ κ<κ | i < κ}, such that each pi � ti ⊆ ḣ. This can be done since at limit stages λ < κ, we can define 
tλ :=

⋃
i<λ ti and pick pλ below pi for all i < λ. Since every pi forces (x̌, ḣ) ∈ [T ], it follows that for every i

we have (x�len(ti), ti) ∈ T . But then (in V ) let g :=
⋃

i<κ ti, so (x, g) ∈ [T ] and therefore φ(x) holds. �
2.4. Well-order of the reals

In the classical setting, it is well-known that in L there exists a Σ1
2 well-order of the reals. In fact, the 

well-order is “Σ1
2-good”, meaning that both the relation <L on the reals, and the binary relation defined 

by

Ψ(x, y) ≡ “x codes the set of <L-predecessors of y”

is Σ1
2. The proof uses absoluteness of <L and Ψ between L and initial segments Lδ for countable δ, and 

the fact that “E ⊆ ω × ω is well-founded” is a Π1
1-predicate on E. In the generalized setting, however, the 

predicate “E ⊆ κ × κ is well-founded” is closed, leading to the following result:

Lemma 2.8. In L, there is a Σ1
1-good well-order of κκ.

Proof. As usual, we have that for x, y ∈ κκ, x <L y iff ∃δ < κ+ such that x, y ∈ Lδ and Lδ |= x <L y. 
Using standard tricks, this can be re-written as “∃E ⊆ κ × κ (E is well-founded, x, y ∈ ran(πE) and 
(ω, E) |= ZFC∗ + V = L + x <L y)”, where πE refers to the transitive collapse of (ω, E) onto some (Lδ, ∈)
and ZFC∗ is a sufficiently large fragment of ZFC . The statement “E is well-founded” is closed because E
is well-founded iff ∀α < κ E ∩ (α×α) is well-founded. Thus we obtain a Σ1

1 statement. A similar argument 
works with <L replaced by Ψ(x, y), showing that the well-order is Σ1

1-good. �
2.5. Proper forcing

A ubiquitous tool in the study of the classical Baire and Cantor spaces is Shelah’s theory of proper 
forcing. It is a technical requirement on a forcing notion which is just sufficient to imply preservation of ω1, 
while itself being preserved by countable support iterations, and moreover having a multitude of natural 
examples. Over the years, there have been various attempts at generalizing this theory to higher cardinals 
(see e.g. [28,26,10] for some recent contributions). Of course, we can use the following straightforward 
generalization:

Definition 2.9. A forcing P is κ-proper if for every sufficiently large θ (e.g. θ > 2|P|), and for all elementary 
submodels M ≺ Hθ such that |M | = κ and M is closed under <κ-sequences, for every p ∈ P ∩ M there 
exists q ≤ p such that for every dense D ∈ M , D ∩M is predense below q.

The above property follows both from the κ+-c.c. and a κ-version of Axiom A, and implies that κ+ is 
preserved, but the property itself is in general not preserved by iterations, see [25, Example 2.4]. Nevertheless, 
it is a useful formulation that we will need on some occasions.

While a uniform theory for κ-properness is lacking so far, preservation theorems are usually proved either 
using the κ+-c.c. or on a case-by-case basis.

Fact 2.10 (Baumgartner). A forcing Q is κ-linked iff Q =
⋃

α<κ Qα where each Qα consists of pairwise 
compatible conditions. A forcing Q is well-met iff for every two compatible conditions q1, q2 ∈ Q there is a 
greatest lower bound q ∈ Q.
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If Pα is an iteration of length α > κ with supports of size <κ, and every iterand is forced to be κ-linked, 
<κ-closed and well-met, then Pα has the κ+-c.c.

This was originally proved by Baumgartner in [2], and a modern treatment can be found e.g. in [20, 
Section V.5] (both expositions deal with κ = ω1 but the proof works for any regular uncountable κ satisfying 
κ<κ = κ).

Fact 2.11.

1. κ-Sacks forcing Sκ (see Example 3.2) was studied by Kanamori [17], where the following facts were 
proved:
(a) Sκ satisfies a generalized version of Axiom A (see Definition 3.6 (2)).
(b) Assuming �κ, iterations of Sκ with ≤κ-sized supports also satisfy a version of Axiom A.
(c) If κ is inaccessible, then Sκ is κκ-bounding (meaning that for every x ∈ κκ ∩ V Sκ there exists 

y ∈ κκ ∩ V such that x(i) < y(i) for sufficiently large i < κ), and so are arbitrary iterations of Sκ
with ≤κ-size supports.

2. κ-Miller forcing Mκ (see Example 3.2) was studied by Friedman and Zdomskyy [9], where the following 
facts were proved:
(a) Mκ satisfies a generalized version of Axiom A.
(b) Assuming κ is inaccessible, iterations of Mκ with ≤κ-sized supports satisfy a version of Axiom A.

In particular, Sκ, Mκ and their iterations are κ-proper in the sense of Definition 2.9 and thus preserve κ+.

3. Regularity properties

The regularity properties we will consider in this paper are those derived from definable tree-like forcing 
notions. In this section we give an abstract treatment following the framework introduced by Ikegami in 
[16], providing sufficient conditions so that the following facts can be proved uniformly:

1. Regularity for Borel sets is true.
2. Regularity for arbitrary Σ1

1 sets is false.
3. Regularity for arbitrary Δ1

1 sets is independent.

3.1. Tree-like forcings on κκ

Definition 3.1. A forcing notion P is called κ-tree-like iff

1. the conditions of P are pruned and <κ-closed trees on κκ or 2κ ordered by q ≤ p iff q ⊆ p,
2. the full tree (κ<κ or 2<κ) is an element of P,
3. for all T ∈ P and all s ∈ T the restriction T↑s := {t ∈ T | s ⊆ t or t ⊆ s} is also a member of P,
4. the statement “T is a P-tree” is absolute between models of ZFC, and
5. if 〈Tα | α < λ〉 is a decreasing sequence of conditions, with λ < κ, then 

⋂
α<λ Tα ∈ P.

The first three items are standard, and the fourth one is to make sure that the forcing notion has the 
same interpretation in all models (in particular in further forcing extensions). Item 5 is a strong form 
of <κ-closure of the forcing which is needed for technical reasons. Below are a few examples of κ-tree-
like forcings that have either been considered in the literature or are natural generalizations of classical 
notions.
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Example 3.2.

1. κ-Cohen forcing Cκ. Conditions are the trees corresponding to the basic open sets [s], for s ∈ 2<κ or 
κ<κ, ordered by inclusion.

2. κ-Sacks forcing Sκ. A tree T on 2κ is called a κ-Sacks tree if it is pruned, <κ-closed and
(a) every node t ∈ T has a splitting extension in T , and
(b) for every increasing sequence 〈si | i < λ〉, λ < κ, of splitting nodes in T , s :=

⋃
α<λ sα is a splitting

node of T .
Sκ is the partial order of κ-Sacks trees ordered by inclusion.

3. κ-Miller forcing Mκ. A tree T on κ<κ
↑ is called a κ-Miller tree if it is pruned, <κ-closed and

(a) every node t ∈ T has a club-splitting extension in T ,
(b) for every increasing sequence 〈si | i < λ〉, λ < κ, of club-splitting nodes in T , s :=

⋃
i<λ si is 

a club-splitting node of T . Moreover, continuous club-splitting is required, which is the following 
property: for every club-splitting limit node s ∈ T , if {si | i < λ} is the set of all club-splitting 
initial segments of s and Ci := {α | s�i 〈α〉 ∈ T} is the club witnessing club-splitting of si for every 
i, then C := {α | s�〈α〉 ∈ T} =

⋂
i<λ Ci is the club witnessing club-splitting of s.

Mκ is the partial order of κ-Miller trees ordered by inclusion.
4. κ-Laver forcing Lκ. A tree T on κ<κ

↑ is a κ-Laver tree if all nodes s ∈ T extending the stem of T are 
club-splitting. Lκ is the partial order of κ-Laver trees ordered by inclusion.

5. κ-Mathias forcing Rκ. A κ-Mathias condition is a pair (s, C), where s ⊆ κ, len(s) < κ, C ⊆ κ is a club, 
and max(s) < min(C). The conditions are ordered by (t, D) ≤ (s, C) iff t ≤ s, D ⊆ C and t \ s ⊆ C. 
Formally, this does not follow Definition 3.1, but we can easily identify conditions (s, C) with trees 
T(s,C) on κ<κ

↑ defined by t ∈ T(s,C) iff ran(t) ⊆ s ∪ C.
6. κ-Silver forcing Vκ. If κ is inaccessible, let Vκ consist of κ-Sacks-trees T on 2<κ which are uniform, i.e., 

for s, t ∈ T , if len(s) = len(t) then s�〈i〉 ∈ T iff t�〈i〉 ∈ T . Alternatively, we can view conditions of 
Vκ as functions f : κ → {0, 1, {0, 1}}, such that f(i) = {0, 1} holds for all i ∈ C for some club C ⊆ κ, 
ordered by g ≤ f iff ∀i (f(i) ∈ {0, 1} → g(i) = f(i)).

The generalized κ-Sacks forcing was introduced and studied by Kanamori in [17], and the κ-Miller forcing 
is its natural variant, studied e.g. by Friedman and Zdomskyy in [9]. The requirement on the trees to be 
“closed under splitting-nodes” (2(b) and 3(b)) ensure that item 5 of Definition 3.1 is satisfied, and thus 
that the forcings are <κ-closed. The property called “continuous club-splitting” was introduced in [9] to 
facilitate the preservation of measurability. We should note that other generalizations of Miller forcing have 
also been considered, see e.g. [5].

κ-Silver is a natural generalization of Silver forcing, but the standard proof of Axiom A only works for 
inaccessible κ.

κ-Laver and κ-Mathias are, again, natural generalizations of their classical counterparts; however, since 
we require the trees to split into club-many successors at all branches above the stem, any two κ-Laver 
and κ-Mathias conditions with the same stem are compatible, so both Lκ and Rκ are κ+-centered and 
hence satisfy the κ+-c.c. Therefore they are perhaps more reminiscent of the classical Laver-with-filter and 
Mathias-with-filter forcings on ωω, rather than the actual Laver and Mathias forcing posets. Note that if 
we would drop club-splitting from the definition and only require stationary or κ-sized splitting instead, we 
would lose <κ-closure of the forcing.

Remark 3.3. One notion conspicuous by its absence from Example 3.2 is random forcing. To date, it is 
not entirely clear how random forcing should properly be generalized to uncountable κ. Recently Shelah 
proposed a definition for κ weakly compact, and a different approach was given by the first author and 
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Laguzzi in [7]. However, a consensus on the correct definition for arbitrary κ has not been reached so far, so 
in this work we choose to avoid random forcing, as well as the concept null ideal and Lebesgue measurability.

The following definition is based on [16, Definition 2.6 and Definition 2.8]. Let P be a fixed κ-tree-like 
forcing.

Definition 3.4. Let A be a subset of κκ or 2κ. Then

1. A is P-null iff ∀T ∈ P ∃S ≤ T such that [S] ∩A = ∅. We denote the ideal of P-null sets by NP

2. A is P-meager iff it is a κ-union of P-null sets. We denote the κ-ideal of P-meager sets by IP.
3. A is P-measurable iff ∀T ∈ P ∃S ≤ T such that [S] ⊆∗ A or [S] ∩ A =∗ ∅, where ⊆∗ and =∗ refers to 

“modulo IP”.

For a wide class of tree-like forcing notions, the clause “modulo IP” can be eliminated from the above 
definition: see Lemma 3.8 (2).

3.2. Regularity of Borel sets

In ωω, it is not hard to prove that if P is proper then all analytic sets are P-measurable, using forcing-
theoretic arguments and absoluteness techniques (see e.g. [19, Proposition 2.2.3]). These methods are 
generally not available in the generalized setting. However, we would still like to know that, at least, all 
Borel subsets of κκ are P-measurable for all reasonable examples of P.

Remark 3.5. Closed sets are P-measurable for all P. To see this, let [U ] be an arbitrary closed set and 
let T ∈ P. If T ⊆ U then we are done, otherwise pick s ∈ T \ U , then by Definition 3.1 T↑s ∈ P and 
[T↑s] ∩ [U ] = ∅. It is also easy to see that being P-measurable is closed under complements and <κ-sized 
unions and intersections.

It remains to verify closure under κ-sized unions and intersections. For that we introduce some definitions 
that help to simplify the notion of P-measurability, and moreover will play a crucial role for the rest of this 
paper.

Definition 3.6. Let P be a κ-tree-like forcing notion on κκ or 2κ. Then we say that:

1. P is topological if {[T ] | T ∈ P} forms a topology base for κκ (i.e., for all S, T ∈ P, [S] ∩ [T ] is either 
empty or contains [R] for some R ∈ P).

2. P satisfies Axiom A iff there are orderings {≤α| α < κ}, with ≤0=≤, satisfying:
(a) T ≤β S implies T ≤α S, for all α ≤ β.
(b) If 〈Tα | α < λ〉 is a sequence of conditions, with λ ≤ κ (in particular λ = κ) satisfying

Tβ ≤α Tα for all α ≤ β,

then there exists T ∈ P such that T ≤α Tα for all α < λ.
(c) For all T ∈ P, D dense below T , and α < κ, there exists an E ⊆ D and S ≤α T such that |E| ≤ κ

and E is predense below S.
3. P satisfies Axiom A∗ if 2 above holds, but in 2 (c) we additionally require that “[S] ⊆

⋃
{[T ] | T ∈ E}”.

Example 3.7. In Example 3.2, κ-Cohen, κ-Laver and κ-Mathias are topological. By Fact 2.11, κ-Miller and 
κ-Sacks satisfy Axiom A, and it is not hard to see that in fact they satisfy Axiom A∗ as well (a direct 
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consequence of the construction). Assuming κ is inaccessible, a generalization of the classical proof shows 
that κ-Silver also satisfies Axiom A∗.

Lemma 3.8.

1. If P is topological then a set A is P-measurable iff it satisfies the property of Baire in the topology 
generated by P. In particular, all Borel sets are P-measurable.

2. If P satisfies Axiom A∗ then NP = IP, and consequently a set A is P-measurable iff ∀T ∈ P ∃S ≤ T ([S] ⊆
A or [S] ∩ A = ∅) (i.e., we can forget about “modulo IP”). Moreover, the collection of P-measurable 
sets is closed under κ-unions and κ-intersections.

The proofs are essentially analogous to the classical situation, but let us present them anyway since they 
are not widely known.

Proof. 1. First of all, notice that if P is topological then NP is exactly the collection of nowhere dense sets 
in the P-topology and IP is exactly the ideal of meager sets in the P-topology.

First assume A satisfies the P-Baire property, then let O be an open set in the P-topology such that 
A�O is P-meager. Given any T ∈ P, we have two cases: if [T ] ∩O = ∅ then we are done since [T ] ∩A =∗ ∅. 
If [T ] ∩ O is not empty then there exists a S ≤ T such that [S] ⊆ [T ] ∩ O. Then [S] ⊆∗ A holds, so again 
we are done.

The converse direction is somewhat more involved (cf. [18, Theorem 8.29]). Assume A is P-measurable. 
Let

• D1 be a maximal mutually disjoint subfamily of {T ∈ P | [T ] ⊆∗ A},
• D2 be a maximal mutually disjoint subfamily of {T ∈ P | [T ] ∩A =∗ ∅}, and
• D := D1 ∪D2.

Also write O1 :=
⋃
{[T ] | T ∈ D1}, O2 :=

⋃
{[T ] | T ∈ D2} and O := O1 ∪O2. We will show that A�O1 is 

P-meager.

Claim 1. O is P-open dense.

Proof of Claim. Start with any T . By assumption there exists S ≤ T such that [S] ⊆∗ A or [S] ∩ A =∗ ∅. 
In the former case, note that by maximality, there must be some S′ ∈ D1 such that [S] ∩ [S′] 	= ∅. Then 
find S′′ such that [S′′] ⊆ [S] ∩ [S′]. Then [S′′] ⊆ O1. Likewise, in the case [S] ∩ A =∗ ∅ we find a stronger 
S′′ with [S′′] ⊆ O2. � (Claim 1).

Claim 2. A ∩O2 and O1 \A are P-meager.

Proof of Claim. Since the proof of both statements is analogous, we only do the first.
Enumerate D2 := {Tα | α < |κκ|}. For each α, let {Xα

i | i < κ} be a collection of P-nowhere dense sets, 
such that [Tα] ∩ A =

⋃
i<κ X

α
i . Now, for every i < κ, let Yi :=

⋃
α<|κκ| X

α
i . We will show that each Yi is 

P-nowhere dense. So fix i and pick any T ∈ P: if [T ] is disjoint from all [Tα]’s then clearly also [T ] ∩Yi = ∅. 
Else, let Tα be such that [T ] ∩ [Tα] 	= ∅. Then there exists S ≤ T such that [S] ⊆ [T ] ∩ [Tα]. By assumption, 
[Tα] is disjoint from all [Tβ ]’s, and hence from all Xβ

i ’s, for all β 	= α. Next, since Xα
i is P-nowhere dense, 

we can find S′ ≤ S such that [S′] ∩Xα
i = ∅. But then [S′] ∩ Yi = ∅, proving that Yi is indeed P-nowhere 

dense.
Now clearly O2 ∩ A is completely covered by the collection {Yi | i < κ}, therefore it is mea-

ger. � (Claim 2).
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Now it follows from Claim 1 and Claim 2 that A�O1 = (O1 \A) ∪ (A ∩O2) ∪ (A \O) is a union of three 
meager sets, hence it is meager.

This proves that the set A has the property of Baire in the topology generated by P.
2. Assume P satisfies Axiom A∗, and let {Ai | i < κ} be a collection of P-null sets. We want to show 

that A :=
⋃

i<κ Ai is also P-null. For each i let Di := {T | [T ] ∩Ai = ∅}. By assumption, each Di is dense. 
Now let T0 ∈ P be given. Using Axiom A∗ find, inductively, a sequence {Ti | i < κ} as well as a sequence 
{Ei ⊆ Di | i < κ} such that

• Tj ≤i Ti for all i ≤ j and
• [Ti] ⊆

⋃
{[T ] | T ∈ Ei} for all i.

This can always be done by condition (c) of Axiom A∗. Then, by condition (b) there is a T such that T ≤ Ti

for all i, and hence, [T ] ⊆
⋃
{[S] | S ∈ Di} for all i. In particular, [T ] ∩ Ai = ∅ for all i < κ, proving that ⋂

Ai is P-null.
For the second claim, it suffices to show closure under κ-unions. Consider a collection {Ai | i < κ} of 

P-measurable sets, and let T ∈ P. We must find S ≤ T such that [S] ⊆
⋃

i<κ Ai or [S] ∩
⋃

i<κ Ai = ∅. If 
for at least one i < κ, we can find S ≤ T such that [S] ⊆ Ai, we are done, so assume that’s not the case. 
Then we have Ai ∩ [T ] ∈ NP for all i, because for every S ∈ P, either S � T in which case we are done, or 
S ≤ T in which case, by P-measurability of Ai and the fact that IP = NP, there exists S′ ≤ S with [S′] ⊆ Ai

or [S′] ∩ Ai = ∅—but by our assumption the former is impossible and so the latter must hold. Therefore 
each Ai ∩ [T ] is in NP and again by the above we obtain 

⋃
i<κ(Ai ∩ [T ]) ∈ NP, so we can find S ≤ T with 

[S] ∩
⋃

i<κ Ai = ∅. �
Note that to prove point 2 above, we do not in fact need the full strength of Axiom A∗, but only need 

that for all T ∈ P, D dense below T , and α < κ, there exists S ≤α T such that [S] ⊆
⋃
{[T ] | T ∈ D}.

Corollary 3.9. If P is either topological or satisfies Axiom A∗ then all Borel sets are P-measurable.

3.3. Regularity of Σ1
1 sets

Let us abbreviate “all sets of complexity Γ are P-measurable” by “Γ(P)”. In the ωω case, ZFC proves 
Σ1

1(P), and by symmetry Π1
1(P), but Σ1

2(P) and Δ1
2(P) are independent of ZFC. But in the case that κ > ω

things are dramatically different since by the Halko–Shelah result (Theorem 2.5) Σ1
1(Cκ) is false, i.e., the 

Baire property fails for analytic sets. We attempt to find the essential requirements on P which would allow 
us to generalize this proof and show, in ZFC, that Σ1

1(P) fails, i.e., that there is an analytic set which is 
not P-measurable. It is most convenient to formulate this requirement in terms of the κ-Sacks and κ-Miller 
forcing notions, see Example 3.2.

Theorem 3.10. Let P be a tree-like forcing notion on 2κ whose conditions are κ-Sacks trees, or a tree-like 
forcing notion on κκ whose conditions are κ-Miller trees. Then Σ1

1(P) fails.

Proof. Let us start with the first case. Recall the club-filter C from Fact 2.4, considered as a subset of 2κ. 
If C were P-measurable then, in particular, we would have a T ∈ P such that [T ] ⊆∗ C or [T ] ∩ C =∗ ∅. 
First deal with the former case: let {Xi | i < κ} be P-null sets such that [T ] \ C =

⋃
i<κ Xi. Inductively, 

construct a decreasing sequence {Ti | i < κ} of conditions:

• T0 = T .
• Given Ti, first let T ′

i ≤ Ti be any condition with strictly longer stem, and then let Ti+1 ≤ T ′
i be such 

that [Ti+1] ∩Xi = ∅.
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• At limit stages λ, first let T ′
λ :=

⋂
i<λ Tα, which is a P-condition by item 5 of Definition 3.1. Notice also 

that stem(T ′
λ) =

⋃
i<λ stem(Ti). That is because for every i < λ, 

⋃
i<λ stem(Ti) is in Ti and is the limit 

of an increasing sequence 〈stem(Tj) | i ≤ j < λ〉 of splitnodes of Ti, hence it is also a splitnode in Ti by 
condition 2(b) of Example 3.2. Therefore it is a splitnode in T ′

λ and so is the stem of T ′
λ.

Let Tλ ≤ T ′
λ be such that stem(Tλ) ⊇ stem(T ′

λ)�〈0〉.

Now let x :=
⋃

i<κ stem(Ti). Then x is a branch through T , x /∈ Xi for all i, and moreover, there exists a 
club c ⊆ κ such that x(i) = 0 for all i ∈ c. In particular, x /∈ C—contradiction.

To deal with the second case that [T ] ∩ C =∗ ∅, proceed analogously except that at limit stages, pick 
Tλ ≤ T ′

λ such that stem(Tλ) ⊇ stem(T ′
λ)�〈1〉; then it will follow that x ∈ C.

When P is a tree-like forcing on κκ whose conditions are κ-Miller trees, we apply the same argument, 
but using the following variant of the club-filter: let S be a stationary, co-stationary subset of κ and define

CS := {a ∈ κκ | ∃c ⊆ κ club such that ∀i ∈ c (x(i) ∈ S)}.

Clearly this set is Σ1
1 by the same argument as in Fact 2.4. Proceed exactly as before, choosing members 

from S or from κ \ S at limit stages, as desired, which can be achieved using the club-splitting of the 
trees. �

In the above result, an essential property of the trees T was that ∀x ∈ [T ], the set {i < κ | x�i is a splitting 
node of T} formed a club on κ. Recent work of Philipp Schlicht [27] and Giorgio Laguzzi [22] suggests that 
this property is directly related to the existence of Σ1

1-counterexamples, since for a version of Sacks-, Miller-
and Silver-measurability where the trees are not required to have this property, it is consistent that all 
projective sets are measurable.

3.4. Regularity of Δ1
1 sets

With Borel(P) being provable in ZFC and Σ1
1(P) inconsistent, we are left with the Δ1

1-level.

Lemma 3.11 (Folklore). If V = L then Δ1
1(P) is false for all tree-like P.

Proof. Use the Σ1
1-good wellorder of the reals of L from Lemma 2.8, and proceed as in the ωω-case, obtaining 

a Δ1
1-counterexample as opposed to a Δ1

2 one. �
This is not the only method to produce Δ1

1-counterexamples to P-measurability. A completely different 
method, innate to the generalized setting, is to produce models in which the club filter itself is Δ1

1, see 
Lemma 2.6.

It is known that the Baire property on κκ holds for Δ1
1 sets in κ+-product/iterations of κ-Cohen forcing, 

see e.g. [11, Theorem 49 (7)]. We would like to generalize this to other κ-tree-like forcings. First, we need the 
following technical result, a strengthening of the concept of κ-proper (Definition 2.9). This is again similar 
to the classical case.

Lemma 3.12. Let P be κ-tree-like, and assume that P either has the κ+-c.c. or satisfies Axiom A∗. Then for 
every elementary submodel M ≺ Hθ of a sufficiently large Hθ, with |M | = κ and M<κ ⊆ M , and for every 
T ∈ P ∩M , there is T ′ ≤ T such that

[T ′] ⊆∗ {x ∈ κκ | x is P-generic over M}

where ⊆∗ means “modulo IP” and a κ-real x is P-generic over M if {S ∈ P ∩M | x ∈ [S]} is a P-generic 
filter over M .
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Proof. First assume that P has the κ+-c.c. Let M be an elementary submodel with |M | = κ.

Claim. A real x is P-generic over M if and only if x /∈ B for every Borel P-null set B coded in M .

Proof. Suppose x is P-generic over M , and let B be a P-null set coded in M . Then by elementarity M |=
“B is P-null”, and D := {S ∈ P ∩M | [S] ∩ B = ∅} is in M and M |= “D is dense”. Since x is P-generic, 
there exists S ∈ D such that x ∈ [S], and therefore, x /∈ B.

Conversely, suppose x /∈ B for every Borel P-null set coded in M . Let D ⊆ P be a dense set in M , and let 
A be a maximal antichain inside D. Let B := κκ \

⋃
{[S] | S ∈ (A ∩M)} which is a Borel set since |A| = κ

and has a code in M . Moreover B ∈ NP since A is a maximal antichain. Therefore, by assumption, x /∈ B, 
and hence x ∈ [S] for some S ∈ A ∩M , i.e., x is P-generic over M . � (Claim).

Now it is easy to see that X :=
⋃
{B | B is a Borel set in NP with code in M} is a κ-union of P-null 

sets, hence it is itself in IP. In particular, there exists T ′ ≤ T such that [T ′] ⊆∗ {x | x is P-generic over 
M} = κκ \X.

Next, assume instead that P satisfies Axiom A∗. Let {Di | i < κ} enumerate the dense sets in M , and 
let T ∈ P ∩ M . As usual, we can apply Axiom A∗ to inductively find a fusion sequence {Ti | i < κ} and 
a sequence {Ei ⊆ Di | i < κ} such that each Ei ∈ M and |Ei| ≤ κ, and hence Ei ⊆ M , and moreover 
[Ti] ⊆

⋃
{[S] | S ∈ Ei}. Let T ′ be such that T ′ ≤ Ti for all i. Then for every i, [T ′] ⊆

⋃
{[S] | S ∈ Ei}, so, 

in particular, every x in [T ′] is P-generic over M , so we are done. �
Using this strengthening of κ-properness, we are almost in a position to prove that a κ+-iteration of P

satisfying either the κ+-c.c. or Axiom A∗ yields a model of for Δ1
1(P). However, we still have an obstacle, 

and that is the lack of an abstract preservation theorem for κ-properness, mentioned in Section 2.5. This 
obstacle makes it impossible to prove the next theorem in an abstract setting including the non-κ+-c.c. 
cases. We could formulate it under the assumption that κ-properness is preserved; but in fact we only need 
several consequences of κ-properness, namely, that κ+ is preserved and that all new κ-reals appear at some 
initial stage of the iteration.

Theorem 3.13. Let P be a tree-like forcing.

1. Suppose P is κ-linked and well-met (see Fact 2.10), and let Pκ+ be the κ+-iteration of P with supports 
of size <κ. Then V Pκ+ |= Δ1

1(P).
2. Suppose P satisfies Axiom A∗, and let Pκ+ be the κ+-iteration of P with supports of size ≤κ. Moreover, 

assume that Pκ+ preserve κ+ and, moreover, for every x ∈ κκ ∩ V Pκ+ , there is α < κ+ such that 
x ∈ κκ ∩ V Pα . Then V Pκ+ |= Δ1

1(P).

Proof. The proof works uniformly for both cases. In case 1 we use Fact 2.10 to conclude that Pκ+ has the 
κ+-c.c., hence preserves κ+ and has the well-known property that κ-reals in the final extension are caught 
at an initial stage of the iteration. Note that by Definition 3.1 (5), all tree-like forcings are <κ-closed.

In V [Gκ+ ], let A be Δ1
1, defined by Σ1

1-formulas φ and ψ. Let S ∈ P be arbitrary. By the assumption, 
there exists an α < κ+ such that all parameters of φ and ψ, as well as S, belong to V [Gα]. Moreover, there 
is a β > α such that S belongs to G(β + 1) (the (β + 1)-st component of the generic filter), since it is dense 
to force this for some β > α. Let xβ+1 be the real corresponding to G(β + 1), i.e., the next P-generic real 
over V [Gβ ].

We know that in the final model V [Gκ+ ], either φ(xβ+1) or ψ(xβ+1) holds. As φ and ψ are both Σ1
1 the 

situation is clearly symmetrical so without loss of generality assume the former. Since P is <κ-closed, any 
iteration of it is also <κ-closed, so by Lemma 2.7 we have Σ1

1-absoluteness between V [Gκ+ ] and V [Gβ+1]. 
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In particular, V [Gβ+1] = V [Gβ ][xβ+1] |= φ(xβ+1). By the forcing theorem, and since we have assumed 
S ∈ G(β + 1), there exists a T ∈ V [Gβ ] such that T ≤ S and T �P φ(ẋgen).

Now, still in V [Gβ ], take an elementary submodel M of a sufficiently large structure, of size κ, contain-
ing T . By elementarity, M |= “T �P φ(ẋgen)”. Going back to V [Gκ+ ], use Lemma 3.12 to find a T ′ ≤ T

such that [T ′] ⊆∗ {x | x is P-generic over M}. Now note that if x is P-generic over M and x ∈ [T ], then 
M [x] |= φ(x). By upwards-Σ1

1-absoluteness between M and V [Gκ+ ], we conclude that φ(x) really holds. 
Since this was true for arbitrary x ∈ [T ′], we obtain [T ′] ⊆∗ {x | φ(x)} = A. �

The above theorem can be applied to many forcing partial orders P, in particular those from Example 3.2.

Corollary 3.14. Δ1
1(P) is consistent for P ∈ {Cκ, Sκ, Mκ, Lκ, Rκ}, and if κ is inaccessible, also for P = Vκ.

Proof. The forcings Cκ, Lκ and Rκ have the following two properties: any two conditions with the same 
stem are compatible, and if S, T are two compatible conditions, then S ∩T is a condition. This implies that 
all three forcings are κ-linked and well-met.

By Fact 2.11 (1), iterations of Sκ with ≤κ-sized supports satisfy κ-properness assuming that �κ holds 
in the ground model, so Δ1

1(Sκ) holds in LSκ+ . By Fact 2.11 (2), iterations of Mκ with ≤κ-sized supports 
satisfy κ-properness for inaccessible κ. It seems very plausible that by an analogous argument to [17], the 
same holds for arbitrary κ assuming �κ. However, we will leave out the verification of this (potentially very 
technical) proof because Δ1

1(Mκ) also follows by a much easier argument, namely Theorem 4.9 (3). Finally, 
if κ is inaccessible then a straightforward modification of [17, Theorem 6.1] shows that iterations of κ-Silver 
with ≤κ-sized supports satisfies κ-properness (the only change in the argument involves the definition of the 
fusion sequence [17, Definition 1.7] and the amalgamation defined in [17, Page 103]). We leave the details 
to the reader. �
Remark 3.15. It is clear that in Theorem 3.13 it is enough to add P-generic reals cofinally often, provided 
that the iteration is <κ-closed and satisfies the other requirements. For example, we can obtain Δ1

1(Cκ) +
Δ1

1(Lκ) + Δ1
1(Rκ) simultaneously by employing a κ+-iteration of (Cκ ∗ Lκ ∗ Rκ) with supports of size <κ.

Recall that in the classical setting we had Solovay-style characterization theorems for Δ1
2 sets, such 

as Theorem 1.2 and related results (see [3,16]). In light of Theorem 3.13, one might expect that in the 
generalized setting, analogous characterization theorems exist for statements concerning Δ1

1 sets. However, 
the following observation shows that this is not the case.

Observation 3.16. Suppose κ is successor. There exists a generic extension of L in which the statement 
“∀r ∈ 2κ ∃x (x is κ-Cohen over L[r])” holds, yet there exists a Δ1

1 subset of 2κ without the Baire property.

Proof. Recall that by Theorem 2.6, it is consistent for the club filter C (Definition 2.4) to be Δ1
1-definable. 

The idea is to adapt the proof of [12, Theorem 1.1] due to Friedman, Wu and Zdomskyy. Since that proof 
is long and technical, we cannot afford to go into details here, so we only provide a sketch of the argument 
and leave the details to the reader. In that proof, a model where C is Δ1

1 is obtained by a forcing iteration, 
starting from L, in which cofinally many iterands have the κ+-c.c. One can then verify that the proof 
remains correct if, additionally, κ-Cohen reals are added cofinally often to this iteration (in fact, κ-Cohen 
reals are added naturally in the original proof). Thus we obtain a model in which the club filter is Δ1

1 and 
hence fails to have the Baire property, while clearly the statement “∀r ∈ 2κ ∃x (x is κ-Cohen over L[r])” is 
true. �

A similar argument can be applied to any κ-tree-like forcing P which satisfies the κ+-c.c., provided it 
also satisfies Theorem 3.10 (i.e., whose trees are κ-Sacks or κ-Miller trees).
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Table 1
Properties of forcings.

κ-Cohen
κ-Laver
κ-Mathias

Category 1: topological, κ+-c.c., ideal IP cannot be neglected; 
P-measurability equivalent to Baire property in P-topology.

κ-Sacks
κ-Miller
κ-Silver

Category 2: non-topological, Axiom A∗, IP = NP can be 
neglected.

4. Regularity properties for Δ1
1 sets

In the classical setting, regularity properties related to well-known forcing notions on ωω or 2ω have been 
investigated, and the exact relationship between statements Δ1

2(P) and Σ1
2(P) has been studied for various 

forcing notions P. As we saw in the previous section, for generalized reals the Δ1
1-level reflects some of these 

results. We will focus on the forcing notions from Example 3.2, i.e., κ-Cohen, κ-Sacks, κ-Miller, κ-Laver, 
κ-Mathias and κ-Silver.

Before proceeding, we make a further comment regarding κ-Laver and κ-Mathias, showing that the ideal 
ILκ

of Lκ-meager sets and the ideal IRκ
of Rκ-meager sets cannot be neglected when discussing the regularity 

property generated by them.

Lemma 4.1. The ideal NLκ
of Lκ-null sets is not equal to the ideal ILκ

of Lκ-meager sets. Also, there is an 
Fσ set A such that no κ-Laver tree is completely contained or completely disjoint from A. The same holds 
for Rκ.

Proof. Fix a stationary, co-stationary S ⊆ κ. For each i < κ define Ai := {x ∈ κκ
↑ | ∀j > i(x(j) ∈ S)} and 

A =
⋃

i<κ Ai. Then each Ai is Lκ-null, because any κ-Laver tree T can be extended to some T ′ ≤ T with 
stem s, such that len(s) > i and for some j > i we have s(j) /∈ S, so that clearly [T ′] ∩ Ai = ∅. On the 
other hand, A itself cannot be Lκ-null, because every κ-Laver tree T contains a branch x ∈ [T ] such that 
for all j longer then the stem of T we have x(j) ∈ S, and therefore x ∈ A. It is also clear that the set A
is Fσ but every κ-Laver tree T contains a branch x which is in A and another branch y which is not in A. 
The argument for κ-Mathias is analogous. �

Summarizing, the forcings we have introduced can be neatly divided into two categories as presented in 
Table 1.

4.1. Solovay-style characterizations

By Observation 3.16, we know that a Solovay-style characterization for Δ1
1(P) cannot be achieved in the 

generalized setting. However, in some cases we can obtain one half of such a characterization.

Lemma 4.2. Δ1
1(Cκ) implies that for every r ∈ κκ there exists a κ-Cohen real over L[r].

Proof. The proof is completely analogous to the classical case, see e.g. [1, Theorem 9.2.1], except that we 
obtain a Δ1

1-counterexample as opposed to a Δ1
2 one, using the Σ1

1-good wellorder of L (Lemma 2.8). 
A central ingredient of the classical proof is the Kuratowski–Ulam (Fubini for Category) theorem, which, 
as we mentioned, is valid on the generalized Baire space. A detailed argument has also been worked out in 
the PhD Thesis of Laguzzi, see [21, Theorem 75]. �
Lemma 4.3. Δ1

1(Sκ) implies that for every r ∈ κκ there is an x ∈ 2κ \ L[r].

Proof. This follows directly from Lemma 3.11. �
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Let us define, for x, y ∈ κκ, the eventual domination relation: x <∗ y iff ∃α∀β > α (x(β) < y(β)). We 
will simply say “y dominates x” for x <∗ y and if X ⊆ κκ we will say “y dominates X” iff ∀x ∈ X (x <∗ y). 
We will also say “y is unbounded over x” iff x ≯∗ y and “y is unbounded over X” iff ∀x ∈ X (x ≯∗ y). Note 
that for the next lemma, it is not relevant whether we talk about domination in the space of all elements 
of κκ or only the strictly increasing ones.

In [3, Theorem 6.1] it is proved that Δ1
2(M) implies the existence of unbounded reals over L[r] for every 

real r. This generalizes to the κκ-context assuming κ is an inaccessible.

Lemma 4.4. Suppose κ is inaccessible. Then Δ1
1(Mκ) implies that for every r ∈ κκ there is an x ∈ κκ

↑ which 
is unbounded over κκ

↑ ∩ L[r].

Proof. The proof is based on the proof of [3, Theorem 6.1]. Assuming that there are no unbounded re-
als over κκ

↑ ∩ L[r] we will construct a Σ1
1-definable sequence 〈fα | α < κ+〉 of reals in L[r] which is 

dominating, well-ordered by <∗, and satisfies some additional technical properties. This will yield two 
non-κ-Miller-measurable sets A and B defined by A := {x ∈ κκ

↑ | the least α such that x ≤∗ fα is even}
and B := {x ∈ κκ

↑ | the least α such that x ≤∗ fα is odd}, where, by convention, limit ordinals are 
considered even.

To begin with, we fix an enumeration 〈σi | i < κ〉 of κ<κ
↑ \ {∅}. Let �σ� denote i such that σ = σi, and 

also well-order κ<κ
↑ \ {∅} by �, defined by σ � τ iff �σ� ≤ �τ�. We also use the following notation: for all 

σ ∈ κ<κ
↑ of successor length, let σ(last) denote the last digit of σ, i.e., σ(len(σ) − 1).

Next, let C denote the set {σ ∈ κ<κ
↑ | len(σ) is a successor}. Define a fixed function ϕ0 : C → κ by letting 

ϕ0(σ) be the least i < κ such that σi(0) > σ(last). The function ϕ0 should be understood as a “lower 
bound” on potential other functions ϕ : C → κ satisfying σϕ(σ)(0) > σ(last).

Let T be a given κ-Miller tree T , and assume, without loss of generality, that every splitting node of T is 
club-splitting. We recursively define a collection 〈τ̃Tσ | σ ∈ κ<κ

↑ 〉 of split-nodes of T , and another collection 
〈τTσ | σ ∈ C〉, as follows:

• τ̃T∅ = stem(T ).
• Assuming τ̃Tσ is defined, and given a β < κ, let τTσ�〈β〉 be σi for the least i such that

– τ̃T �
σ σi ∈ Split(T ), and

– σi(0) > β.
Then let τ̃Tσ�〈β〉 := τ̃T �

σ τTσ�〈β〉.
• For σ with len(σ) = λ limit, let τ̃Tσ :=

⋃
α<λ τ̃

T
σ�α. Note that τ̃Tσ ∈ Split(T ) by the assumption that 

limits of splitting nodes in T are splitting.

Intuitively, each τTσ , for σ of successor length, gives us a �-minimal extension within the tree T , whose 
first digit is strictly higher then the a-priori-prescribed value σ(last). Define a function ϕT : C → κ by 
ϕT (σ) := �τTσ �. This function will be used as a lower bound later. Notice that for any κ-Miller tree T we 
have ϕ0 ≤ ϕT , and in fact ϕ0 = ϕ(

κ<κ
↑

) (i.e., the ϕT for T = κ<κ
↑ = the trivial Mκ-condition).

It is worth noting that since the values of ϕT (σ) and ϕ0(σ) only depend on σ(last), these functions could 
also be construed as functions from κ to κ. However, for technical reasons, it is necessary to consider them 
as functions from C to κ.

Next, for a fixed function f : κ → κ, another function ϕ : κ<κ
↑ → κ satisfying ϕ0 ≤ ϕ, and an ordinal 

β < κ, we define a special set S = S(ϕ, f, β) of κ-reals. This set will be defined by specifying “fronts” Sα, 
for α < κ. Each Sα will be a subset of κ<κ

↑ , satisfying the following two requirements:

1. |Sα| < κ, and
2. ∀ρ ∈ Sα (len(ρ) ≥ α).
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Moreover, every ρ ∈ Sα+1 will be a proper extension of a ρ′ ∈ Sα. We construct the Sα recursively as 
follows:

• S0 := {σi | i ≤ β}.
• S1 := {ρ�σi | ρ ∈ S0, i ≤ ϕ(〈β〉) and σi(0) > β}.

Notice that since ϕ0(〈β〉) ≤ ϕ(〈β〉) there is at least one σi satisfying the above requirement. In particular, 
all elements of S1 have length ≥ 1. It is also clear that |S1| < κ.

• Let height(S1) := sup{len(ρ) | ρ ∈ S1} and let f∗(1) := sup({β} ∪ {f(ξ) | ξ < height(S1)}). Now let

S2 := {ρ�σi | ρ ∈ S1, i ≤ ϕ(〈β, f∗(1)〉) and σi(0) > f∗(1)}.

Again notice that since ϕ0(〈β, f∗(1)〉) ≤ ϕ(〈β, f∗(1)〉), there exists at least one σi as above, so all 
element of S2 have length ≥ 2. Also it is clear that |S2| < κ.

• Generally, assume Sα is defined as well as f∗(ξ) for all ξ < α. Let height(Sα) := sup{len(ρ) | ρ ∈ Sα}, 
which is an ordinal < κ by the inductive assumption that |Sα| < κ. Let f∗(α) := sup({β} ∪ {f(ξ) | ξ <

height(Sα)}). Then let

Sα+1 := {ρ�σi | ρ ∈ Sα, i ≤ ϕ(〈β, f∗(1), . . . , f∗(α)〉) and σi(0) > f∗(α)}.

As before, ϕ0(〈β, f∗(1), . . . , f∗(α)〉) ≤ ϕ(〈β, f∗(1), . . . , f∗(α)〉) implies that all members of Sα+1 have 
length ≥ α + 1. Also |Sα+1| < κ is clear.

• Suppose λ is limit. Let Sλ be the collection of ρ ∈ κ<κ
↑ such that ρ =

⋃
α<λ ρα for some strictly 

⊆-increasing sequence {ρα | α < λ} with ρα ∈ Sα. Clearly all such ρ have length ≥ λ. By the inductive 
assumption that |Sα| < κ for all α < λ, and the fact that κ is inaccessible, it follows that |Sλ| < κ.

Finally we let S = S(ϕ, f, β) to be the set of all κ-reals x such that x =
⋃

α<κ ρα for some strictly 
⊆-increasing sequence {ρα | α < κ} with ρα ∈ Sα. The essential properties of S(ϕ, f, β) are summarized in 
the next sublemma:

Sublemma 4.5.

1. For every S(ϕ, f, β), there exists a function g ∈ κκ which bounds S(ϕ, f, β) (i.e., ∀x ∈ S(ϕ, f, β) ∀i <
κ ((x(i) < g(i)))).

2. Every x ∈ S(ϕ, f, β) is cofinally often above f (i.e., x ≮∗ f).
3. For every κ-Miller tree T , f and ϕ satisfying ϕT <∗ ϕ, there exists β < κ such that [T ] ∩S(ϕ, f, β) 	= ∅.

Proof.

1. By construction, if ρ is any initial segment of any x ∈ S(ϕ, f, β) with len(ρ) = α, then ρ must be an 
initial segment of some sequence from Sα. We can thus define g by stipulating that g(α) be above ρ(α) for 
all ρ ∈ Sα+1, which can always be done since |Sα+1| < κ. Now it is clear that for every x ∈ S(ϕ, f, β), 
for every α we have x(α) < g(α) (another way to explain this is: the tree generated by 

⋃
α<κ Sα is 

<κ-branching).
2. By construction, each Sα+1 contains only those ρ�σi where σi(0) > f∗(α). In particular σi(0) >

f(len(ρ)). Therefore x(ξ) > f(ξ) happens cofinally often for every x ∈ S(ϕ, f, β).
3. This is the main point of the proof. First, note that since ϕT <∗ ϕ, there are only <κ-many σ satisfying 

ϕT (σ) ≥ ϕ(σ). In particular, we can pick β < κ such that
(a) β > �stem(T )�, and
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(b) ϕT (〈β〉�σ) < ϕ(〈β〉�σ) holds for all σ.
After β has been fixed, the set S(ϕ, f, β) is also fixed. In particular, f∗ can be computed from f as it 
was done in the construction of the Sα’s. Let

�f := 〈β〉�〈f∗(α) | 1 ≤ α < κ〉

and for all α < κ use the abbreviation:

ρα := τ̃T�f�α.

Then x :=
⋃

α<κ ρα =
⋃

α<κ τ̃
T
�f�α is a branch through [T ]. On the other hand, we claim that ρα ∈ Sα

for all α:
• Since �stem(T )� < β and ρ0 = τ̃T∅ = stem(T ), by construction ρ0 ∈ S0.
• Since ϕT (〈β〉) < ϕ(〈β〉), �τT〈β〉� = ϕT (〈β〉), τT〈β〉(0) > β, and

ρ1 = τ̃T〈β〉 = τ̃T �
∅ τT〈β〉 = ρ�0 τT〈β〉,

by construction ρ1 ∈ S1.
• Assume ρα ∈ Sα. Since ϕT (�f�(α+1)) < ϕ(�f�(α+1)), �τT�f�(α+1)

� = ϕT (�f�(α+1)), τT�f�(α+1)
(0) > f∗(α)

and

ρα+1 = τ̃T�f�(α+1) = τ̃T �
�f�α τT�f�(α+1) = ρ�α τT�f�(α+1),

by construction ρα+1 ∈ Sα+1.
• For limits λ we have ρλ = τ̃Tf�λ =

⋃
α<λ τ̃

T
f�α =

⋃
α<λ ρα. Since inductively ρα ∈ Sα, by definition we 

have ρλ ∈ Sλ.
Since ρα ∈ Sα for all α < κ we obtain x =

⋃
α<κ ρα ∈ S(ϕ, f, β), as had to be shown. � (Sublemma).

To complete the proof of the main lemma, assume, towards contradiction, that κκ
↑ ∩L[r] is a dominating 

set, for some r. Construct a sequence 〈fα | α < κ+〉 of elements of κκ
↑ ∩ L[r], and an auxiliary sequence 

〈ϕα | α < κ+〉 of elements of κC ∩ L[r], in such a way that:

1. 〈fα | α < κ+〉 and 〈ϕα | α < κ+〉 are well-ordered by <∗,
2. 〈fα | α < κ+〉 is a dominating subset of κκ

↑ ∩L[r] and 〈ϕα | α < κ+〉 is a dominating subset of κC ∩L[r],
3. all ϕα are pointwise strictly above ϕ0,
4. fα+1 dominates S(ϕα, fα, β) for all β, and
5. both sequences have Σ1

1-definitions.

To see that this can be done, at each step α inductively pick the <L[a]-least fα and ϕα dominating all 
the previous functions; to satisfy point 4 above, use Sublemma (1) to dominate each S(ϕα, fα, β) by a 
corresponding function gβ, and then dominate {gβ | β < κ} by another g.

Now, as suggested earlier, define A := {x ∈ κκ
↑ | the least fα which dominates x is even} and B := {x ∈

κκ
↑ | the least fα which dominates x is odd}. Clearly A ∩ B = ∅, and by assumption A ∪ B = κκ

↑ . Since 
the sequence of fα’s was Σ1

1-definable, the sets A and B are also Σ1
1-definable, hence they are both Δ1

1. To 
reach a contradiction, let T be a κ-Miller tree, and we will show that [T ] contains an element in A and an 
element in B. Since the sequence 〈ϕα | α < κ+〉 is dominating, there exists an α such that for all ξ ≥ α we 
have ϕT <∗ ϕξ. In particular ϕT <∗ ϕα and ϕT <∗ ϕα+1. By point 3 of the Sublemma, we can find β and 
β′ such that
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[T ] ∩ S(ϕα, fα, β) 	= ∅, and

[T ] ∩ S(ϕα+1, fα+1, β
′) 	= ∅.

Without loss of generality α is even. Let y be an element of the first set. By point 2 of the Sublemma, 
y ≮∗ fα, and by construction, y <∗ fα+1. Hence y ∈ B. Likewise, let y′ be an element of the second set. 
Then by an analogous argument y′ ≮∗ fα+1 but y′ <∗ fα+2. Hence y′ ∈ A. This completes the proof. �
Question 4.6. Can Lemma 4.4 be proved without assuming that κ is inaccessible?

So far, these are the only generalizations of classical Solovay-style characterizations known to us. The 
other result due to Brendle and Löwe linked Laver-measurability with dominating reals. However, that 
proof does not seem to generalize to the κκ-setting because κ-Laver-measurability differs from classical 
Laver-measurability in the sense that the ideal IL cannot be neglected (see Lemma 4.1). Therefore the 
following is still open:

Question 4.7. Does Δ1
1(Lκ) imply that for every r ∈ κκ, there is an x which is dominating over L[r]?

Likewise, currently we do not have suitable Solovay-style consequences of the assumptions Δ1
1(Vκ) and 

Δ1
1(Rκ). In the classical setting, there is a connection between these properties and splitting/unsplit reals.

Question 4.8. Can the hypotheses Δ1
1(Vκ) and Δ1

1(Rκ) be linked to the existence of (a suitable generalization 
of) splitting/unsplit reals?

4.2. Comparing Δ1
1(P)

The next questions we want to ask are: for which P and Q does Δ1
1(P) imply Δ1

1(Q), and for which P and 
Q can we construct models where Δ1

1(P) + ¬Δ1
1(Q) holds? We will prove several implications for arbitrary 

pointclasses Γ in Lemma 4.9. Classical counterparts of such implications are well-known but generally much 
easier to prove, as the uncountable context provides combinatorial challenges not present when κ = ω.

Separating regularity properties is currently very difficult for the following two reasons:

1. We do not have good Solovay-style characterizations, and
2. We do not have good preservation theorems for forcing iterations.

We will finish this section with the only example of such a separation result currently known to us.

Lemma 4.9. Let Γ be a class of subsets of κκ or 2κ closed under continuous preimages (in particular Γ = Δ1
1). 

Then

1. Γ(Mκ) ⇒ Γ(Sκ).
2. Γ(Vκ) ⇒ Γ(Sκ).
3. Γ(Cκ) ⇒ Γ(Mκ).
4. Γ(Lκ) ⇒ Γ(Mκ).
5. Γ(Rκ) ⇒ Γ(Mκ).
6. If κ is inaccessible, then Γ(Cκ) ⇒ Γ(Vκ).
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Proof.

1. Let A ⊆ 2κ be a set in Γ and let T be a κ-Sacks tree. We must find a κ-Sacks tree below T whose 
branches are completely contained in or disjoint from A. Let ϕ be the natural order-preserving bijection 
identifying 2<κ with Split(T ), and ϕ∗ the induced homeomorphism between 2κ and [T ]. Further, fix a 
stationary, co-stationary set S ⊆ κ and enumerate S := {ξα | α < κ} and κ \ S := {ηα | α < κ}. Let ψ
be a map from κ<κ

↑ to 2<κ defined by:
• ψ(∅) = ∅.

• ψ(s�〈α〉) :=
{
ψ(s)�〈1〉�0β �〈1〉 if α ∈ S and α = ξβ

ψ(s)�〈0〉�0β �〈1〉 if α /∈ S and α = ηβ

where 0β denotes a β-sequence of 0’s.
• ψ(s) :=

⋃
α<λ ψ(s�α), if len(s) = λ for a limit ordinal.

The function ψ is different from a standard encoding of ordinals by binary sequences, but it is clear 
that ψ is bijective, since there is an obvious algorithm to compute ψ−1(s) for any s ∈ 2<κ. The reason 
for using this specific function is that we want ψ(s) to be a splitting node whenever s is a club-splitting 
node. Clearly, ψ induces a homeomorphism ψ∗ between κκ

↑ and 2κ \ Q, where we use Q to denote the 
generalized rationals, i.e., Q := {x ∈ 2κ | |{i | x(i) = 1}| < κ}.
Let A′ := (ϕ∗ ◦ ψ∗)−1[A], which is in Γ by assumption. By Γ(Mκ) we can find a κ-Miller tree R such 
that [R] ⊆ A′ or [R] ∩ A′ = ∅, w.l.o.g. the former. Let R′ := {ψ(s) | s ∈ R}. First, note that R′ is a 
κ-Sacks tree: this follows because for any s ∈ Split(R) there are α ∈ S and β /∈ S such that both s�〈α〉
and s�〈β〉 are in R, which implies that both ψ(s)�〈1〉 and ψ(s)�〈0〉 are in R′, so ψ(s) ∈ Split(R′). 
Moreover, since ψ∗ is a homeomorphism, we know that [R′] \ Q = (ψ∗)“[R] ⊆ (ϕ∗)−1[A]. But since Q
is a set of size κ we can easily find a refinement R′′ ⊆ R′, which is still a κ-Sacks tree and moreover 
[R′′] ⊆ (ψ∗)“[R] ⊆ (ϕ∗)−1[A]. Then (ϕ∗)“[R′′] generates a κ-Sacks tree which is completely contained 
in [T ] ∩A.

2. Let A ∈ Γ and T ∈ Sκ and ϕ and ϕ∗ be as above. Then A′ := (ϕ∗)−1[A] is in Γ so there exists a κ-Silver 
tree S such that [S] ⊆ A or [S] ∩ A = ∅. As S is a κ-Sacks tree, clearly ϕ“S generates a κ-Sacks tree 
below T whose branches are completely contained in or completely disjoint from A.

3. Now let A ⊆ κκ
↑ be in Γ and let T be a κ-Miller tree. By shrinking if necessary, we may assume T

to have the property that all splitting nodes are club-splitting. Let ϕ be the natural order-preserving 
bijection between κ<κ

↑ and Split(T ), and ϕ∗ the induced homeomorphism between κκ
↑ and [T ]. Let 

A′ := (ϕ∗)−1[A]. As A′ has the Baire property by Γ(Cκ), let [s] be a basic open set such that [s] ⊆∗ A′

or [s] ∩ A′ =∗ ∅, and without loss of generality assume the former. Let {Xi | i < κ} be nowhere dense 
sets such that [s] \ A′ =

⋃
i<κ Xi. We will inductively construct a κ-Miller tree S such that [S] ⊆ A′

and [S] ∩Xi = ∅ for all i < κ.
• Let S0 be the tree generated by {s}.
• Suppose Si has been defined for i < κ. Let Term(Si) be the collection of terminal branches of Si (i.e., 

those σ ∈ Si such that SuccSi
(σ) = ∅), and for each σ ∈ Term(Si) and α < κ, let τσ,α be an extension 

of σ�〈α〉 such that [τσ,α] ∩Xi = ∅. Now let Si+1 be the tree generated by {τσ,α | σ ∈ Term(Si) and 
α < κ}.

• For limits λ < κ, let Sλ be the tree generated by cofinal branches through 
⋃

α<λ Sα.
By construction, S :=

⋃
i<κ Si is a κ-Miller tree (all splitting nodes of S are in fact fully splitting). 

Moreover [S] ⊆ [s] and [S] ∩Xi = ∅ for all i < κ. In particular, [S] ⊆ A′. But now it follows easily that 
ϕ“S generates a κ-Miller tree below T , whose branches are completely contained in A.

4. This follows a similar strategy as above, but using the topology generated by Lκ instead of the standard 
topology. Let A ∈ κκ

↑ be in Γ, T ∈ Mκ, ϕ and ϕ∗ be as above, and let A′ := (ϕ∗)−1[A]. As A′ is 
Lκ-measurable, there is a κ-Laver tree R such that [R] ⊆∗ A′ or [R] ∩A′ =∗ ∅, where ⊆∗ and =∗ means 
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“modulo ILκ
”. Without loss of generality assume the former and let {Xi | i < κ} be in NLκ

such that 
[R] \ A′ =

⋃
i<κ Xi. Again we will construct a κ-Miller tree S such that [S] ⊆ A′ and [S] ∩Xi = ∅ for 

all i < κ.
We will need to perform a fusion argument on Mκ, so we introduce some terminology. For a κ-Miller 
tree S, a node s ∈ S is called an i-th splitting node iff s ∈ Split(S) and the set {j < i | s�j ∈ Split(S)}
has order-type i. Spliti(S) denotes the set of i-th splitting nodes of S. The standard fusion for Mκ (cf. 
Fact 2.11 (2)) is defined by S′ ≤i S iff S′ ≤ S and Spliti(S′) = Spliti(S). We will build a fusion sequence 
{Si | i < κ} of κ-Miller trees, but with the following additional property

(∗) ∀i ∀s ∈ Spliti(Si) (Si↑s is a κ-Laver tree with stem s).

Note that if s is as above, then every t ∈ Si extending s also has the property that Si↑t is a κ-Laver 
tree with stem t.
• Let S0 := R.
• Suppose Si has been defined for i < κ. Pick σ ∈

⋃
{SuccSi

(ρ) | ρ ∈ Spliti(Si)}. By (∗) we know 
that Si↑ρ, and therefore also Si↑σ, is a κ-Laver tree. So let Sσ ≤ Si↑σ be a κ-Laver tree such that 
[Sσ] ∩Xi = ∅. Then let

Si+1 :=
⋃

{Sσ | σ ∈
⋃

{SuccSi
(ρ) | ρ ∈ Spliti(Si)}}.

By construction Si+1 is a κ-Miller tree, Si+1 ≤i Si, and condition (∗) is satisfied.
• For limits λ < κ, let Sλ :=

⋂
i<λ Si. By a standard fusion argument, Sλ is a κ-Miller tree and Sλ ≤i Si

for all i < λ. Moreover, any σ ∈ Splitλ(Sλ) is the extension of a λ-splitting node of Si for every i, so 
by condition (∗), Si↑σ is a κ-Laver tree with stem σ, for every i < λ. By <κ-closure of Lκ, it follows 
that Sλ↑σ =

⋂
i<λ(Si↑σ) is a κ-Laver tree with stem σ, hence Sλ satisfies condition (∗).

By construction, S :=
⋂

i<κ Si is a κ-Miller tree, [S] ⊆ [R], and [S] ∩Xi = ∅ for all i < κ. In particular, 
[S] ⊆ A′. Now it follows that ϕ“S generates a κ-Miller tree below T , whose branches are completely 
contained in A.

5. This part is completely analogous to 4. Note that κ-Mathias conditions are special kinds of κ-Laver 
trees, and Rκ is also <κ-closed.

6. Here it is easier to consider Cκ on 2κ as opposed to κκ. It is not hard to see that the two properties 
are equivalent for Γ. Let A ⊆ 2κ be in Γ, let T ∈ Vκ, let ϕ be the natural order-preserving bijection 
between 2κ and the splitnodes of T , and let ϕ∗ be the induced homeomorphism between 2κ and [T ]. 
Let A′ := (ϕ∗)−1[A], and using Γ(Cκ) let s ∈ 2<κ be such that [s] ⊆∗ A′ or [s] ∩ A′ =∗ ∅, without 
loss of generality the former. Let Xi be nowhere dense such that [s] \A′ =

⋃
i<κ Xi. As before, we will 

inductively construct a κ-Silver tree S such that [S] ⊆ [s] and [S] ∩Xi = ∅ for all i.
In this construction, it will be easier to view κ-Silver conditions as functions from κ to {0, 1, {0, 1}}. We 
will use the following notation: for f : α → {0, 1, {0, 1}} let

[f ] := {x ∈ 2α | ∀i (f(i) ∈ {0, 1} → x(i) = f(i))}.

Notice that if f : κ → {0, 1, {0, 1}} and f(i) = {0, 1} for club-many i, then the corresponding κ-Silver 
tree can be defined as Sf := {σ ∈ 2<κ | σ ∈ [f�len(σ)]}, and we have [Sf ] = [f ]. We will construct a 
function f as the limit of fα’s, defined as follows:
• f0 := s.
• Since X0 is nowhere dense, let τ1 be such that [s�〈0〉�τ1] ∩X0 = ∅. Then let τ2 ⊇ τ1 be such that 

[s�〈1〉�τ2] ∩X0 = ∅. Now set

f1 := s�〈{0, 1}〉�τ2.
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Notice that for any x ∈ 2κ extending any σ ∈ [f1] we have x /∈ X0.
• Suppose fi is defined for i < κ. Let {σα | α < 2i} enumerate all sequences in [f�

i 〈{0, 1}〉] and define 
{τα | α < 2i} by induction as follows:
– τ0 = ∅.
– If τα is defined let τα+1 ⊇ τα be such that [σ�

α τα+1] ∩Xi = ∅.
– For limits λ let τλ :=

⋃
α<λ τα.

Then define τ2i :=
⋃

α<2i τα and notice that τ2i ∈ 2δ for δ < κ since κ was inaccessible. Now let

fi+1 := f�
i 〈{0, 1}〉�τ2i .

It is clear that any x ∈ 2κ extending any σ ∈ [fi+1] is not in Xi.
• For γ limit, let fγ :=

⋃
i<γ fi.

Finally, we let f :=
⋃

i<κ fi. By construction f(i) = {0, 1} for club-many i < κ, and clearly every x ∈ [f ]
is not in Xi for any i < κ. Hence Sf := {σ ∈ 2<κ | σ ∈ [f�len(σ)]} is a κ-Silver tree with [Sf ] ⊆ A′. Then 
ϕ“Sf generates a κ-Silver subtree of T which is completely contained in A, as had to be shown. �

Focusing on Γ = Δ1
1, we can summarize the contents of the above results in Fig. 1.4 Of particular interest 

are two implications which are present in the classical setting but still seem open in the general setting:
Δ1

1(Vκ) Δ1
1(Sκ)

Δ1
1(Rκ)

?

?

Δ1
1(Lκ) Δ1

1(Mκ)

Δ1
1(Cκ)

κ inacc.

Fig. 1. Diagram of implications for Δ1
1.

Question 4.10. Is Δ1
1(Rκ) ⇒ Δ1

1(Lκ) true? Is Δ1
1(Rκ) ⇒ Δ1

1(Vκ) (at least for κ inaccessible) true?

As mentioned, currently we can prove only the following separation theorem.

Theorem 4.11. Suppose κ is inaccessible. Then it is consistent that Δ1
1(Vκ) and Δ1

1(Sκ) hold whereas 
Δ1

1(Rκ), Δ1
1(Lκ), Δ1

1(Cκ) and Δ1
1(Mκ) fail.

Proof. It is sufficient to establish Δ1
1(Vκ) + ¬Δ1

1(Mκ). Perform a κ+-iteration of κ-Silver forcing, starting 
in L, with supports of size κ. An argument completely analogous to [17, Theorem 6.1] shows that this 
iteration of κ-Silver forcing is κ-proper (so the conditions necessary to apply Theorem 3.13 are satisfied, 
i.e., κ+ is preserved and κ-reals in the final extension are captured by an initial segment), and moreover, 
is κκ-bounding, i.e., every function f ∈ κκ in the extension is dominated by a g ∈ κκ in the ground model. 
By Theorem 3.13 the generic extension satisfies Δ1

1(Vκ), while the statement “∀r ∃x (x is unbounded over 
κκ ∩ L[r])” is false, so by Lemma 4.4 Δ1

1(Mκ) fails. �
4 We arrange the diagram in this particular way in order to be consistent with previous presentations of similar diagrams, e.g. 

in [6].
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Notice that by Remark 3.15 and Lemma 4.9 we can obtain Δ1
1(P) for all P ∈ {Cκ, Sκ, Mκ, Lκ, Rκ}, and 

also for P = Vκ if κ is inaccessible, simultaneously in one model, namely L(Cκ∗Lκ∗Rκ)ω1 .

5. Open questions

We have carried out an initial study of regularity properties related to forcing notions on the generalized 
reals; but many questions remain open, particularly with regard to the specific examples presented in 
Section 4.

Question 5.1.

1. Can Lemma 4.4 be proved without assuming that κ is inaccessible?
2. Does Δ1

1(Lκ) imply that for every r ∈ κκ, there is an x which is dominating over L[r]?
3. Can the hypotheses Δ1

1(Vκ) and Δ1
1(Rκ) be linked to the existence of (a suitable generalization of) 

splitting/unsplit reals?

A more long-term goal would be to find a complete diagram of implications for generalized Δ1
1 sets.

Question 5.2. Which additional implications from Fig. 1 can be proved in ZFC? Which are consistently 
false? Specifically, does Δ1

1(Rκ) ⇒ Δ1
1(Lκ) and Δ1

1(Rκ) ⇒ Δ1
1(Vκ) (at least for κ inaccessible) hold?

In a more conceptual direction, one should try to better understand the exact role of the club filter, which 
provides counterexamples for Σ1

1-regularity. For example, perhaps one could prove that the club filter, up to 
some adequate notion of equivalence, is the only Σ1

1-counterexample. Alternatively, one could try to focus 
on regularity properties such as the ones considered in [27,22], and try to gain a better understanding why 
the club filter is a counterexample for some regularity properties but not for others. For example, by recent 
results of Laguzzi and the first author, projective measurability is consistent for a version of Silver forcing 
in which the splitting levels occur on a normal measure on κ as opposed to the club filter.
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